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ABSTRACT In the past decade, improving upper limb prostheses control methods with pattern recognition
(PR) has been the focus of an extended amount of research. However, several challenges associated with
the processing of the Electromyogram (EMG) signals still need to be tackled to enable widespread and
clinical implementation of upper limb prostheses with PR. As a result, alternative modalities functioning
as promising control signals have been proposed as source of control input rather than the surface EMG,
such as Acoustic myography (AMG) and Force myography. In this paper, eight high sensitivity array
microphones were utilized to acquire the AMG signals, with 8 custom-built 3D printed microphone housing
developed for the purpose of this research. Twenty subjects were recruited for data collection in this paper
with the hardware design developed specifically by our research team, making our database the largest
open-access dataset in the AMG literature. We proposed a novel feature extraction (FE) method based
on the Wavelet Scattering Transform (WST) to tackle the challenge of extracting the relevant information
from AMG to classify 14 hand and finger movement classes. The WST is a translation-invariant non-
linear signal representation that has a strong theoretical support as it maintains stability to time-warping
deformations, while preserving a high degree of discriminability. The performance results showed that WST
outperformed all state-of-the-art FE methods with an accuracy of 88% on average across 20 subjects when
classified with Quadratic Discriminant Analysis (QDA) classifier for a large dataset of AMG signals. These
results suggest that the AMG signals can be utilized as a reliable source of control, especially when the
windows sizes and number of channels are carefully selected. The AMG dataset is available from the link
https://drive.google.com/drive/folders/1r0rBnrNG5c8qegffKUhAYYHQUT8cGVHD?usp=sharing.

INDEX TERMS Acoustic myography, pattern recognition, wavelet scattering, hand gesture recognition,
upper limb prostheses.

I. INTRODUCTION
For individuals with limb amputations, who lost a limb due
to trauma, accidents and wars, upper limb prostheses con-
trolled with biosignals can offer a mean to allow them to
perform the activities of daily living. In an approach to help
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amputees to gain partial functionality of the lost hand, Pattern
Recognition (PR) methods are usually applied on the surface
Electromyogram (EMG) signals to decipher the movement
intentions of control [1], [2], an approach which has achieved
commercial success.1 However, the high cost of upper limb
prostheses is still a barrier for most amputees. Additionally,

1https://coaptengineering.com/
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the lack of stability overtime and performance degradation
due to daily factors such as signal non-stationarity [3], con-
traction level change [4] and limb position change [5] will
limit their widespread utilization. Furthermore, the acquired
signals can be easily contaminated with variety of noises
such as power line interference, ECG contamination, and
environmental noise.

Since the EMG signal is electrical in its nature, other
modalities such as mechanical signals have been investigated
for the control of upper limb prostheses [6], including: Force
myography (FMG) [7], Mechanomyography (MMG) [8],
[9], [10] and Acoustic Myography (AMG) [11], [12]. These
methods have shown the potential as a source of control,
being less affected by noise contamination than that usually
affecting surface EMG.

AMG is the recording of the mechanical vibrations of
the muscle at a low frequency [13], usually below 100 Hz
[14], [15], with the dominant frequency below 50 Hz. Both
accelerometers [11], [16] or microphones [12] can be used to
record the AMG signal. The mechanical vibrations recorded
with the microphones are termed acoustic myography [6].
A variety of applications have been performed with AMG
such as providing control signals for prosthesis control with
PR system [16] and muscle activity assessment [17]. How-
ever, while extensive research has beenmade on EMG feature
extraction [18], there is still a need for emerging feature
extraction methods to be investigated for extracting relevant
information from the acoustic muscle signals, i.e. AMG.

Early research investigating pattern recognition for gesture
recognition with AMG was reported in the work in [19],
where 8 microphones were utilized to record 7 gestures
offline. The authors utilized a variety of power spectral den-
sity features and a Support Vector Machines (SVM) classifier
to obtain a classification accuracy of 88%. However, the num-
ber of gestures was relatively small. To harvest the informa-
tion provided with both EMG and MMG, a hybrid EMG and
MMG system made with microphones and accelerometer for
an assisted EMG-MMG control of prostheses was developed
by Guo et al. [16]. Seven intact-limbed and 2 amputee sub-
jects were recruited to perform 13 classes of hand and wrist
movements, while utilizing four channels of EMG andMMG
channels. It was shown that adding the MMG improved the
results significantly upon using EMG only, where the AMG
collected by microphones achieved better performance than
those of the MMG acquired with accelerometers. In a latter
study [9],a real-time gesture recognitionwristbandwas devel-
oped based on EMG and inertial measurement unit (IMU) for
recognizing 12 gestures (8 air gestures and 4 surface gestures)
with 2 force levels. The system achieved an accuracy of
92.6% and 88.8 %, when tested on 10 subjects for the air and
surface gestures, respectively.

A multi-channel finger pattern recognition was performed
in [20] with MMG, consisting of statistical, frequency-
domain, and acoustic features; and classified by artificial
neural networks (ANNs). A real-time average classifica-
tion accuracy for seven movements of 88.6% - 95.1% was

obtained for the intact-limbed subjects where the best per-
formers were the male athletes’ subgroup, while for the
amputees, the accuracy was 74.4% and 77.6% for unilateral
transradial and wrist amputation subjects, respectively. How-
ever, the number of movements investigated was relatively
small.

While single modality AMG systems performed well,
adding other modalities such as MMG [10] or FMG seems
to add more information, therefore improving the overall per-
formance of the system. For instance, a combination of FMG
and MMG was utilized in [21] to construct a hybrid control
system of MMG and FMG signals. The hybrid system was
evaluated with PR, where twelve movements were performed
by 12 subjects including 6 amputees. In terms of feature
extraction, time-domain, time-frequency, and acoustic fea-
tures of MMG-FMG sensors were all investigated. An aver-
age classification accuracy of 91.44%±0.77was obtained for
amputees and 92.19%±1.12 intact limbed subjects. A hybrid
system was also proposed in [22], with 10 microphones and
IMUs. Thirteen daily life gestures were implemented with
their protype. An accuracy of 75% accuracy was obtained
when placing the sensors on the wrist, with the best-chosen
features. In addition, the wrist was found to be the optimal
area for the acoustic measurements, with an accuracy of 80%,
using one microphone and IMU. To investigate the effect of
adding more microphones, 40 microphones were placed on
4 rows near the wrist for recognizing hand gestures [12].
An accuracy of 90% for 34 American sign language gestures
was obtained with time-domain features with LDA and SVM
classifiers. However, challenges exist when attempting to
implement this number of microphones within any real-time
platform for daily usage. Furthermore, a performance of up to
84%was reported when using 10microphones, and testing on
10 subjects, which in turn indicates the importance of having
a large number of sensors to reliably identify the large number
of gestures proposed.

Four microphones were also utilised in [8] to construct
a wrist band human-machine interfacing based on 6 wrist
movements. A PR system consisting of of 213 spectro-
temporal features per channel and a Neighbourhood Com-
ponent Analysis classifier was used to obtain an accuracy of
75% for 7 intact-limbed and 79-90% for the 3 amputees. It is
worth noting that no finger or pinch movements were investi-
gated in their work. The previous research shows the potential
of utilising PR system based on AMG for recognizing hand
movements.

From the previous literature, it is obvious that challenges
still need to be tackled such as gestures of daily living by the
amputees and relatively low accuracy below that of usable PR
system (defined as ≤ 10 in the literature [23]). In this study,
14 selected hand and finger movements used by the amputees
in their daily living will be investigated with 8 channels AMG
signals. The data set is the largest for acoustic myography as
it involves recordings from 20 subjects, including 7 females.
Additionally, our analysis presents a new feature extraction
method based on the wavelet scattering transform (WST)
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for acoustic measurements of the wrist, on 8 channel AMG.
The performance of the proposed method is then compared
with other FE methods utilized in the EMG literature to
show the superior performance of the proposed method. Our
research hypothesis is that when considering the AMG as
a single input modality one can achieve significant perfor-
mances by focusing on the state-of-the-art feature extraction
provided by WST rather than relying on traditional feature
extraction techniques. The experiments presented in the next
sections investigate the applicability of our hypothesis against
traditional techniques to provide the value of our proposed
approach.

II. METHODOLOGY
A. THE PROPOSED FEATURE EXTRACTION BASED ON THE
WAVELET SCATTERING TRANSFORM (WST)
Given the nature of the AMG signal and the fact that pre-
vious research in this direction relied mainly upon traditional
time-frequency and power spectral density features, we opted
to further extend upon the methods from the literature by
proposing the use of the wavelet scattering transform (WST).
The WST is a translation-invariant non-linear signal repre-
sentation that has a strong theoretical support as it maintains
a stability to time-warping deformations, while preserving a
high degree of discriminability [24]. The WST is defined as
a complex-valued convolutional neural network that replaces
data-driven filters bywavelets and the non-linearity by a com-
plex modulus [24], [25]. The wavelet transform convolves an
input signal x(t) with a filter bank of ψλ1 that is made by
dilations of a mother wavelet ψ(t), whose Fourier transform
ψ̂ (w) is concentrated over the dimensionless frequency inter-
val [1 - 21/2Q; 1+ 21/2Q], withQ being the quality factor (the
number of wavelets filters per octave for each filter bank).
By dilating the mother wavelet, a family of bandpass filters
centered at λ1 = 2j1+

χ
Q is generated, with the indices of

j1 ∈ Z and χ ∈ {1 . . .Q} respectively denoting the octave
and chroma.

ψ̂λ1 (w) = ψ̂
(
λ−1w

)
i.e., ψλ1 (w) = λ1ψ (λ1t) . (1)

A scalogram matrix is then generated by applying the com-
plex modulus to all wavelet convolutions (denoted by ?) with
the signal x(t), that is x1(t, λ1) =

∣∣x ? ψλ1 ∣∣ with a frequen-
tial axis that is uniformly sampled by the binary logarithm.
The energy of x(t) is localized by the scalogram x1 around
frequencies λ1 over durations of 2Qλ−11 [26]. The WST
coefficients are obtained by averaging the wavelet modulus
coefficients with a low-pass filter φ (t) of size T , which
ensures local invariance to time- shifts.

S1x (t, λ1) =
∣∣x ? ψλ1 ∣∣ ? φT (t). (2)

At the zero order, a single coefficient is generated by
S0x (t) = xλ1φ(t), as these have very low energy at low
frequencies [24]. As the low-pass filtering process removes
all high-frequencies, these are then recovered by a wavelet
modulus transform as the time scattering transform also con-
volves x1 with a second filter-bank of wavelets ψλ2 and

FIGURE 1. The wavelet scattering transform hierarchical representation.

applies complex modulus to obtain:

x2 (t, λ1, λ2) =
∣∣x1 ? ψλ2 ∣∣ = ∥∥x ? ψλ1 ∣∣ ? ψλ2 ∣∣ . (3)

In the sameway as Eq.2, translation invariance in time up to T
is attained by averaging. Hence, the second order coefficients,
capturing the high-frequency amplitude modulations occur-
ring at each frequency band of the first layer, are obtained by

S2x (t, λ1, λ2) =
∥∥x ? ψλ1 ∣∣ ? ψλ2 ∣∣ ? φT (t). (4)

with an octave resolution of Q2 for the wavelet ψλ2 hav-
ing, where Q2 is different from Q1. By setting Q2 = 1,
a narrower time support is defined for wavelets that are
suitable to characterize transients and attacks. As a result,
a sparse representation is developed leading to concentrating
the signal information over as few wavelet coefficients as
possible. A low-pass filter ϕ then averages these coefficients,
this in turn ensures local invariance to time-shifts, as with the
first-order coefficients [27]. The scattering coefficients are
defined by iterating the operation at any order m (see Fig.1
for an illustration of theWST representation). For anym > 1,
iterated wavelet modulus convolutions are written as:

Umx (t, λ1, . . . , λm) =
∣∣∥∥x ? ψλ1 ∣∣ ? . . . ∣∣?ψλm (t)∣∣ , (5)

where the mth-order wavelets ψλm have an octave resolution
Qm. The application of ϕ onUmx gives scattering coefficients
of order m

Smx (t, λ1, . . . , λm) =
∣∣∥∥x ? ψλ1 ∣∣ ? . . . ∣∣?ψλm(t)∣∣ ? φ (t)

= Umx (t, λ1, . . . , λm) ∗ φ (t) (6)

The final scattering vector for a scattering decomposition
of maximal order l collects all scattering coefficients for
0 ≤ m ≤ l. The WST allows low-variance features to be
extracted from real-valued time series and image data [24],
[28], [29], [30], [31], [32]. It provides a signal deformation
and invariance stable representation, making it suited for a
wide range of signal processing and machine/deep learning
applications that have already been examined in the literature.
Given the nature of the WST within which the energy dimin-
ishes across the decomposition levels, a three-layers WST is
usually adequate for practically many applications.
In comparison to deep convolutional neural networks, the

WST can avoid the need for multiple model parameters,
high computational costs, hyperparameter adjustment, and
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difficulties comprehending and interpreting the extracted fea-
tures. It also provides translation invariance, local deforma-
tion stability, and rich feature information storage that are
all attractive properties for any feature extraction process.
To further elaborate on the power of the WST based feature
extraction on AMG signals, we also include comparisons
with the traditional wavelet transform and wavelet-packet
transform based feature extraction processes as well as some
recently developed combination of time-domain based fea-
ture extraction techniques that were mainly proposed in the
literature for EMG classification.

B. SUBJECTS
In this study, 20 subjects (13 males and 7 females) were
recruited. The mean age of the subjects was 25.4 ± 9.3 years
(Mean ± SD) (mean age: 27.7 years for males; mean age:
21.5 years for females). Before starting the experimental data
collection, subjects were debriefed about the experiment, and
they gave their signed consent to participate in the study. The
experiments in this study were performed in accordance with
the declaration of Helsinki and its updates [33].

C. AMG SIGNAL ACQUISITION
Eight high sensitivity array microphones (MPA416, BSWA
technology, China) were utilised to acquire the AMG signals
with a frequency range of 20Hz-20KHz, open-circuit sensi-
tivity (50 mV/Pa)(±2dB) and inherent noise of 29dBA.

The MPA416 microphones were calibrated by the
manufacturer to ensure accuracy of the measurements.
The MPA416 built-in Integrated Electronics Piezo-Electric
(IEPE) preamplifier helps to amplify the AMG signals,
to ensure a good signal-to-noise ratio (SNR), since the ampli-
tude of AMG signal is very low. National Instruments (NI),
24-Bit PXI module for acoustic and vibration measurements
(NI PXIe-4492), mounted on an NI PXIe-1073 chasse was
used to perform data acquisition of 8 channels AMG at a
sampling rate of 1024 Hz. A Labview Virtual Instrument (VI)
was developed to view the AMG signals in real-time and to
save them for next parts of analysis.

We constructed 8 microphone housings with a 3D printer
to acquire the AMG signal the shape and dimensions of the
housings are inspired by those in [34]. We designed the hous-
ings so that the microphones could fit inside, and the base
of the housing was shaped like a cone. The cones were then
integrated with an elastic armband and placed on the forearm.
This allowed us to eliminate artifacts due to movement, as
proper microphone attachment can preserve the characteris-
tics of AMG signals [35], [36].

D. SENSOR PLACEMENT
A pilot study was performed to find the best location of
the AMG sensors of the forearm. Four locations were inves-
tigated by placing four microphones on the four locations
and recording the hand close movement with 4 contraction
levels (low, medium, high and maximum). The recording of
the AMG for the 4 channels and the locations are shown in

FIGURE 2. The pilot investigation of 4 sensor locations on the forearm
(position 1 near the wrist and position 4 near the elbow), with the
corresponding AMG signals for 4 channels while the subject performing
hand close movement with 4 contraction levels.

Fig. 2. We found that location 3 and 4 at the upper part of
the forearm near the elbow gave a better signal quality and
higher amplifier than those near the wrist. For that reason,
the 8 channels of the AMG will be placed on the upper part
of the forearm.

The 8 microphone housings were combined to form 3 elas-
tic bands, the first has 3 microphones, the second has 4micro-
phones and the last has only 1 microphones. The eight AMG
microphones were placed on the upper part of the forearm.
Fig.3 shows the AMG armband with the 8-microphone hous-
ing and the elastic bands. According to the circumference of
the upper forearm of the participants, the elastic band was
used to adjust and to fix the microphones on the forearm.

E. EXPERIMENTAL PROTOCOL
To acquire the 8 channel AMG, subjects sat on a chair and the
forearm was resting on an armrest on the table, after putting
the 8-channel on the upper forearm.We utilised the following
experimental protocol to record the eight AMG signals from
each participant. The subjects were asked to produce tran-
sient, moderate force contractions, that lasted 2-4 seconds.
We collected AMG signals for 14 movement classes includ-
ing: Pronation, Supination, Wrist Flexion, Wrist Extension,
Radial Deviation, Ulnar Deviation, Hand close, Hand open,
Hook grip, Fine pinch, Tripod grip, Index finger flexion,
Thumb finger flexion, and No movement (Rest).

At the start of the experiment, there was a trial run to collect
the data and to see how the AMG signals changes when
trying different wrist/hand and finger movements. LabVIEW
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FIGURE 3. The developed AMG armband with the 8 microphones with
their custom 3D-Printed housing. A. Example of the location of the 3 wrist
bands on the forearm. B. Wrist band3 placed on the transradial level. C.
Wrist band2 with 4 microphones and D. Wrist band1 with 3 microphones
placed on the upper forearm.

screen in real-time display was used by the subjects to view
the 8 channels AMG to assist them to reproduce the needed
movement. In Fig. 4, 8 channel AMG are shown for subject 9
while performing a sequence of ten hand open movements.
For each movement, subjects produced 20 repetitions with
rest periods of 2-3 seconds between the repetitions. It is
noteworthy to mention that the AMG collection was done in a
relatively quiet environment where the background noise was
measured, and it was equal to 35 dB. The full experimental
setup is illustrated in Fig. 5.

To preprocess the data for the analysis, each trial was
extracted, and all 20 trials were concatenated in one file
which will be used later for further analysis. The LAUM
AMG datasets for all subjects are open access for research
community from the third author’s website.2

Five-fold cross validation was used for testing the PR
systems below with AMG signals, which will be presented in
the next section. Fig. 6 shows a radar plot of themean absolute
value of theAMG signals of all AMG channels for female and
male subjects, for all movements investigated in this study.

F. PATTERN RECOGNITION ANALYSIS METHODS
An overlapped windowing scheme was utilized during the
WST feature extraction process. In the experiments, both
the window sizes and windows increments are varied to
understand the impact of the windows sizes on the achieved
classification results [37]. To compare the performance of
the WST feature extraction process with several existing

2https://www.rami-khushaba.com/

FIGURE 4. Example of the 8 channel AMG for subject 9 while performing
a 10 repetitions of hand open movements. AP: Acoustic Pressure.

FIGURE 5. The experimental setup of the AMG signal acquisition system
with a subject performing a series of hand close movements.

and notable EMG feature extraction methods reported in the
literature, we decide to include the following methods in our
comparison analysis to provide a fair comparison for these
methods on the AMG signals, including:

• Time Domian-Autoregressive (TDAR6) [38]: includ-
ing the combination of Mean absolute value (MAV),
Waveform length (WL), number of zero crossings (ZC),
number of slop sign changes (SSC), plus a 6th order AR
model,

• AR-RMS [39]: made of a combination of the root mean
square (RMS) and the 6th-order AR model parameters;

• LSF9: originally defined in [40], this set is made up
of ZC, RMS, L-scale, Mean Value of the Square Root,
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FIGURE 6. Radar plot of the mean absolute value of the AMG signals for
2 sets of movements investigated (A. wrist and B. hand movements) for
male and female subjects.

Maximum Fractal Length, Willison Amplitude, Inte-
grated Absolute Value, Variance, and Difference Abso-
lute Standard Deviation Value;

• ATD: Combined TD and AR as defined in [41], made
up of WL, MAV, Log-Variance (LogVar) and 4th-order
AR model parameters,

• Mel-Frequency Cepstral Coefficients (MFCC) [42],
features of the MFCCC usually utilized in audio FE.

• Spatio-temporal features (STFS) from [43], made up of
Normalized Root-Square Coefficient of 1st and 2nd dif-
ferential derivatives, Integral Square Descriptor, an esti-
mate of Mean Derivative of the higher order moments
per sliding window, Mean Log Kernel, and a measure of
Spatial Muscle Information.

• Fusion of Time domain descriptors (fTDD) [44]: The
fusion of six time-domain features extracted from each
analysis window with the same features extracted from
a previous window. The steps parameter of this method
was empirically chosen as 5.

• Wavelet Transform (WT) and Wavelet-Packet Trans-
form (WPT) features [45]: These included the energy
of the wavelet coefficients from both transforms. The

selection of the wavelet family and the decomposition
levels were optimized across the AMG data showing the
best performance to be achieved with Symmlet (order 8)
family of wavelets across 5 decomposition levels.

As the various feature extraction methods provided different
numbers of features, a dimensionality reduction method was
utilized to account for different feature set sizes and ensure
a fairer comparison. Specifically, the Spectral Regression
(SR) feature projection method [46] was used to reduce the
dimensionality of all feature sets to n-1, with n being the
number of classes in the corresponding dataset.

In terms of the classification models, the following tradi-
tional classifiers were evaluated, given their common use in
the literature: Linear Discriminant Analysis (LDA), Extreme
LearningMachine (ELM), and Quadratic Discriminant Anal-
ysis (QDA). The details of these traditional classifiers can be
found in any pattern recognition reference and were hence
omitted from this paper. In order to compare our classification
results to those obtained by others, and verify the statistical
significance of the difference, the Wilcoxon signed rank test
was applied, with the results being considered significant for
a p-value < 0.05.
The final part of the experiments involved investigating

the effect of number of AMG channels on the classification
performance and to find the optimal number of channels with
the WST and the best classifier. The channel selection pro-
cess was performed using the Differential Evolution Feature
Selection (DEFS) methods by Khushaba et al. [47]. This
is a population-based channel selection method employing
a customized version of DE method (a variant of genetic
algorithms). Statistical significance for the optimal number
of channels, was also tested using Wilcoxon signed rank
test.

III. RESULTS
In the first part of the experiments, we varied the analysis
windows size and increments to verify the usefulness of using
larger windows sizes for the classification of AMG signals.
The analysis here included using windows sizes of 128 ms,
192 ms and 250 ms worth of data with increments of 32 ms,
64 ms and 128ms, respectively. As expected, the results show
a decreasing error trend with larger windows, with the best
performances achieved at a windows size of 250 ms with
error rates of 9.48%. It is important to mention here that
while the literature defines the acceptable error levels for an
EMG controlled system to be ≤10% [23], there has been
no similarly defined levels of acceptable errors when using
the AMG signals, as this is a relatively new area. However,
to accommodate for the deep nature of the WST and its
required computational resources for online tests, we fixed
the remaining experiments at a windows size of 192 ms.
This would allow further time for feature processing and
classification for a real-time system to achieve an overall
delay of less than 300 ms defined in the literature as the
maximum allowed delay for prosthesis control [37]. Recent
research has further demonstrated that windows sizes of up
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FIGURE 7. Average classification error rates across all subjects using
different windows sizes/increments with the wavelet scattering
transform. Sampling frequency set to 1024, invariance scale of 0.12, and
quality factors of [41].

FIGURE 8. Average classification error rates of all utilized feature
extraction and classification methods.

to 750 ms [48], which further allows our system to produce
more accurate results.

For the next part of the experiments, using an analysis
windows size of 192 ms with 64 ms increments, we bench-
marked the performances of all the feature extractionmethods
in comparison to the WST across three different classifiers,
as shown in Fig.8. In this case, the WST outperformed all
other feature extraction methods with an average classifica-
tion error of 12.26%, 11.92%, and 11.82% across the LDA,
ELM and QDA classifiers respectively. In comparison to the
other methods, the Wilcoxon signed rank test showed that
the WST performance was statistically significantly different
than all other methods with p < 0.001, except the fTDD
when using the ELM classifier with p = 0.179. On the other
hand, the performances of the fTDD and WT methods were
not statistically significantly different from each other across
the LDA and QDA classifiers (p > 0.05), but significantly
different across the ELM classifier (p = 0.013), and only
marginally different from STFS across the QDA classifier
(p = 0.033). It is also interesting to note here that the
WT outperformed WPT across all classifiers (p < 0.001)
despite the fact that WPT further generalizes upon the WT

FIGURE 9. Subject performance of the 20 subjects with QDA and WST.

FIGURE 10. Average Confusion matrix with WST FE and QDA classifier.
Movements are: 1) Pronation, 2) Supination, 3) Wrist Flexion, 4) Wrist
Extension, 5) Radial Deviation, 6) Ulnar Deviation, 7) Hand close, 8) Hand
open, 9) Hook grip, 10) Fine pinch, 11) Tripod grip, 12) Index finger
flexion, 13) Thumb finger flexion, and 14) No movement (Rest).

by decomposing the low and high frequencies. This is in turn
driven by the nature of the AMG signal and the concertation
of the useful energy of this signal within the low frequency
side of the spectrum on which WT is focused, while WPT
is further focused on decomposing the noise from the high
frequency part of the spectrum.

In Fig.9, The classification error rates for 20 subjects are
shown when using WST FE and three classifiers, i.e, LDA,
ELM and QDA. The mean and standard deviation of all
subjects are also shown. S19 was the best performing subject
with an error rate of 8% while S4 was the subject with the
highest error of approximately 17%. Fig.10 illustrated the
average confusion matrix of 20 subjects with WSR FE and
QDA classifier for 14 movement classes.

For the final part of the experiment, we fixed the feature
extraction method on WST and the classification method on
QDA and analyzed the required number of channels to solve
the current classification problem. By varying the number
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FIGURE 11. The achieved classification error rates averaged across all
20 subjects while implementing AMG channel selection.

of selected channels, the classification error rates were ana-
lyzed and the average across all subjects is shown in Fig.11.
The channel selection results were achieved by using DEFS
methods [47] asmentioned in themethodology section. These
results indicated that the classification error rates gradually
decreased by considering more channels in this problem.
However, the decrease in the average classification error rates
did not continue after 6 channels, i.e., the average classifica-
tion errors were slightly higher when using 7 and 8 channels
respectively.

IV. DISCUSSION
We proposed a novel feature extraction method based on
WST while investigating AMG as a potential control signal
with pattern recognition system for recognizing hand ges-
tures. Increasing the window size of the AMG signal from
128 ms to 250 ms reduced the error rate from 18% till 10%
(Fig.7); this can be attributed to the fact that increasing the
amount of information gathered when increasing the win-
dows size.

When comparing the proposed novel WST feature extrac-
tion method, it outperformed the traditional methods with
all classifiers investigated, i.e. LDA, ELM and QDA (Fig.8)
including time domain features: TDAR, AR-RMS, and
fTDD; frequency domain features: STFT; and time frequency
features: WT and WPT. In addition, it outperformed other
methods MFCC and LSF9. As for the performance of the
three classifiers investigated, ELM and ODA outperformed
LDA classifier (Fig. 8).

The classification performance for all 20 subjects with
WST and QDA (best feature extraction/classifier combina-
tion) was illustrated (Fig.9) with the range of classification
error from 8% to 20% with an average of 11%. When using
WST with QDA classifier, the confusion matrix in Fig.10
showed that the most errors was in movement 1 while for
other movements the performance was within 80% and 90%
accurate. The performance of movement 1 (Pronation) can
be further improved by acquiring more AMG data from the
subjects to train the classifier. It should be noted that our

studies validated the PR based on WST feature extraction of
AMG collected from 20 subjects, larger than previous [9],
[10], [12], [16], [20] while achieving performance of 88%
for 14 gestures with only single modality without the use of
other modality such as MMG [16], [22] or FMG [21].

In our study, we chose the channel location in the upper part
of the forearm after performing the pilot study (Fig.2). Unlike
the work in [12] and [22], where the use of sensor placement
locations near the wrist was recommended, we found the
opposite of upper forearm part for the current set of move-
ments considered in this research.

We originally recorded 8 AMG channel for each subject
and run an experiment with DEFS [47] to investigate the
effect of channel number on the classification performance.
We found that no statistically significant differences were
observed between the results when using 6 and 7 channels
(average error of 11.28% with 6 channels and 11.34 % with
7 channels, p = 0.390), the analysis indicated statistically sig-
nificant differences (p < 0.001) between the results achieved
with 6 vs. 8 channels. This in turn indicated that 6 channels
are sufficient to solve this problem, after which adding more
channels can further increase the average error rates. This
can be attributed in part to the effect of the muscles crosstalk
contamination which could impact the quality of the AMG
signals. On the other hand, when looking at the indices of
the most frequently utilized channels when selecting a subset
of 6 channels only, it was found that sensor locations 6 and
8 were the least selected, while all other channels were neces-
sary to achieve the optimum performance in this experiment.

It should be noted that only four different positions of the
upper forearm were compared in a pilot test, and the signals
may be correlated to some extent, when investigating the
selection of the best position of the sensors in this study.
Anatomically, the distribution of the different muscles of the
forearm may be analyzed, and signals with low correlation
may be obtained. This matter can be further investigated in a
future study, with a large number of participants.

The study has a limitation that only offline experiments
have been conducted to validate the PR system with AMG
signals. Also, despite the large number of 20 intact-limbed
participants who were recruited, it did not include transradial
amputees. Future research will include testing the proposed
methods in this study on amputees and performing real-time
experiments.

V. CONCLUSION
In this paper, the AMG signals from the subjects’ forearm
have been proposed as a source of control for hand gesture
recognition with PR. A novel feature extraction for AMG
based on WST was proposed and validated on 14 move-
ment classes acquired from a large dataset of 20 subjects.
The proposed novel FE outperformed all the state-of-the-art
achieving an accuracy of 88% for 14 gestures with QDA
classifier. In addition, reducing the channel number to 6 chan-
nels showed statically significant differences in the average
classification error results than those of the full 8 channels
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suggesting that 6 channels were the optimum set of channels
to resolve the current problem. The outcomes of this study
show the potential of using AMG for the control of upper
limb prostheses with PR.
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