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ABSTRACT This paper introduces an end-to-end processingmethod formultiple periodicity signal detection
and analysis with particular application in software analysis using analog side channels. The probabilistic
distributions of signal blocks are estimated with kernel density estimation. The corresponding kernel
bandwidths, which are optimally found in a data-driven manner, are used to detect change points. After
separating the signal into parts with different behaviors, average magnitude difference function is leveraged
iteratively to find the smallest periodic signal sections. To illustrate efficiency of the proposed method,
we use EM side-channel signals collected from real-life applications to successfully detect multiple existing
periodicities.

INDEX TERMS Period detection, multiple periodicities, change point detection, kernel density estimation,
average magnitude difference function, side-channel.

I. INTRODUCTION
Periodic signals are found in various forms in different
research fields. There are many examples that include
biomedical signals such as heartbeats, meteorological record-
ings of weather changes or financial time series data. In all
these forms, the period information provides highly valuable
insight to understand the nature of the signal. This makes the
signal period detection a crucial step in various applications
ranging from astronomy [1], biomedical [2], [3], communi-
cation [4], to analog side-channels [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], etc.

This paper was motivated by problems found in signal pro-
cessing of electromagnetic side channels to profile software
activities. Electromagnetic side channels emanate from com-
puter system during program running. Hence, they contain
information about the program activities run by the device.
Period detection is highly crucial for such signals since it
allows one to understand the program behavior for various
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purposes such as software analysis [17], [18], [19], [20] and
hardware Trojan detection [21].

Signal periodicity in electromagnetic side channels can tell
us the number of periodic activities (such as loops), structure
(are they nested or not), how long are those loops and all
questions essential for recognizing code structure by analyz-
ing analog signals. However, these signals are challenging in
terms of period detection since they commonly contain multi-
ple nested periodicities due to repetitive nature of the program
execution. In other words, the signal periodicity may not be
represented with one dominant period in all cases. Instead,
the signal may contain multiple interlaced or nested periods.
Moreover, different periodicities can be observed in various
regions of signals with changing behaviors in time. To the
best of our knowledge, there are no signal processing tech-
niques that address finding periodicities in electromagnetic
side channels to analyze software activities. To address these
issues, we study period detection problem for quasi-periodic
signals with multiple nested periodicities.

The first observation from experimental data was that
signals do not have periodic structure but more like
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quasi-periodic structure. The reason is that within loops dif-
ferent code might be executing if branching is present. That
has motivated us to investigate how to detect all periodic-
ities in unknown empirically collected quasi-periodic data.
To accomplish this objective, one first needs to identify
behavioral change points to extract signal intervals contain-
ing periodicities. Therefore, our method is twofold. We first
detect the change points of the observed signal without any
model assumption. Then, we iteratively find all existing peri-
ods, i.e., from the longest period to the smallest period, in a
signal with multiple periods. To demonstrate the performance
of the proposed technique, we use experimentally collected
side-channel signals and show that we successfully detect all
existing periods.

The main contribution of this paper is that we develop the
first algorithm that is finding periodicities in electromagnetic
side channels with application of code structure analysis. This
algorithm addresses important problem in the periodicity
analysis not addressed before: detecting nested periods in
quasi-periodic signals. This has been accomplished in the
following manner:

1) We propose an approach to find behavioral change
points of a signal including quasi-periodic signals to
detect different periodicities. Since we use a nonpara-
metric density estimation method without any model
assumption, this method works with data coming from
any probabilistic distribution. With this, we handle the
period detection problem for signals with changing
behaviors in time.

2) We describe a hierarchical method for finding all
periodicities in a given analog signal with low com-
putational complexity. With the introduced approach,
we address the corrupting effects such as signal inter-
ruptions or additional regions inserted between peri-
odic activities, which disrupt perfect periodicity.

3) We demonstrate the effectiveness of the proposed
method on the side-channel signals, where multiple
periodicities are common occurrences due to repetitive
nature of program execution. Even though these signals
are not perfectly periodic and hence challenging to
work with, we successfully detect all periodic patterns.

The organization of this paper is as follows. We review
related work in Section II, define our problem setting in
Section III, present our hierarchical approach for multiple
period detection in Section IV, demonstrate the performance
of our method on side-channel processor measurements in
Section V, and finally, conclude the paper in Section VI.

II. RELATED WORK
To the best of our knowledge, there are no signal processing
techniques that address finding periodicities in electromag-
netic side channels that analyze software activities. Hence we
looked at other research areas that had similar problems.

Most of the signals used in practice contain different
behavioral regions such as time series data belonging to
biomedical, finance, or meteorology fields. The detection of

transition/change points between different states of such sig-
nals carries high importance in terms of data modeling, analy-
sis and prediction. Therefore, change point detectionmethods
find use in various signal processing applications [22], [23].
Change point detection problem is addressed in previous
work in a supervised setting [24], [25], [26], [27], [28]. How-
ever, they require an additional training phase and hence large
number of data instances and labels, which is not suitable
for many applications. Another approach to change point
detection is estimating the density of the signal to observe
the behavioral changes. Work in [29] and [30] use parametric
models for density estimation to detect change points. They
assume that the data distribution is from exponential family.
That is not suitable for many applications where data distri-
bution is not a priori known. However, none of these data sets
have problem of nested periods (such as nested loops), hence
they are not directly applicable to our problem.

In this paper, we exploit change point detection to sepa-
rate different behavioral regions in signals as in the case of
quasi-periodic signals to be able to detect all existing period-
icities. To address this problem, we use estimation of the sig-
nal density to observe the behavioral changes. In particular,
our kernel density estimation based change point detection
method does not assume any distribution and hence it can
model any distribution in a data-driven manner. Please note
that we apply change point detection step to extract signal
intervals with different behaviors, i.e., periodicities.

Period detection problem is extensively studied in the
literature. One approach applied in these studies is using
frequency domain. For example, [31] uses periodogram
obtained through Fourier transform where one can detect
the dominant frequencies. Similarly, Fourier transform is
exploited in [32] for periodicity analysis. However, peri-
odogram does not work well for longer periods and does
not guarantee providing accurate results due to spectral leak-
age [33]. To avoid this, several studies propose to solve period
detection problem in time domain by using time domain
related properties of a signal. Among these, autocorrelation
function is applied in [34] to find the period. Since low ampli-
tude repetitions may be interpreted as less important in auto-
correlation function, [33] proposes to combine periodogram
and autocorrelation findings for more accurate results. This
problem is also investigated as pitch detection in speech
processing applications. Reference [35] uses zero-crossing
rate property of speech signals in addition to the autocorre-
lation function for pitch detection. Moreover, [36] combines
autocorrelation and average magnitude difference function
(AMDF) for pitch detection. Among these numerous tech-
niques, average magnitude difference function (AMDF) has a
wide range of applications due to its low computational time.
Therefore, several studies based on AMDF are developed in
the literature [37], [38]. However, most of these methods and
others such as [39] do not address the multiple periodicity
issues and focus on finding one dominant period in the signal.
Reference [40] studiesmultiple periodicity detection problem
in both time and frequency domain where one can observe
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FIGURE 1. A hierarchical structure for multiple periodicity detection on an example signal with various behavioral regions.

multiple interlaced periods in addition to the dominant period.
Reference [41] also analyzes multiple hidden periodicities
where an observed signal is a combination of multiple sig-
nals with different periods. However, these methods do not
consider quasi-periodic and almost-periodic signals where
there is not perfect periodicity. In practice, the behavior
of a signal may be changing in time resulting in different
periodicities in different time intervals. Moreover, there may
be interruptions or nonperiodic regions between periodic
activities, which disrupt the perfect periodicity of the signal.
As a result of such effects, the nested periods other than the
dominant period become invisible from direct periodogram or
autocorrelation function of the complete signal. In contrast,
we introduce a hierarchical approach to find all periodicities
in an observed signal where we also address these problems.
In our framework, we iteratively find all existing periods
where the computational complexity is only linear with the
number of existing periods and the data length. Therefore,
the introduced method is appropriate for several real-world
applications.

III. PROBLEM DESCRIPTION
Signal periodicity in electromagnetic side channels is essen-
tial for understanding code behavior by observing analog
signals. However, this is a challenging problem because these
signalsmay containmultiple nested periodicities due to repet-
itive nature of the program execution. To address these issues,
we study period detection problem for quasi-periodic signals
with multiple nested periodicities and define the problem as
described below.

We observe a sequence x ∈ RN of uniformly sampled
quasi-periodic data instances. The observed signal x =
{y1, y2, . . . , yT } consists of T number of patterns containing
multiple periodicities where yi ∈ Rni . Our aim is to extract the
patterns in the observed sequence and detect all existing peri-
odicities. For this, we introduce a two-step approach where
we first find the data intervals showing similar behaviors
based on the estimated densities. Then, we iteratively find
multiple periodicities in the extracted data intervals.

In order to construct a signal representation, we divide
the sequence into k blocks {x1, x2, . . . , xk} with the same
length xi ∈ Rh and use kernel density estimation (KDE) to
obtain the distribution of each block as f (xi). Since the signal
blocks containing the same patterns have the same probability
distribution, we group the blocks having similar distributions
to find the patterns yi = {xm, xm+1, . . . , xm+ti}. This means
that we search for consecutive blocks {xm, xm+1, . . . , xm+ti}
that have similar distributions, where changing from xm−1
to xm and from xm+ti to xm+ti+1 corresponds to the change
points. For example, the synthetically constructed signal in
Fig. 1 has three main regions with different behaviors. Sim-
ilarly, the real signal example given in Fig. 2 consists of
two main different behaviors, which are highlighted with
matching frame colors. Here, there exists three change points
resulting in dividing the signal into four groups.

We analyze the extracted patterns separately to find all
existing periodicities. Let y = {y1, y2, . . . , yn} be a signal
block containing multiple periodicities such that

yi = yi+wi ,
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FIGURE 2. Analog side-channel signal collected from Raspberry Pi device
while running ECC algorithm. Kernel density estimation based change
point detection method finds two sections of the signal with similar
behavior as indicated with the same color frames.

where wi ∈ R can take one or multiple values. To find all
existing periods, we introduce an iterative approach based
on average magnitude difference function. At each iteration,
we find the longest period and extract the periodic parts so
that we continue to analyze all extracted parts separately.
Hence, we eliminate the effects of possible nonperiodic
regions or interruptions, which disrupt the perfect periodicity.

IV. PROPOSED METHOD
In this section, we describe our hierarchical approach to ana-
lyze an observed signal. In the first level of our hierarchical
structure, we search for different behavioral regions existing
in the signal. For this, we use kernel density estimation based
change point detection technique and extract signal intervals
with different behaviors. We provide details of this step in
Section IV-A. Then, we process these regions separately and
apply iterative period detection method based on average
magnitude difference function to find all existing periodic
regions. We present this technique in Section IV-B.

We provide the representation of our approach on a syn-
thetic signal example in Fig. 1. The original signal at Level 0
consists of three main regions where the first and the second
regions have different periodicities and the third region does
not have any periodic activity. We first detect separation
points of these regions (black dashed lines at Level 0) with our
kernel density estimation based method. Then, we search for
periodicities in these separated regions and detect the domi-
nant periods for the first and the second regions at Level 1.
The nested periods are detected in the second region and
hence another iteration of period detection method is applied
at Level 2. We show the separation lines of periodic regions
with red dashed lines in Fig. 1.

A. CHANGE POINT DETECTION
Density estimates provide highly valuable information
regarding data modeling. Therefore, density estimation is

used for several purposes in the literature including anomaly
detection [42], classification [43], and in particular change
point detection [22]. In this paper, we use density estimation
technique to model the behavior of the signal and extract the
intervals with different behaviors. We do this to analyze the
different periodic parts separately in the next steps so that we
can detect all existing periodicities in the signal.

Formodeling, we divide the signal into equal-length blocks
and use the kernel density estimation (KDE) [44] method at
each block. Let x be a point and S be a set of points in one
block. Then, KDE is obtained as

fS (x) =
1
wδ

∑
i:xi∈S,1≤i≤w

K
(
x− xi
δ

)
, (1)

where w is the number of instances in S, δ is the bandwidth
and K (·) is a kernel function [45]. In this work, we use the
Gaussian kernel function [44] K (x) , 1

√
2π

exp(− x2
2 ).

Since data blocks containing different behaviors construct
different distributions, we can detect change points based
on the distribution change points. This can be achieved
by exploiting distribution specific properties. At this point,
we use bandwidth parameter of KDE, which is also calcu-
lated optimally based on the corresponding data points [46].
In other words, we map the observed signal into a low dimen-
sional space, where KDE bandwidths represent the distri-
butional behaviors of the original signal. Then, we declare
the points where drastic bandwidth deviations are observed
as original signal change points. We provide our KDE
based change point detection algorithm in Algorithm 1 as
a pseudocode.
Remark: Note that since we obtain kernel densities and

hence KDE bandwidths based on divided signal blocks,
we obtain not the exact change points but blocks, i.e., set of
data points, containing the change points. Therefore, we use
average magnitude different function on detected change
blocks to find the exact change points. This step is explained
in detail in Section V where we also provide the experimental
results with real signals.

B. HIERARCHICAL DETECTION OF MULTIPLE
PERIODICITIES
The main idea of average magnitude difference function
(AMDF) is similar to autocorrelation where one seeks to find
highest similarity intervals by slidingwindow on a signal. The
conventional AMDF [47] is calculated as

Dx(τ ) =
1

N − τ − 1

N−τ−1∑
i=0

|xw(i+ τ )− xw(i)|, (2)

where xw is the windowed quasi-periodic sequence with
N data points. Therefore,D(τ ) is minimized for τ = mT , i.e.,
multiples of period T . In an ideal periodic case, D(τ ) would
be zero at points corresponding to exact multiples of period as
τ = mT . However, we search for τ values, which minimize
D(τ ) by sliding window. Therefore, it is applicable to noisy
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FIGURE 3. Flowchart of the proposed method for multiple periodicity
detection.

quasi-periodic signals which do not have one exact dominant
period but multiple periodicities.

In our framework, we apply AMDF iteratively to extract
all periods. For a sequence x ∈ RN , let {x1, x2, . . . , xm} be
the longest periodic parts, where the spacing between them is
not necessarily the same. We first find AMDF of x as Dx(τ ),
whose minimums corresponds to starting points of all xi for
i = {1, 2, . . . ,m}. Then, we separately analyze all xi subsets
to find smaller periods. Assume that xi can be divided into
periodic parts as {xi,1, xi,2, . . . , xi,mi}. We can find all these
parts from the minimums of Dxi (τ ) calculated with smaller
window length. Then, we analyze each xi,j until finding all
periodic signal parts as in Algorithm 2.
The flowchart of the proposed method is given in Fig. 3.

Here, the EM signal collected from a program running device
is given as an input signal to the system. First, Change Point
Detector algorithm separates the signal into equal length
signal blocks to construct their kernel density estimations
(KDEs). It combines consecutive signal blocks showing sim-
ilar KDE bandwidths by cropping the signal from bandwidth
change points. Then, the resulting signal snippets are fed
into the Hierarchical Period Detector. This algorithm sep-
arately processes signal snippets with different behaviors.
It calculates the AMDF and its minimums of the first snippet.

Algorithm 1 KDE Based Change Point Detector

1: Observe signal x1×N containing m snippets, i.e., m −
1 change points.

2: Set window length w
3: Divide the signal x into k = N

w blocks to obtain subsets
as {x1, x2, . . . , xk}

4: for t = 1, 2, . . . , k do
5: Calculate optimal KDE bandwidth δt for xt
6: Obtain the distribution of xt with KDE as ft (x) =

1
nδt

∑n
j=1 K ( x−xj

δ
)

7: end for
8: Calculate the average µ = 1

k

∑k
j=1 δt

9: Declare block indices i satisfying δj > µ or δj < µ for
j = i, i+ 1, . . . , i+ h as change points

Algorithm 2 Hierarchical Period Detector

1: Obtain signal snippet x1×T with Algorithm 1
2: Set iteration number p and window lengths w1, . . . ,wp
3: Set an index number g < T
4: for j = 1, 2, . . . , g do
5: Crop x starting from jth index to obtain x̃j
6: Calculate AMDF Dj with x̃j
7: Set L(j) = min(Dj)
8: end for
9: Declare periodicity starting point as ĵ = min(L)

10: Crop x starting from ĵth index to obtain x̂
11: for t = 1, 2, . . . , p do
12: Get the matrix Y k×h of k snippets (Y = x̂ at t = 1 )
13: for i = 1, 2, . . . , k do
14: Get ith snippet yi

1×h

15: Calculate D(τ ) = 1
n−1−τ

∑n−1−τ
i=1 |y(i)− y(i+ τ )|

16: Construct the set R(i) = j where D(j) =

min{D(i),D(i+ 1), . . . ,D(i+ wt )}
17: Store d snippets with initial indices in R as Yd×si
18: end for
19: end for

This constructs the first set of periodic pieces. Then, it calcu-
lates AMDF and the corresponding periodicities of this signal
piece until the iteration number is achieved. After storing the
smallest periodic pieces of the first snippet, it starts process-
ing the second snippet with different periodic behavior. At the
end of this process, the algorithm outputs all stored periodic
pieces as shown in Fig. 3.
The visualization of this process can be seen in Fig. 1.

At Level 0, there are three different regions to be analyzed.
The method does not detect any periodicity for the third
region since it contains only noise. When the first and second
regions are processed, the separations of periodic regions are
obtained as in Level 1. The structure stops branching for
the first region since it does not contain any nested periods.
It processes only the second region to detect the smaller
periodic regions in Level 2 and completes the process.
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FIGURE 4. Measurement setups used to collect emanated EM signals for
(a) Raspberry Pi 4, (b) A13-OLinuXino devices.

Remark: Note that the observed signal may contain nested
periods as in the second region of the example in Fig. 1 (the
signal region on the right at Level 1). Here, this cropped
signal contains periodic activity repeating four times and each
of them has smaller periodic regions repeating five times.
However, there are additional nonperiodic noisy regions at the
end of each four dominant repetition, which disrupts the per-
fect periodicity and disables one detecting these 20 periodic
activities directly. We see the advantage of our method at this
point. Since we do not assume perfect periodicity and we take
behavioral changes into account by processing the regions
separately, our method can successfully detect all existing
periodicites. We provide the experimental results regarding
this discussion with real life signal examples in Section V.

We provide our resulting iterative pattern detection algo-
rithm in Algorithm 2 as a pseudocode. We apply this proce-
dure to every signal interval found in Algorithm 1 separately.
Here, we assume that the periodic part may not be in the
beginning of the signal snippet obtained with Algorithm 1.
Therefore, we first find the starting point of the period-
icity, which provides minimum AMDF value (line 4-9 in
Algorithm 2) and crop the signal starting from this point to
obtain x̂. Then, at iteration t = 1 we apply AMDF to this
cropped periodic signal Y = x̂ (at t = 1; k = 1 and
h equals to the length of the signal in line 12 of Algorithm 2)
and extract its longest periodic snippets (line 15 and 16 in
Algorithm 2). We store these k snippets with h data instances
as Y k×h (line 17 in Algorithm 2). At the next iteration t = 2,
we get this set of snippets Y k×h (line 12 in Algorithm 2),
extract its periodic pieces and store them as Yd×si to be ana-
lyzed in the next iteration (line 17 in Algorithm 2). We con-
tinue this procedure until finding the smallest periodic pattern
in the signal.
Remark: In the case of ideal exact periodic signal, the

minimums of AMDF correspond to the starting points of the
periodic parts. However, for generalization, we assume that
the signal from beginning to end may not contain periodic
parts consecutively. In such cases, even though AMDF still
has local minimums, they would be greater than the mini-
mums of actual periods. Therefore, we can eliminate these
by thresholding the detected local minimums.

FIGURE 5. (a) ECC code flow with corresponding functions, (b) ECC code
structure.

V. EXPERIMENTAL RESULTS
To illustrate how proposed method works on practical data,
here we provide brief description of measurement setups
that are used to collect the signals with multiple periods and
present results obtained using the proposed method on these
signals.

A. MEASUREMENT SETUP
In the experiments, we use two devices, i.e., Raspberry
Pi 4 and A13-OLinuXino to obtain the set of electromag-
netic (EM) side-channel signals as in Fig. 4. Raspberry
Pi 4 single-board computer has quad-core ARM Cortex A72
processor, whose operating frequency is set to 1.2 GHz.
A13-OLinuXino is a single-board embedded Linux computer
with ARM Cortex A8 processor, whose operating clock fre-
quency is 1 GHz.

We run ECC (Elliptic Curve Cryptography) implemen-
tation of OpenSSL [48] on the boards where we provide
its code flow in Fig. 5a. ECC is an encryption method,
which provides high security against side-channel attacks
in a computationally efficient way. Since the main idea
is mapping elements through a defined curve structure,
it requires a sequence of operations including additions
and multiplications. These iterative steps result in observ-
able nested loops in emanated EM signals, which is inves-
tigated in this section. Here, we use the code structure
in Fig. 5b. This code calls ‘‘ec_scalar_mul_ladder ()’’ for
each bit of 521 bits. This function contains some oper-
ations along with ‘‘ec_GFp_mont_field_mul ()’’, which
is called 20 times. Hence, the resulting signal contains
20 iterative loops (operations) separated unevenly. Note that
‘‘ec_GFp_mont_field_mul ()’’ also consists of some opera-
tions and ‘‘bn_mul_mont ()’’, which includes 16 iterations of
‘‘Louter’’. And finally, ‘‘Louter’’ iterates‘‘Linner’’ 15 times.
Therefore, each of 20 loops contain 16 nested periodic loops.
And, each of 16 loops consist of 15 periodic loops, which
correspond to the smallest periodic activity in the signal.
Also, note that the additional functions in between 16 outer
loops corrupt perfect periodicity, which disables one to detect
16× 15 loops directly from periodogram or autocorrelation
function of complete signal.
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FIGURE 6. (a) EM signal intervals belonging to two different behavior groups (signal blocks of 2-15-17 and 6-8-25-27 are different from each other)
(b) Kernel density estimation based distributions constructed with corresponding data intervals shown in Fig. 6a. (c) EM signal collected from
A13-OLinuXino device where data intervals of the same processor activities are shown with 20 red frames (d) KDE bandwidths of the signal blocks
in Fig. 6c.

The emanated EM signals are collected with Aaronia H2
near-field magnetic probe, which is located around the pins of
the processors of the target devices as in Fig. 4. For recording
of the signal collected from Raspberry Pi 4, Keysight UXA
signal analyzer is used with 1.28 GHz sampling rate. The sig-
nal collected from A13-OLinuXino device is recorded with
Keysight DSOS804A oscilloscope with 10 GHz sampling
frequency. Note that the signal collected from Raspberry
Pi 4 is filtered for interference removal before processing.
However, the signals of A13-OLinuXino device are directly
used without any pre-processing to show the efficiency of the
proposed method.

B. MULTIPLE PERIODICITY DETECTION RESULTS
In this section, we present experimental results of each step
in the proposed method. We first provide our results for
change detection on the signal collected from Raspberry Pi
4 device. As seen in Fig. 2, this signal consists of two different
behaviors internally, i.e., one contains repeating loops and
the other is noise-like behavior, which are highlighted with
different colors. Our aim is to detect the change points and
separate these parts.

1) CHANGE POINT DETECTION
Our method first divides the signal into blocks with equal
lengths. We choose block length as 2×104 data instances for
the signal in Fig. 2. For representation, we provide different
coloring of this same signal and highlight the data intervals
corresponding to blocks of 2, 6, 8, 15, 17, 25 and 27 as
in Fig. 6a. Note that 2., 15. and 17. blocks share the same
behavior as in the first and third frames in Fig. 2. On the other
hand, 6., 8., 25. and 27. blocks are similar to each other as
belonging to the second and fourth frames in Fig. 2. When
we construct distributions of these data blocks with kernel
density estimation (KDE), we obtain Fig. 6b. As seen from
the resulting distributions, the data instances having similar
behaviors construct similar distributions. Hence, kernel den-
sity estimation can be used to track the behavioral changes.

We also use the signal collected from A13-OLinuXino
device to detect change points and periods. This signal con-
tains 20 unevenly spaced loops corresponding to the same

activities running on the processor of the device. Hence it is
periodic in a sense that the 20 intervals shownwith red frames
in Fig. 6c correspond to the same loops and their lengths are
equal to each other but they do not have the same spacing
between themselves (some of them are consecutive while
some of them are a distance apart) and the noise is also differ-
ent for each data instance. In this example, we interpret this
variant of periodicity as a change point detection problem.
For this, we specify the block length as 1000 and construct
distribution of each signal block. The kernel bandwidths of
the blocks are given in Fig. 6d. Here, we observe drastic
bandwidth changes at the beginning and end blocks of all
20 loops. We detect these change blocks by comparing the
bandwidths with their average value.

2) PERIODICITY DETECTION
In the next step, we analyze each of detected 20 signal inter-
vals (main loops) separately. Note that each of them contains
16 smaller loops (outer loops) where each of 16 also contains
15 even smaller periodic pieces (inner loops), which results
in a multi-periodic signal.

For better visualization, we provide 16 outer loops and
their separation points in Fig. 7a where their inner loops can
also be seen in Fig. 8a. Here, the aim is to detect all 16 outer
loops and 240 (15 × 16) inner loops with the algorithm.
However, the challenge is that there are additional signal
activities (as seen at the end of inner loops in Fig. 8a) between
16 outer loops, which disrupt the perfect periodicity in terms
of inner loops. Therefore, even though a dominant frequency
is found, the signal cannot be divided into its loop intervals
correctly with that value. This disables one to obtain the
signature periodic behavior of an observed signal. To observe
this, we apply periodogram and autocorrelation [34] as period
detection methods to our signals to detect all existing loops
for comparison. Note that these methods are only applied to
the signals whose behaviors do not change in time since they
do not address quasi-periodicity. Autocorrelation function
provides correlation values between original signal and its
delayed versions. The lag values at the peaks correspond to
the signal periods. Periodogram provides power spectral den-
sity estimate of a signal where one can extract the dominant
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FIGURE 7. (a) Periodic signal part, which is detected with change point detection step, containing 16 loops, and detected starting points
corresponding to periodic loops, (b) Obtained average magnitude difference function where local minimums correspond to the periodic parts of
Fig. 7a, (c) All 16 detected loops plotted on top of each other.

FIGURE 8. (a) Periodic signal part, which is detected with the first iteration of hierarchical period detector, containing 15 loops, and detected
starting points, (b) Obtained average magnitude difference function where local minimums correspond to the periodic parts of Fig. 8a, (c) All
15 detected loops plotted on top of each other.

frequencies from the peak locations. Based on the application
of these methods to our collected signal with 20 unevenly
spaced loops (each containing 16 outer and 15 inner loops),
we observed that periodogram detects only frequency compo-
nent corresponding to the inner loops along with many false
alarms and fails to detect outer and main loops. Also, auto-
correlation function detects lag values corresponding to outer
and inner loops while it fails to detect 20main loops similarly.
However, even the detected values do not directly correspond
to actual loop separations because of the additional nonpe-
riodic signals between the outer loops. As a result, if we
divide the signal into smallest periodic pieces with these
detected values, the resulting signal does not represent the
actual periodic behavior of the signal. Therefore, they are not
directly applicable to many real life applications requiring
accurate pattern detection.

On the other hand, we compensate the previously dis-
cussed issues with our hierarchical structure. As explained
in Section V-B1, we first search for behavioral similarities
and change points. With this step, we detect 20 unevenly
spaced iterations. Then, we analyze them separately to find
smaller periodicities. We also search for the starting point
of periodic behaviors for accurate separation. Therefore, our
method accurately detects all periodic activities even when

there are inserted nonperiodic activities between periodic
loops while autocorrelation, periodogram and similar meth-
ods suffer from this situation.

For representation, we take one of the 20 loops detected in
the previous part as seen in Fig. 7a. In the first iteration of
our method, we obtain the AMDF in Fig. 7b. We declare the
local minimums as starting points of the loops and obtain the
division shown in Fig. 7a. When we plot them on top of each
other, we obtain the highly overlapping snippets in Fig. 7c,
all of which will be analyzed separately in the next iteration.

Similar to the previous steps, we take one of the detected
small loops in Fig. 7c for representation and search for
15 smallest loops existing in this signal. As seen from Fig. 7c,
the periodic parts do not start in the beginning of the signal.
For these cases, our method also applies optimization to find
the starting point of the periodic loops. For this, we crop
the signal beginning from several points and calculate the
minimumAMDF for each case. Then, the best cropping point
giving minimum AMDF corresponds to capturing maximum
periodicity. In this case, we find the starting point as 87th data
instance and get the cropped snippet given in Fig. 8a. Then,
we apply AMDF iteration and obtain Fig. 8b. Here, the local
minimums give all 15 periodic parts as in Fig. 8a. When we
draw them on top of each other, we get the result in Fig. 8c.
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As seen from this figure, these loops are not exactly periodic
such that they do not completely overlap and even the ones
that are most similar have timing differences due to sampling.
However, even in such cases, our iterative technique is able to
find all periodicities with an efficient end-to-end processing.

VI. CONCLUSION
This paper presented the first signal processing technique that
address finding periodicities in electromagnetic side chan-
nels that analyze software activities. It introduces an end-to-
end processing method for multiple nested periodicity signal
detection and analysis. The probabilistic distributions of sig-
nal blocks are estimated with kernel density estimation. The
corresponding kernel bandwidths, which are optimally found
in a data-driven manner, are used to detect change points.
After separating the signal into parts with different behaviors,
averagemagnitude difference function is leveraged iteratively
to find the smallest periodic signal sections. To illustrate
efficiency of the proposed method, we use EM side-channel
signals collected from real-life applications to successfully
detect multiple existing periodicities.

ACKNOWLEDGMENT
The views and finding in this paper are those of the authors
and do not reflect the views of ONR.

REFERENCES
[1] P. Huijse, P. A. Estevez, P. Protopapas, P. Zegers, and J. C. Principe,

‘‘An information theoretic algorithm for finding periodicities in stellar light
curves,’’ IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5135–5145,
Oct. 2012.

[2] J. Hlavnicka, R. Cmejla, J. Klempir, E. Ruzicka, and J. Rusz, ‘‘Acous-
tic tracking of pitch, modal, and subharmonic vibrations of vocal
folds in Parkinson’s disease and parkinsonism,’’ IEEE Access, vol. 7,
pp. 150339–150354, 2019.

[3] F. Erden and A. E. Cetin, ‘‘Period estimation of an almost periodic signal
using persistent homology with application to respiratory rate measure-
ment,’’ IEEE Signal Process. Lett., vol. 24, no. 7, pp. 958–962, Jul. 2017.

[4] I. V. L. Clarkson, ‘‘Approximate maximum-likelihood period estimation
from sparse, noisy timing data,’’ IEEE Trans. Signal Process., vol. 56,
no. 5, pp. 1779–1787, May 2008.

[5] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, ‘‘Acous-
tic side-channel attacks on printers,’’ in Proc. 19th USENIX Secur. Symp.,
Washington, DC, USA, Aug. 2010, pp. 307–322.

[6] J. Quisquater and D. Samyde, ‘‘Electromagnetic analysis (EMA): Mea-
sures and counter-measures for smart cards,’’ in Proc. Int. Conf. Res. Smart
Cards, E-Smart, Cannes, France, Sep. 2001, pp. 200–210.

[7] K. Gandolfi, C. Mourtel, and F. Olivier, ‘‘Electromagnetic analysis: Con-
crete results,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst., Paris, France, May 2001, pp. 251–261.

[8] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, ‘‘The EM side-
channel(s),’’ in Proc. 4th Int. Workshop Cryptograph. Hardw. Embedded
Syst., Redwood Shores, CA, USA, Aug. 2002, pp. 29–45.

[9] E. De Mulder, S. B. Örs, B. Preneel, and I. Verbauwhede, ‘‘Differential
power and electromagnetic attacks on a FPGA implementation of elliptic
curve cryptosystems,’’Comput. Elect. Eng., vol. 33, nos. 5–6, pp. 367–382,
2007.

[10] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, ‘‘Stealing keys from
PCs using a radio: Cheap electromagnetic attacks on windowed exponenti-
ation,’’ in Proc. 17th Int. Workshop Cryptograph. Hardw. Embedded Syst.,
Saint-Malo, France, Sep. 2015, pp. 207–228.

[11] D. Genkin, A. Shamir, and E. Tromer, ‘‘RSA key extraction via
low-bandwidth acoustic cryptanalysis,’’ in Proc. Annu. Cryptol. Conf.,
Santa Barbara, CA, USA, Aug. 2014, pp. 444–461.

[12] A. Zajic and M. Prvulovic, ‘‘Experimental demonstration of electromag-
netic information leakage frommodern processor-memory systems,’’ IEEE
Trans. Electromagn. Compat., vol. 56, no. 4, pp. 885–893, Aug. 2014.

[13] B. B. Yilmaz, A. Zajic, and M. Prvulovic, ‘‘Modelling jitter in wireless
channel created by processor-memory activity,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Apr. 2018, pp. 2037–2041.

[14] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. L. Callan, A. G. Zajic,
and M. Prvulovic, ‘‘One&Done: A single-decryption EM-based attack on
OpenSSL’s constant-time blinded RSA,’’ in Proc. 27th USENIX Secur.
Symp., Baltimore, MD, USA, Aug. 2018, pp. 585–602.

[15] R. Callan, A. Zajic, and M. Prvulovic, ‘‘A practical methodology for mea-
suring the side-channel signal available to the attacker for instruction-level
events,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 242–254.

[16] R. Callan, N. Popovic, A. Daruna, E. Pollmann, A. Zajic, andM. Prvulovic,
‘‘Comparison of electromagnetic side-channel energy available to the
attacker from different computer systems,’’ in Proc. IEEE Int. Symp.
Electromagn. Compat. (EMC), Aug. 2015, pp. 219–223.

[17] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, ‘‘Zero-
overhead profiling via EM emanations,’’ in Proc. 25th Int. Symp. Softw.
Test. Anal., Jul. 2016, pp. 401–412.

[18] M. Dey, A. Nazari, A. Zajic, and M. Prvulovic, ‘‘EMPROF: Memory
profiling via EM-emanation in IoT and hand-held devices,’’ in Proc.
51st Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2018,
pp. 881–893.

[19] H. A. Khan, M. Alam, A. Zajic, and M. Prvulovic, ‘‘Detailed tracking of
program control flow using analog side-channel signals: A promise for IoT
malware detection and a threat for many cryptographic implementations,’’
Proc. SPIE, vol. 10630, May 2018, Art. no. 1063005.

[20] R. Rutledge, S. Park, H. Khan, A. Orso, M. Prvulovic, and A. Zajic, ‘‘Zero-
overhead path prediction with progressive symbolic execution,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 234–245.

[21] L. N. Nguyen, C.-L. Cheng, M. Prvulovic, and A. Zajic, ‘‘Creating a
backscattering side channel to enable detection of dormant hardware tro-
jans,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 7,
pp. 1561–1574, Jul. 2019.

[22] S. Aminikhanghahi and D. J. Cook, ‘‘A survey of methods for time series
change point detection,’’ Knowl. Inf. Syst., vol. 51, no. 2, pp. 339–367,
May 2017.

[23] P. Delacourt and C. J. Wellekens, ‘‘DISTBIC: A speaker-based
segmentation for audio data indexing,’’ Speech Commun.,
vol. 32, nos. 1–2, pp. 111–126, Sep. 2000. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167639300000273

[24] F. Li, G. C. Runger, and E. Tuv, ‘‘Supervised learning for change-point
detection,’’ Int. J. Prod. Res., vol. 44, no. 14, pp. 2853–2868, Jul. 2006.

[25] E. Bakstein, J. Schneider, T. Sieger, D. Novak, J. Wild, and R. Jech,
‘‘Supervised segmentation of microelectrode recording artifacts using
power spectral density,’’ in Proc. 37th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. (EMBC), Aug. 2015, pp. 1524–1527.

[26] V. Gupta, ‘‘Speaker change point detection using deep neural nets,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2015, pp. 4420–4424.

[27] A. Gupta, V. S. Masampally, V. Jadhav, A. Deodhar, and V. Runkana,
‘‘Supervised operational change point detection using ensemble long-
short term memory in a multicomponent industrial system,’’ in Proc.
IEEE 19th World Symp. Appl. Mach. Intell. Informat. (SAMI), Jan. 2021,
pp. 000135–000141.

[28] V. Kartik, D. S. Satish, and C. C. Sekhar, ‘‘Speaker change detection using
support vector machines,’’ in Proc. ISCA Tutorial Res. Workshop (ITRW)
Non-Linear Speech Process., 2005, pp. 1–7.

[29] K. Frick, A. Munk, and H. Sieling, ‘‘Multiscale change point inference,’’
J. Roy. Stat. Soc., B, Stat. Methodol., vol. 76, no. 3, pp. 495–580, Jun. 2014.

[30] P. Fearnhead, ‘‘Exact and efficient Bayesian inference for multiple change-
point problems,’’ Statist. Comput., vol. 16, pp. 203–213, Jun. 2006.

[31] S. Gonzalez and M. Brookes, ‘‘PEFAC—A pitch estimation algorithm
robust to high levels of noise,’’ IEEE/ACMTrans. Audio, Speech, Language
Process., vol. 22, no. 2, pp. 518–530, Feb. 2014.

[32] A. Drutsa, G. Gusev, and P. Serdyukov, ‘‘Periodicity in user engagement
with a search engine and its application to online controlled experiments,’’
ACM Trans. Web, vol. 11, no. 2, pp. 1–35, May 2017.

[33] M. Vlachos, P. Yu, and V. Castelli, ‘‘On periodicity detection and structural
periodic similarity,’’ in Proc. SIAM Int. Conf. Data Mining, Apr. 2005,
pp. 449–460.

[34] S. S. Upadhya, ‘‘Pitch detection in time and frequency domain,’’ in Proc.
Int. Conf. Commun., Inf. Comput. Technol. (ICCICT), Oct. 2012, pp. 1–5.

[35] R. G. Amado and J. V. Filho, ‘‘Pitch detection algorithms based on zero-
cross rate and autocorrelation function for musical notes,’’ in Proc. Int.
Conf. Audio, Lang. Image Process., Jul. 2008, pp. 449–454.

106944 VOLUME 10, 2022



M. Kerpicci et al.: Hierarchical Approach for Multiple Periodicity Detection in Software Code Analysis

[36] L. Hui, B.-Q. Dai, and L. Wei, ‘‘A pitch detection algorithm based on
AMDF and ACF,’’ in Proc. IEEE Int. Conf. Acoust. Speed Signal Process.,
vol. 1, May 2006, p. 1.

[37] S. Kumar, S. K. Singh, and S. Bhattacharya, ‘‘Performance evaluation of
a ACF-AMDF based pitch detection scheme in real-time,’’ Int. J. Speech
Technol., vol. 18, no. 4, pp. 521–527, Dec. 2015.

[38] W. Zhang, G. Xu, and Y. Wang, ‘‘Pitch estimation based on circu-
lar AMDF,’’ in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
May 2002, pp. 1–4.

[39] W. Fan, Y. X. Li, K. L. Tsui, and Q. Zhou, ‘‘A noise resistant correlation
method for period detection of noisy signals,’’ IEEE Trans. Signal Process.,
vol. 66, no. 7, pp. 2700–2710, Jul. 2018.

[40] Q. Wen, K. He, L. Sun, Y. Zhang, M. Ke, and H. Xu, ‘‘RobustPeriod:
Robust time-frequency mining for multiple periodicity detection,’’ in Proc.
Int. Conf. Manage. Data, Jun. 2021, pp. 2328–2337.

[41] S. V. Tenneti and P. P. Vaidyanathan, ‘‘Nested periodic matrices and dic-
tionaries: New signal representations for period estimation,’’ IEEE Trans.
Signal Process., vol. 63, no. 14, pp. 3736–3750, Jul. 2015.

[42] M. Kerpicci, H. Ozkan, and S. S. Kozat, ‘‘Online anomaly detection with
bandwidth optimized hierarchical kernel density estimators,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 9, pp. 4253–4266, Sep. 2021.

[43] P. Mantero, G. Moser, and S. B. Serpico, ‘‘Partially supervised classifica-
tion of remote sensing images through SVM-based probability density esti-
mation,’’ IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 559–570,
Mar. 2005.

[44] S. J. Sheather, ‘‘Density estimation,’’ Stat. Sci., vol. 19, pp. 588–597,
Nov. 2004.

[45] B. W. Silverman, Density Estimation for Statistics and Data Analysis,
vol. 26. Boca Raton, FL, USA: CRC Press, 1986.

[46] A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data
Analysis: The Kernel Approach With S-Plus Illustrations, vol. 18. Oxford,
U.K.: Oxford Univ. Press, 1997.

[47] M. Ross, H. Shaffer, A. Cohen, R. Freudberg, and H. Manley, ‘‘Aver-
age magnitude difference function pitch extractor,’’ IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-22, no. 5, pp. 353–362, Oct. 1974.

[48] OpenSSL Software Foundation. OpenSSL: Cryptography and SSL/TLS
Toolkit. Accessed: Jan. 2021. [Online]. Available: https://www.openssl.org

MINE KERPICCI (Graduate Student Member,
IEEE) received the B.S. degree from Middle
East Technical University, in 2017, and the M.S.
degree in electrical and electronics engineering
from Bilkent University, Ankara, Turkey, in 2019.
She is currently pursuing the Ph.D. degree with
the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA,
USA. Her research interests include signal pro-
cessing, machine learning, and optimization.

MILOS PRVULOVIC (Senior Member, IEEE)
received the B.Sc. degree in electrical engineering
from the University of Belgrade, in 1998, and the
M.Sc. and Ph.D. degrees in computer science from
the University of Illinois at Urbana–Champaign,
in 2001 and 2003, respectively. He is a Professor
at the School of Computer Science, Georgia Insti-
tute of Technology, where he joined in 2003. His
research interests include computer architecture,
especially hardware support for software monitor-

ing, debugging, and security. He was a past recipient of the NSF CAREER
Award. He is a Senior Member of the ACM and the IEEE Computer Society.

ALENKA ZAJIĆ (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees from the School of
Electrical Engineering, University of Belgrade, in
2001 and 2003, respectively, and the Ph.D. degree
in electrical and computer engineering from the
Georgia Institute of Technology, in 2008. She is
currently a Ken Byers Professor at the School
of Electrical and Computer Engineering, Georgia
Institute of Technology. Prior to that, she was a
Visiting Faculty Member at the School of Com-

puter Science, Georgia Institute of Technology, a Postdoctoral Fellow at the
Naval Research Laboratory, and a Design Engineer at Skyworks Solutions
Inc. Her research interests include electromagnetic, wireless communica-
tions, signal processing, and computer engineering. She was a recipient
of the 2017 NSF CAREER Award, the 2012 Neal Shepherd Memorial
Best Propagation Paper Award, the Best Student Paper Award at the IEEE
International Conference on Communications and Electronics 2014, the Best
Paper Award at the International Conference on Telecommunications 2008,
the Best Student Paper Award at the 2007 Wireless Communications and
Networking Conference, and the Dan Noble Fellowship in 2004, which was
awarded by Motorola Inc. and the IEEE Vehicular Technology Society for
quality impact in the area of vehicular technology. She is currently the Editor
of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.

VOLUME 10, 2022 106945


