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ABSTRACT Owing to its advantages of low-cost and fast detection, pulsed thermography has become a
promising technique to detect subsurface defects in materials of carbon fiber reinforced polymer (CFRP).
Since defect signals in the detected results always suffer from low contrast due to the instability of detecting
environment, feature extraction methods are required to enhance the visualization of defects. However, many
state-of-the-art feature extraction methods have difficulties in overcoming the interference from noise and
background, so that their effects are limited in highlighting the defects. To solve this problem, a novel
methodology of combining signal filtering with feature extraction is proposed in this paper. In this approach,
thermal images are first smoothed by a difference of Gaussian convolutional (DoGC) filters, which is
designed to eliminate noise and uneven background based on their frequencies. Furthermore, the method
of sparse principal component thermography (SPCT) is adopted to extract the features of defects. Two
experiments on sample laminates have suggested that, DoGC-SPCT is superior to other feature extraction
methods in the following aspects. Firstly, the DoGC filter can effectively eliminate most of the interference,
thus facilitating defect identification during the process of feature extraction. Secondly, the computational
outcomes show that DoGC-SPCT leads to higher values in the index of signal to noise ratios for the defects.
Finally, DoGC-SPCT leads to higher interpretability, which has smoother background in the obtained results.

INDEX TERMS Carbon fiber reinforced polymer, Gaussian convolution, pulsed thermography, subsurface
defect, sparse principal component thermography.

I. INTRODUCTION
Carbon fiber reinforced polymer (CFRP) is a kind
of advanced composite materials that reveals dominant
properties of high mechanical strength, high toughness and
resistance to high-temperature [1]. Benefiting from those
properties, CFRP has shown its promising applications in
industries such as aerospace, automotive and sports [2], [3].
However, external impacts from industrial machinery during
the manufacturing process may lead to subsurface defects
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inside the materials, such as folding, adulteration and fiber
breakage [4], [5]. As a negative result, total structure of
CFRP will be destroyed under the influence of those defects,
and strength or stiffness of the products will no longer be
guaranteed. Thus, inspection of materials with respect to the
possible presence of subsurface defects is crucially signifi-
cant to the industrialization of CFRP. On the other hand, since
subsurface defects are barely visible from the appearance,
non-destructive testing (NDT) techniques are necessary to
achieve this goal.

Without harming the tested object, NDT can assess
the quality of CFRP through the discontinuities in the
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propagation of heat, sound and electromagnetic wave. For
example, Li [6] applied microwave testing for thickness mea-
surement of dielectric coatings on CFRP plates, and achieved
high accuracy in situations with both thick and thin coatings.
Elena [7] adopted X-ray computed tomography to evaluate
the structure of CFRP, and proved that it can offer high reso-
lution detecting results. Salski [8] performed radio-frequency
inductive testing on the health monitoring of CFRP. And they
exemplified that, this technique allows speeding up of the
measurement. Dattoma [9] presented preliminary ultrasonic
study on detecting CFRP materials, and showed that ultra-
sonic scanning is suitable for detection of internal defects in
composite materials. Meanwhile, Toyama [10] proposed an
ultrasonic inspection for detecting disbands in CFRP based
on pulsed laser. Ahmed [11] presented a review in the field
of eddy-current testing, and made study on how probe struc-
ture factors influenced the accuracy of detecting. However,
compared to the techniques above, testing by pulsed ther-
mography (PT) [12] has the advantages of relatively simple
setup and fast inspection on large areas, so that it shows great
potential as an effective tool for real timemonitoring of CFRP
production.

During the conduction of PT, the object under examination
is stimulated with a short high-powered thermal pulse. Then
the heat absorbed by surface of the material will diffuse into
the object uniformly before reaching the discontinuous areas.
During the cooling process, a sequence of thermograms is
obtained to characterize the variation of heat distributions
on the surface of the material. Associated with this process
are the transient heating of thermal pulse and the instability
of detecting environment, and they will bring non-uniform
background [13] as well as measurement noise [14], [15]
to the informative signals in an additional way. Practically,
due to those interference, visibility of the defects inside the
original thermogram cannot be ensured.

To enhance thermal contrasts for the defects, one pop-
ular idea is to extract features from the original thermo-
graphic dataset [16], [17], [18], [19], [20], [21]. Meanwhile,
the features can also be utilized to characterize shapes or
depths of the defects in an end-to-end way [22], [23], [24].
Many feature extraction methods have been proposed. For
instance, Shepard [25] developed the method of thermo-
graphic sequence reconstruction, in which thermographic
data is decomposed based on the temporal evolution model
of thermogram. Another strategy is the pulsed phase ther-
mographic technique [26], whose decomposition is built on
the basis of oscillatory functions. Alvarez [27] proposed the
method of orthogonal polynomial decomposition, and real-
ized identification of defects as well as estimation of their
depths. On the other hand, themethod of principal component
thermography (PCT) [28] was proposed to achieve compres-
sion based on the statistical characteristics of thermographic
data. And owing to its flexibility, PCT has become the basic
framework for many extensive feature extraction algorithms.
One of the newly-developedmethods is sparse principal com-
ponent thermography (SPCT) [29], which allows reduction of

noise during the feature extraction and further increases the
interpretability of the results. Furthermore, some improve-
ments are also established based on PCT and SPCT. For
example, Liu [30] developed the generative principal com-
ponent thermography, in which samples are augmented by
a generative adversarial network (GAN) before the conduc-
tion of PCT. In our previous work [31], a method of sparse
structural principal component thermography is proposed
that augments the original thermographic matrix with shift
sampling.

The feature extraction methods above have been proved
effective in characterizing defects. However, many issues are
still in need of investigation. One of them is that most of the
state-of-the-art algorithms have difficulties in distinguishing
defect signals from uneven background and measurement
noise. Consequently, features of the interference may be mis-
takenly extracted in these methods. Aiming at the problem
above, this paper focuses on the further research of increasing
accuracy of the feature extraction methods.

The difficulties above motivate the proposal of alternative
techniques that pay more attention to eliminate the interfer-
ence from the informative signals. According to the litera-
tures, some algorithms have been proposed to subtract unde-
sired signals. In general, they can be categorized as schemes
of filtering and factor analysis. With respect to filtering,
an approximation of a defect-free thermogram is produced
by smoothing the image. In this way, an optimal filter should
mask the presence of the defects. Some typical filters are
based onmedian kernel [13] or Gaussian kernel. For example,
Grys [32] applied the Gaussian filter to subtract uneven illu-
mination from thermal images, and proposed filtered contrast
based on the filtering result. For instance, Zhang [15] pro-
posed a spatial-temporal denoised thermal source separation
(STDTSS) method that denoised the thermograms based on
a combination of Gaussian filter and Savitzky-Golay filter.
As for schemes of factor analysis, thermographic data is mod-
eled as weighted sums of different components, namely non-
uniform background and defect signals. Different algorithms
are proposed to decompose signals. For instance, Zheng [33]
adopted penalized least squares to eliminate noise as well
as non-uniform background from the original thermogram.
On the other hand, inspired by the idea of blind source separa-
tion, Liu [34] employed the independent component analysis
to decompose the thermographic data into several indepen-
dent signals. Meanwhile, other methods can be applied to
separate compound signals. For example, Wang [35] applied
non-negative matrix factorization to extract compound fault
features of bearing. Esteki [36] adopted the method of Fisher
linear discriminant analysis to separate spectroscopic signals
for food quality assessment.

As a comparison of the schemes above, the methods of
filtering can directly estimate the patterns of the interfer-
ence from each thermogram separately, so that they can be
more flexible than those of factor analysis in thermographic
denoising. Motivated by the filtering algorithms above,
a novel scheme of feature extraction that is a combination of
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difference of Gaussian convolutions (DoGC) and SPCT is
developed in this paper. In this method, a DoGC filter is
developed to eliminate noise and non-uniform background by
means of low-pass Gaussian spatial filtering, leaving infor-
mative signals for the defects in the filtering result. Further-
more, SPCT is conducted to extract features of the defects,
considering the dynamic variation of the temperature on each
pixel. Benefit from the filtering process of DoGC, the pro-
posed scheme has potential in overcoming the interference,
and it is able to capture the features of the defects more
accurately.

The remaining contents of this paper are structured as fol-
lows. In Section 2, a PT inspection system is established for
acquisition of thermographic data. In Section 3, the method-
ology of DoGC-SPCT is presented in a detailed manner.
Section 4 is devoted to the evaluation of the proposed method
for defect enhancement in the experiment. Finally, this paper
is ended by reaching some conclusions in Section 5.

A shorter version of this paper has been accepted in the 3rd
International Conference on Industrial Artificial Intelligence
(IAI 2021) [37]. Compared to our initial conference paper,
this manuscript performed more detailed discussion about
the theoretical principle of this method. Meanwhile, more
experiments were performed in this manuscript to validate the
feasibility of this method.

II. PT INSPECTION SYSTEM
The structure of PT inspection system is shown in Fig.1.
During the conduction of PT, a light source is applied to
generate a short high-powered thermal pulse to stimulate the
target. As heat diffuses into the object, an infrared camera
is employed to capture the temperature distribution on the
surface of the object. Since the whole PT process lasts for
quite a short time, the facilities in the system can be connected
to a computer to keep in synchronization. Generally, the
detected temperature for each pixel of the surface can be
represented by a specified color, such that the temperature
distribution for the whole surface forms one thermal image.

The sequence of thermal images captured by PT is shown
on the right side of Fig.1, which can be viewed as a three-
dimensional (3D) matrix. The thermographic matrix has
dimensionality of Ny × Nx × Nt , where Nt is the number
of frames obtained by the camera, while Nx and Ny are the
numbers of pixels in the horizontal and vertical directions
respectively. The value of Nt is decided by both the duration
of the process and the shooting frequency of the camera,
while those of Nx and Ny are determined by the resolution of
the camera. In the two-dimensional (2D) plane of an image,
any one of the pixels can be located as a coordinate point of
(x, y) (x = 1, . . . ,Nx , y = 1, . . . ,Ny)

III. METHODOLOGY OF DoGC-SPCT
The proposed DoGC-SPCT method aims at increasing the
accuracy of the feature extraction with respect to enhancing
visualization of defects. There are a total of two stages in this
method: signal filtering and feature extraction. The section

FIGURE 1. Structure of PT for defect detection in CFRP specimen and the
captured thermal images.

below will describe the whole pipeline of this methodology,
including the analytical model for thermographic signals,
DoGC filtering to subtract noise and background, and SPCT
to extract features of the defects.

A. MODEL FOUNDATION
The process of heat diffusion through a solid specimen can
be described by Fourier’s law [38], given as
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Here, T is the temperature inside the specimen, which is
related to the dimensions of x, y, z and t . α is the thermal dif-
fusivity of the material. After receiving a Dirac heat pulse, the
one-dimension (1D) analytical solution of the temperature on
the surface of an adiabatic semi-infinite body is given by [19]

T (x, y, t) = T0 + Q (x, y) /(α
√
π t) (2)

where T (x, y, t) represents the surface temperature of pixel
(x, y) at time t . And T0 is the initial temperature of the speci-
men that equals to the ambient environment. Since specimen
is kept in a stationary state before being stimulated by the
light source, T0 for each pixel keeps the same in this case.
Q(x, y) is the input energy per unit area. Because of non-
uniform heating, Q varies at different pixels.

From (2), it can be concluded that, at any moment t , the
distribution of the temperature mainly depends on the energy
initially stimulated on the specimen. To keep the scale of the
temperature, (2) is normalized as follows

Tt,max = T0 + Qmax/(α
√
π t) (3)

Tt,min = T0 + Qmin/(α
√
π t) (4)

⇒
T(x, y, t)

Tt,max − Tt,min
=

T0α
√
π t

Qmax − Qmin
+

Q(x, y)
Qmax − Qmin

(5)

where T(x,y,t)
Tt,max−Tt,min

is the normalized form for each thermo-
gram. Meanwhile, considering the detecting noise In (x, y, t),
(5) can be formulated as:

T(x, y, t)
Tt,max − Tt,min

=
T0α
√
π t

Qmax − Qmin
+

Q(x, y)
Qmax − Qmin

+ In (x, y, t) (6)

The terms in (6) can be replaced as

Im (x, y, t) = T(x, y, t)/(Tt,max − Tt,min) (7)
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Iu (x, y) = Q(x, y)/(Qmax − Qmin) (8)

Ii (x, y, t) = T0α
√
π t/(Qmax − Qmin) (9)

Therefore, (6) can be rewritten as

Im (x, y, t) = Ii (x, y, t)+ Iu (x, y)+ In (x, y, t) (10)

During the cooling process, if there are no defects inside the
material, values of α will keep constant, and Ii will increase
uniformly as 1/2 order of time. On the contrary, the internal
discontinuities will lead to variation of α, resulting in distinct
temporal behavior of the defective pixels. Therefore, from
the temporal variation of Ii, it is possible for the feature
extractingmethods to extract defective pixels that have differ-
ent time evolution profiles from those intact ones. However,
the other terms of Iu (x, y) and In (x, y, t) will heavily mask
the informative signals. On one hand, In corresponds to the
random disturbances caused by instability of the detection
facility. On the other hand, Iu is related to the distribution
of the initial energy, so that signals of Iu correspond to the
nonhomogeneous background. These two signals have no
connectionwith the internal defects andmake it more difficult
to extract features of the defects. For the reasons above, it is
necessary to eliminate the signals of Iu and In before feature
extraction.

In this paper, DoGC filter is proposed to reconstruct the
images with least influence of non-uniform background and
noise. Fig.2 shows one sampled thermal image recorded by
PT inspection, which is demonstrated in a 3D version. The
same with [39], in one thermogram, random noise typically
consists of sharp transitions in intensity, while signals of
uneven background change much more slowly. Besides, the
defect signals can be visualized as raised bumps inside the
variation of the background. As a conclusion, the general
distribution of different frequencies can be described as fol-
lows, noise signals are of the highest frequency, followed by
that of the defect component, and the frequency of uneven
background is the lowest among them.

B. ALGORITHM DESIGN OF DoGC
The main novelty of the proposed methodology lies in the
development of DoGC filter, which is able to reduce the noise
In and non-uniform background Iu in succession. As shown in
Fig.3, the DoGC filter is made up of two 2D Gaussian convo-
lutional filters with different filtering thresholds. The section
below will introduce the principle of Gaussian convolution as
well as the implementation of DoGC filter.

1) 2D GAUSSIAN CONVOLUTION
2D Gaussian convolution is a lowpass spatial domain filter,
which performs data smoothing with a kernel sliding over the
image. A Gaussian kernel is a rectangular window with a size
of m× n, and values of the convolutional coefficients follow
the function as below [40]

G (x, y) =
1

2πσ 2 exp
{
−

[
(x − x0)2 + (y− y0)2

]
/2σ 2

}
(11)

FIGURE 2. The 3D version of one sampled thermal image.

FIGURE 3. Pipeline of the DoGC filter.

where G (x, y) is the convolutional coefficient for a pixel
(x, y) that is within the scope. Meanwhile, (x0, y0) is
the current central point when the kernel slides over
the whole image. As a rule, both m and n are set
as odd integers, such that there is only one central
point. From (11), values of G (x, y) are subject to a 2D
Gaussian distribution, and σ is the standard deviation of the
coefficients
The principle of Gaussian convolution is to replace the value
of the pixel with a linear combination of its neighborhood.
Inside a thermal image, the convolutional operation on Im can
be expressed as

Im ∗ G =
∑⌈

n−1
2

⌉
j=−

⌈
n−1
2

⌉∑⌈
m−1
2

⌉
i=−

⌈
m−1
2

⌉ Im (x + i, y+ j)
·G (x + i, y+ j) (12)

where dae represents the round-up integer of a, and
G(x+ i, y+ j) is the coefficient of pixel (x + i, y+ j) inside
the kernel centering on (x, y).

108106 VOLUME 10, 2022



W. Liu et al.: Signal Enhancement in Defect Detection of CFRP Material Using a Combination of DoGCs

2) THE DoGC FILTER
The DoGC filter consists of two Gaussian convolutional fil-
ters, which can be described as

DoGC(x, y) = Im (x, y) ∗ G1 − Im (x, y) ∗ G2 (13)

where G1 and G2 are two Gaussian kernels with different
parameters. In this filter, a high cut-off frequency is achieved
in Im (x, y) ∗G1, for the purpose of subtracting noise compo-
nent. While Im (x, y) ∗ G2 aims at estimating the underlying
shading patterns of the image with a low cut-off frequency.
Then, according to (13), the DoGC filter is able to reduce
the influence of noise In and non-uniform background Iu in
sequence.

To achieve this purpose, parameters in the DoGC filter
need to be assigned with appropriate values. There are two
types of parameters in each kernel, one of them is the kernel
size m × n, and the other one is the standard deviation σ .
For simplification, square kernels with m = n are applied
in this paper. And the values of m are set as the smallest odd
integers no less than d6σe, for coefficients at a distance larger
than 3σ from the center are small enough to be ignored. As a
conclusion, the key parameters that need justifying are σ1 and
σ2 for G1 and G2.

As a low-pass filter, convolution with a Gaussian kernel
will reduce irrelevant details in those pixel regions that are
small with respect to the size of the filter kernel. In this way,
the cut-off frequency of the filter is related to the size of the
kernel. Practically, with a larger kernel, more pixels will be
taken into account in the smoothing process, and it will lead to
amore aggressive blurring. Based on the criteria above, a high
cut-off frequency should be achieved in Im (x, y) ∗ G1, and a
small kernel is needed so as to keep defective information.
Accordingly, the value of σ1 is determined as 3 in this case,
so the size of the kernel is equaling to 19 × 19. On the
other hand, the second term Im (x, y) ∗ G2 in the filter is to
approximate the underlying uneven background. Thus, the
parameters in G2 should be large enough to exclude local
information in the result. However, a kernel with a too large
size may lead to distortion of the background, so the values
of the parameters are determined mainly based on the size of
the image. According to the priori research [41], a filtering
kernel with the same size as the original image (Nx × Nx or
Ny × Ny) is sufficient for extracting underlying pattern. As a
conclusion, the parameters in the DoGC filter are justified in
Table 1.

In addition, there is a shrinkage to the size of the image
during the process of convolution. Therefore, expanding of
the original image is necessary to get a filtered image with
the same size as the original one. Considering to keep the
continuity for the pattern of the image, symmetric padding
[42] is applied in this paper. To guarantee consistency for the
sizes of the convolutional results, the size Npx × Npy of the
padding image can be calculated as

Npx = Nx + m− 1 (14)

Npy = Ny + n− 1 (15)

TABLE 1. Parameters adjustment for the DoGC filter.

C. FEATURE EXTRACTION
SPCT is applied for a further feature extraction, taking
account of the temporal variations of each pixel in the filtered
thermograms. Before the conduction of SPCT, a character-
istic matrix X needs to be constructed by converting each
image into a vector with a length of NxNy. This procedure of
vectorization can be implemented row-wise or column-wise,
as long as each image is unfolded in the same way. In X,
temporal variation of each pixel is regarded as a variable,
and SPCT extracts principal components (PCs) with linear
combinations of these variables.

SPCT is an improvement of PCT [28], and the princi-
ples of PCT-based methods to extract features of the defects
have been described in detail in the references [28], [29].
The feature extraction process of SPCT can be written as a
regression-type optimization problem. The overall objective
function is given as below [29], [43]

P̂, Q̂ = argmin
P,Q

∥∥∥X − XPQT
∥∥∥
2
+ δ

k∑
j=1

∥∥pj∥∥2
+ λ

k∑
j=1

∥∥pj∥∥1


subject to QTQ = I (16)

where P = [p1,p2, . . . ,pk] is the matrix formed by sparse
loadings. In SPCT, sparse penalty constraints are introduced
to the process of feature extraction, such that loadings of
the variables with low level of variance will be sparse to 0.
In (16), penalization terms of L1-norm (λ

∑k
j=1

∥∥pj∥∥1) and
L2-norm (δ

∑k
j=1

∥∥pj∥∥2) are added to the objective function.
Greedy research with an alternating algorithm can be

applied to solve the optimization problem in (16). The
detailed procedure is presented in the literature [43], which
can be concluded as:

1. Initialize Q as the loadings of the first k ordinary prin-
cipal components of X.
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2. Given Q = [q1,q2, . . . ,qk], solve the elastic net prob-
lem for j = 1, 2, . . . , k as below, with LARS-EN algorithm
[44]

p̂j = argmin
Pj

(
qj−pj

)T XTX
(
qj − pj

)
+ δ

∥∥pj∥∥2 + λ ∥∥pj∥∥1
(17)

3. For a fixed P = [p1,p2, . . . ,pk], compute the SVD of
XTXP = UDVT, update Q = UVT

4. Repeat 2-3 until convergence.
The most consuming step in the above process is to

solve (17), with computational complexity of order O(n3),
where n is the number of variables in X. As for the case of
extracting features from thermographic data, the number of
characteristics n = NxNy, which is too large to boost the
algorithm. To solve this problem, a soft-threshold algorithm
[45], [46] is applied, replacing the elastic net problem in (17)
with its special case (δ→∞):

p̂j = (
∣∣∣qTj XTX

∣∣∣− λ
2
)
+

Sign(qTj X
TX) (18)

In this alternative solution, complexity to compute (18) can
be reduced to O(n2).
As a conclusion, the total procedures of DoGC-SPCT are

summarized in Table 2. Furthermore, after conduction of
the algorithm, a PC matrix P with dimension of NxNy × k
is obtained. And then, each column vector can be further
reshaped to a matrix with the size of Nx × Ny, the same
as that of the original thermogram. Therefore, a total of k
feature maps can be formed and illustrated as pseudo-color
images. Finally, inside those images, defective regions can
be highlighted with different loading values compared to the
intact regions.

IV. CASE STUDY
In this section, two CFRP specimens with artificial defects
were investigated to validate the feasibility of the proposed
DoGC-SPCT method. For comparison, some other feature
extraction methods were also implemented for the thermo-
graphic data analysis.

To illustrate the effect of the methods more intuitively, the
original thermal images and the extracted feature maps were
demonstrated by means of pseudo-color images, with values
of the entries converted to different colors.

Meanwhile, visualization of the defects can be quantita-
tively evaluated by the index of signal to noise ratio (SNR),
which is described as [29], [30], [31]

SNR =
∣∣Vdef − Vin∣∣ /σin (19)

where Vdef and Vin are the average values for the pixels
inside defective and non-defective regions respectively, and
σin is the standard deviation of the values in the non-defective
region. In our research, the locations of those defects
were identified depending on the priori knowledge about
the specimen.

FIGURE 4. Distribution of the defects inside the CFRP specimen in Case1.

TABLE 2. The procedures of DoGC-SPCT.

A. CASE 1
1) INPUT DATASET
The thermographic data in the first case is the same as that
in [29] and [34]. The original CFRP specimen corresponding
to this data set is composed of 20 layers of carbon fiber sheets,
and the manufacturing was carried out by a resin transfer
molding process. At the same time, 3 subsurface defects were
made manually by inserting flatly Teflon strips with different
shapes during the manufacturing process. The detailed distri-
butions of the defects inside the specimen are shown in Fig.4.
According to the figure, the defects are numbered from 1 to
3 respectively to facilitate the following description. Among
them, defect1 on the upper-left of the 2D plane lies beneath
3 layers of the sheets, defect2 locating in themiddle is beneath
2 layers of the sheets, and defect3 on the lower-right of the 2D
plane lies beneath 1 layer of the sheet.

For the conduction of PT, the specimen was stimulated
by a 3000W flash lamp within 3ms. Meanwhile, the surface
temperature of the specimen was captured by an infrared
camera (TAS-G100EXD, NEC) during the cooling stage. The
camera has a resolution of 320 × 240 and a sampling rate
of 30 frames per second. The sampling process last for 3s,
so that a total of 90 frames were recorded. In each sample,
a sub-image containing 308 × 212 pixels was selected and
analyzed in the following of this case.

2) RESULTS AND DISCUSSION
The parameters of DoGC in Case 1 were determined as
described in 3.2.2. Considering the size of the dataset, the
parameters are determined as Table 1. The analysis is con-
ducted from 3 aspects: the performance of the DoGC filter,
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FIGURE 5. The results of the DoGC filter in Case1.

the features extracted by SPCT and finally the method com-
parison.

a: RESULTS OF DoGC FILTERING
Fig.5 illustrates the pseudo-color images of the smoothed
results obtained by DoGC. For the sake of fairness, all the
images before and after smoothing are normalized as below

T̂ (x, y, t) = (T (x, y, t)− Tt,min)/(Tt,max − Tt,min) (20)

Fig.5(a) reveals the original images sampled at different time,
where dynamic variations of the defects can be vaguely
observed. With heat diffusing into the material, thermal con-
trast of the defects reaches its max value at about 1s, and then
decreases gradually towards a steady state. On the other hand,
the defect signals are seriously masked by noise and uneven
background, making the defects difficult to be recognized.
Fig.5(b) demonstrates the smoothed results of the first Gaus-
sian convolutional filtering. Compared with Fig.5(a), most
of the noise has been subtracted in Fig.5(b), and it is worth
noticing that, the signals of the defects are retained after
reduction of noise. Meanwhile, as visualized in Fig.5(c), non-
uniform background is estimated by the second convolutional
filtering, which is exclusive of defects and noise. Finally,
Fig.5(d) shows the residual images obtained by subtracting
the images in Fig.5(c) from those in Fig.5(b). Comparing
Fig.5(d) and Fig.5(a), it can be seen that the defects can be
further highlighted in the final results of DoGC filtering, with
reduction of non-uniform background as well as noise. At the
same time, as depicted in Fig.5(d), the temporal variation of
the thermal contrasts for the defects is consistent with the
process of heat diffusion, which is also revealed in Fig.5(a).

In order to quantitatively evaluate the results of filtering,
normalized absolute contracts (NAC) of the defective regions
and standard deviations of the sound regions are calculated.

FIGURE 6. NACs for the defective regions and standard deviations for the
sound regions.

The computation of NAC for image at time t is as below [27]:

NAC(t) = Td(t)/Td(tmax)− Tn(t)/Tn(tmax) (21)

where Td(t) and Tn(t) represent the average values inside
defective and non-defective regions respectively. Meanwhile,
tmax is the time with maximum thermal contrast. According
to (21), NAC is defined as the difference between the values
of defective regions and non-defective regions. Also, it is a
useful parameter to illustrate behaviors of thermal profiles.

Fig.6(a) and Fig.6(b) show the NAC values of the defects
before and after DoGC filtering. As revealed in Fig.6(a),
there are peaks occurring in the NAC curves obtained after
DoGC filtering, meaning that the thermal contrast values of
the defects go up and down in accordance with heat flow.
In contrast, as for the original thermal images, NAC values
for the defects keep around 0, reflecting that there is barely
difference between defective and non-defective regions. The
comparison of Fig.6(a) and Fig.6(b) illustrates that the DoGC
filter helps to magnify the difference between defective
regions and background, also it can enhance the temporal
variation of thermal profiles for the defects. Therefore, the
DoGC filtering makes the defective pixels more likely to be
captured by the following feature extraction procedure.

Furthermore, Fig.6(c) demonstrates the standard deviation
for the sound regions that reflects the smoothness of the
background inside the thermal images. From Fig.6(c), it can
be seen that after DoGCfiltering, the standard deviation of the
sound regions becomes smaller, indicating less interference
in the filtering results. However, there are still errors left after
filtering, leading to standard deviation larger than 0.
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FIGURE 7. Feature extraction result of DoGC-SPCT in Case 1 (λ = 800).

As a conclusion of Fig.5 and Fig.6, the process of DoGC
filtering can reduce noise and non-uniform background to
a great extent, and thus it helps to amplify the difference
between the values of defective and non-defective regions.
In this way, the defective pixels can be more likely to be
captured in the following feature extracting process.

b: RESULTS OF FEATURE EXTRACTION
The method of SPCT is then applied to extract features from
the smoothed results of DoGC. Compared to other feature
extraction methods, SPCT has the advantages of eliminating
undesired features by setting their loadings as 0, so that it
increases the interpretability of the result. In this paper, SPCT
is performed according to the procedures presented in 3.3.
In (16), the value of λ decides the level of sparsity during
feature extraction, that is, with a higher λ, more features will
be assigned as 0. However, there is not much guidance in
justifying λ, because of the fact that detection situations may
vary in different cases. We first set λ as 800 for an example,
and the PCs extracted by SPCT are shown in Fig.7. This
figure reveals that, the texture of the surface is captured in
PC1 and PC2, while the three defects are extracted in PC3
and PC4 respectively. In this case, the defects are captured
in separate PCs because they are located at different layers
inside the specimen. Since defect1 lies in the deepest layer,
it takes longer for heat flow to reach its location. Meanwhile,
as depicted in Fig.6(a), the NAC curve of defect1 has a
different variation pattern from those of defect2 and defect3.
Consequently, features of defect1 are captured in a separate
PC compared to the other defects. From this perspective, the
order of PCs corresponding to different defects can help to
discriminate the defects in accordance with their depths.

For a further discussion about values of λ, variations
of PC3 and PC4 are plotted in Fig.8. λ is first set as 0,
and the result in this situation is the same as that of PCT.
As demonstrated in Fig.8, the pixels that are not related to

FIGURE 8. Variations of PC3 and PC4 against λ.

the defects are assigned with smaller loadings. Even though
most of the interference can be eliminated through DoGC
filtering, there are still tiny gaps between thermal profiles of
the pixels. Therefore, without any sparsity, each pixel may
be assigned with a separate value, and the unequal loadings
make themselves like ‘errors’’ in contrast with those of the
defects. Furthermore, with the increasing of λ, more features
for background are assigned as 0 through sparsity, leading
to smoother background in the results. However, a higher
level of sparsity will cause a distortion of the defect signals,
as more pixels at boundary of the defects are sparse. Con-
sequently, the identified defects will be smaller than their
actual size. As shown in Fig.8, when λ is set as large as 1200,
defect1 is almost eliminated with too high level of sparsity.
Generally speaking, there is a balance between sparsity of
the background and distortion of the defect signals, so that
an appropriate value should be adjusted for λ. In this case, λ
is set as 800 for the following study.

c: METHODS COMPARISON
To validate the feasibility of the proposed method, other
feature extraction algorithms, including PCT, independent
component thermography (ICT) [34], SPCT and GAN-SPCT
[31] are also applied for comparisons. The extracted feature
maps are visualized in Fig.9. And the SNRs of the defects are
listed in Table 3. Meanwhile, SNRs from manually selected
original frame with the most significant signals are also dis-
played to validate the effect of the methods.

Fig.9(a) and Fig.9(b) reveal the feature maps of PC3 and
PC4 extracted by PCT, where the features of the defects
are captured in sequence. As illustrated in the figures, PCT
can enhance the visibility of the defects. Meanwhile, from
Table 3, compared with original thermograms, higher SNR
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FIGURE 9. The features extracted by other methods in Case 1.

TABLE 3. SNRs of the defects in the results of different methods in
Case 1.

values are obtained by means of PCT. However, the enhance-
ment by PCT is limited, as the results are contaminated by
non-uniform background and noise.

Furthermore, Fig.9(c) and Fig.9(d) show the results of IC3
and IC6 obtained by ICT. According to [34], ICT is a signal
separation method based on the principle of blind source
separation. As shown in the figures, the defect signals can
be separated from non-uniform background. However, the
method of ICT can hardly separate noise from the defect
signals. Therefore, the defects are relatively indistinct with
rough background in the results of ICT.

Fig.9(e) and Fig.9(f) show the results obtained by SPCT.
As shown in the figures, most of the loadings for the intact
pixels in SPCT are sparse to 0, leading to more uniform
background in the feature maps. Therefore, as illustrated in
Table 3, SPCT obtains higher SNR values for the defects
compared to PCT and ICT. However, since accuracy of fea-
ture extraction is affected by the interference of noise and
background, some of the features for the defects are elimi-
nated with sparsity. Consequently, the patterns of the defects,
especially of defect1 are incomplete in the results.

Fig.9(g) and Fig.9(h) show the results obtained by
GAN-SPCT, which is an improvement of SPCT with pre-
process of data augmentation. According to ref [31], a deep
convolutional GAN(DCGAN) model was constructed, and a
total of 60 fake thermograms were generated. During feature
extraction, λwith the same value of that in SPCT was applied
for comparison. Revealed from the figures and Table 3, GAN-
SPCT can enhance the effect of feature extraction to some
extent. Theoretically, in GAN-SPCT, samples are expanded
to enlarge the diversity of the original dataset, which facili-
tates identification of defects during feature extraction. How-
ever, GAN-SPCT is at risk of enhancing interference signals
at the same time, as the diversity of the noise can also be
magnified.

Finally, comparison of Fig.7 and Fig.9 reveals that the
result obtained by DoGC-SPCT is outstanding among all
these methods. Firstly, DoGC-SPCT further improves the
visibility of the defects with obviously higher SNRs. As illus-
trated in Table 3, the relative increase rate as for SNR of
defect2 by comparing DoGC-SPCT to SPCT can reach a
maximum of 199.6%. Secondly, compared to SPCT and
GAN-SPCT, DoGC-SPCT takes a much lower value of λ
to obtain smoother background inside the feature maps,
which increases the interpretability of the results. Compared
with GAN-SPCT, DoGC-SPCT is also an improvement of
SPCT, which proposes to eliminate noise and non-uniform
background beforehand. In contrast to GAN-SPCT, DoGC-
SPCT has a better performance in overcoming interference
signals. Meanwhile, as aforementioned, after signal filtering,
the DoGC filter enhances the thermal contrast of the defects
in the resulting thermograms, so that it is more informative
for defect identification and facilitates to eliminate features
of the background.

B. CASE 2
1) INPUT DATASET
In order to validate the universality of the proposed method,
a second test of CFRP specimen has been considered. For data
acquisition in the second case, one specimen was detected
by an experimental platform of pulsed thermography. The
specimen in this case is composed of 6 carbon fiber sheets.
And a total of 9 subsurface defects were made by embedding
polytetrafluoroethylene (PTFE) of different shapes inside.
Locations of the defects and the exterior of the specimen are
shown in Fig.10. From the top view of the surface, the three
defects on the right side are the shallowest, which lie beneath
the first layer of the specimen. While the three defects in the
middle are inserted beneath the third layer. Finally, the defects
on the left side are the deepest, lying beneath the fifth layer
of the specimen.

The experimental platform of pulsed thermography is
shown in Fig.11.Two flash lamps with the highest power of
5KW are used as the excitation source. The IR camera is
DALI c© DL700, with the resolution of 640×480 and thermal
sensitivity of 0.03◦C. The sampling frequency of the camera
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FIGURE 10. Locations of the defects and the exterior of the specimen in Case2.

FIGURE 11. The experimental platform of pulsed thermography in Case2.

FIGURE 12. Effect of the DoGC filter in Case2.

is 6 frames per second, and a total of 40 frames of thermal
images were recorded. For data analysis, original images are
cropped to sub-images with the size of 270× 360.

2) RESULTS AND DISCUSSION
Parameters of DoGC-SPCT in Case 2 are justified as in
Table 1. The effects of DoGC are demonstrated in Fig.12.
From this figure, it can be seen that, the shallowest 3 defects

FIGURE 13. Feature extraction results by different methods in Case 2.

TABLE 4. SNRs of the defects in the results of different methods in
Case 2.

can be vaguely observed in the original thermograms, and
attenuation of heat makes those deeper defects invisible.
What needs to be emphasized is that, the bright speck on the
left is caused by the reflection of the light source rather than
the defects. As depicted in Fig.12, the DoGC filtering can
reduce noise and background from the original images, thus
it can magnify the thermal difference between the defective
regions and intact regions.
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FIGURE 14. Features extraction by different methods in Case1.

The methods of PCT, ICT, SPCT, GAN-SPCT are also
compared to validate the feasibility of DoGC-SPCT. Fig.13
and Table 4 demonstrate the extracted features and the SNR
results respectively. In Table 4, since the original SNR for
defect1 is affected by the uneven temperature distribution,
it leads to a higher value compared to those in PCT, SPCT
and GAN-SPCT. The same with Case 1, DoGC-SPCT is
superior to the other methods in overcoming the interference
from noise and non-uniform background. As a result, DoGC-
SPCT can increase the SNR values for the defects signifi-
cantly. Meanwhile, a much lower value of λ is needed in
DoGC-SPCT to smooth the background, so that DoGC-SPCT
shows higher interpretability in the results.

V. CONCLUSION
This paper presented a novel feature extraction method
named as DoGC-SPCT to deal with thermographic data.

In this method, a DoGC filter is proposed to subtract noise
and non-uniform background as preprocessing. Thus, it can
highlight the temporal variations in the thermal profiles
of defective pixels and facilitate identification of defects
in the feature extraction. The experimental results demon-
strated that, the DoGC filter can reduce most of the noise
and non-uniform background signals, so that the differ-
ence between defective and non-defective regions can be
increased in the smoothed results. Compared to the com-
mon feature extracting methods, DoGC-SPCT is superior
in increasing the SNR values for the defects. And it can
increase the interpretability of the results with more uniform
background.

This paper has verified the effectiveness of DoGC-SPCT.
Future work will focus on increasing the accuracy of this
methodology, so that automatic recognition as well as quan-
titative analysis of defects can be conducted.
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FIGURE 15. Features extraction by different methods in Case2.
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APPENDIX
The first 6 components obtained from the methods in Case1
of our study is shown in Fig. 14. And the first 6 components
obtained from the methods in Case2 of our study is shown in
Fig. 15.
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