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ABSTRACT Recently, air pollution has grown significantly, and it can frequently be challenging to identify
the sources of contaminants. This article studies the deployment of multi-cooperative unmanned aerial
vehicles (UAVs) to look for sources of pollution in an unknown region. Specifically, a probabilistic search
strategy based on the Local Particle Swarm Optimization (LoPSO) method is suggested to design an optimal
strategy that enhances the cooperative search of drones while cutting down on overall search time and
improving source detection efficiency. The entire strategy is divided into two phases: exploration and
exploitation. In the first phase, the detection and tracing of the plume is the favored task, in which each UAV
operates in either the Greedy or LoPSO mode and chooses its path based on plane coordinates generated
according to the active mode. By utilizing the areas with a high probability of discovering the source on
flight mode LoPSO, the search is focused during the exploitation phase on the precise search of the exact
location of the pollutant source. This is done under the direction of a probabilistic computation that uses
the Bayesian process model to create and update the probability map of the pollutant source location as
new sensor data becomes available. The simulation data of the proposed technique demonstrates promising
results in terms of the complexity and accuracy attained in identifying pollution sources.

INDEX TERMS Cooperative search, decision making, greedy, particle swarm optimization, pollution
source, unmanned aerial vehicle.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) employment in the mili-
tary and civilian sectors has risen in importance as modern
science and technology have evolved. In particular, there are
numerous areas where they may be beneficial for completing
complicated or dangerous tasks [1], [2]. Equipped with on-
board sensors, they can be used for environmental moni-
toring, including smokestacks, land and industrial vehicles,
search and rescue operations for natural or man-made dis-
asters, and exploration of urban or natural areas. In recent
years, researchers have been drawn to drones because of their
simplicity, adaptability, and agility. However, if future tasks
becomemore complex, a singleUAV systemwill have its own
limitations and may not be able to meet the demands of many
areas. Due to their great self-organization and their scalabil-
ity, swarm drone systems have aroused interest, especially
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the control cooperation, which has become one of the most
interesting themes and the most important topics in the UAV
applications field.

Research work in the area of multi-UAV cooperation is of
the utmost importance, especially in the area of air pollution
monitoring, which is one of the most serious threats to human
health, representing one in nine deaths worldwide [3]. Some
of the current and long-term health problems are associated
with ambient air pollution include breathing issues, cardio-
vascular illness, and lung cancer [4], [5]. which has led to the
development of tools and technology that enable environmen-
tal monitoring. In this context, UAVs appear to be one of the
most revolutionary solutions to address the pollution issue in
this area.

Indeed, air pollution monitoring applications using
unmanned aerial vehicles (UAVs) [6], [7] demonstrate signif-
icant advantages over traditional approaches such as field sta-
tions or satellite imagery: high precision, low cost, security,
adaptability, multi-function, and ease of implementation [8].
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Thus, when it comes to air pollution monitoring, locating the
source of the pollution in a timely and efficient manner is
critical. This is especially can be crucial in situations when
the fast detection of these sources might avert severe catastro-
phes, like the release of gas substances as a result of industrial
disasters. Tracking and monitoring such changing polluted
areas is difficult using traditional monitoring approaches.
Multiple intelligent monitoring UAVs in autonomous sensing
provide novel monitoring options. The challenge of pollution
source detection using UAVs is divided into two phases [9],
namely (i) location of the air pollution plume, and (ii)
pollutant plume tracking to the source.

A. RELATED WORK
The use of robotic technology to locate polluting sources has
advanced quickly in recent years. The proposed algorithms
may be generally classified into three groups based on the
various studies: (i) an engineering strategy algorithm, (ii) bio-
inspired algorithm, and (iii) swarm intelligence optimization
algorithm based on multi-agent reinforcement learning.

For instance, the authors of [10] and [11] sample the
search region with various mobile robots. The movement of
each robot is controlled by global optimization algorithms.
In particular, [10] describes a leading-follower approach for
guiding mobile robots utilizing a particle swarm optimization
(PSO) algorithm. Each robot is viewed as a swarm particle,
and the movement is guided by the Schrödinger equation.
The swarm’s leader is determined by the global ideal posi-
tion. By measuring and navigating in the leader’s favored
direction, the followers help the leader. The research studies
in [12] and [13] concentrate on minimizing the time it takes
to complete a task and information sharing among individual
robotic agents.

In [14], two experiments were developed: one that takes
airflow information into account, and the other that does
not. With displacement or mixing ventilation, the airflow is
altered. A swarm of six terrestrial robots is steered through
three steps for each experiment: detecting the plume using
a random divergence technique, monitoring the plume using
a basic and an improved version of the whale optimization
algorithm (WOA), and locating the pollutant source.

Recent literature has described some studies that employed
UAVs to identify pollution sources. Reference [15] proposes
an algorithm for pollutant concentration monitoring in partic-
ular places using the meta-heuristic chemotaxis approach and
particle swarm intelligence (SI). To undertake a coordinated
scan of the search area, the four UAV agents used in [12] share
their location, velocity, and formation vector. The following
steps are carried out during the exploratory phase: a circular
formation is created around the leader, the swarm is moving
in a logarithmic spiral, and the UAV that reacts to a gas
measurement becomes the leader. If the ith UAV detects a
greater gas concentration than previous readings, that UAV is
selected as the new leader. The studies start with the assump-
tion that gas concentration falls as one gets away from the
source and simulate the plume using a Gaussian model. Three

methods are applied during the exploration phase: Brownian
motion behavior, random walk scanning with possible drone
orientations, and leader-follower. The authors of [16] provide
concepts for UAV formation using a leader-follower tech-
nique, as well as controls for monitoring industrial pollutants,
including tracking oil spills and pollutant particle clouds.

A research presented in [17] presents a system that uses
numerous UAVs to monitor predetermined waypoints to
detect nuclear radiation levels. The detection of radioac-
tive radiation was tested utilizing a cooperative technique
including two UAVs. Using several coordinated quadrotors,
an approach for source localization is examined in [18]. The
cyber and physical components of this technique are the
quadrotor section and the control law section, respectively.
The developed controller uses the flow velocity, gradient,
and divergence of the pollutant concentration at the UAVs’
landing point to determine the direction that the pollution
plume will counter-propagate.

Moreover, due to its efficiency and simplicity, Gradient
descendent (GD)-based method has been widely employed
as a deterministic trainer. In [19] it was combined with a
self-tuning grey wolf optimizer (STGWO) to improve the
learning ability of the mixed multilayer wavelet neural net-
work (MMWNN). Many other gradient-based strategies for
determining a pollutant’s concentration are ‘‘bio-inspired’’,
in that they are based on the pheromone tracking or foraging
behavior of bacteria or insects [20], [21], [22].

Although the aforementioned algorithms have enabled
multi-UAV cooperative search. Likewise, they would still
face a number of difficulties, including a lack of an effective
cooperation structure, good energy management, and most
importantly, a lack of an effective process for the exchange
of environmental information. To remedy the issue, SI-based
algorithms have been rolled out. However, SI a subset of arti-
ficial intelligence, has been widely employed in the literature
due to its ability to generate excellent and computationally
tractable solutions while assuring convergence and robust-
ness [23]. Moreover, the SI makes it possible to investigate
the complex and collective behavior of systems made up of
a large number of tiny components that are capable of local
and remote communication.

Moreover, it has been included in a variety of processes to
tackle difficult real-world issues in both science and indus-
try. In [24], for example, a distributed intelligent resource
scheduling system is presented, allowing each agent launched
on each mobile edge computing server to carry out both
centralized training and decentralized execution. Another
use of SI is described in [25], in which the PSO is used
to solve a resource scheduling problem in UAV-MEC sys-
tems and offers training data for deep neural networks.
Accordingly, cooperation between the UAVs is guaranteed.
Yet, there is still a concern about how well these meth-
ods control their overall energy consumption. In order to
accomplish a search mission in an uncharted area, a swarm
of autonomous drones can be automatically and adaptively
coordinated by putting in place a construction mechanism for
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sub-swarm [26], [27]. This strategy enables independent local
searches while optimizing the usage of the swarm’s overall
energy.

B. CONTRIBUTION
This study presents the outcomes of using an intelligent tech-
nique for detecting an air pollution source in the absence of
favorable environmental conditions. Motivated by the above,
we intend to build cooperative, autonomously piloted drones
that can quickly detect pollution sources. Some considera-
tions were made for simplicity to create a controlled environ-
ment that was comparable enough to real-life events. For this
purpose, it is believed that once the chemical pollutant has
been detected, the UAV sensors will recognize it. Moreover,
this study does not include image processing techniques,
motion control, limited actuator control, or other types of
sensors.

We present a meta-heuristic algorithm titled local PSO
(LoPSO) [27] for enhanced cooperative pollutant source find-
ing by dividing the whole swarm into sub-swarms based
on communication range and combining a gradient-based
approach with a probability-based technique.

The drone swarm system, like the intelligent swarm sys-
tem, is made up of member drones that work together through
multi-sensor information fusion. It is hypothesized that a
pollution source can continually create chemical filaments in
an unknown complicated environment. When a UAV discov-
ers a pollutant, it executes a self-organized task assignment
based on the degree of pollutant detection and announces its
status information to enter the coordinated search state; if the
pollutant is not detected, the member UAV remains in the
roaming state.

The work detailed in reference [28] served as the founda-
tion for the probabilistic component, which use the Bayesian
approach to create and update a probability map of the loca-
tion of the polluting source when new sensor data becomes
available while the drone is flying in the region. To evaluate
the suggested strategy, the polluted area was re-created using
a particle distribution model with turbulence for wind influ-
ences. More specifically, the following summarizes our key
contribution:
• We propose a hybrid technique that relies on training
sub-swarms to communicate various useful information
based on LoPSO with the divide and conquer strategy
using local communication networks.

• We provide an enhancement of the PSO parameters to
enable a quick convergence in order to balance local and
global exploration by the sub-swarm.

• Wepresent a hybrid strategy that combines decentralized
and centralized designs, which often presuppose the
formation of sub-swarms and reduces communication
flows.

• We demonstrate that our proposed approach out-
performs the well-known robust algorithm in order
to better understand performance and computational
complexity.

C. ORGANIZATION OF THE PAPER
The remaining contents of this article are arranged as fol-
lows. The model system is described in Section II, along
with the mathematical model of the algorithm, the simulation
environment, the air pollution distribution model, and the
UAVmodel that was employed. The proposed search method
to address the localization of pollution sources is presented
in Section III. We conduct the simulations experiments in
section IV to validate the suggested search strategy and set
up a comparison analysis. Finally, in section V, conclusions
are drawn.

II. SYSTEM MODEL
As seen in Fig. 1, a rectangular geographical area� is divided
into Nx ×Ny equitable rectangular cells of length hc, defined
by � = {C1, . . . ,CM }, where M = Nx × Ny, with Nx and
Ny denoting the number of rows and columns, respectively.
Therein, Nu UAVs {Uk}16k6Nu are collaboratively deployed
to detect an air pollution source that is considered to be static
and is located in a location that is continuously generating a
polluting gas. The objective is to locate the source, which is
thought to be where the gas concentration is highest. As one
gets further away from the source, the gas concentration often
drops radially.

Furthermore, the UAVs are supposed to proceed unaffected
by wind speeds and fly over the considered area at slightly
different heights to avoid possible collisions. In the follow-
ing, the cell Ci is referenced by its center for brevity, i.e,
{Ci}16i6M , (xi, yi).
Let’s begin by introducing the following functions for the

sake of clarity:
• Bk (n, I ): broadcasting the data I outlined in Table 2,
by either BS if k = 0 or Uk when k ≥1, with n defines
the transmitted data type and I the possible values that
are shown in Table 1.

• Rk (n, I ): receiving the data I of type n from either BS
if k = 0 or Uk when k ≥1. Noted that if a broadcast is
detected, such a function is called.

• GetPolVal(i, t): getting pollution values above a cell Ci.
It returns the value detected by the pollution sensor in
this cell at a given time t .

A. UAV DYNAMIC MODEL
The UAVs are modeled as point masses moving syn-
chronously in discrete timewithminimal turning radius. They
are also assumed to be symmetrical with the same transmit
power and altitude with limited sensor range. They move
unaffected by wind speeds. Moreover, Uk takes decisions by
updating its current location at each t = pτ with p ∈ N,
and either goes to another cell, depending on its own flying
information and that of its neighbors or remains indifferent.
Furthermore, without being aware of the source’s location,
vehicles canmeasure the emission intensity, the decay profile,
or the gas concentration produced by the source at their
current positions. The purpose is to pinpoint the source,
which is expected to be static and located in a large region
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TABLE 1. List of symbols.

FIGURE 1. Illustrative example of cooperative UAVs tracking plume air pollutant.

continually spewing polluting gas where its concentration is
highest.

The polluting gas concentration usually decreases radi-
ally as the distance from the source rises. Unfortunately,
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TABLE 2. Possible values of the data I .

describing the immediate shape of a polluting plume in
a turbulent flow is extremely difficult (if not impossible).
Alternatively, we may utilize the information acquired from
the UAVs to predict the probable locations of the sources
by creating probabilistic models of the spatial and temporal
development of the pollutant plume.

For the purpose of simplicity, we assume that Uk has two
main modes and flies in a certain direction [27]:

i) Greedy mode, wherein the UAV flies toward
cells with the highest pollutant concentration value
at speed V (k)

avg(t);
ii) the LoPSO mode, in which the UAV moves inside a

sub-swarm to confirm, cooperatively, the location of a
pollution source in a reduced search duration at speed
V (k)
min(t) ≤ V (k)(t) ≤ V (k)

max(t).

B. POLLUTANT DISTRIBUTION MODEL
The dispersion of air pollution can be considered as a level
of pollutant concentration in the atmosphere that fluctuates
over time, where the source makes up the maximum of
the dispersion function. By accounting for two phenomena,
the diffusion of pollutants in the atmosphere and the move-
ment of these dispersed concentrations owing to the wind,
an optimization technique may be adopted to follow the pol-
lution plume and determine the maximum of the dispersion
function [29], [30].

The pollutant distribution model utilized throughout this
is based on the particle diffusion method introduced in [30],
which is based on two assumptions: particle number conser-
vation, and the relationship between flux and density. Let
ψ( Eχ, t)

[
kg/m3] denotes the pollutant’s particle density at

time t and position Eχ . The law of mass conservation for
ψ( Eχ, t) can be represented as [31]

∂ψ( Eχ, t)
∂t

+∇ E0( Eχ, t) = fs( Eχ, t), (1)

where E0( Eχ, t) denotes the pollutant flux due to advection and
diffusion, and fs( Eχ, t)

[
kg/m3s

]
refers to the source function.

The diffusive contribution to the flux is caused by turbulent
eddy motion in the atmosphere and is generally assumed to
follow Fick’s law [32]

E0D = −D∇ψ( Eχ, t)), (2)

where D = (Dx ,Dy,Dz) is a diagonal matrix with the eddy
diffusion coefficients usually being functions of the position.
The advection is the effect of wind components, which advect
pollutants downstream in a simple linear flow, is described by
a linear equation [32]

E0A = ψ( Eχ, t) Eω(t), (3)

where Eω(t) = (ωx(t), ωy(t), ωz(t)) is the wind velocity vector.
Adding together the two fluxes and setting E0 = E0A+ E0D, the
pollutant model can be expressed as

∂ψ( Eχ, t)
∂t

+∇.(ψ( Eχ, t) Eω(t)) = ∇(D∇ψ( Eχ, t))+ s( Eχ, t).

(4)

Many boundary conditions can be specified. Nonetheless,
we are interested in solving this equation in the half-space
z ≥ 0 where z = 0 refers to the ground. We also limit
ourselves to short-range pollutant dispersion, such as when
the concentration tends to zero in a distant area. This is in
line with the domain’s contaminant mass conservation. The
ground-level boundary condition is more relevant since this
is where contaminants are deposited. That is,

ωzψ( Eχ, t)− Dz
∂ψ( Eχ, t)
∂z

= 0 at z = 0. (5)

If we set ωz = −ωset as the particle settling velocity and
Wdep as the deposition coefficient, reflecting the impact of
the overall flow of contaminants penetrating the ground, the
Robbin boundary condition is obtained

−ωsetψ( Eχ, t)− Dz
∂ψ( Eχ, t)
∂z

= −Wdepψ( Eχ, t), z 6= 0.

(6)

The solution to this equation is given in [30] as

ψ(x, y, z) =
Q

2wπσyσz
exp

(
−y2

2σ 2
y

)[
exp

(
−(z− H )2

2σ 2
z

)
+ exp

(
−(z+ H )2

2σ 2
z

)]
, z 6= 0, (7)

where Q represents the pollutant release rate, w as the wind
speed, H represents the center-line effective height of the
plume, and σy and σy refer to the standard deviation of the
Gaussian concentration distribution.

C. SOURCE PROBABILITY MAP MODEL
During the UAV navigation, the search is performed using
a finite probability map of the search area [28]. Therein,
meshed indicates the probability of locating the pollution
source in a certain place. This method is predicated on the
drone’s ability to measure or infer the wind speed and pollu-
tant concentration at its current location.

Let X (k)(t)i,j represent the event that the source is located
in the cell Ci at time t when the Uk , which is in another
cell Cj, detects or does not the pollutant at t . Additionally,
a series of pollutant detection or non-detection will take place
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along the UAV path while following a plume. At a given
instant t , Uk through a chemical detector characterized by
imperfect detection accuracy and communication capabili-
ties, scans the cell Cj the observation obtained is binary:
(i) Z (k)

j (t) = 1 indicating the detection of the pollutant in

cell Cj, or (ii) Z
(k)
j (t) = 0 indicating that Uk had not detected

any pollutants when flying over this cell at that time.
Consequently, the creation of the map using the Bayesian

process is described as:

P(k)(t) =
{
P(k)i,j (t), j = 1..M

}
, (8)

where

P(k)i,j (t) = Pr
(
X (k)
i,j (t)|Z

(k)
j (t)

)
. (9)

The immediate structure of a plume in a turbulent flow
is unfortunately exceedingly challenging, if not impossible,
to define. Alternately, we may utilize the data gathered by
the UAV to determine potential source locations by creating
probabilistic descriptions of the spatial and temporal devel-
opment of the pollutant plume.

The same concept utilized in [28] served as the basis for the
plume simulation model that was used for the evaluation of
the algorithms in this paper, whose chemical filament location
is described as

χ̇ (t) = 0(χ (t))+ ζ (t), (10)

where χ (t) = (x(t), y(t)) denotes the chemical filament
location, 0 as the mean flow velocity, and ζ (t) as a random
process assumed to be Gaussian with zero mean and [σ 2

x , σ
2
y ]

variance. Further, σ 2
x and σ 2

y represent the variances from a
Gaussian distribution, which indicate the spread of the plume
in the x and y directions, respectively. Thus,

We can obtain

χ (t) =
∫
t
0(χ (θ ))dθ +

∫
t
ζ (θ )dθ + χs, (11)

with χs denotes the source location.
let’s denote

κ(t) =
∫
t
ζ (θ )dθ, (12)

and

(t) =
∫
t
0(χ(θ ))dθ, (13)

which κ(t) = (κx(t), κy(t)) is a Gaussian noise process
with zero mean and [tσ 2

x , tσ
2
y ] variance, and W(t) =

(wx(t),wy(t)). Substituting (12) and (13) into (11), yields

χ (t) = (t)+ κ(t)+ χs. (14)

The probability density function of κ(t) is given as [28]

Kx(κ(t)) =
exp

(
−
κ2x (t)
2tσ 2x

)
√
2π tσ 2

x

, (15)

and

Ky(κ(t)) =
exp

(
−
κ2y (t)
2tσ 2y

)
√
2π tσ 2

y

, (16)

while κε(t) = ε(t)− εs(t)− wε(t), where ε = x, y.

Let S(k)i,j (t) stand for the probability that a source in Ci
is releasing one chemical filament at time t given that the
chemical is in Cj detected by Uk

S(k)i,j (t) =
∫
x∈Ci

Kx(κ(t))dx ×
∫
y∈Ci

Ky(κ(t))dy

=
1

2π tσxσy

×

∫
x∈Ci

exp
(
−
(x − xi − wx)2

2tσ 2
x

)
dx

×

∫
y∈Ci

exp

(
−
(y− yi − wx)2

2tσ 2
y

)
dy. (17)

This integral can be approximated by multiplying the cen-
ter point value by the cell area due to the small cell size.
Consequently, it will be approximately given as

S(k)i,j (t) ≈
M

2π tσxσy

[
exp

(
−
(xj − xi − ωx(t))2

2tσ 2
x

)

× exp

(
−
(yj − yi − ωy(t))2

2tσ 2
y

)]
, (18)

while M is the number of cells.
Let’s define ρj is the probability of detecting a pol-

lutant in cell Cj when there is a detectable pollutant in
such cell. Therefore, the probability of detecting chemical
released from a source in Ci at time t in cell Cj by Uk is
ρjS

(k)
i,j (t), and the probability of not detecting this chemical is

1− ρjS
(k)
i,j (t). Subsequently, let β

(k)
i,j (t) indicates the probabil-

ity that a sourcewill be present in cellCi at time t−τ given the
presence of detectable chemical in cell Cj at time t , assuming
that the source continually released chemical commencing.
Since it is uncertain that the chemical is in cell Cj, therefore

β
(k)
i,j (t) =

1
2

(
S(k)i,j (t − τ )+ S

(k)
i,j (t)

)
. (19)

the probability of not detecting the chemical in cell Cj at time
t due to the continuous release from a source in cell Ci is

γ
(k)
i,j (t) =

(
1− ρS(k)i,j (t − τ )

) (
1− ρS(k)i,j (t)

)
. (20)

Each UAV has a different probability of identifying a pol-
lutant in a specific cell during every time step. The Bayesian
rule [28] is used to recalculate these probabilities following
each visit of the cells between t − τ and t as

P(k)i,j (t) =


MP(k)i,j (t − τ )β

(k)
i,j (t), Z (k)

j (t) = 1

M
P(k)i,j (t−τ )γ

(k)
i,j (t)∑M

i=1 γ
(k)
i,j (t)

, Z (k)
j (t) = 0

, (21)
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FIGURE 2. Possible UAV flight directions in the Greedy mode.

D. COOPERATIVE PROBABILITY MAP UPDATE
To improve efficiency, when the distance between UAVs is
smaller than dr they can communicate the real-time search
and position data and share their probability map with their
neighbors in order to update it using the fusion method.
However, depending on the flight mode, each drone can have
two different kinds of connections:

i) a temporary connection in Greedymode, which will be
created with other neighbors, where N (k)

s (t) denotes
the set of temporary neighbors, which must be updated
whenever the UAV moves,

ii) a long connection in LoPSO mode, will be established
with other UAVs, whereN (k)

l (t) denotes the set of long
neighbors, which must not be modified even if the UAV
moves.

The communication-based neighbor of Uk is typically a
group of neighbors within a specified radius of dr of such
a drone’s position, which may be defined as:

N (k)
ϕ (t) =

{
j, ‖ Uk ,Uj ‖6 dr

}
, (22)

where ϕ equals either l or s representing long neighbors and
temporary neighbors, respectively, and ‖ ·, · ‖ indicates the
Euclidean distance, as in Fig.1.

Also, because the probability map, which contains all
probability information, is large in size and communication
bandwidth is limited, the UAV only communicates the prob-
ability map with neighbors in the same sub-swarm who have
established a long connection [26].

Moreover, either in LoPSOmode or inGreedymode, while
maintaining its local probability map, Uk must also maintain
a local plume density map 9k (t) which represents the value
of density per cell at time t , defined as:

9(k)(t) =
{
ψ

(k)
i (t), i = 1..M

}
. (23)

The process of updating the local probability map saved by
Uk is divided into two steps:

• The first step is the process by which the UAV updates
its local probability map individually, and the ψ (k)

i (t)
should be updated by:

1. ψ (k)
i (t) = GetPolVal(i, t),

2. ψ (k)
i (t) = max

n∈N (k)
ϕ (t)

{
ψ

(k)
i (t), ψ (k)

i (t − τ ), ψ (n)
i (t − τ )

}
.

(24)

• The second step is to update the local probability map
through information sharing and cooperation between
drones. Whenever the Uk flies over the region that some
of its neighbors are covering, i.e., {Un}n∈N (k)

ϕ (t), Uk
sends its local P(k)(t) and 9(k)(t) to its neighbors and
receives the plume density maps and probability maps of
the corresponding neighbor. Once Z (k)

j (t) = 1, it updates
its probability of detecting pollutants calculated in (21)
by averaging all of its neighbors’ probabilities with its
own as follows:

P(k)i,j (t) =


P(k)i,j (t − τ ), Z (k)

j (t) = 0
P(k)i,j (t−τ )+

∑
n∈N (k)

ϕ (t)
P(n)i,j (t−τ )∣∣∣N (k)

ϕ (t)
∣∣∣+1 , Z (k)

j (t) = 1
(25)

E. LoPSO WITH ADAPTIVE INERTIAL WEIGHT
The PSO algorithm is based on studies into the cooperative
foraging behavior of birds. The basic concept is to let a swarm
of particles roam a solution space in search of a solution that
is close to ideal.

Each swarm particle has a location vector as well as a
velocity vector. The fitness value of the current location is
determined using a specified objective function while the
particle velocities and positions are updated repeatedly. The
particles will eventually drift towards an ideal solution after
a given number of repetitions.

The particles’ individual movements are based on personal
information as well as the accumulation of knowledge of
others. Each particle moves and cognitively interacts with
the other particles in order to find the global ideal solution.
These movements are precisely guided by their fitness values,
which determine their optimal location as well as that of the
swarm. In our suggested model, the PSO method’s particles
move according to comparable rules to those that control
UAV movement [27].

In the LoPSOmethod we propose, all UAVs start off flying
in Greedy mode until one Uk detects a higher pollutant level
ψ

(k)
i (t) in cellCi. For this, we set a predefined thresholdµp in

our simulated environment: if a pollutant measurement result
exceeds the threshold, it is a detection; if not, it is a non-
detection. This Uk spreads the information detection about
the pollutant and, depending on its N (k)

s (t) neighbors, builds
a local sub-swarm when the number of neighbors exceeds
three and runs the LoPSO algorithm. All members of this
sub-swarm alter their flight heights to the same as Uk .
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Note that if different UAVs detect multiple pollution mea-
surements that exceed the specified threshold µp simulta-
neously during the exploration stage, They will each try to
build a sub-swarm to start the LoPSO stage. In this scenario,
we can have multiple sub-swarms that search for the source
simultaneously and independently.

If the source is correctly discovered or the time validation
has elapsed, the sub-swarm shall break up and all UAVs in
such sub-swarm should alter their flight heights to the origin
heights and enter search Greedy mode.
The position and velocity of Uk are updated based on

LoPSO, respectively, in each iteration cycle, as follows:

V (k)
ν (t) = λ(k)(t − τ )V (k)

ν (t − τ )+ r1c1V (k)
l,ν (t − τ )

+ r2c2V (k)
g,ν(t − τ ), (26)

where

V (k)
l,ν (t − τ ) =

δ
(k)
ν (t − τ )− χ (k)

ν (t − τ )
τ

, (27)

V (k)
g,ν(t − τ ) =

1
(k)
ν (t − τ )− χ (k)

ν (t − τ )
τ

, (28)

and

χ (k)
ν (t) = χ (k)

ν (t − τ )+V (k)
ν (t − τ )τ, (29)

with ν equals either x or y, c1 and c2 are the individual and
social cognitive coefficients of the UAV, r1 and r2 are random
values referring to the acceleration coefficients uniformly
distributed between 0 and 1 [27]. Further, δ(k)(t) denotes the
best position of Uk , and 1(k)(t) as the best position of the
sub-swarm.

Let’s defined the following fitness function

g
(
χ (k)(t)

)
=

(ψ (k)
i (t))P

(k)
i,j (t) − 1

(ψ (k)
i (t))P

(k)
i,j (t) + 1

+ 1. (30)

In this paper, the objective is to achieve the global optimal
by maximizing the fitness function.

It is obvious that the higher the source existence probability
with a very high level of plume density, the better the fitness.
As a result, the best position of Uk , i.e., δ(k)(t), is defined as
the position that corresponds to the fitness function’s highest
value up until time t .

δ(k)(t) = argmax
t

{
g
(
χ (k)(t)

)
, g
(
δ(k)(t − τ )

)}
. (31)

Furthermore, once the sub-swarm is constructed, δ(k)(t)
is initialized at the position of Uk . Whereas the global best
position of the sub-swarm N (k)

l (t) at a given time t , i.e.,
1(k)(t) assumed to be the probable position of the source, can
be found by depending on the local best positions δ(k)(t) as

1(k)(t) = arg max
q∈
{
k,N (k)

l (t)
} {g(δ(q)(t))} . (32)

To achieve a balance between global and local exploration
by the sub-swarm, the value of the inertia weight λ(k)(t)

which assures convergence will be determined by the speed
of evolution and the degree of population aggregation.

Also, when the function fitness is less than a specific
threshold µo, λ(k)(t) stays large and a global search is per-
formed, and when the fitness is greater than the threshold,
λ(k)(t) performs an adaptive nonlinear decline to do a fine
search by continually approaching the likely source point.

Taking advantage of the sigmoid function which has a
strong capacity for nonlinear approximation and its extreme
value is between 0 and 1, we introduce it to adaptively update
the inertia weight value, then the specific expression is:

λ(k)(t) =


2

1+exp
(

−1
g(1(k)(t))

) − 1.4, g
(
1(k)(t)

)
> µo

0.9, g
(
1(k)(t)

)
6 µo.

(33)

III. SEARCH STRATEGY
The suggested approach uses a search strategy based on UAV
cooperation and a probabilistic method that attempts to solve
the problem of determining the pollution source position.
While the UAVs use two search modes Greedy and LoPSO
to track the growing concentration of the pollutant, they are
further assisted by a heuristic source position in order to
adjust the computed directions to focus the search on areas
with higher pollution concentrations.

For the purpose of designing the algorithm, the complexity
of finding the polluting source has been reduced to two
dimensions. The development potential is unaffected by this
lowering. In reality, because the vertical propagation impact
of air pollution is substantially smaller than the horizontal
propagation effect [33], the equations may be simplified and
the search area effectively reduced.

During the search, the measurements of the pollution level
of air given by the sensors are analyzed to decide whether
there is a detection of pollutants, which will be used by the
probabilistic component. At each UAV, the search task is
separated into three parts:
• Collecting measurements with the UAV’s sensors;
• Exchanging information and fusing detection finding;
• Coordinating movement depending on the flight mode.
In our approach, in order to pilot the drones cooperatively

and achieve the intended goal, we divided the algorithm into
two parts: identification and tracking of the plume, followed
by the localization of the polluting source.

A. PLUME TRACING ALGORITHM
The detection and tracing of the plume are based on the notion
of pollutant detection heuristics, namely the gradient algo-
rithm, which needs at least two spatially separated measure-
ments in order to look for the highest pollution concentration
levels in a region.

In this context, to increase the efficiency of the localiza-
tion of the pollutant plume, we deploy a Greedy strategy to
accelerate the process of convergence of the probability map
of each drone during the search task.

At this point, the algorithm is divided into two phases:
(i) the searching phase, wherein the drones look for higher
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pollution measurement values, and (ii) the exploration phase,
wherein the drones fly around the area until one of the
following conditions is met: the drones have covered the
entire area and there are no sources of pollutants on the sides
and the flight duration has expired, or a new higher value is
found.

As described in Algorithm 2, each drone Uk collects the
pollutionmeasurement value at its current positionCk when it
makes its initial movement, and delivers it to the Algorithm 4,
if the value ψ (k)

i (t) is greater than a threshold µp, otherwise,
it compares to the previous measurement ψ (k)

i (t − τ ). If the
measurement variation 1ψ (k)

i (t) is positive and greater than
a threshold of µs (increasing), determined in accordance
with the sensor measurement, the direction of the UAV’s
motion is in Greedy mode with Z (k)

i (t) = 1 and toward
an area where the amount of air pollution is higher. As a
result, the exploration phase begins, which is mainly based on
two techniques: the drone follows a direction ahead towards
the cell with a high pollution concentration level between
[−45◦, 45◦] degrees. Otherwise, the UAV flies in the wrong
direction if the measurement variance decreases. However,
the drone calculates the direction in reverse orientation to
move back toward the cell with a high pollution concentration
level between [135◦, 225◦] degrees and continues the search
Fig. 2.

Once a pollution hotspot has been identified by one UAV,
this later will create a sub-swarm alliance through neighbor-
hood communication and interaction, then the LoPSO search
algorithm will be deployed to coordinate the search for the
phase source tracking Fig. 3.

FIGURE 3. Plume tracing: The blacks are Greedy UAVs, while the reds are
a sub-swarm in LoPSO mode that formed after detecting the plume.

B. POLLUTANT SOURCE LOCALIZATION
At this point, the Algorithm 4 is used at this step to focus the
search on the regions where the source is most likely to be
found, depending on the plume’s higher concentration level.

The LoPSO, on the other hand, has two phases: the explo-
ration phase and the exploitation phase. During the explo-
ration phase, the formed sub-swarm seeks a higher overall
pollution value; this phase ends when a high local level of

pollution is identified.When the pollutant concentration level
reaches its maximum value, the drones from the sub-swarm
begin to exploit the region containing the identified plume
in order to confirm or deny the location Cs of the specific
source which contains the higher concentration level using
the probability map. The Cs cell, which is the most likely
location on the probabilistic map, is the focus of this phase,
during which each drone flies in cooperation with others in
the same sub-swarm around this cell. The whole process of
our approach can be summed up in algorithms Algorithm 1-5.

The main algorithm used by the base station (BS) to start
the cooperative search is described in Algorithm 1 function.
After providing the input settings, all UAVs launch and start
searching till the search period is over. Until the polluting
source is found, the search is still ongoing. All drones will
be warned to halt the search in this scenario. To gather data
about the source discovered, the BS continuously listens to
all drones.

In each UAV, the Algorithm 2 describes plume searching,
coordination updating, and information merging. The basic
process is that all drones must first begin searching for the
pollutant plume in Greedymode by running the Algorithm 5,
provided that the base station has not yet indicated that the
search is over and there is sufficient energy to do so.

To validate a pollutant’s existence and update their maps
of probability and concentration of pollutants in the area, the
UAVs collect detection information from their sensors using
the readpollution function on the hovered cell. They then
merge and share information with other nearby drones pro-
vided by the Algorithm 3, which builds the long neighbors.
When a sub-swarm integration request is submitted when
the flight mode is Greedy, the UAV will accept the request,
switch toPSO, send an acceptancemessage, integrate the sub-
swarm, and then run the Algorithm 4.

If the UAV is in the Greedy flight mode and a plume is
found in the hovering cell, it switches to the PSO flight mode
and launches the Algorithm 4 by forming a sub-swarm based
on the Algorithm 3. When the source is confirmed, the base
station is notified of the source position, releases the sub-
swarm, and enters the greedy flying mode. If the flying mode
is PSO, it is essential to update the movement information in
accordance with (26) and (29) as long as there is no release
request.

IV. EXPERIMENTS AND RESULTS
In this section, simulation results are provided in order to
demonstrate the effectiveness and reliability of our proposed
approach and to assess its functioning as realistically as
possible. Several simulation experiments were performed to
confirm the behavior of the proposed approach while fixing
the values of their parameters to those listed in Table 3. Some
statistical results were obtained by simulating the drones and
a source of pollution on a platform with a different number of
drones deployed at each test. In our simulation, the statistical
findings from every experiment are the mean values based on
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Algorithm 1 Base Station Monitoring Program

Function Monitoring(�,Nu,Dmax, τ):
/* lunched on the base station */
init

search← True
B0,0(True) /* alert all UAVs that

the search in ongoing */
Cs← random()
t ← 0
n← 0

for i← 1 to Nu do
/* order all UAVs to start the

search */
Searching(Nu, i,Nx ,Ny,Cs, t, τ,Dmax, µp)

while search=True and t <= Dmax do
for i← 1 to Nu do

/* sensing a exist
transmission data from
each UAV */

Ri(n, I )
if n=4 then

/* The data obtained is
the location of the
source */

search←False
/* all UAVs must be

alerted to halt the
search */

B0(0,False)
/* return the source

position */
Cs← I

t ← t + τ
return Cs

Dmax = 1000 independent tests. The suggested approach also
presupposes the following circumstances:
• The intended environment is confined to a horizontal
rectangle;

• The pollutant is only released from one source;
• The location of the source in the environment is ran-
domly selected in the algorithm’s initial phase;

• Without knowledge of the polluted plume, the drones
begin the mission at random locations in the intended
environment;

• Each drone has a sensor for measuring pollutants;
• It is possible to estimate the wind vector in the horizontal
plane;

• Variations in winds do not significantly affect the posi-
tioning (navigation) control of drones;

• Vehicle flight time, in-vehicle memory, and processing
capacity are limited.

Fig.4 depicts how the number of UAVs deployed affects
how long it takes to find the source of the pollution for each

Algorithm 2 UAV Pollutant Source Search
Function Searching(Nu,k,Nx ,Ny,Cs,t ,τ ,Dmax, µp):

/* Achieved in each UAV */
init

V (k)(t), χ (k)(t), Et , Ek
Pk (t)←

{
P(k)i,j (t) =

1
Nx×Ny

, i = 1..Nx , j = 1..Ny
}

9k (t)←
{
ψ

(k)
i,j (t) = 0, i = 1..Nx , j = 1..Ny

}
SSwHead ← False
Fk ← ‘‘Greedy′′

Search← True
n← 0
t ← 0
N

(k)
l (t)← {φ}

N
(k)
s (t)← {φ}

/* collect the pollutant concentration in the
current location */

θ1 ← GetPolVal(i, t)
while t < Dmax and Ek > Et and Search 6= False do

θ2 ← GetPolVal(i, t)
if Fk = ‘‘Greedy′′ then

/* flight mode is greedy: exploration
stage */

if θ2 > µp then
/* detection of a pollutant */

Z (k)
i (t)← 1

update P(k)(t), 9(k)(t) /* according
to (21), (24) and (23) */

Bk (1,P(k)(t))
/* share the probability map with

neighbors */
Bk (2, 9(k)(t))
/* share the plume density map with

neighbors */
SSwHead ← True
/* take the heading role */
Cs ← LoPSO(Nu, �,Cs, k, t, τ, SSwHead)
/* run the LoPSO mode */
if Cs 6= False then

/* case where one source found
*/

Bk (5,Cs)
/* share the source location */
SSwHead ← False /* quit the

sub-swarm header role */

else
/* no plume detected */
1θ ← θ2 − θ1
N

(k)
l (t)← Greedy(Nu,Cs, k, t,1θ, µs, i)
/* retrieve the list of long
neighbors */

else
/* in case the flight mode is LoPSO */
Cs ← LoPSO(N , �,Cs, k, t, τ, SSwHead)

t ← t + τ
Ek ← Ek − 1
R0(n, I )
/* sensing exist transmission */
if n = 0 then

/* exist transmission from BS */
Search← I

θ1 ← θ2

return True

of the four search methods. We can see that the validation
time of the source in LoPSO quickly decreases as the number
of UAVs increases, compared to other methods. This is due to
the fact that once the plume is detected by one UAV, the local
swarm built allows it to be quickly validated by the increasing
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Algorithm 3 Neighbors in Close Proximity

Function NearbyNeighbors(k,t,Nu):
/* build list of neighbors */
if Fk = ‘‘Greedy′′ then

/* flight mode is greedy */

N (k)
s (t)← {φ}

Bk (0, ‘‘Who′′)
/* broadcast a discovery

message */
for j← 1 to Nu do

Rj(n, I )
/* sensing exist potential

transmission */
if n = 0 and I = True then

/* a UAV neighbor was
found */

N (k)
s (t)← N (k)

s (t) ∪ {j}
/* build list of short

neighbors */

return N (k)
s (t)

FIGURE 4. Time taken to confirm a source’s location.

number of detections carried out by the drones in this local
swarm. The statistical results permit this observation to be
verified, as shown in Table 4. In fact, as the size of the drone
swarm system increases, the total movement of all drones
increases rapidly, allowing rapid detection of the plume due
to the wide dispersion of the drones. This results in the
formation of sub-swarms which will quickly and efficiently
exploit the reduced area where the feather is detected and
therefore a shorter search time.

Fig. 5 illustrates the average energy usage as a function of
the number of UAVs. We consider the amount of energy used
for both communication and movement. These results show
that the number of UAVs used increases power consumption
over time and that the proposed LoPSO strategy uses, on aver-
age, 50% less power than previous methods. In fact, as the
drones travel to the next cell at the same speed, the energy
needed for mobility will continuously rise.

However, with LoPSO, the swarm that forms determines
the pace of the drones, so the UAVs’ speed is not constant.

Algorithm 4 Local PSO Mode
Function LoPSO(Nu ,�,Cs, k, t, τ, SSwHead , µo, tPSO):

init
tk ← t
Fk ← ‘‘LoPSO′′

Search←True
(δ(k)(t),1(k)(t),1max)← (χ (k)(t), χ(k)(t), χ(k)(t) )

foreach j ∈N
(k)
l (t) do

Rj(n, I ) /* Sensing exist transmission */

if I=‘‘Free’’ and n = 0 then
/* leave the sub-swarm */

Fk ← ‘‘Greedy′′ /* switch to greedy mode */

if SSwHead = True then
/* The current UAV is the sub-swarm header */

N
(k)
l (t)← {φ}

N
(k)
s (t)← NearbyNeighbors(k, t,N )

/* collect the list of short neighbors */

foreach j ∈N
(k)
s (t) do

Bk (0, ‘‘Join
′′)

/* invite close neighbors to join the sub-swarm */

Rj(n, I ) /* collect responses from nearby neighbors */

if I=True and n = 0 then

N
(k)
l (t)←N

(k)
l (t) ∪ {j} /* build the sub-swarm */

if
∣∣∣N (k)

l (t)
∣∣∣ > 3 then

foreach j ∈N
(k)
l (t) do

Bk (3,N
(k)
l (t)) /* share the sub-swarm list */

while Search← True and t − tk 6 tPSO do
θ ← GetPolVal(i,t)
Z (k)(t)i ← 1

compute δ(k)(t), 1(k)(t),V(k)(t), χ (k)(t)
/* according (31),(32),(26), and (29) */

Bk (5,1
(k)(t))/* share the global best position of the

sub-swarm */

update Pk (t), 9k (t) /* according (21), (24) and (23) */

Move to χ (k)(t)
if g(1(k)(t)) ≥ g(1max) then

1max ← 1(k)(t)

if
∥∥∥1(k)(t),1max

∥∥∥ > dr then

Fk ← ‘‘Greedy′′ ;

foreach j ∈N
(k)
l (t) do

Bk (0, ‘‘Free
′′)/* alert all to quit the

sub-swarm */

N
(k)
l (t)← {φ}

return 1max /* best location found */

else
t ← t + τ

if t − tk > tPSO then
Fk ← ‘‘Greedy′′/* change to greedy */

foreach j ∈N
(k)
l (t) do

Bk (0, ‘‘Free
′′)

N
(k)
l (t)← {φ}

N
(k)
s (t)← {φ}

/* empty all lists of neighbors */

return (−1,−1)/* no source found */

else
/* UAV fails to build the sub-swarm */

foreach j ∈N
(k)
l (t) do

Bk (0, ‘‘Free
′′)/* notify all neighbors to breaking free

from the sub-swarm */

Fk ← ‘‘Greedy′′/* back to greedy mode */

N
(k)
l (t)← {φ}

N
(k)
s (t)← {φ}

/* empty all lists of neighbors */

Hk ← k/* back to original flight height */

else
/* the UAV is a simple sub-swarm member */

while Search= True and t − tk 6 tPSO do
θ ← GetPolVal(i,t)

Z (k)i (t)← 1

compute δ(k)(t),1(k)(t), χ(k)(t),V(k)(t)
update P(k)(t), 9(k)(t)/* using (21), (24) and (23) */

Move to χ(k)(t)
Bk (5, δ

(k)(t))/* share the individual best position to the

sub-swarm */
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Algorithm 5 Greedy Mode

Function Greedy(Nu,Cs,k,t ,1θ,µs,i):
if 1θ > µs then

/* plume detected */
Z (k)(t)i←1

Update P(k)(t)/* according (21)
and (24) */

Update 9(k)(t)/* according (23) */
Bk (1,P(k)(t))/* share probability map

with neighbors */
Bk (2, 9(k)(t))/* share plume density

map with neighbors */

N (k)
s (t)← NearbyNeighbors(k, t,Nu)/* get
short neighbors list */

Move to next cell
foreach j ∈ N (k)

s (t) do
Rj(n, I )
if I=‘‘Join’’ and n = 0 then

/* sensing if there is a
request to join a
sub-swarm */

Bk (0,True) /* accept to join the
invitation to the
sub-swarm */

Fk ← ‘‘LoPSO′′ /* change flight
mode to LoPSO */

Hk ← j/* take Uj’s flight
height */

break
if n = 3 then

N (k)
l (t)← I

return N (k)
l (t) /* collect list of

long neighbors */

if n = 0 and I=‘‘Who’’ then
/* sensing a message of

exploration */
Bk (0,True) /* declare the

existence of the UAV */

return {φ}

FIGURE 5. Energy consumption vs number of UAVs.

Additionally, on the one hand, the drones only transmit
information when it is absolutely essential thanks to the

TABLE 3. Parameters settings.

FIGURE 6. Messages exchanged vs the number of UAVs.

FIGURE 7. Required time to locate the source position for different
search area size.

messaging technique described, which implies reducing the
volume of messages exchanged between drones. On the other
hand, as shown in Table 4, the size of the sub-swarms built
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FIGURE 8. Search path of one UAV in different modes: (a) Random search, (b) PSO mode, (c) Greedy mode,(d) search start in LoPSO mode (e) plume
detection, and (f) source localization.

TABLE 4. Average confirmation time, fitness function max, validation
probability max, average search time, and number of neighbors under
different UAVs number.

does not have large sizes (between 3 and 6), which reduces
the quantity of messages exchanged locally. Consequently,
since communication may only occur inside the same swarm,
this decreases the overall number of messages exchanged
between the different UAVs, as shown in Fig. 6.

In the suggested method, the environment is discretized
as a grid, and the search duration varies with grid size
(number of cells). Fig. 7 shows that the computation time
increases as the search area size grows, implying an increase
in computational complexity. Indeed, there are two periods of
time during research: exploration and exploitation. Since the
UAVs will be dispersed throughout a sizable area during the
first phase, the exploration time will vary depending on
the area size, while the exploitation time will stay about the
same.

The drones cooperated on two levels: individually with
drones nearby and collectively with drones belonging to the

same sub-swarm, ensuring quick and efficient convergence
of the algorithm in terms of time and energy. Indeed, the
algorithm was built using both exploration and exploita-
tion strategies. The use of gluttony kept exploration in the
most promising locations, while the LoPSO metaheuristics
allowed fewer drones to examine smaller areas by following
the increasing gradient of pollutants and therefore decreased
paths.

As shown in Fig. 8, the source of the pollutant has been
found by the different algorithms in the majority of cases, but
with varying trajectory lengths: (a) RS, (b) PSO, (c) Greedy,
and (d, e, and f) LoPSO. As depicted, the trajectories are
lengthy, implying a considerable amount of search time.
Nonetheless, as compared to other methods, the total trajec-
tory in LoPSO is shorter. Indeed, the black trajectory shown
in (e) is the first part of the search using the Greedy method
and prioritizing tracking of high levels of pollutant concen-
tration. The launch of LoPSO (f) to locate the source using
a small number of drones, which speeds up the detection by
tracking the red trajectory, occurs after discovering the plume
at the location indicated by the green triangle.

Fig. 9 depicts a comparison of the plume density map
versus the search time duration for one of the swarm’s UAVs
at various intervals. it can be seen that the probability of the
source is quite high in a very small place, but it is almost zero
outside of this small area. The pollutant source was found in
cell C1911 (i.e., column = 11, row = 38) at time t = 735 s,
which presented the concentration and probability of highest
pollutants (ψ = 1542 µg/m2, P = 0.9998).
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FIGURE 9. Plume map tracing for a fixed UAV for dr = 8 cells. (a) t = 0s. (b) t = 220s. (c) t = 441s. (d) t = 537s. (e) t = 672s. (f) t = 736s.

V. CONCLUSION
This paper provided a method for locating the source of
air pollution across a vast region by prioritizing the most
contaminated locations utilizing autonomously cooperative
drones. The suggested approach employs a two-phased
equidistributed search based on the Bayesian process model.
In order to rapidly detect the polluting plume during the
exploration phase, it employs a search based on the Greedy
algorithm. In this step, the drones cover different cells of the
search area by moving toward those containing a high con-
centration level of the pollutant. The LoPSO meta-heuristic
algorithm and the Bayesian approach are coupled during
the exploitation phase to produce a thorough and in-depth
probabilistic map of the area, enabling the localization of
the source. In simulated tests, the proposed approach was
compared to three others in real-time using a dispersion-
advection plume model that simulated the real world and
a modeled pollution source with significant turbulence.
The findings demonstrated the algorithm’s excellent perfor-
mance and robustness, as the drones were able to locate
the pollution source in a variety of environmental situations.
Future research directions will be focused on examining
the benchmarking capabilities of LoPSO and its capacity to
resolve further challenging optimization problems, such as
adding a wind model from collected wind data to strengthen
the proposed model while trying to conduct experimen-
tal experiments using real quadcopters in a real polluted
outdoor environment. Also, using LoPSO jointly with a

reinforcement learning strategy is a promising idea to be
investigated.
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