
Received 21 September 2022, accepted 29 September 2022, date of publication 5 October 2022, date of current version 12 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3212523

HADC: A Hybrid Compression Approach for DNA
Sequences
SARAH ELNADY , SABAH SAYED , AND AKRAM SALAH
Computer Science Department, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo 12613, Egypt

Corresponding author: Sarah Elnady (s.elnady@fci-cu.edu.eg)

ABSTRACT In the blossoming age of Next Generation Sequencing (NGS) technologies, genome sequencing
has become much easier and more affordable. The large number of enormous genomic sequences obtained
demand the availability of huge storage space in order to be kept for analysis. Since the storage cost
has become an impediment facing biologists, there is a constant need of software that provides efficient
compression of genomic sequences. Most general-purpose compression algorithms do not exploit the
inherent redundancies that exist in genomic sequences which is the reason for the success and popularity
of reference-based compression algorithms. In this research, a new reference-based lossless compression
technique is proposed for deoxyribonucleic acid (DNA) sequences stored in FASTA format which can act
as a layer above gzip compression. Several experiments were performed to evaluate this technique and the
experimental results show that it is able to obtain promising compression ratios saving up to 99.9% space and
reaching a gain of 80% for some plant genomes. The proposed technique also succeeds in performing the
compression at acceptable time; even saving more than 50% of the time taken by ERGC inmost experiments.

INDEX TERMS Bioinformatics, DNA sequences, reference-based compression, greedy alignment.

I. INTRODUCTION
Genome sequencing, defined as the process of determining
the complete deoxyribonucleic acid (DNA) sequence (i.e.
determining the order of nucleotides in DNA) of an organism,
has widely been performed over the past years. It was mainly
used for research but with the new and advanced technolo-
gies, it is paving its way to be used in clinics for personalized
medicine. Genome sequencing is usually done ‘‘in pieces’’;
i.e., by cutting the genome into small reads since the whole
genome can’t be sequenced all at once and the available
sequencing methods can only handle short reads of DNA at a
time. One of the earlier methods of genome sequencing was
Sanger sequencing [1] which utilized a high-fidelity DNA-
dependent polymerase and dideoxynucleotides to produce a
complementary copy to a single strand of the DNA. Despite
being an old-fashioned technique, Sanger sequencing is still
used for obtaining long contiguous DNA sequence reads.
However, this method is considered to be slow and expensive,

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

and this prompted ‘‘Next Generation Sequencing’’ (NGS) or
‘‘High-throughput Sequencing’’ (HTS) to be developed.

NGS technologies [2] revolutionized the sequencing world
as they parallelize the sequencing process, producing thou-
sands or millions of sequences concurrently. Therefore, NGS
is typically characterized by being highly scalable, allowing
the entire genome to be sequenced at once. Illumina stated
that their sequencing systems can deliver data output ranging
from 300 kilobases up to multiple terabases in a single run,
depending on instrument type and configuration [3]. Since
then, sequencing cost has drastically decreased [4] which
has led to a remarkable increase in the number of available
genomic sequences. Moreover, the gigantic data files pro-
duced by modern sequencing technologies demand the avail-
ability of huge storage space in order to keep them for future
analysis. However, the rate of decrease in hardware cost has
been outpaced by the rate of increase of NGS data and so
the need for algorithms that provide efficient compression of
biological data has emerged. This biological data is usually
stored in certain types of files [5] which include FASTQ and
SAM/BAM files. One of the key formats for storing genome
sequences is the FASTA format in which each base in the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 106841

https://orcid.org/0000-0003-4467-2434
https://orcid.org/0000-0002-8344-1535
https://orcid.org/0000-0002-8718-111X


S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

sequence is encoded by a single letter [5]. The reason behind
the significance of this text-based format is its convenience
for researchers to perform gene studies and sequence analysis
[6] such as sequence alignment and comparison, collection of
k-mer statistics, and more.

The compression algorithms [7] proposed previously in the
literature can be categorized according to several factors such
as the data, in other words file type, they compress (assembled
data in FASTA files or raw data in FASTQ/SAM/BAM files),
the compression scheme (lossless/lossy compression), and
their dependence on a reference (reference-free/reference-
based compression). Reference-free compression algorithms
compress a target sequence without the use of an external
reference genome. Some of the popular reference-free com-
pression algorithms are gzip, bzip2 and 7zip. Unfortunately,
these general-purpose algorithms do not exploit the redun-
dancies that inherently exist in genomes and so they cannot
produce efficient compression with genomic sequences [8].
There lies the gap that provoked the design of new algo-
rithms, namely reference-based algorithms, specifically for
compressing genomic sequences. Reference-based compres-
sion algorithms require the use of a reference (a sequence
relatively similar to the target sequence) and align the target
or reads using that reference, then, they store the match
locations and any mismatches [9]. Despite resulting in a
great compression ratio for large sequences, reference-based
compression still faces some difficulties (for example, the
reference and the target sequence must have high similarity)
[7]. Therefore, there is always room for improvement due to
the importance of reducing the size of genomic data to allow
rapid transmission and efficient storage.

This is why, in this work, we focused on the category that
has quickly become a more prevalent point of research and
that is the lossless compression of assembled genomes (in
FASTAfiles), with a reference. As explained before, genomic
sequences stored in the FASTA format are convenient for
and required by researchers, so developing algorithms that
efficiently store these sequences without error will contribute
to reducing storage costs and easier, faster, and cheaper trans-
fer over the internet [7]. The evolution of reference-based
genome compression algorithms was discussed as well as
some of the state-of-the-art algorithms in this field. Then, the
materials and methods used to develop a hybrid approach for
DNA compression (HADC) are explained. Finally, the exper-
imental results are presented in addition to the conclusions
and plans for future work.

II. RELATED WORKS
As mentioned in the previous section, genomes are stored
for analysis and processing and transmitted frequently which
requires they be compressed. The most commonly used
compression algorithms are general-purpose compression
algorithms such as PPMD [10], DEFLATE [11], and BWT
[12] which are supported by general-purpose compres-
sion tools such as gzip (http://www.gnu.org/software/gzip/).
These algorithms do not require the use of an external

reference and rely mainly on processing the target and
using an encoding scheme on it like run-length encoding
for instance. Although these algorithms depend only on the
target and perform well over small-sized data, they are not
practical for larger sequences and are not able to achieve
acceptable compression ratios for large data [8], [13]. This
is due to the fact that they do not take the advantage of
the redundancies and similarities that inherently exist in the
structure of genomes.

Recently, many novel special-purpose algorithms have
emerged to effectively compress one or more of the data
types embedded in genomic files [14], [15], [16]. The special-
purpose reference-free genome compression algorithms use
bit-encoding [17] or statistics [18]. An example of the algo-
rithms that use encoding is the lossless compression algo-
rithm for genomes proposed by Al-Okaily et al. [19] which
is based on Huffman encoding to replace high frequency
bases with shorter codes and low frequency bases with longer
codes. On the other hand, statistical-based compression algo-
rithms, such as XM [20] and DNAC-SBE [18], generate a
probabilistic statistical model according to the input data,
predict the probability of the next nucleotide, and then use
encoding schemes [21]. Although these algorithms maintain
a low compression time, they still fail to achieve high com-
pression ratios. Therefore, the chase for higher compression
ratios has guided researchers to special-purpose reference-
based genome compression algorithms [22] which instantly
grasped attention for the extremely high compression ratios
they can achieve. In the next paragraphs, some of the most
efficient and widely used reference-based genome compres-
sion algorithms will be discussed.

In 2011, Deorowicz and Grabowski [23] proposed
an LZ77-style compression scheme called GDC for the
reference-based compression of multiple genomes of the
same species. GDC was essentially similar to RLZ-opt [24],
which was the state-of-the-art algorithm for compressing
collections of genomes, yet it included some key differences.
The authors stated that the improved compression ratios of
GDC are attributed to both the LZ-parsing scheme they
chose and to Huffman encoding, which is more compact than
Golomb. GDC proved to outperform GRS [25] in relative
compression, become better than RLZ-opt close to three
times on human genomes and provide fast random access.
Later, GDC 2 was proposed by Deorowicz et al. [26] in
2015 achieving results about 4 times better than what is
offered by the other existing compressors in compressing a
collection of human diploid genomes. GDC 2 is a two-level
algorithm that uses a hash table and performs Ziv–Lempel
factoring of sequences at each level.

Moreover, Hsi-Yang Fritz et al. [27] proposed a reference-
based compression algorithm that can be used for the efficient
storage of DNA sequencing data. However, it is worth noting
that their proposed algorithm was developed to be used on
FASTQ files that contain both the short sequences and their
quality information. The algorithm firstly aligns the short
sequences (reads) to a reference and the unaligned reads are

106842 VOLUME 10, 2022



S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

pooled and their base pair information is then stored using
specific offsets with substitutions, insertions, or deletions
encoded in separate data structures. As for the quality scores,
before being compressed using a Huffman-based code, they
are stored and a user-defined percentage of quality positions
that are identical to the reference are stored [27].

In 2014, Stanford’s Ochoa et al. [28] proposed iDoComp
which is a state-of-the-art reference-based compression algo-
rithm. The algorithm is composed of three steps: the mapping
generation, the post-processing step and the entropy encoding
step. The authors stated that the improved compression ratios
achieved by the algorithm were largely due to the post-
processing step, which modifies the set of instructions pro-
duced from the mapping generation in a way that is beneficial
to the entropy encoder. iDoComp outperforms previously
proposed algorithms in most of the studied cases reaching
compression gains of up to 60% in several cases, including
H. sapiens data with comparable or even better running time.
Both ERGC and NRGC were proposed by Saha and

Rajasekaran in 2015 and 2016, respectively [29], [30]. These
algorithms adopt the segmentation matching strategy by
dividing the reference sequence and the to-be-compressed
target sequence into segments of equal length and thenmatch-
ing each segment. ERGC algorithm also uses greedy align-
ment based on hashing. Although ERGC and NRGC are both
effective genome compression algorithms that perform better
than the best-known algorithms in most of the cases, they
require high similarity between the reference and the target
genomes. If the characteristics of the reference sequence
and target do not conform to their matching strategy, the
compression result will be poor [6].

A recent study performed in 2019 by Yao et al. [6] pro-
posed HRCM, a new compression method capable of com-
pressing a single sequence as well as large collections of
sequences. This algorithm is also composed of three stages:
information extraction, matching and encoding. HRCM per-
forms two-level matching, and the compression performance
is improved through the second-level matching. Experimen-
tal verification showed that HRCM performance, including
compression ratio, speed, and memory usage, is compet-
itive and sometimes superior to many of the best-known
algorithms.

All the reference-based compressors discussed are capable
of producing substantially higher compression ratios when
compared with reference-free compressors [31]. In 2021,
a novel method [32] for compressing large datasets of short
reads using feature vectors and clustering algorithms was
proposed. It exploits the redundancies between the datasets
to improve compression performance [32]. Moreover, Silva
et al. [31] stated that an entire human genome of size3 GB
can be compressed to approximately 4 MB using a reference,
and this is 100 times less than the compressed size produced
using reference-free compression [31]. Still, reference-based
compression is far from done and definitely has a lot of room
to advance. These facts encouraged us to focus on lossless
reference-based compression approaches in this work.

FIGURE 1. HADC overview.

FIGURE 2. HADC detailed pipeline.

III. MATERIALS AND METHODS
In this study, a hybridDNAcompression approach (HADC) is
proposed in which a reference-based compression algorithm
is used as a layer before the final gzip compression layer.
The proposed reference-based compression layer is inspired
by the Turing Machine and its mechanism [33], [34]. HADC
works by transforming the target sequence (the sequence
to be compressed) into a series of actions applied on the
reference and saving these actions. Some of these actions
are similar to the actions taken by a Turing Machine when
it processes an input string to produce an output. So, in other
words, the algorithm stores the transition function used by a
Turing Machine that transforms the reference into the target.
An overview of the proposed approach is shown in Figure 1.
The main steps are: 1) sequence preparation and preprocess-
ing, 2) action sequence generation and 3) compression using
gzip. Figure 2 illustrates a more detailed pipeline of each step.

VOLUME 10, 2022 106843



S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

FIGURE 3. Flowchart of the action sequence generation process.

A. DATA PREPARATION STEP
In the data preparation step, the algorithm’s hyperparameters
are set, the target and the reference sequence are preprocessed
by making sure that they are both uppercase and consist of
the valid DNA alphabet only (A, C, G, T and N for unde-
termined bases). Then, HADC adopts a divide and conquer
strategy as proposed by Saha and Rajasekaran [29] and the
target and the reference are divided into equal-sized blocks.
In addition, a k-mer hash table is constructed, initialized and
filled. The k-mer hash table is similar to a dictionary or map
in which the k-mer is the key and the positions/indexes of
its occurrence in the reference are the values. This hash table
will be used to quickly yet greedily align the target and the
reference sequences instead of using dynamic programming
for alignment which is in the order of O(nm) for a target
of length n and a reference of length m and this would be
infeasible time- and memory-wise.

B. ACTION SEQUENCE GENERATION STEP
In this step, each pair of corresponding target and reference
blocks along with their current hash table are fed to the

‘‘Action Sequence Generator’’ (ASG). The ASG has 5 possi-
ble types of actions: i) Amatch action ‘‘M’’ which is followed
by the match length, ii) A character action ‘‘C’’ which is
followed by the character, iii) A left move action ‘‘L’’ which
is followed by the number of moves made in that direction,
iv) A right move action ‘‘R’’ which is similar to the left move
action but in the opposite direction, v) A repeat action ‘‘MT’’
which is followed by the number of times a match exists.
Figure 3 shows a flowchart of the process of the ASG.

The first step the ASG does is to use the hash table to
find the smallest position of the first k-mer in the target
sequence and align the target to the reference from that
position, saving that action and its information. It is worth
mentioning that ASGwill choose the alignment that gives the
smallest amount of moves as clarified in Algorithm 1. Then,
it checks whether the characters at the current positions in
the target and reference match. If the characters do match,
the current match length, which was initially set to zero,
is incremented by 1. However, when the ASG encounters a
mismatch, it first checks whether the next part of the target
is a repetition of the last detected match and when this is
the case, the match times are incremented. Otherwise, the

106844 VOLUME 10, 2022



S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

characters do not match, and the current match length is
greater than a certain threshold, a match is recorded, and the
match length is saved then reset. At this point, in case of
a non-zero repeats number, an ‘‘MT’’ action (match times)
is recorded along with the repeats amount which is also
reset to zero after that. This means that, a repeat sequence
is only considered a repeated match if it does not contain any
mismatches (i.e. if it is identical to the previous match).When
this is the case, the match times are incremented. Otherwise,
if the characters do not match, a match is recorded and the
mismatched character(s) are recorded or realignment occurs
depending on the mismatch type (short/long).

Algorithm 1 The Alignment Performed by ASG

Input: k , hash_table, target_block, ref_block, tar-
get_index, previous_ref_index
1. target_kmer = target_block

[target_index:target_index+k]
2. if hash_table[target_kmer] == None:

a. The target k-mer is not found in the current
reference block, so the alignment fails,
and the mismatch is treated as short
mismatch.

3. kmer_positions = hash_table[target_kmer]
4. Set the alignment_position to the first element in
the kmer_positions list.
5. difference = | previous_ref_index -
kmer_positions[0] |
6. for position = 0 to length of kmer_positions:

a. current_difference =
| previous_ref_index – kmer_positions
[position]|

b. if current_difference < difference:
i. difference = current_difference

ii. alignment_position = kmer_positions
[position]

Output: alignment_position, difference

The next step the ASG performs is to check whether the
mismatch it just encountered is a short one or a long one.
When either the mismatch is short or the current character
in the target is a character that does not exist in the reference,
the current character is saved with as it is. This is specifically
useful in case of single nucleotide polymorphisms (SNPs)
which are very common between similar genomes. Other-
wise, the target and reference are re-aligned to try to reach
a better match and the direction of the movement (left or
right) from the previous position to the new one is saved along
with the number of moves. After that, the algorithm moves
to the next characters and repeats these steps until the entire

FIGURE 4. An example of (a) compression and (b) decompression.

target is transformed. Finally, the ASG sends the generated
action sequence to the gzip compressor. Figure 4(a) illustrates
a simple example of the input and output of the ASG.

C. GZIP COMPRESSION STEP
Instead of using simple bit encoding, the gzip compressor is
used as the final layer which produces the actual compressed
file. Gzip was selected as the final compression layer since it
provides efficient compression for general-purpose text [18]
which is similar to nature of the produced action sequence
and this method proved to produce better results than bit
encoding. That’s why we feed the action sequence as bytes
to gzip and save the output file.

D. DECOMPRESSION PROCESS
As for the decompression process of the compressed file,
it is straightforward by applying the reverse of the compres-
sion process. The decompression process does not require
the construction of a hash table. During decompression, the
compressed file is decompressed by gzip to produce the
intermediate action sequence file. The intermediate action
sequence file is then processed such that the actions recorded
are applied to the reference in order to generate the sequence
again. Figure 4(b) shows the decompression process on the
original example in Figure 4(a). The main contribution of
this work lies in the ability of the ASG to support repeated
matches in addition to multiple alignments using the left
and right actions. Moreover, having the intermediate action
sequence format may allow for faster search in the target for
genes of known location in the reference.

IV. RESULTS
In this section, the performance of the proposed method
HADC was evaluated in terms of both the compression ratio,
which is the ratio of the size of original sequence to the size
of compressed sequence as defined by Hosseini et al. [5], and
compression time. In addition, the results are compared with
some of the previously proposed compression algorithms

VOLUME 10, 2022 106845



S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

and the gain as well as the space saving were calculated as
described by Yao et al. [6].

A. DATASET
More than 30 experiments using several different target
and reference sequences and different hyperparameter values
were conducted to test the performance of HADC. These
targets and references are introduced in Table 1. The dataset
used can be easily retrieved with open access and mostly
contains FASTA files of genomes from various organisms.
This includes H. sapiens and E. coli sequencing data which
were obtained fromGenBank onNational Center for Biotech-
nology Information (NCBI), two versions of S. cerevisiae
sequencing data obtained fromUniversity of California Santa
Cruz (UCSC), and more as shown in Table 1. A reference
genome is selected such that it is used to compress another
target genome of the same species as proposed by several
studies [7], [8], [28]. However, it is worth mentioning that
HADCworks on targets and references that do not necessarily
belong to the same species.

TABLE 1. Dataset overview.

Of course, higher compression ratios are achieved when
the target and reference are from the same species since they
will be highly similar.

B. EXPERIMENTAL SETUP
HADC was implemented and tested in Python. The experi-
ments were performed on a machine running 64-bit Ubuntu
with 3.3 GHz Intel R© CoreTM i9-9940X CPU and 32 GB
RAM.

The hyperparameters of HADC, such as the number of
blocks, the value of k , play an important role in the compres-
sion results. Different values of these hyperparameters were
tested for each dataset. Regarding the value of k , experiments
showed that the best results were achieved using a k value
of 9; since using larger values of k (10, 12, 21) usually
caused a dramatic increase in the compression time with
slight improvement to the compression ratio, while using
smaller values of k (6, 7, 8) decreased the compression ratio
a lot, thus the value 9 proved to be the sweet spot for k as
shown in Table 2.

TABLE 2. HADC performance using different values of k.

TABLE 3. Compression performance results.

The other hyperparameter is the number of blocks to divide
the reference and target into. This hyperparameter wasmostly
data-dependent as a highly similar reference and target pro-
duced higher compression ratios when they were divided into
a small number of blocks or even compressed as one block.
On the other hand, an unsimilar reference and target produced
better compression ratios when divided into several blocks
(10 or more).

V. EXPERIMENTAL RESULTS & DISCUSSION
The results of these of experiments were recorded and com-
pared to the results of other state-of-the-art reference-based
compression algorithms such as HRCM [6], GDC 2 [26],
iDoComp [28] and so on as shown in Table 3. The perfor-
mance of gzip is recorded in Table 4 in order to show the
improvement achieved by adding the reference-based com-
pression layer added in HADC above gzip.

The results in Table 3 show that HADC performs efficient
compression with extremely high compression ratios in some
cases. Specifically, for small datasets where the reference
and the target are very similar and only include some single
nucleotide polymorphisms (SNPs), which is the case for most
genomes of the same species, the compression ratio is higher
than competitive reference-based algorithms as in the cases
of the A. thaliana and E. coli genomes used reaching a gain
of up to 82% and 74% (compared to ERGC) in A. thaliana
and E. coli respectively. However, with different genomes,

106846 VOLUME 10, 2022



S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

TABLE 4. Gzip performance results.

HADC is inferior to iDoComp, GDC 2 and HRCM. Those
three algorithms outperform HADC in the H. sapiens dataset
but HADC outperforms ERGC for all the mentioned datasets.

To further clarify the effect of the compression ratio, the
compression result expressed as bits per base was also calcu-
lated for each algorithm on each dataset. This was done by
dividing the compressed file size over the number of bases
in the original file. Figure 5(a) illustrates the bits per base
metric in a line plot and indeed confirms that HADC gives
the best results for A. thaliana and E. coli datasets and closely
competitive results for S. cerevisiae.
As for the compression time, results in Figure 5(b) showed

that HADCwas the best. Out of all the tested reference-based
algorithms, HADC provides the least compression time for
all datasets, except the TAIR (A. thaliana) dataset in which
the algorithm’s compression time was 18 seconds while iDo-
Comp’s compression time was 7.2 seconds for this dataset.
It can also be inferred from Table 3 that HADC saves more
than 50% of the time taken by ERGC in most experiments.
It is worth noting that the time to build the hash table is
included in the recorded compression times of HADC.

Compared to the performance of gzip, HADC produces
remarkably higher compression ratios in every test case
reaching gains of up to 99.9%. This is obviously due to the
use of the reference-based compression layer which gener-
ates an action sequence suitable for being compressed using
general-purpose compression tools like gzip. Despite the
fact that HADC transforms gzip from being a reference-free
general-purpose compression tool to a being a reference-
based special-purpose tool for FASTA files, using gzip as
a final layer in HADC provides an extremely higher com-
pression ratio than using simple bit encoding methods while
consuming little time; from 0.5 to 2 seconds.

Based on these results, we conclude that, with a good
choice of the reference, in order to reach the best compression
ratios, HADC is more appropriate for bacteria and plants
(small genome size) while iDoComp, GDC 2 and HRCM are
the algorithms that produce better compression ratios on the
H. sapiens genome.

The memory used by HADC is mainly consumed in the
hash table and the reference and target block data. The hash
table size is directly proportional to the reference block size
because during the compression of a target block, a hash
table is built for only the corresponding reference block. That

FIGURE 5. Compression results expressed as (a) bits per base and
(b) time in minutes of different algorithms on the datasets.

being said, the memory consumption directly depends on the
number of blocks chosen by the user.

VI. CONCLUSION
In this work, a new hybrid lossless compression method for
DNA sequences (HADC) is proposed. HADC performs a
layer of reference-based compression to produce an inter-
mediate action sequence followed by a layer of reference-
free compression. The intermediate action sequence file may
allow for faster search in the target for genes of known loca-
tion in the reference and this is an open area that requiresmore
exploration and future research. The experimental results
show that HADC has acceptable and sometimes competi-
tive compression ratio and compression speed. However, this
method still has a lot of room for enhancement, and also more
comprehensive testing is needed to further verify the results.

In the next stages, the compression ratio will continue to
improve by analyzing more features of the sequence files
and the intermediate action file and creating an additional
post-processing layer after the ASG. The possibility of paral-
lelizing the algorithm performed by ASG will also be studied
and tested and this will greatly improve the compression
speed enabling HADC to perform better on multiple FASTA
files. In addition, more components will be added to the
current technique to incorporate compressing FASTQ files as
well.

REFERENCES
[1] F. Sanger, S. Nicklen, and A. R. Coulson, ‘‘DNA sequencing with chain-

terminating inhibitors,’’ Proc. Nat. Acad. Sci. USA, vol. 74, no. 12,
pp. 5463–5467, Dec. 1977, doi: 10.1073/pnas.74.12.5463.

VOLUME 10, 2022 106847

http://dx.doi.org/10.1073/pnas.74.12.5463


S. Elnady et al.: HADC: A Hybrid Compression Approach for DNA Sequences

[2] D. S. Horner, G. Pavesi, T. Castrignano, P. D. De Meo, S. Liuni,
M. Sammeth, E. Picardi, and G. Pesole, ‘‘Bioinformatics approaches for
genomics and post genomics applications of next-generation sequenc-
ing,’’ Briefings Bioinf., vol. 11, no. 2, pp. 181–197, Mar. 2010, doi:
10.1093/bib/bbp046.

[3] B. T. Wilhelm and J.-R. Landry, ‘‘RNA-seq—Quantitative measurement
of expression through massively parallel RNA-sequencing,’’ Methods,
vol. 48, no. 3, pp. 249–257, Jul. 2009, doi: 10.1016/j.ymeth.2009.03.016.

[4] E. E. Schadt, S. Turner, and A. Kasarskis, ‘‘A window into third-generation
sequencing,’’ Hum. Mol. Genet., vol. 19, no. R2, pp. R227–R240,
Oct. 2010, doi: 10.1093/hmg/ddq416.

[5] M. Hosseini, D. Pratas, and A. Pinho, ‘‘A survey on data compression
methods for biological sequences,’’ Information, vol. 7, no. 4, pp. 1–23,
2016, doi: 10.3390/info7040056.

[6] H. Yao, Y. Ji, K. Li, S. Liu, J. He, and R. Wang, ‘‘HRCM: An efficient
hybrid referential compressionmethod for genomic big data,’’BioMed Res.
Int., vol. 2019, pp. 1–13, Nov. 2019, doi: 10.1155/2019/3108950.

[7] S. Deorowicz and S. Grabowski, ‘‘Data compression for sequencing
data,’’ Algorithms Mol. Biol., vol. 8, no. 1, pp. 1–13, Jan. 2013, doi:
10.1186/1748-7188-8-25.

[8] Z. Zhu, Y. Zhang, Z. Ji, S. He, and X. Yang, ‘‘High-throughput DNA
sequence data compression,’’ Briefings Bioinf., vol. 16, no. 1, pp. 1–15,
Jan. 2015, doi: 10.1093/bib/bbt087.

[9] M. Nicolae, S. Pathak, and S. Rajasekaran, ‘‘LFQC: A lossless com-
pression algorithm for FASTQ files,’’ Bioinformatics, vol. 31, no. 20,
pp. 3276–3281, Oct. 2015.

[10] J. G. Cleary and I. Witten, ‘‘Data compression using adaptive coding and
partial string matching,’’ IEEE Trans. Commun., vol. COM-32, no. 4,
pp. 396–402, Apr. 1984, doi: 10.1109/tcom.1984.1096090.

[11] P. Deutsch, ‘‘DEFLATE compressed data format specification ver-
sion 1.3,’’ RFC Editor, USA, Tech. Rep. RFC1951, 1996, doi:
10.17487/rfc1951.

[12] H. Li and R. Durbin, ‘‘Fast and accurate short read alignment with
Burrows–Wheeler transform,’’ Bioinformatics, vol. 25, pp. 1754–1760,
Jul. 2009, doi: 10.1093/bioinformatics/btp324.

[13] Y. Zhang, L. Li, Y. Yang, X. Yang, S. He, and Z. Zhu, ‘‘Light-weight
reference-based compression of FASTQ data,’’ BMCBioinf., vol. 16, no. 1,
pp. 1–8, Dec. 2015, doi: 10.1186/s12859-015-0628-7.

[14] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, and T. Weissman,
‘‘SPRING: A next-generation compressor for FASTQ data,’’ Bioinformat-
ics, vol. 35, no. 15, pp. 2674–2676, Aug. 2019, doi: 10.1093/bioinformat-
ics/bty1015.

[15] S. Deorowicz and A. Danek, ‘‘GTShark: Genotype compression in large
projects,’’ Bioinformatics, vol. 35, no. 22, pp. 4791–4793, 2019, doi:
10.1093/bioinformatics/btz508.

[16] D. Lan, R. Tobler, Y. Souilmi, and B. Llamas, ‘‘Genozip: A universal
extensible genomic data compressor,’’ Bioinformatics, vol. 37, no. 16,
pp. 2225–2230, Aug. 2021, doi: 10.1093/bioinformatics/btab102.

[17] L. Chen, S. Lu, and J. Ram, ‘‘Compressed pattern matching in DNA
sequences,’’ in Proc. IEEE Comput. Syst. Bioinf. Conf., Aug. 2004,
pp. 62–68, doi: 10.1109/CSB.2004.1332418.

[18] D. Mansouri, X. Yuan, and A. Saidani, ‘‘A new lossless DNA compression
algorithm based on a single-block encoding scheme,’’ Algorithms, vol. 13,
no. 4, p. 99, Apr. 2020, doi: 10.3390/a13040099.

[19] A. Al-Okaily, B. Almarri, S. A. Yami, and C.-H. Huang, ‘‘Toward a better
compression for DNA sequences using Huffman encoding,’’ J. Comput.
Biol., vol. 24, no. 4, pp. 280–288, Apr. 2017, doi: 10.1089/cmb.2016.0151.

[20] M. D. Cao, T. I. Dix, L. Allison, and C. Mears, ‘‘A simple statistical
algorithm for biological sequence compression,’’ in Proc. Data Compress.
Conf. (DCC), Mar. 2007, pp. 43–52, doi: 10.1109/dcc.2007.7.

[21] S. Wandelt, M. Bux, and U. Leser, ‘‘Trends in genome compres-
sion,’’ Current Bioinf., vol. 9, no. 3, pp. 315–326, May 2014, doi:
10.2174/1574893609666140516010143.

[22] S. Christley, Y. Lu, C. Li, and X. Xie, ‘‘Human genomes as email
attachments,’’ Bioinformatics, vol. 25, no. 2, pp. 274–275, Jan. 2009, doi:
10.1093/bioinformatics/btn582.

[23] S. Deorowicz and S. Grabowski, ‘‘Robust relative compression of genomes
with random access,’’ Bioinformatics, vol. 27, no. 21, pp. 2979–2986,
Nov. 2011, doi: 10.1093/bioinformatics/btr505.

[24] S. Kuruppu, S. J. Puglisi, and J. Zobel, ‘‘Optimized relative Lempel-
Ziv compression of genomes,’’ in Proc. 34th Australas. Comput. Sci.
Conf., vol. 113, 2011, pp. 91–98. [Online]. Available: https://dl.acm.org/
doi/10.5555/2459296.2459307

[25] C. Wang and D. Zhang, ‘‘A novel compression tool for efficient storage
of genome resequencing data,’’ Nucleic Acids Res., vol. 39, no. 7, pp. 1–6,
2011, doi: 10.1093/nar/gkr009.

[26] S. Deorowicz, A. Danek, and M. Niemiec, ‘‘GDC 2: Compression of large
collections of genomes,’’ Sci. Rep., vol. 5, no. 1, pp. 1–12, Sep. 2015, doi:
10.1038/srep11565.

[27] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney, ‘‘Efficient
storage of high throughput DNA sequencing data using reference-based
compression,’’ Genome Res., vol. 21, no. 5, pp. 734–740, May 2011, doi:
10.1101/gr.114819.110.

[28] I. Ochoa, M. Hernaez, and T. Weissman, ‘‘iDoComp: A compres-
sion scheme for assembled genomes,’’ Bioinformatics, vol. 31, no. 5,
pp. 626–633, Mar. 2015, doi: 10.1093/bioinformatics/btu698.

[29] S. Saha and S. Rajasekaran, ‘‘ERGC: An efficient referential genome
compression algorithm,’’ Bioinformatics, vol. 31, no. 21, pp. 3468–3475,
Nov. 2015, doi: 10.1093/bioinformatics/btv399.

[30] S. Saha and S. Rajasekaran, ‘‘NRGC: A novel referential genome compres-
sion algorithm,’’ Bioinformatics, vol. 32, no. 22, pp. 3405–3412, 2016, doi:
10.1093/bioinformatics/btw505.

[31] M. Silva, D. Pratas, and A. J. Pinho, ‘‘Efficient DNA sequence com-
pression with neural networks,’’ GigaScience, vol. 9, no. 11, Nov. 2020,
Art. no. giaa119, doi: 10.1093/gigascience/giaa119.

[32] T. Tang and J. Li, ‘‘Transformation of FASTA files into feature
vectors for unsupervised compression of short reads databases,’’
J. Bioinf. Comput. Biol., vol. 19, no. 1, Feb. 2021, Art. no. 2050048, doi:
10.1142/s0219720020500481.

[33] A. M. Turing, ‘‘On computable numbers, with an application to the
entscheidungsproblem,’’ Proc. London Math. Soc., vol. 42, no. 1,
pp. 230–265, 1937, doi: 10.1112/plms/s2-42.1.230.

[34] L. De Mol, ‘‘Turing machines,’’ in The Stanford Encyclopedia of
Philosophy, E. N. Zalta, Ed. Stanford, CA, USA: The Metaphysics
Research Lab, 2021. [Online]. Available: https://plato.stanford.
edu/archives/win2021/entries/turing-machine/

SARAH ELNADY received the bachelor’s degree in computer science from
the Faculty of Computers andArtificial Intelligence, CairoUniversity, Egypt,
in 2017. She is currently pursuing the master’s degree in bioinformatics.
She is also working as a Teacher Assistant at the Faculty of Computers
and Artificial intelligence, Cairo University. Her research interests include
bioinformatics and soft computing, artificial intelligence, machine learning,
and image processing.

SABAH SAYED received the Ph.D. degree in computer science ‘‘a compu-
tational framework for colorectal cancer,’’ in 2019. She is currently work-
ing as a Teacher at the Faculty of Computers and Artificial intelligence,
Cairo University, Egypt. She has many scientific research articles published
in international journals in the topics of bioinformatics, artificial intelli-
gence, machine learning. Her research interests include bioinformatics and
biomedical, cloud computing, soft computing, image processing, artificial
intelligence, data mining, high performance computing, optimization, and
meta-heuristics techniques.

AKRAM SALAH graduated in mechanical engineering. He received the
M.Sc. and Ph.D. degrees in software engineering from North Dakota State
University and the Ph.D. degree in computer and information sciences from
the University of Alabama at Birmingham, Birmingham, AL, USA, in 1986.
He taught at The American University in Cairo, Michigan State University,
and Cairo University, before he joined North Dakota State University, where
he designed and started a graduate program. He worked in computer pro-
gramming for seven years, before he got his Ph.D. degree. He is currently a
Professor with the Faculty of Computer and Information, Cairo University.
He hasmore than 100 published papers. His current research interests include
data, knowledge, software engineering, semantics, and Semantic Web.

106848 VOLUME 10, 2022

http://dx.doi.org/10.1093/bib/bbp046
http://dx.doi.org/10.1016/j.ymeth.2009.03.016
http://dx.doi.org/10.1093/hmg/ddq416
http://dx.doi.org/10.3390/info7040056
http://dx.doi.org/10.1155/2019/3108950
http://dx.doi.org/10.1186/1748-7188-8-25
http://dx.doi.org/10.1093/bib/bbt087
http://dx.doi.org/10.1109/tcom.1984.1096090
http://dx.doi.org/10.17487/rfc1951
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1186/s12859-015-0628-7
http://dx.doi.org/10.1093/bioinformatics/bty1015
http://dx.doi.org/10.1093/bioinformatics/bty1015
http://dx.doi.org/10.1093/bioinformatics/btz508
http://dx.doi.org/10.1093/bioinformatics/btab102
http://dx.doi.org/10.1109/CSB.2004.1332418
http://dx.doi.org/10.3390/a13040099
http://dx.doi.org/10.1089/cmb.2016.0151
http://dx.doi.org/10.1109/dcc.2007.7
http://dx.doi.org/10.2174/1574893609666140516010143
http://dx.doi.org/10.1093/bioinformatics/btn582
http://dx.doi.org/10.1093/bioinformatics/btr505
http://dx.doi.org/10.1093/nar/gkr009
http://dx.doi.org/10.1038/srep11565
http://dx.doi.org/10.1101/gr.114819.110
http://dx.doi.org/10.1093/bioinformatics/btu698
http://dx.doi.org/10.1093/bioinformatics/btv399
http://dx.doi.org/10.1093/bioinformatics/btw505
http://dx.doi.org/10.1093/gigascience/giaa119
http://dx.doi.org/10.1142/s0219720020500481
http://dx.doi.org/10.1112/plms/s2-42.1.230

