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ABSTRACT In this paper, the drone base-station (DBS) dispatching problem in amulti-cell B5G/6G network
is investigated. The main objective is to achieve the highest system profit by serving the largest possible
number of users with the least possible cost while considering the uncertain time-dependent fluctuated user’s
(service) demand in the different cells, the cost of dispatched drones, and the possible profit loss due to
un-served users. The problem is formulated as a profit-maximization discount return problem. Due to the
uncertainty in the demand (users) in each cell, the problem cannot be solved using conventional optimization
methods. Hence, the problem is reformulated as a Markov decision problem (MDP). Due to the exponential
complexity of finding the solution and the unavailability of statistical knowledge about user availability
(demand) in the considered regions for such optimization, we adopt a reinforcement learning (RL) approach
based on the state-action-reward-state-action (SARSA) algorithm to efficiently solve the MDP. Simulation
results reveal that our RL-based approach significantly increases the overall operator profit by continuously
adapting its DBS dispatching strategy based on the learned users’ behavior in the network, which enables
serving a larger number of users (highest revenue) with least number of DBSs (least cost).

INDEX TERMS Reinforcement learning, revenue, on-demand dispatching, uncertain demand, drone
base-station.

I. INTRODUCTION
Beyond 5G (B5G)/6G networks are expected to sup-
port massive number of interconnected devices (orders of
magnitude of today’s number of devices), offer high-speed
transmissions, enable real-time applications/services and
extend network coverage [1], [2], [3]. In B5G/6G networks,
the installation of a large-number of permanent terrestrial
infrastructure to support user requirements in temporary
crowded areas (or terrestrial infrastructure in rural areas) is
economically infeasible from the operator’s perspective due
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to the incurred high operational cost and/or the volatile and
sophisticated environments. To this end, drone base stations
(DBSs) have been envisioned as an integral low-cost part
of the B5G/6G network architecture that can dynamically
extend network coverage, support massive the Internet-of-
Things (IoT) networking, and provide high-speed cellular
services [3], [4], [5], [6]. DBSs provisions flexible, easy-
to-deploy and low-cost networking by providing dynamic
on-demand high-speed B5G/6G cellular coverage in tem-
porary crowded areas (hot-spots) and limited-infrastructure
areas with low cellular-coverage (e.g., rural areas, hard-to-
reach areas, areas with emergency situations). Hence, a key
design challenge in deploying DBSs in B5G/6G systems
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is how to dynamically (on-demand) dispatch the available
DBSs to the different regions in the network such that the
overall profit made by the operator is maximized while con-
sidering the uncertain fluctuated demand over time. Specifi-
cally, the operation expenditure of the cellular operators can
be minimized by avoid sending unnecessarily drones to the
regions with low demands. On the other hand, the operator’s
profit in the crowded regions (hotspots) can be maximized by
dispatching higher number of DBSs based on the prevailing
time-dependent high traffic demand in these regions (reduce
the profit-loss due to the un-served users). This paper inves-
tigates the DBS dispatching problem in a multi-cell B5G/6G
networks with the objective of maximizing the overall oper-
ator’s profit while considering the uncertain service demand
fluctuations across the different service areas. This problem
is analytically modeled as a profit-maximization dispatching
problem. The uncertainty in the service demand in each cell
makes the conventional optimization methods not applicable
in solving this problem. Thus, our dispatching problem is
redefined as a Markov decision problem (MDP). Due to
the exponential complexity of our MDP problem and the
availability of only causal knowledge about the availability of
users in the considered regions, a reinforcement learning (RL)
method is adopted to intelligently obtain efficient dispatching
decisions. These decisions allows the operator to continu-
ously adapt its DBS dispatching strategy based on the learned
users’ behaviour in the different regions. Accordingly, the
cellular operator can significantly enhance its profit by intel-
ligently form on-demand data-coverage hot-spots across the
network based on users’ demand (on-demand dispatching the
needed number of DBSs per region). This allows serving
larger number of users (achieving higher revenue) with least
number of dispatched DBSs (least operating cost). We con-
duct simulation experiments to investigate the performance of
the proposed RL-based dispatching optimization. The results
indicate that significantly improvement in the overall system
profit is demonstrated compared to reference dispatching
algorithms.

The rest of this paper is organized as follows. Section II
overviews the related work on using DBSs in B5G/6G
networks. In Section III, the DBS-based cellular network
model is described. The problem statement, formulation and
RL-based solution are presented in Section IV. Section V dis-
cusses the performance evaluation of the proposed RL-based
dispatching method. Finally, Section VI provides concluding
remarks.

II. RELATED WORK
Several approaches and mechanisms have been proposed to
enable efficient DBSs deployment and operation in cellular
networks in terms of finding the best DBS placement, reduc-
ing DBS energy consumption (traveling time), air-to-ground
channelmodeling, optimizing path trajectory/transmit power-
control, maximizing data rate, and DBS communications [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Very few
attempts have been done to optimize the overall revenue

FIGURE 1. Network model of a flying network with 3 hotspots and 6 DBSs.

of using DBSs from the operator perspective. In [4], the
authors proposed integrating the in-band full-duplex technol-
ogy and DBSs in cellular networks for improving spectrum
efficiency. They addressed the problem of DBS placement
with joint bandwidth/power allocation, in which two heuris-
tic methods were proposed. The authors in [5] developed a
UAV-based cellular system based on tethered UAVs (tUAVs)
with the objective of extending the drone flight time. They
proposed connecting the UAVs with a ground station (GS)
through a tether such that the GS can provide the tUAV
with data and energy, which allows the DBS to fly for days.
In [3], the authors investigated the on-demand use of drones
for extending the broadband connectivity. They discussed
the implementation challenges of drones in future networks
includingmobility, handover, energy constraint, optimal posi-
tioning and drone localization. The authors in [8] investigated
the problem of finding the optimal interference-aware UAV
trajectory planning in both single- and multi-cell wireless
networks. In [9], the authors investigated the DBS placement
with the objective of maximizing the number of covered
users by each DBS. The paper in [10] investigated the DBS
placement problem with the objective of providing energy
efficient wireless coverage based on the successive convex
approximation. In [11], the authors developed a delay-aware
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DBS placement algorithm that jointly determines the location
of each DBS and its associated coverage area such that the
total average latency is minimized subject to DBS battery
constraint. The paper in [12] proposed a machine learning
(ML)-based framework that enables a predictiveDBS deploy-
ment to accompaniment the cellular infrastructure cover-
age. The ML approach implements the weighted-expectation
maximization that estimates users’ distribution and downlink
traffic. Their main goal was improving the hotspot users’
downlink speed and delay while reducing the DBSs energy
consumption. However, their framework did not consider
the time-varying uncertainty of the user demand and traf-
fic distribution across the different regions in the network.
Specifically, their work was based on an available historical
dataset, which is used to model, train, and test their ML
prediction algorithm. This significantly limits the adaptability
of their drone deployment framework to any uncertain change
in user’s demand. In [13], the authors exploited the advantage
of DBSs’ mobility and Q-learning to detect autonomously
the low-coverage regions (holes) in the network. Accordingly,
they developed a centralized mechanism to find the optimal
DBS 3D-placement that maximizes the number of associ-
ated users to the DBSs under wireless-backhaul/core-network
limitations.

In summary, none of the previous works related to drone
placement have optimized the overall cost of using the DBSs
and their impact on the achieved operator’s profit under
uncertain users’ demand. Our proposed RL-based DBS dis-
patching mechanism allows for continuously learning by
interacting with the operating environment with the goal of
maximizing the achieved operator’s profit through continu-
ously learning and updating its adopted dispatching policy
to the one that results in a better (at least equal) the current
achieved profit.

III. NETWORK MODEL
We consider a flying network that consists of N DBSs and a
dispatching charging station. The service area consists of M
sub-regions (i.e., Z1,Z2, . . .ZM ). The DBSs are dynamically
deployed in the service area to form small cells. Each DBS
can serve up to Umax users. Fig. 1 shows an example of the
considered network model, in which we consider 6 DBSs
serving three in-door regions in a shopping mall. The users in
each sub-region Zi are served by the dispatched DBSs to that
sub-region. The number of users (service demand) in each
region (Ũi) is dynamically changing with uncertain behaviour
due to user’s uncertain mobility and fluctuated demands. The
possible user demand in each region is discretized into K
demand rangesD1 = [0−Umax],D2 = [(Umax+1)−2Umax],
. . ., and DK = [(K − 1)Umax + 1 − KUmax] users. The
transition probability of demand ranges in each cell follows a
Markov process according to a transition probability matrix.
Figure 2 shows an example of a transition diagram of the
demand variation (along with the transition probabilities) for
3-demand ranges in a given region Zi. Let the number of
dispatched DBSs for region Zi during a given dispatching

flight time slot t is denoted by N (i,t)
D . The DBSs covering

the same area use different frequency bands such that the
co-channel interference is limited. The backhaul connectivity
to the DBSs can be realized through wireless connection to
any operating core network entity (e.g., satellite connectiv-
ity, neighboring macro-ground BS, mobile-based BS vehi-
cles) [14]. The maximum number of served users in a given
region Zi is determined by the number of dispatched DBSs
to that region N (i,t)

D , in which the maximum possible served
users is limited by N (i,t)

D ×Umax. Each user in a given region
Zi pays a subscription service fee (P) to the cellular operator
if it gets served by the dispatched DBSs during the flight
period. The cost of dispatching the DBSs for the region Zi
consists of a total fixed-cost (FC) and a total variable cost
(VC). Specifically, the total cost (TC t

i ) in Zi during the flight
time t can be computed as [15], [16]:

TC t
i = FC + VC(N (i,t)

D ) = FC + CDN (i,t)
D (1)

where CD represents the operating cost for each dispatched
DBS. The total revenue (TRti ), given that the subscription
service fee is P, can be computed as:

TRti = U (i,t)
served × P (2)

where U (i,t)
served = min{N (i,t)

D × Umax, Ũ t
i } denotes the number

of served users in Zi during flight time t , and Ũ t
i ) is the actual

number of users (demand) in cells i during flight time t .
Based on (1) and (2), the total achieved profit in each cell

during one DBS flight period t can be computed as:

5t
i = TRti − TC

t
i

= U (i,t)
served × P− (FC + CDN (i,t)

D ) (3)

Consequently, the over all achieved profit in the system
during the flight period t can be determined as:

5t =

M∑
i=1

5t
i

=

M∑
i=1

(U (i,t)
servedP− (FC + CDN (i,t)

D ))

=

M∑
i=1

(min{N (i,t)
D Umax, Ũ t

i })P− (FC + CDN (i,t)
D ) (4)

The overall profit during each flight period in the system
depends heavily on the number of dispatched DBSs for each
region as well as the uncertain number of users (fluctuated
demand) in each sub-region.

IV. DRONE-BS DISPATCHING PROFIT MAXIMIZATION
PROBLEM
A. PROBLEM STATEMENT AND FORMULATION
The main goal of our formulation is to dispatch DBSs to the
different cells in the network such that the achieved system
profit over-time is maximized subject to DBS availability
and coverage constraints under uncertain fluctuated service
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demands across the different cells. This can be done by
finding the optimal policy of DBS dispatching that minimizes
the total cost while increasing the overall revenue by serving
the largest possible number of users across the network. This
DBS dispatching decision problem can be formulated as a
cumulative discounted profit maximization problem with the
availability of only causal knowledge of the number of users
in each cell (actual demand per cell). Due to the unavail-
ability of future information about the demand in each cell,
we define the objective function of our optimization as the
maximization of the expected discounted profit (return), i.e.,
the expected cumulative discounted dispatching profit. The
discounted return after the flight time t ,Gt , can be written as:

Gt =
T−1∑
j=t

γ j−t5j+1 (5)

where t is the start point for accumulating the consecutive
rewards, T is a last time slot of an episode (T − t repre-
sents one DBS flight period), 5j+1 is the immediate reward
(profit), achieved in all regions at time slot j+1 resulting from
taking action Aj, which is defined as the number of DBSs that
are to be dispatched to each region Zi at time j (N (i,j)

D ,∀Zi).
The term 0 ≤ γ ≤ 1 represents the discount factor that prior-
itizes the importance of rewards over time. The old received
rewards contribute more in the future cumulative reward. The
number of available DBS constraint indicates that, at any
given time j, no more than N DBSs can be dispatched to the
different regions/cells, which can be written as:

M∑
i=1

N (i,j)
D ≤ N , j = t, . . . ,T − 1. (6)

The DBS capacity constraint limits the maximum number of
users a DBs can serve to Umax, in which the total number of
served user in a given region Zi at time j (U (i,j)

served ) is limited
to N (i,j)

D × Umax.
Tomaintain coverage in each region Zi,N

(i,j)
D should satisfy

the following constraint, in which at least one DBS should be
dispatched to each region i:

N (i,j)
D ≥ 1, j = t, . . . ,T − 1, ∀i ∈ {1, 2, . . .M} (7)

Our optimization problem attempts to determine the num-
ber of dispatched DBSs N (i,j)

D , ∀i (i.e., the action Aj) that
results in maximizing the expected discounted profit over an
infinite horizon, which can be expressed as:

max
{Aj}

lim
T→∞

E[Gt ]

such that for j = t, . . . ,T − 1,
M∑
i=1

N (i,j)
D ≤ N ,

N (i,j)
D ≥ 1, ∀i ∈ {1, 2, . . .M}

U (i,j)
served ≤ N

(i,j)
D × Umax, ∀i ∈ {1, 2, . . .M}. (8)

FIGURE 2. Transition diagram of the user-demand in cell Zi for 3 demand
ranges.

B. THE MDP REFORMULATION
Since the exact number of users (demand Ũ t

i ) in the different
cells is unknown in the previous time slot t − 1, the formu-
lated Profit-maximization problem cannot be solved using
traditional optimization techniques. Since our optimization
involves decision making (dispatching actions) under uncer-
tainty, the dispatching actions, decided by the cellular opera-
tor, can be transformed to an MDP [17]. The MDP model is
analytically defined using: (1) set of statesS, (2) set of actions
A, (3) state-transition probability p(s′|s, a), (4) immediate
rewards r(s, a, s′) and (5) the forgotten (discount) factor γ .
The set of actions is defined as A , {a1, . . . , ak , . . . aL},
where L is the total number of feasible actions. The term
p(s′|s, a) presents the probability of transiting from state s ∈
S to another state s′ ∈ S given that action a ∈ A is decided
at state s, whereas r(s, a, s′) quantifies the rewards granted
when transiting from s to s′ when action a is taken [17].
Accordingly, the MDP formulation associated with our opti-
mization problem can be defined using the following states,
action and rewards:

It is important to note the difference between the notations
used to represent different variables in time domain and in
the MDP formulation, in which capital letters are used in
time domain and small letters are used in the formulated
underlying MDP.

1) POSSIBLE STATES
The state s ∈ S is defined as a group of 2M ele-
ments representing the number of dispatched DBSs (n(i)D )
and the user-demand range (D(i)

∈ D) in each region
Zi ∈ {1, 2, . . .M}, where D = {D1,D2, · · ·,DK }
is the set of all possible demand ranges. We note that
D(i) depends on the actual number of users in region
Zi. Specifically, the state s can be expressed as s =
(n(1)D , n

(2)
D , . . . n

(M )
D ,D(1),D(2), . . .D(M )).
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2) POSSIBLE ACTIONS
The action a is defined as the number of dispatched DBSs
for each region at each state. The set of available actions to
the cellular operator is given by A = {a1, . . . , ak , . . . aL},
where L is the total number of feasible combinations of
DBS dispatching to the M regions, and action a ∈ A is an
M -dimensional vector representing the taken action of dis-
patching DBSs to each region Zi at state s, for i =
{1, 2, . . .M} (e.g., a1 = (1, 1, . . . 1) represents the action
that only one DBS is sent to each region). We note that∑M

i=1 n
(i)
D ≤ N , which indicates that the total number of

dispatched DBSs during one transition step/flight period does
not exceed the available number of DBSs N .

3) STATE TRANSITION PROBABILITY
The demand (number of users) in the region Zi (ui,∀i), in gen-
eral, evolves according to an unknown Markov process with
transition probability p(i)(u′i|ui), where ui and u

′
i denote the

current and evolved number of users in region Zi during one
step transition, respectively. The user-demand range in the
region Zi at a given state not time, denoted as D(i), is mapped
into one of the defined demand ranges in D. Hence, the
transition probability from demand range D to D′ in region
Zi is given as p(i)(u′i ∈ D

′
|ui ∈ D).

The number of dispatched DBSs evolves according to:

(n′D(1) , n′D(2) , . . . n
′

D(M ) ) = a (9)

where a is the taken action at the current state s. Given the
independent user-demand in the different regions, the transi-
tion probability from state s with demand range D(i)

= D to
state s′ with user-demand range D′, ∀i, given an action a is
taken, can be written as:

p(s′|s, a) =

{
5M
i=1p

(i)(u′i ∈ D
′
|ui ∈ D), if (9) is satisfied

0, otherwise.

(10)

4) IMMEDIATE REWARDS
The immediate reward (i.e., the reward resulting from taking
action a at s and transiting to s′) is given as:

r(s, a, s′)=

{
r, if all users are served without extra DBSs
0, otherwise.

(11)

where r =
∑M

i=1 u
(i)
servedP − (FC + CDn∗(i)D ), and n∗(i)D is the

least number of DBSs needed to serve all the users in each
region Zi. Mathematically, n∗(i)D is the one that satisfies the

following inequality: Umax(n
(i)
D − 1)+ 1 ≤ ui ≤ Umaxn

(i)
D ,∀i,

where i = 1, 2, . . .M . The lower inequality ensures that
the number of dispatched DBSs to each region Zi can serve
the current demand in that region, while the upper inequality
ensures that no unnecessary DBSs are assigned to region Zi.

FIGURE 3. An MDP showing all possible next states for the actions
a1 = {1, 2} and a2 = {2, 1} for a network with 2-region and
2-demand-range.

5) POLICY
A deterministic policy π is used to map states into the dis-
patching action selected at each state, π (·) : s → a,∀s. The
main goal is to maximize our objective function (achieved
profit) by finding the optimal policy (π∗), where π∗ results
in a better (or at least equal) action-value function (i.e.,
qπ∗ (s, a) ≥ qπ (s, a), ∀s ∈ S) [18].
Figure 3 shows an illustrative example for an MDP that

represents the considered DBS system. The service area con-
sists of 2 cells/regions (i.e., Z1, and Z2). The set of user
demands consists of 2 demand ranges (i.e., D = {D1,D2}).
This example shows all possible next states s′ for the actions
a1 = {1, 2} and a2 = {2, 1} given that the current state is
s = (1, 1, 1, 1) with demand range D1 in both cells. This
figure also shows the transition probabilities from state s to
all other states s′.
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FIGURE 4. The operator’s profit versus P for 3 regions under uniform, skewed and random demand transition matrices.

C. THE PROPOSED RL-LEARNING APPROACH
This part discusses the proposed solution for the considered
problem using RL, where RL has the capability of handling
the challenge of knowledge unavailability about the user
demand and mobility. In the proposed RL approach, state-
action-reward-state-action (SARSA) learning method is used
as a prediction algorithm, while the convergence-based algo-
rithm is used as an exploration algorithm.

1) THE PREDICTION METHOD
SARSA learning is a temporal-difference (TD) method [17],
which is used to predict and evaluate the values of different
actions taken by the DBS operator at different states. The
values of actions at the feasible states are predicted and
evaluated using SARSA as follows. Let the current state
be s. The exploration algorithm (e.g., the convergence-based
exploration algorithm) is used to select an action a (i.e.,
dispatching a number of DBSs for each region) at s. This
results in a transition from s to a new state s′ and obtaining
a reward r(s, a, s′). After transiting to s′, the used explo-
ration algorithm is used to select an action at s′. Using
the information collected from the previous steps, the value
of the current state-action pair (i.e., Q(s, a)) is updated
as [17]:

Q(s, a)← Q(s, a)+ α[r(s, a, s′)+ γQ(s′, a′)− Q(s, a)]

(12)

where α is the learning rate that determines how
much the newly acquired data contributes to the older
information.

2) THE EXPLORATION ALGORITHM
This part discusses the exploration algorithm implemented
in our proposed RL-based algorithm, which is called the
convergence-based exploration algorithm. The exploration
algorithm handles the challenge of having only causal knowl-
edge about the dynamic change in users’ demand in the
network. It is responsible for finding a balance between
the exploration and exploitation modes during the learning
process. In the exploration mode, the agents gather more
information about the underlying model by trying new poli-
cies in hope of finding a policy that performs better than the
current best one. On the other hand, in the exploitation mode,
the agents make their decisions by following the best avail-
able policy according to the current available information,
while it is possible that there is an unexplored policy that
might perform better than the current best policy.

The convergence-based exploration algorithm aims to bal-
ance exploitation and exploration modes by employing two
parameters, called exploration time τ , and the action-value
function convergence error ζ . In the considered task, τ
denotes the maximum time that DBSs are allowed to explore
different policies. After this time, DBSs are obligated to use
the best policy as per the current information. ζ specifies the
approximate accuracy of estimate value of a state-action pair,
which is defined as the maximum error allowed in estimating
the value of a state-action pair during the exploration mode.
The same action continues to be used at a state when it is
visited until the value of the state-action pair is approximated
to a value with an error less than or equal to ζ [19], [20]. The
convergence-based exploration algorithm is implemented by
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FIGURE 5. The operator profit for 3 regions and P = 3 under different demand transition matrices (similar behaviour has been observed for other
values of P).

conducting the following steps: before learning, actions of
dispatching DBSs are randomly assigned to all available
states. At each visited state, DBS operator continues to use the
same dispatching actions according to the current policy until
the approximate error of the estimate value of the state-action
pair becomes equal or less than ζ as long as the available time
is less than τ . Once the estimated value of the state-action
pair converges to a value with an approximate error that
is less than or equal to ζ , a random unexplored action is
assigned to this state and the policy is updated. The DBS
operator keeps following the aforementioned steps unless one
of these two conditions is met. The first one is met if all
dispatching actions available at a state have been evaluated
before reaching τ . At this time, the best learned action at
this state will be used during the remaining time. The second
condition occurs if the remaining time is τ . At this time, DBS
operator terminates the exploration mode, and turns to the
exploitation mode, where the best learned policy is followed
during the remaining time.

3) COMPLEXITY AND CONVERGENCE
The adopted convergence-based exploration algorithm along
with SARSA prediction algorithm aims at achieving an effi-
cient learning performance. This RL-based algorithm tries
to accurately predict the values of the different state-action
pairs, and then, utilize the best resulting policy. The work
in [20] has proven that the complexity of this RL-based
algorithm is O(|T |), where T is the final time step of an
episode.

V. PERFORMANCE EVALUATION
Simulation experiments using MATLAB programs are con-
ducted to analyze the effectiveness of our proposed RL-based
dispatching algorithm, referred to as RL-based Dispatching.
The performance of our dispatching algorithm is compared
with that of the MAX-Drone Dispatching (4 DBSs for each
region), AVG-Drone Dispatching (2 DBSs for each region)
and MIN-Drone Dispatching (1 DBSs for each region) algo-
rithms. The simulation time is divided into time slots, each
presenting a flight time supported by each DBS’s battery.
During each flight-period (time slot), the cellular operator
dispatches DBSs to the different regions according to the
learned policy. The discount factor and learning rate used
in our RL-based experiments are set to γ = 0.95 and 0.1,
respectively. The reported results are averaged of 1000 inde-
pendent episodes (learning sessions), each with 30000 time
slots. The main performance metrics are the overall achieved
operator’s profit and the cumulative discounted return over
the learning sessions.

A. SIMULATION SETUP
A network of 3 hotspots and 12 DBSs is simulated in a cel-
lular coverage area. The user demand in each hotspot varies
according to an unknown time-varying behavior. We set
the operating drone cost per DBS to CD

= 35 units of
price, and the fixed operating cost to 10 units. Four differ-
ent user-demand scenarios are simulated. The four scenar-
ios differ in the values of the transition probabilities of the
demand range indicator (i.e., the probability of transiting
from one demand range to another). Specifically, uniform,
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FIGURE 6. The operator profit for 3 regions and P = 3 and 5 under different demand transition matrices.

skewed high, skewed low, and randomly generated transition
matrices are considered. For the uniform demand scenario,
the transition probability for user demand in any region
Zi (p(u′i ∈ Dj|ui ∈ Dk )) are assigned uniformly for the
4 demand ranges as follows p(u′i ∈ Dj|ui ∈ Dk ) = 0.25,
∀j, k ∈ {1, 2, 3, 4}. For the skewed-high and skewed-low-
demand behaviour in each hotspot, the transition probabilities
between the different demand ranges are randomly assigned
for each of the learning session such the total probability of all
possible transitions from one user-demand range to all other
ranges equals to 1. For the skewed high-demand scenarios,
the transition probabilities from any demand range j to the
high demand ranges (D3 and D4) are randomly selected such
that p(u′i ∈ D3|ui ∈ Dk ) + p(u′i ∈ D4|ui ∈ Dk )= 0.7,
where k = 1, 2, 3, 4. For the skewed low-demand scenarios,
the transition probabilities to the low demand ranges (D1 and
D2) in each region Zi are randomly selected such that p(u′i ∈
D1|ui ∈ Dk ) + p(u′i ∈ D2|ui ∈ Dk ) = 0.7. For the
randomly generated matrix, the transition probabilities are

randomly selected from the range (0, 1) such that the sum of
all transition probabilities from a given demand range to all
others (including staying in the same demand range) is 1.

B. SIMULATION RESULTS
Fig. 4(a)-(d) plots the total operator’s profit for differ-
ent subscription service fee (P) values under uniform,
skewed-high, skewed-low and randomly generated transi-
tion probability matrices, respectively. Fig. 4 indicates that
our proposed RL-based Dispatching algorithm significantly
enhances the operator’s profit compared to the other algo-
rithms, irrespective of P and user-demand scenarios. For
example, Fig. 4(a) reveals that under uniform user-demand
and P = 3, our algorithm outperforms the MAX, AVG- and
MIN-Drone Dispatching algorithms by up to 130%, 27% and
87%, respectively. Fig. 4 also indicates that as P increases
the MAX-Drone Dispatching outperforms the AVG- and
MIN-Drone Dispatching algorithms. This is because the total
revenue increases by increasing P, which compensates for
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the profit loss due to the higher number of un-necessarily
dispatched DBSs in MAX-Drone Dispatching. On the other
hand,MAX-DroneDispatching performs the worst under low
values of P as the profit loss due to the high number of
un-necessarily dispatched DBSs becomes dominant, result-
ing in reduced profit.

Fig. 5 plots the discounted return Gt under uniform,
skewed-high, skewed-low and randomly generated transition
probability matrices for P = 3. The discounted return,
known as cumulative discounted received reward, is defined
as the cumulative valuable rewards received from a DBS
dispatching process during a given time. This figure illus-
trates that the RL-based Dispatching algorithm outperforms
the other algorithms in terms of the overall achieved oper-
ator’s profit. For the RL-based dispatching algorithm, the
discounted return Gt significantly increases with more col-
lected data (i.e., learning experience). Fig. 5 shows that the
performance of the proposed RL-based dispatching algorithm
saturates as time elapses. This is due to the fact that the
system has reached a learned policy that cannot be enhanced
further. This figure also indicates that the performance of
the MAX-, AVG- and MIN-Drone Dispatching algorithms
does not change with time (no performance enhancement is
observed with time). This is expected as each one of the three
algorithms adopts a fixed DBSs dispatching policy that does
not change with time. Similar behaviour are observed for
other values of P.
Finally, Fig. 6 plots the operator profit under uniform,

skewed-high, and skewed-low transition probability matri-
ces for P = 3 and P = 5. This Figure reveals that our
propose RL-based algorithm outperforms the other algo-
rithms in terms of the achieved profit, irrespective of P
and the user’s demand behaviour. It is clear that the
achieved profit of our algorithm significantly increases with
time due to the continuous learning and more collected
data. This figure also shows that as P increases the over-
all profit increases. For P = 3, Figures 6(a) and(c) show
that the AVG-Drone Dispatching outperforms the MIN- and
MAX-Drone Dispatching algorithms under uniform and
skewed-high demand scenarios. For skewed-low scenar-
ios, Fig. 6(b) indicates that AVG- and MIN-Drone Dis-
patching provide comparable performance that outperforms
the achieved performance of the MAX-Drone Dispatching
algorithm. This is because the MAX-Drone algorithm dis-
patches higher number of DBSs than required, resulting
in extra cost and reduced profit. For high price P = 5,
Fig. 6(d) and (f) reveal that MAX-Drone Dispatching out-
performs the MIN- and AVG-Drone Dispatching algorithms
under uniform and skewed-high scenarios. This is because the
total revenue of serving more users increases as P increases,
which compensates for the extra cost incurred by dispatch-
ing higher number of DBSs. Under skewed-low scenarios
(Fig. 6(e)), the MAX-Drone Dispatching performs the worse
as it incurs higher operating cost with least revenue. We note
that under higher price P, AVG-Drone Dispatching outper-
forms theMIN-Drone Dispatching algorithm. This is because

the possible revenue gain that can be made by dispatching
larger number of DBSs is higher than their incurred operating
cost.

VI. CONCLUSION
This paper investigated the profit-maximization DBS dis-
patching problem in a multi-cell B5G/6G network while
being aware of the time-varying uncertain fluctuated user
demand across the different cells in the network. The prob-
lem was modeled as a profit-maximization discount-return
problem with the goal of improving the overall operator’s
profit by minimizing the cost of the dispatched DBSs and
reducing the possible profit loss due to the unavailability of
DBSs to achieve user demand. To deal with the uncertainty
in user demand, the profit-maximization was mapped to an
MDP problem, for which a SARSA-based RL algorithm was
used to solve the formulated MDP. The proposed RL-based
dispatching algorithm continuously adapts its dispatching
policy based on a continuous learning provided by the
online interactionwith the operating environment. Simulation
results showed that significant operator profit improvement
can be achieved, compared to reference static dispatching
algorithms, by considering the demand uncertainty across
the network when performing on-demand per-cell DBS
dispatching.
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