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ABSTRACT This paper introduces amachine learning based copy-move forgery (CMF) localizationmethod.
The basic convolutional neural network cannot be applied to CMF detection because CMF frequently
involves rotation transformation. Therefore, we propose a rotation-invariant feature based on the root-mean
squared energy using high-frequency wavelet coefficients. Instead of using three color image channels, two-
scale energy features and low-frequency subband image are fed into the conventional VGG16 network.
A correlation module is used by employing small feature patches generated by the VGG16 network to obtain
the possible copied and moved patch pairs. The all-to-all similarity score is computed using the correlation
module. To generate the final binary localization map, a simplified mask decoder module is introduced,
which is composed of two simple bilinear upsampling and two batch-normalized-inception-based mask
deconvolution followed by bilinear upsampling. We perform experiments on four test datasets and compare
the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the
proposed scheme outperforms the existing approaches.

INDEX TERMS Copy-move forgery, copy-move forgery localization, convolutional neural network,
rotation-invariant, stationary wavelet transform, root-mean squared energy, simplifiedmask decodermodule.

I. INTRODUCTION
Images are often used as important evidence to clarify events.
However, the development of various image editing tools has
allowed some persons to easily manipulate images. Further-
more, the use of manipulated images for malicious purposes
can cause negative effects on human society. The authenticity
of an image can become suspicious, thus, the determination
of the authenticity of an image has emerged as an important
issue. Because human eyes cannot easily detect forged image,
we need to develop reliable image forgery detection methods.
Extensive studies have been conducted on the detection of
various image forgeries [1], [2], [3], [4].

A commonly used image tampering method is the
copy-move forgery (CMF) inwhich part of an image is copied
from one section of the image and is pasted elsewhere in the
same image. An image can be forged to conceal or change its
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FIGURE 1. Typical example of a copy-move forgery.

meaning using the copy-move process. Therefore, verifying
the reliability of the image and localizing the copied and
moved areas are important. Fig. 1 shows a typical exam-
ple of CMF where determining the CMF using naked eyes
is difficult. Therefore, the development of a reliable CMF
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detection (CMFD) method has become an important issue.
In general, the copied part of the image is usually scaled
or rotated before move process. Therefore, visual inspection
alone cannot readily verify the authenticity of the image.
The aim of CMFD is to accurately detect or localize the
copy-moved area even if various operations, including scale
and rotation, are applied before the image is manipulated.

The CMFD method is roughly classified into three cate-
gories: block-based, keypoint-based, and machine learning-
based approaches. In the block-based approach, various
block division and segmentation algorithms are used, fol-
lowed by scale- and rotation-invariant feature extraction.
Finally, matching is performed to find the copied and moved
regions. Keypoint-based CMFD algorithms have attracted a
much attention in recent years. Scale invariant feature trans-
form (SIFT) is one of the most frequently used keypoint
extraction methods for CMFD. Recently, a wide range of
machine learning-based CMFD scheme has been introduced,
which demonstrated promising detection results. In partic-
ular, the convolutional neural network (CNN) is drawing
a lot of attention to CMFD. Because CNN shows good
performance in the field of object detection, it is suitable
for CMFD to find copied-moved objects. More detailed
CMFD methods are reviewed and presented in the next
section.

CMF frequently involves scale and rotation transforma-
tion. However, the basic CNN is not suitable for CMFD
because it is not known to be invariant to rotation [5]. To over-
come the shortcomings of the non-rotation-invariant property,
most of the previous CNN-basedCMFD studies focus only on
structural changes to increase the accuracy of detection. The
present study introduces a novel CMFD scheme using CNN
and a wavelet domain energy feature. To provide a rotation-
invariant property to the conventional CNN, the present work
uses the energy feature of high-frequency wavelet coeffi-
cients. The proposed rotation-invariant feature can improve
the detection performance for CMF images with rotational
transformation and resizing.

The proposed CMFD network comprises four modules:
rotation-invariant feature module based on the stationary
wavelet transform (SWT), feature extraction module using
CNN, correlation module to check similarity, and mask
decoder module to generate a binary detection map for
CMFD. The proposed network is robust to scale and rotation
in CMFD using low-frequency and high-frequency channels
in the wavelet domain instead of RGB channels as CNN
input. The simulation results show that the proposed method
generates superior copy-move localization results compared
with the existing methods.

The remainder of this paper is organized as fol-
lows. Related works are briefly reviewed in Section II.
The proposed CMFD network is presented in Section III.
In Section IV, the performance of the proposed method is
compared with that of existing methods using the experimen-
tal results. Section V provides the conclusion.

II. RELATED WORKS
A. BLOCK-BASED METHOD
The block-based CMFD methods mainly involve four steps:
dividing a suspicious image into blocks, extracting fea-
tures, matching features in the divided blocks, and local-
izing the forged regions. In the first step, various block
division and segmentation methods can be used in prepro-
cessing. An image can be divided into overlapping square
blocks [6], [7], non-overlapping square blocks [8], or circular
blocks [9], [10]. Image segmentation techniques [11], [12]
are usually included in this step to separate the copied source
region from the pasted target region.

Feature extraction is the main step in block-based CMFD
algorithms. The extracted features must be invariant against
scale and rotation, and must be robust against blurring,
sharpening, background adjustment, compression, and noise
addition when subjected to postprocessing steps. Transform-
based methods are frequently used to remove information
that is unnecessary for detection. A variety of transform
methods, such as the polar cosine transform [13], Fourier-
Mellin transform [14], and polar complex exponential trans-
form [15] have been used for forgery detection together
with the popular Fourier, discrete cosine [16], and various
wavelet [17], [18] transforms. In addition to these transforms,
histogram-based techniques [19] and statistical moment-
based methods [20], [21] have also been introduced.

Feature matching determines a candidate pair of the orig-
inal part and the corresponding copied-moved part using the
extracted features. This step employs searching and similar-
ity measurement techniques. The searching methods involve
various sorting [18], [22] and hashing processes [12]. These
algorithms usually involve the use of dimension reduction
techniques. During the searching process, the matchingmeth-
ods search for possible matches to evaluate the similarity
among the selected possible matches. The Euclidean dis-
tance is the most popular and simple similarity metric that
is employed. Additionally, the Manhattan and Hamming dis-
tances between two features have also been employed to
determine similarity.

The final step in the CMFD process is localization. The
detection output can be visualized as a binary image that
illustrates the detected copied-moved regions and their cor-
responding authentic image parts in the target image.

Most block-based methods suffer from high computational
complexity because of a large number of features and lack
robustness to geometric transformation attacks. Moreover,
they are not invariant to various manipulations such as flip-
ping, shift and blur.

B. KEYPOINT-BASED METHOD
Keypoint-based approaches for CMFD have been actively
investigated. SIFT is the most frequently used key-
point extraction method. Because SIFT is robust against
scaling, rotation, and occlusion, it is well suited for
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FIGURE 2. Architecture of the proposed CMFD network.

CMFD [23], [24], [25], [26]. First, SIFT generates both
scale- and rotation-invariant keypoints, which are extracted
at different scales using a scale-space representation by an
image pyramid. Next, an orientation is assigned to each
keypoint to achieve invariance in the image rotation. Finally,
each keypoint is commonly represented by a 128-dimensional
descriptor.

In the matching process, the keypoint descriptor of a pixel
is compared with all other descriptors other than that pixel.
However, false matching almost always occurs after com-
pletion of the matching process. Therefore, a wide range
of methods have been proposed to eliminate false matches.
Mismatched keypoint pairs are eliminated using various clus-
tering algorithms, such as J-linage [27], distance-based [28],
and hierarchical [29] clustering. The random sample consen-
sus algorithm [23] is the most frequently used algorithm to
eliminate false matches alone or together with other false
matching removal methods.

The performance of SIFT-based algorithms can be
degraded when the CMF implementation involves small or
smooth regions [25], [26]. Additionally, when a keypoint is
present close to the boundary of the copied-moved portion
and authentic region, or if an image is compressed after CMF,
the keypoint descriptor of the copied portion is different from
that of the moved portion because the conventional SIFT
descriptor generation method only provides local information
about a single keypoint. Therefore, the SIFT-based methods
cannot obtain global information around the keypoint. Thus,
coping with pixel changes, such as compression or differ-
ences in the background area due to the copy-move process
can be difficult.

C. MACHINE LEARNING-BASED METHOD
Recently, machine learning has achieved breakthrough per-
formance in image processing and computer vision tasks.
Machine learning-based CMFD approaches have also been
actively investigated.

In 2017, Bunk et al. [30] introduced a manipulated image
detection and localization method using both CNN and long
short-term memory-based network. This method used CNN
as a patch classifier. Liu et al. [31] proposed the utilization of
CNN to perform CMFD. A segmentation-based keypoint dis-
tribution strategywas proposed to generate homogeneous dis-
tributed keypoints and an adaptive oversegmentation method
was adopted in their approach. This method slightly improves
detection performance, however, it requires a high computa-
tional cost.

Wu et al. [32] proposed a dual-branch CNN scheme
(BusterNet) that included Simi-Det and Mani-Det. The Simi-
Det branch was designed for similarity detection, and the
Mani-Det branch was employed for manipulation detection.
After the two branches were implemented, both features
were integrated to predict the pixel-level three-class results
that contained the untampered, tampered, and untampered
background regions. Each branch used VGG16 [33] in the
feature extraction, and a mask decoder module based on
BN-Inception [34]. However, when each BusterNet branch
failed to accurately locate the regions, BusterNet could not
distinguish between the source and target regions.

Zhong et al. [35] proposed a CMFD scheme using Dense-
InceptionNet, which was an end-to-end, multidimensional
dense-feature connection network. Dense-InceptionNet con-
sisted of pyramid feature extractor, feature correlation match-
ing, and hierarchical postprocessing modules. The detection
accuracy of this network can be improved using multiple
modules that perform similar roles. However, the number of
training parameters may increase rapidly.

Zhu et al. [36] proposed an adaptive attention and resid-
ual refinement network for CMFD. They used position and
channel attention features together with an adaptive atten-
tion mechanism to fully capture the context information,
and adopted deep matching to compute the self-correlation
among feature maps. The atrous spatial pyramid pooling was
used to fuse the scaled correlation maps to generate a coarse
mask. Finally, the coarse mask was optimized using the
residual refinement module, which retained the structure of
the object boundaries. They demonstrated that the proposed
network exhibited strong robustness against noise, blur, and
JPEG recompression during the postprocessing operations.
However, the computational cost is high.

Chen et al. [37] have recently introduced a serial CMF
localization scheme to serialize the similarity and manipula-
tion detection branches. They used atrous convolution [38]
in the final convolution layer of VGG16 and the double-
level self-correlation in the correlation module for hierar-
chical feature comparisons. In this network, atrous spatial
pyramid pooling and attention mechanism were proposed to
capture the multiscale features. Finally, image-level network
was employed to directly determine the regions obtained
from the similarity detection branch whether tampered or
untampered. The experimental results showed that this algo-
rithm achieved superior performance over BusterNet. How-
ever, the performance of this algorithm remains to be
improved.
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Barni et al. [39] proposed a copy move source-target dis-
ambiguation method to identify the source and target regions
of a copy-move forgery. They designed a multi-branch CNN
architecture that solves the hypothesis testing problem by
learning a set of features capable to reveal the presence of
interpolation artefacts and boundary inconsistencies in the
copy-moved area. The purpose of this network is to dis-
tinguish between target and source regions, not to find the
copy-move regions through the original image and ground
truth. Therefore, if only the input image is given without
ground truth, the detection performance may be decreased.

Liu et al. [40] proposed a two-stage framework for copy-
move forgery detection. The first stage is a backbone self-
deephave matching network to enrich spatial information and
leverage hierarchical features, and the second stage is Pro-
posal SuperGlue to remove false-alarmed regions and remedy
incomplete regions. However, post-processing has significant
impact on forgery detection performance.

III. PROPOSED NETWORK
The proposed network for CMFD comprises four modules:
rotation-invariant feature, feature extraction, correlation, and
mask decoder modules. The architecture of the proposed
network is shown in Fig. 2.

In the rotation-invariant module, the root-mean squared
energy using high-frequency wavelet coefficients are used to
provide rotation invariant features to the feature extraction
module. In the proposed network, VGG16 [33] is used for
the feature extraction module. VGG16 can extract image
information of various scales by applying the 3 × 3 fil-
ter several times to provide different filter effects. There-
fore, VGG16 is frequently applied to machine learning-based
CMFD networks that must be robust to scale transforma-
tion. We exploit the correlation module used in Wu et al.’
work [32] to check similarity of features generated by the fea-
ture extractionmodule. Finally, we propose a simplifiedmask
decoder module to eliminate incorrectly detected regions.
The details of each module are be described in the next
sections.

A. ROTATION-INVARIANT MODULE
Conventional CNN can obtain the scale-invariant charac-
teristics by viewing images on various scales because the
convolution operation is performed using filters with var-
ious sizes. However, rotation-invariance cannot be derived
from the basic CNN structure. To address this problem,
various attempts have been made to create CNN rotation-
invariance [41], [42]. A copied part of an image is frequently
scaled or rotated before the move operation in the CMF
process. Therefore, rotation-invariance is essential in CMFD.
In this paper, we employ the wavelet transform to provide
rotation-invariance to CNN.

For given low-frequency subband image Wi,l at scale i,
we perform SWT as follows.

Wi+1,o = SWT(Wi,l), (1)

FIGURE 3. Sample copied-moved image and rotated images at various
rotation angles.

where SWT(z) is the undecimated wavelet transform of sub-
band z, i (∈0,1,2, · · · ) is the scale of the wavelet subband, and
o (∈ l, h, v, d) is the subband direction. h, v, and d present
high-frequency subbands with horizontal, vertical, and diag-
onal directions, respectively. The suspicious input image is
represented byW0,l . Scale i increases by one from zero each
time the transform processes, which results in four lower res-
olution low-frequency and high-frequency subbands. In this
paper, W1,l is selected as a feature that represents the input
of the feature extraction module. BecauseW1,l is a low-pass
version of the image, it can remove small noise in the image.

Even if a rotation operation is applied to an object in
the image, we assume that the high-frequency energy does
not change. According to this assumption, we propose a
high-frequency energy feature to generate rotation-invariant
feature. Let Wi,o(x, y) be the wavelet coefficient at spatial
location (x, y). The root-mean squared energy is expressed
as follows.

Ei(x, y) =

√
W 2
i,h(x, y)+W

2
i,v(x, y)+W

2
i,d (x, y)

3
, (2)

where Ei(x, y) is the root-mean squared energy with scale i
and location (x, y). In this paper, a bold symbol is used for an
image, and an italic symbol with spatial location is used for a
single pixel value or a wavelet coefficient.

To verify the effectiveness of the proposed energy feature,
we define average energy ratio ri(θ ) as

ri(θ ) =

∑
all(x,y)

Ei,θ (x, y)∑
all(x,y)

Ei(x, y)
, (3)

where Ei,θ (x, y) is the root-mean squared energy of the image
with the objects rotated by θ . Fig. 3 shows a sample copy-
move forged image and its rotated versions at various rotation
angles. As shown in Fig. 3, an object is rotated at 15 different
angles. Table 1 lists the r1(θ ) and r2(θ ) values, which indicate
that all values of r1(θ ) and r2(θ ) are very close to one. This
result indicates that the proposed root-mean squared energy
value is almost maintained even when the object is rotated.
In conclusion, Ei(x, y) can be used as an input with rotation-
invariant characteristics before being trained in the feature
extraction module composed of CNNs.
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FIGURE 4. Overview of the proposed rotation-invariant module based on
SWT.

Fig. 4 shows an overview of the proposed rotation-invariant
module based on SWT. Before the rotation-invariant feature
is extracted, all images are resized to 256× 256 sized image.
The filter kernel of SWT is the simplest Haar kernel, and the
decomposition level of the wavelet transform is two. Instead
of using RGB image channels, W1,l , E1, and E2 are used as
input to the next CNN module in this paper.

TABLE 1. r1(θ) and r2(θ) values at various rotation angles of the sample
images shown in Fig. 3.

B. FEATURE EXTRACTION MODULE BASED ON VGG16
VGG16 [33] has been successfully applied as a feature
extractor in visual object classification, recognition andmany
other fields. BusterNet [32] uses VGG16 for CMF local-
ization, and a serialized CMFD network [37] uses modified
VGG16, which replaces the last convolution layer to atrous

FIGURE 5. Basic VGG16 network as feature extraction module.

convolution [38]. Atrous convolution is used to enlarge the
field-of views of filters. However, because these two net-
works do not consider the rotation-invariant feature, the local-
ization performance is reduced for copied-moved images
with rotations.

The proposed wavelet-based input contains rotation-
invariance and a large field-of view. Hence, the basic VGG16
structure is sufficient to extract features for CMFD. VGG16
that is used in this paper contains four standard convolution
groups as shown in Fig. 5. The kernel size of all standard
convolution layers is 3×3. The numbers of kernels in the four
groups are 64, 128, 256, and 512. Each standard convolution
possesses a ReLU activation function, and each group is
followed by a max-pooling layer.

C. CORRELATION MODULE
The feature extraction module based on VGG16 generates
16 × 16 feature patches that amount to 512. To obtain the
potential copied and moved patch pairs, the all-to-all feature
similarity score is computed using the correlation module.
The correlation module comprises self-correlation, percentile
pooling, and batch normalization blocks. Fig. 6 presents the
three blocks of the correlation module. This correlation mod-
ule type is used in BusterNet [32]. The network of Chen et
al. [37] modified the correlation module by adding a channel
attention module.

For two given patches, the Pearson correlation coeffi-
cient, which quantifies the feature similarity, is used in
the self-correlation block. The self-correlation block outputs
256 patches with a size of 16 × 16 because this block
matches the two similar patches with the correlation coeffi-
cient. A larger correlation coefficient indicates a more similar
pair of patches. The percentile pooling block sorts the simi-
larity score in a descending order. The sorted similarity score
contains sufficient information to determine what feature is
matched in the next stage. Before moving on to the next
module, batch normalization is performed in the batch nor-
malization block. The self-correlation and percentile pooling
blocks contain no trainable parameters.

D. MASK DECODER MODULE
The correlation module generates a 16 × 16 feature block
whose resolution is lower than that of the input image.
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FIGURE 6. Architecture of correlation module.

Therefore, a decoding process that applies deconvolution to
restore the original resolution is needed. In BusterNet, the
BN-Inception-based mask deconvolution module, which is
followed by bilinear upsampling [34], is used. Because the
output resolution of the correlation module is 16 × 16, four
successive BN-Inception and bilinear upsampling blocks are
required. To develop a pixel-level localization map, a single
standard convolution layer followed by a sigmoid activation
function is used.

Fig. 7(a) shows the mask decoder module used in Buster-
Net. The BN-Inception block consists of three convolution
layers with s1, s2, and s3/n, where s1, s2, and s3 denote the ker-
nel sizes, and n denotes the number of filters. In the BusterNet
mask decoder module, the parametric BN-Inception block is
used. In this paper, we use a simplified mask decoder module
by removing the BN-Inception blocks in small-sized data.
In the proposed network, two BN-Inception blocks of 16×16
and 32× 32 patches are removed as shown in Fig. 7(b). Only
two successive bilinear upsampling blocks are used to obtain
a 64× 64 patch.

To investigate the effect of the simplified mask decoder
module, we compare the detection performance of the pro-
posed network applying the mask decoder module used in
BusterNet and the simplified module. Fig. 8 shows the com-
parison between the conventional and proposed simplified
mask decoders. As shown in Figure 8, the small spots are
eliminated with the use of the simplified mask decoder.
However, the copied and moved regions are also reduced.
The simplified mask decoder not only eliminates incorrectly
detected regions, but also reduces the properly identified
regions. The localization performance can be improved using
the simplified mask decoder module.

E. SUMMARY OF PROPOSED NETWORK
A given color image is converted into a grayscale image.
Next, two-level SWT is performed on this image. At each
level, the root-mean squared energy is calculated using (3).
In addition to the low-frequency image in the first level, two
root-mean squared energy sources are fed into the feature
extraction module, which is composed of four convolution
groups. The output of each standard convolution layer passes
through ReLU followed by a max-pooling layer. The output
features of the VGG16 network are input to the correla-
tion module. After self-correlation and percentile pooling,

FIGURE 7. (a) Mask decoder module used in BusterNet, (b) simplified
mask decoder module in the proposed network.

FIGURE 8. Comparison between mask decoder used in BusterNet and
simplified mask decoder.

similar features are matched and normalized. In the mask
decoder module, simple bilinear upsampling is performed
twice, and the combination of upsampling and BN-Inception
is followed by upsampling block. Finally, the upsampled
256 × 256 feature block passes through the BN-Inception
net once more. The kernel sizes of the first BN-Inception
net are 1 × 1, 3 × 3, and 5 × 5, and the next kernel sizes
of the second BN-Inception net are 5 × 5, 7 × 7, and
11× 11. The detection map is obtained by passing through
the 1×1 convolution layer followed by the sigmoid activation
function.

In our network, the binary cross-entropy loss [41] is used
as follows.

L = −
1
m

m∑
i=1

[
yti log(yi)+ (1− yti ) log(1− yi)

]
, (4)

where L denotes the loss function,m is the number of training
images, yti is the truemap of the i-th image, and yi is the output
of the network of the i-th image.
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IV. EXPERIMENTAL RESULTS
A. DATASETS
In our experiment, we use four public datasets with ground
truths, namely, CoMoFoD [44], MICC-F2000 [24], D [45],
and COVERAGE [46]. The detailed information of these
four datasets is listed in Table 2. Every tampered image has
a corresponding ground truth. All images are divided into
three categories, namely, training, validation, and test, at a
ratio of 7:1.5:1.5, respectively. For reliable experimentation
of the limited number of data, cross-validation is performed
10 times at random, and the final result is averaged and
evaluated.

TABLE 2. Detailed information of four datasets.

B. IMPLEMENTATION DETAILS
The proposed network is implemented using Keras in both
training and testing. The Keras default function is used to
initialize the parameters of all layers. We use the Adam
optimizer with a learning rate of 0.01 and the binary cross-
entropy loss function. The epoch and mini-batch sizes are set
to 250 and 30, respectively. The detection algorithm is imple-
mented on a 12-GB GeForce RTX 3080 Ti, Intel i7-11700K
CPU @ 3.70 GHz with 64-GB RAM.

C. PERFORMANCE EVALUATION MEASURES
To evaluate the performance of the proposed method, we first
define three measures at the pixel level. Let TP, FP, and FN
be the numbers of correctly detected, erroneously detected as
forged, and falsely missed forged pixels, respectively. Preci-
sion denotes the probability that a detected forgery is truly
forged. It is expressed as

Precision =
TP

TP + FP
. (5)

Recall denotes the probability that a forgery is detected,
which is expressed as

Recall =
TP

TP + FN
. (6)

The overall detection performance, namely, F-measure is
defined by the harmonic mean of Precision and Recall as
follows.

F = 2
Precision · Recall
Precision+ Recall

. (7)

D. SIMULAITON RESULTS
To evaluate the performance of the proposed CMFD network,
three SIFT-based algorithms are compared: SIFT and feature
matching (SIFT+ FM) [23], SIFT and adaptive segmentation

(SIFT+ Seg) [47], and SIFT and reduced local binary pattern
(SIFT + RLBP) [26]. Further, two machine learning-based
networks are selected for comparison with the proposed net-
work: BusterNet [32] and the serialized network (SeNet) [37].
The codes for the compared CMFDmethods are downloaded
from their respective project sites.

1) RUNNING TIME
To compare the computational costs, we measured the execu-
tion times for all CMFD methods and the number of parame-
ters for CNN-based methods. The comparison methods were
implemented in the same environment. The execution time
was averaged over 20 operations.

Table 3 shows the execution times for test process and the
number of parameters of CNN-based methods. As shown in
Table 3, the proposed network achieves the fastest average
testing time, and SeNet has the second-fastest testing times.
Three SIFT-based methods have high computational costs.
The number of parameters of the proposed network, Buster-
Net, and SeNet are 7,691,569, 9,709,277, and 15,526,813,
respectively. In conclusion, it can be seen that the proposed
CMFD network can be performed at high speed with a rela-
tively small number of parameters.

TABLE 3. Comparison of the computational performance.

2) DETECTION RESULTS
In this work, we divide the test images into two groups of
forged images with and without a rotation attack to evaluate
the effect of the proposed rotation-invariant wavelet energy
feature. Evaluation of this classified image can provide a
criterion for evaluating the performance of existing methods
against a rotational attack.

TABLE 4. Comparison of the detection performance of the test image
without rotation attack according to the pixel-level Precision, Recall, and
F measures.

Table 4 lists the three evaluation measures for forged
images without a rotation attack. As shown in Table 4, the
proposed method achieves the best performance. The SIFT-
based algorithms, such as SIFT + FM and SIFT + Seg,
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FIGURE 9. Comparison of the forgery detection results and their corresponding F -measure values for the test images without a rotation
attack.

largely differ in terms of the Precision and Recall values.
The value of the Precision is large, while that of Recall is
very low because the forged region is found to be excessive in
these two methods. On the other hand, the recently reported
SIFT + RLBP method demonstrates a balance between the
Precision and Recall values, and has a second highest F
value. BusterNet and SeNet realize F values of 0.482 and
0.535, respectively, and obtain relatively balanced Precision
and Recall values.
Fig. 9 presents the comparison of the forgery detection

results of selected test images without a rotation attack.
As shown in Fig. 9, the SIFT-based CMFD methods often
fail to detect the forged regions. In contrast, the machine

learning-based methods, including the proposed method,
identify even some of the copied or moved areas. The pro-
posed network detects both copied and moved regions with
few failures.

Table 5 lists the three evaluation measures for copied-
moved images with a rotation attack. In general, the CMFD
performance is degraded when a rotation attack is applied
during the move process. As shown in Table 5, the F value
of all methods is reduced compared to that when no rotation
attack occurs, as listed in Table 4. BusterNet and SeNet
reduce the F value from 0.482 and 0.535 to 0.367 and 0.375,
respectively, for respective rates of 23.86% and 29.91%. The
proposed method only reduces the F value by approximately
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FIGURE 10. Comparison of the forgery detection results and their corresponding F -measure values of the test images with a rotation attack.

1% from 0.905 to 0.896. Because the proposed CMFD
network uses a rotation-invariant wavelet energy feature, sim-
ilar detection performance can be achieved with or without
rotation attacks.

TABLE 5. Comparison of the detection performance on the test image
with a rotation attack according to the pixel-level Precision, Recall, and F
measures.

Fig. 10 shows the comparison of the forgery detec-
tion results of selected test images with a rotation attack.
As shown in Fig. 10, the proposed method adequately detects
the forged regions despite the small errors, whereas other
methods fail to localize the forged regions most of the time.

Table 6 shows the evaluation measures of all test images
including scale, rotation, and various attacks. The pro-
posed method exhibits the highest performance, followed by
SIFT + RLBP, BusterNet, and SeNet on that order. Because
the machine learning-based BusterNet and SeNet methods
do not consider rotation-invariance, a large difference in the
performance appears when no rotation attack occurs.

In our proposed network, a simplified mask decoder
module is introduced to eliminate erroneous small spots.
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FIGURE 11. Failure cases and their corresponding F -measure values.

TABLE 6. Comparison of the detection performance on the total test
image according to the pixel-level Precision, Recall, and F measures.

Table 7 lists a summary of the effect of using the sim-
plified mask decoder module. As previously explained, the
simplified mask decoder not only eliminates the incorrectly
detected regions (increases Precision), but also reduces the

properly identified regions (decreases Recall). However, the
overall localization performance, which is represented by
the F measure, can be improved using the simplified mask
decoder module.

TABLE 7. Comparison of the detection performance between the
conventional and simplified mask decoder modules.

Fig. 11 shows examples of detection failure, which is
defined as a case where the F measure is less than 0.5.
As shown in Fig. 11, a failure case can occur when the
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manipulated region is very small or the scale difference
between the copied and moved regions is large. Therefore,
we believe that a future CMFD network should be designed
to achieve high detection performance when very small areas
are manipulated or even when a large difference in the size of
the copied and moved regions exists.

3) ABLATION STUDY
The proposed network comprises rotation-invariant feature,
feature extraction, correlation, and mask decoder modules.
Three modules except the rotation-invariant feature module
are simple and essential elements. Therefore, an ablation
study was performed on the rotation-invariant feature module
in this experiment.

TABLE 8. Detection performance according to various combinations of
rotation-invariant features.

Table 8 shows the detection performance according to
various combination of rotation-invariant features. As shown
in Table 8, when only Wi,1 that is the blurred version of the
input image, the lowest F value is achieved. If only two levels
energy features, E1 and E2 are used, the F value is expressed
as 0.813. The best detection performance is achieved when
using Wi,1, E1 and E2, together. From the results of the
ablation study in Table 8, we can notice that the proposed
rotation-invariant wavelet energy feature makes an important
contribution to the CMFD performance.

4) DETECTION RESULTS FOR SYNTHETIC DATASET
The BusterNet and SeNet used synthetic 100,000 samples
for training. However, two machine learning-based networks,
only provide test codes in their respective project sites.
Because machine learning model largely depends on training
data, the performance of the proposed network using training
data and test data in the same pool is superior compared to
other networks. For a fairer comparison, we created 100,000
synthetic image pairs, similar to the methods of BusterNet
and SeNet. All synthetic image pairs are divided into three
categories, namely, training, validation, and test, at a ratio of
7:1.5:1.5, respectively.

Table 9 lists the evaluation measures for synthetic images.
As shown in Table 9, the F values of SIFT-based methods
decrease, while the F values of BusterNet and SeNet are slight
increase. The F value of the proposed method decreases from
0.902 to 0.648. The results shown in Tables 6 and 9 show
the data dependence of machine learning-based approaches.
However, the performance of the proposed method is still the
best for 100,000 synthetic samples.

TABLE 9. Comparison of the detection performance on the synthetic test
images according to the pixel-level Precision, Recall, and F measures.

5) LIMITATIONS
Machine learning-based CMFD approaches demonstrate
promising detection results. However, because there are
no standard training and test datasets for comparison,
accurate detection performance comparison between var-
ious methods is difficult. In addition, the detection
performance for a large synthetic dataset is still low.
Therefore, machine learning-based CMFD is challenging
work, and a more dedicated and well-structured network is
required.

V. CONCLUSION
This paper proposed a novel copy-move detection network
using CNN. We developed four blocks to localize the copy-
move regions. A wavelet-based rotation-invariant module
that used the root-mean squared energy in the high-frequency
stationary wavelet subbands was proposed. This root-mean
squared energy achieved a robust performance against rota-
tion attacks. The conventional VGG16 structure was used as
the main feature extraction module. The correlation module
was adopted to generate potential copied and moved patch
pairs, and the feature similarity scorewas computed using this
module. Finally, we introduced the simplified mask decoder
module to reduce the reinforcement of erroneous small spots
using bilinear interpolation. The proposed method was com-
pared with existing CMF localization algorithms. The simu-
lation results demonstrated the proposed network had almost
no difference in F values between the forged image with
rotation and the tampered image with scaling, whereas the
existing CNN-based methods showed a difference of more
than 10%. For synthetic dataset, the proposed method out-
performed state-of-the-art approaches by 12% in terms of the
F measure.
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