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ABSTRACT Interactive machine learning (IML) aims to make machine learning an easy-to-use tool for
novice users to solve personalized tasks. However, despite the recent popularity of edge AI, research into
interactive machine learning on edge devices has not been conducted actively. Existing IML designs cannot
be directly applied to small edge devices due to interface and computational resource limitations. In this
paper, we propose a method for efficient model personalization on a small interactive object recognition
camera device by combining sample recommendations with an IML workflow. The proposed method
recommends training data candidates from unlabeled samples in addition to the usual annotation operations.
Our method interactively trains a noise filter to handle a noisy sample pool obtained while using the device.
The user can indicate whether the recommended sample corresponds to 1) the recommended class; 2) other
classes; or 3) noise unrelated to the recognition task by providing ternary feedback. Our system is designed
to gradually update both the target classifier and the noise filtering recommendation modules on the basis of
feedback. We show that our feedback design achieves more efficient model training while improving system
usability through a systematic evaluation and user study using a prototype device.

INDEX TERMS Computer vision, edge machine learning, interactive machine learning, user interface.

I. INTRODUCTION
Since the widespread adoption of deep learning, the domain
of machine learning applications has grown in a variety
of ways. However, making machine learning accessible to
novice users remains a difficult task despite its enormous
potential. One of the main goals of interactive machine
learning (IML) research is to create environments in which
users can interact with machine learning models and create
their personalized models [1]. The following features are
typically provided by an IML system to allow novice users
to build their machine learning models. First, it provides
user interfaces and visualization tools to browse and label
samples, allowing users to design their training data for the
target task [2], [3]. Interactive model validation features are
frequently included to allow users to examine the behavior
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of the trained model and provide additional feedback and
training data [4], [5], [6]. The benefits of providing such inter-
actions have been verified by user experiments in previous
studies.

However, these IML studies rely heavily on the assumption
of rich graphical user interfaces (GUIs), which has some
serious drawbacks when applied to a variety of devices.
Most previous work, for example, has relied on desktop
and object metaphors for intuitive annotation and operations
(e.g., drag-and-drop operation to assign training samples
to the target class), which necessitates a large screen and
pointing interfaces [7], [8], [9], [10]. They also employ rich
visualization techniques, such as sample distribution in a
high-dimensional feature space, to help users comprehend
the model [4], [11], [12], [13]. Furthermore, frequent updates
and validation of models are prerequisites for user interven-
tion in IML, and many methods necessitate a certain level
of high-performance computational resources. As a result,
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designing the interaction and feedback loop for IML systems
with limited interaction modalities remains a challenge.

Machine learning applications in edge computing devices
have, on the contrary, received a lot more attention in recent
years, such as small robots and smart home systems. While
most real-world applications use centralized and/or pre-
trained machine learning models, allowing users to freely
customize themodels has a lot of potentials. Consider the case
of a device that responds to the user’s selection of an arbitrary
object category. When using a pre-trained model, the user
can only choose an object from a predetermined category,
whereas with the IML design, the user can completely cus-
tomize the target. Furthermore, physical hardware-based IML
systems can be more intuitive than GUI-based ones, espe-
cially for users unfamiliar with PC operations. If interactive
personalization of ML models could be achieved using only
physical hardware, it would result in an accessible system
that is open to more users and allows for diverse applications.
However, in the context of IML research, achieving efficient
data annotation and model inspection on small edge devices
remains an open challenge. Most of these devices have only
a few basic input modalities and a small information display.
Therefore, as discussed above, it is not a trivial task to apply
existing IML techniques to such devices.

To introduce an IML feedback loop on an edge device
with limited interaction modality, we investigate the design
of an interactive image recognition camera that allows users
to register target categories for classification. In this scenario,
adding a feature that allows users to register training images
one by one with one of the target category IDs is relatively
simple (Fig. 1a). However, due to the input and visualization
limitations, it is difficult to extend the interaction to allow for
more efficient training data registration. Our basic concept
is to suggest training data candidates from the sample pool
obtained during device use (e.g., during inference). Although
this approach is similar to active learning strategies [14],
we must assume that the sample pool will contain significant
amounts of noise, such as frames that are irrelevant to the
task and frames that have been degraded by motion blur. It is
difficult to filter out such noisy frames and find suitable data
candidates for user feedback because the classification target
task is entirely up to the user.

In this paper, we propose the idea of using user feedback to
update not only the classification but also the noise filtering
sample recommendation modules. As illustrated in Fig. 1b,
the system displays a candidate image with an expected
category ID and asks for user feedback. To minimize user
burden with limited input, our proposed system uses ternary
feedback; 1) Yes, the sample belongs to the recommended
category, 2) No, the sample belongs to other categories, and
3) the sample is Noise and not relevant to the classification
task. While the Yes/No feedback can be used to update the
classification module, the Noise feedback can be used to
train a supervised noise filter and helps with the performance
of further sample recommendations. In this way, we adapt

the IML paradigm to interaction-limited edge devices. Our
design requires significantly fewer interaction and visual-
ization modalities than existing IML systems designed for
desktop environments. We built a hardware prototype of a
Raspberry Pi-based camera device with the proposed feed-
back design (Fig. 1c). We demonstrate the proposed sys-
tem’s annotation effectiveness and improved user experience
through a real-world user study. The user study data is further
used to systematically evaluate how our feedback loop design
can improve model performance with a limited number of
interactions.

The contribution of this work is summarized as follows.
First, we propose a novel design of an edge IML system
that allows users to iteratively train and inspect user-defined
recognition models. To achieve an efficient training loop,
we propose to incorporate both user-active sample annotation
and machine-active sample recommendation. This work is
the first to bring the IML workflow that includes model
validation to small edge devices. Second, we proposed an
algorithm to update both the classification and noise filtering
modules using user ternary feedback. In our IML setting,
the additional noise filtering module significantly improves
the sample recommendation process. Third, we implemented
and used a prototype device to conduct a user study that
includes both qualitative and quantitative evaluations of the
user experience and algorithm performance. Through the
experiments, we demonstrate the advantage of our system
design over baseline systems.

II. RELATED WORK
Our research is based on previous work on IML while
bridging the gap between machine-centric active learning
and human-centric approaches. We also build on previous
work on edge machine learning by incorporating an IML
perspective.

A. INTERACTIVE MACHINE LEARNING
IML aims to help users create personalized machine learning
models to solve personalized tasks [1]. IML is expected
to provide easy-to-understand information on model behav-
ior and an intuitive user interface to allow communication
between human insight and the ML model for non-expert
users without experience and knowledge of programming and
machine learning [9], [15]. IML systems have been studied
in a variety of application scenarios, including interactive
image classification [8], [9], interactive image editing [16],
[17], [18] and interactive recommendation system [19], [20],
to name a few.

The majority of the previous research has focused on
GUI design in order to achieve fast user feedback loops
and involve users in the machine learning process [9], [21].
As examples of how to use a rich GUI to enable efficient
annotation of large amounts of data [3], [7], [8], [12], [22].
Cui et al. proposed Easyalbum, an interactive photo anno-
tation system based on facial clustering and reranking [7].
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FIGURE 1. The goal of this work is to introduce an IML feedback loop on an edge device with limited interaction modality.
The basic idea is to incorporate user feedback to update not only the classification module but also the sample
recommendation module with a noise filter.

SHARKZOR is a personalized image classification system
proposed by Pirrung et al. featuring a canvas-like interface
that allows users to browse and annotate images in the 2D
feature space [8]. Ishibashi et al. proposed a similar inter-
active sound recognition system that displayed sound data
using multiple visualization techniques [12]. To achieve a
rapid and accurate update of the model, Arendt et al. pro-
posed an interface that communicates with the user through
a small set of recommended instances for each class [3].
GUI can also be used to provide visualization for a more
intuitive model inspection [2], [4], [5], [10]. Mishra et al.
proposed an interactive transfer learning system that provides
various design elements in the user interface that visualize the
behavior and structure of the model [4]. Jiang et al. proposed
their GPU-accelerated GUI for training that allows users
to directly manipulate the model parameters [2]. However,
as previously stated, these approaches rely heavily on the
interaction modalities available on desktop computers, and
thus cannot be directly applied to small devices.

As IML continues to evolve, its intersection with image
processing and computer vision techniques also attracts
increasing attention. In the computer vision community,
many interactive systems have emerged with a novel inter-
action design to improve system performance and usabil-
ity [23], [24], [25], [26]. Zhang et al. proposed their inter-
active image segmentation system with inside and outside
guidance to achieve efficient segmentation mask generation
with a simple interaction design [23]. Zheng et al. pro-
posed a continual learning framework that uses uncertainty
maps to provide the more informative guidance and achieve
more effective segmentation performance with minimal user
effort [24]. Zeng et al. optimized existing interactive image
editing that requires an extra mask. The mask-free partial
sketch paradigm provides a more intuitive interaction design
for the sketch-based imagemanipulation task [25]. Still, these
examples are also designed for desktop GUI environments
and are not applicable to small edge devices.

Since such a GUI-rich approach also restricts the use
of IML in accessibility applications, some previous work

proposed simpler interactions [27], [28]. Kacorri et al. pro-
posed a system in which blind users can take pictures of
personal objects for recognition [27]. Ahmetovic et al. pro-
posed Recog, an interactive assistance system that helps blind
people capture their personalized data to train their personal
object recognition model [28]. Although these approaches
allow users to register their own target classes, the scenario
is limited to personal object recognition and does not achieve
the full IML workflow.

In addition, some systems are proposed to deal with partial
user feedback [29], [30], [31]. Joshi et al. introduced the
active sample selection and binary feedback (matched or
unmatched) method to reduce user effort in the multiclass
active learning process [29]. Ngo et al. assumed that full
feedback would be too taxing for humans, so they made the
human-robot interaction binary. Upper confidence weighted
learning (UCWL) was proposed to allow their system to work
with binary feedback that may not even be very reliable [30].
However, in the context of edge machine learning, such par-
tial feedback designs have not been thoroughly investigated.

B. ACTIVE LEARNING AND HUMAN-IN-THE-LOOP
MACHINE LEARNING
Active learning, in contrast to the human-centric IML
approach, can be seen as a machine-centric approach to
involving users in the machine learning process. The goal
of active learning algorithms is to make the annotation and
training processmore efficient under a predefined recognition
task by querying an annotation candidate from the oracle user
who knows the ground truth [14]. Therefore, active learning
research focuses mainly on the method of finding the most
informative annotation candidate [32], [33], [34], [35], [36].
Lewis et al. proposed uncertainty sampling, which is the most
common query strategy, querying samples with the highest
prediction uncertainty in the sample pool to the oracle and
asking for annotations [32]. Expected model change [34] and
the expected error reduction [35] are also based on the same
idea, and they find the most unfamiliar data by comparing
the changes in the model or the behavior of the model after
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adding a certain sample to the training set. Active learning
algorithms, in contrast, frequently make assumptions about
the underlying knowledge about recognition tasks, sample
distribution, and user behavior. Simple active learning algo-
rithms cannot handle the recognition task and the distribution
of unlabeled samples if they are completely user-dependent.

Several other human-in-the-loop machine learning meth-
ods involve the user in the learning process. A represen-
tative example is reinforcement learning based on human
demonstrations, which replaces the predefined expert reward
with human rewards [37], [38], [39], [40]. For example,
Liu et al. proposed a deep reinforcement active learning
method in which users not only annotate the query sample
but also provide the reward to update the reinforcement
learning policy [40]. Putting humans in the training loop is
also one of the main goals of the crowd-sourcing system to
achieve better performance in recent years [41], [42], [43]
Rahmanian et al. investigated the design of human-in-the-
loop crowd-sourcing, where the user interface significantly
affects the performance of workers [43]. These approaches
are still machine-centric in the sense that the algorithm is in
charge of task definition, which is insufficient in the context
of this study.

C. MACHINE LEARNING ON MOBILE/EDGE DEVICES
With the growth of edge computing technology, the con-
cept of edge machine learning promotes the development
of research and the emergence of consumer devices, bring-
ing machine learning capability to edge devices [44], [45],
[46], [47], [48], [49], [50], [51]. Previous research on edge
machine learning focusedmainly on improving inference per-
formance by improving inference speed and reducing mem-
ory usage [46]. To better accommodate the property of edge
machine learning with limited computing resources, recent
studies investigate neural network architectures [52], [53],
[54] and model compression techniques [55], [56], [57], [58]
to provide fast and lightweight models for the edge device.

There have also been many application studies using edge
machine learning devices. For example, using surveillance
cameras to perform edge video analysis for real-time traf-
fic monitoring is an important application scenario [59],
[60], [61], [62], [63]. The machine learning approach is
also applied for autonomous driving to perform pedestrian
detection [64]. For personal use cases, Liu et al. proposed
a food recognition system [65] on edge devices based on
cloud training. Weng et al. proposed their optical charac-
ter recognition system [66] for mobile computing devices.
However, most of the applications simply apply pre-trained
models locally or in the cloud, and on-device interaction with
the machine learning process is still a problem that has not
received much attention.

As the range of applications grows, several consumer
devices have emerged to improve edge machine learning
performance, such as the Canaan Kendryte K series neu-
ral network processor (KPU)1 and the Google Coral edge

1https://canaan.io/product/kendryteai

TPU.2 Some vision sensors have also been developed that
allow developers to register training images for on-device
model training, such as an M5StickV3 and HUSKYLENS.4

However, their interaction design is still limited to the data
annotation step. They allow only the operation of adding
training data one by one and do not allow users to inspect
the behavior of the model and give feedback. To the best of
our knowledge, this is the first scientific study to examine
the design of edge IML workflows that include both data
annotation and model inspection loops.

III. PROPOSED SYSTEM
Our proposed system combines IML-like interactive data
annotation and active learning-like sample recommendation
approaches, as illustrated in Fig. 2. The system is made up of
two main modules to accomplish this. One is classification
module, which learns from user-provided data and makes
inferences to solve the user’s personalized classification task.
The other is recommendation module, which recommends
potentially useful samples from the inference history to users
to obtain feedback from the user. The system is designed to
operate in two phases, where users can freely switch between
them. In input phase, users can input new training samples in
real-time into the target class to train their personalized clas-
sifier and then input live test images into the system to check
the performance of the classifier. Meanwhile, the frames
recorded in this phase are stored and used in feedback phase
where users provide Yes/No/Noise ternary feedback. In the
following, we describe the process of each phase in detail.

A. INTERACTION PHASES
1) INPUT PHASE
In the first interaction phase, starting from a classifier that
makes the prediction at random, the user can first perform
label assignment. We assume that the user watches the live
frame captured by the camera and assigns this frame to one
of the user-defined target classes. The captured image X i and
its class ID yi are given to the classification module as a result
of this annotation process.

Based on the training data obtained from the user annota-
tions, the classification module performs classifier update.
We assume that the user can add an unlimited number of
classes to the system, and the classifier must be trained from
scratch every time to accommodate new classes. The model
update is triggered every time N new training data are given
in this phase to reduce computational cost. The classification
module consists of a feature extractor based on Efficient-
Net [52] pre-trained on ImageNet [67] and a small classifier
using non-linear SVM with the RBF kernel [68]. For each
training image X i, the feature extractor first extracts a 1280-
dimensional feature vector f i from EfficientNet before the
last fully connected layer. Using the training data obtained

2https://coral.ai/products/accelerator/
3https://shop.m5stack.com/products/stickv
4https://wiki.dfrobot.com/HUSKYLENS_V1.0_SKU_SEN0305_

SEN0336
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FIGURE 2. The overview of the proposed system (a) with the detailed system illustration of the technical blocks (b). The
overview of the proposed system (a) with the detailed system illustration of the technical blocks (b). It combines IML-like
interactive data annotation and active learning-like sample recommendation approaches as shown in this diagram. The
system is divided into two main modules, classification and recommendation modules, and it is designed to work in two
phases, the input and feedback phases.

up to that point, the SVM classifier is updated with a fixed
regularization parameter C and hinge loss.

After the classifier is trained and starts making predictions
with the knowledge learned from the training data, the user
can perform the classifier’s performance check by feeding
new images to the system. We assume that the user can
use the camera to recognize the input images. Users can
subjectively check if the current output is in line with their
intention by freely pointing the camera in different directions
and observing the live images alongside the classifier’s pre-
diction results. Consequently, the classification module must
perform category prediction. It takes the current image X i
and extracts its deep feature f i in real-time. The feature is
fed into the SVM classifier, and then the SVM outputs its
predicted class probability p̂i. The class probability is then
used to return the predicted class ID ŷ = argmax(p̂i) so that
it is shown to the user on the screen.

Through this iterative annotation and inference process,
some of the inferred images are stored in build the samples
pool to be recommended. The recommendation module can
rank the sample pool according to the informativeness of each
sample. In the proposed system, we treat images with greater
prediction uncertainty and task relevance as informative

samples, which can be helpful for faster model optimization.
The classification module calculates the uncertainty score of
each image in the sample pool after the classifier is updated,
which is defined as the inverse of the maximum class proba-
bility [32]:

ui =
1

max(p̂i)
, (1)

where p̂i indicates the predicted class probability for the i-
th image. In addition to the uncertainty score, the ranking
further takes into account the task relevance score ri estimated
by the recommendation module. ri is initialized as 1.0 when
the noise filter in the recommendation module has not been
trained prior to the first feedback phase. In other words,
sample pool rank at the beginning only refers to ui. Once
the noise filter is trained, ri is updated by the normalized
prediction probability of the model. Based on these two
scores, the module defines the recommendation weightwi for
the i-th sample as

wi = uiri. (2)

As stated above, the higher the weight wi, the more infor-
mative the samples are for the current user-defined task.
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Ideally, the sample pool would be dynamically ranked based
on the progress of model training. However, to save time
and resources, we only rerank the sample pool when the user
enters the feedback phase. Based on the deep feature of the
image, we calculate uncertainty and relevance using the most
recent classifier and noise filter.

2) FEEDBACK PHASE
Users are asked if an image belongs to the category of
potential ID shown on the text interface when entering this
phase. The sample recommendation is done by the rec-
ommendation module by selecting the first-rank image from
the sample pool and showing its potential class ID with the
highest probability. The user responds to the recommendation
by choosing one answer from Yes, No, and Noise. When
the current question user answers with Yes, the image is
annotated with the current class ID as a label and added to the
training set to update the classifier. Following the previous
work on active learning with binary oracle [29], [69], the
module repeats the recommendation using the class ID with
the next highest probability if the user’s answer is No. If the
answer is Noise, the image is marked as noise and used to
update the noise filter within the recommendation module.
Triggered by the update of the classifier or its noise filter,
the recommendation module can perform sample pool re-
ranking in the feedback phase.
The noise filter is implemented as another binary support

vector machine using the same feature extractor as the clas-
sification module. The filter is trained with valid training
samples as positive samples and noise samples as negative
samples. Its output is applied to calculate the task relevance
score ri in Eq. (2), which indicates that the current image is
closely relevant to the current user-defined task. Specifically,
the relevance score of X i can be calculated as a normalized
probability.

ri = σ (q̂i) =
1

a+ e−bq̂i+c
, (3)

where q̂i indicates the probability that the image X i belongs
to the positive sample category. σ (·) is a sigmoid function
parameterized with a, b, and c.

The noise filter is updated every timeM new noise samples
are given to reduce computational costs. Similarly, the clas-
sifier is updated when L new sample images are annotated as
valid samples. If the user exits the feedback phase and returns
to the input phase before specifying L sample images or M
noise images, the system updates both the classifier and the
filter with all available training data.

B. PROTOTYPE DEVICE
Based on the system design described above, we build a
hardware prototype as shown in Fig. 3a. Our prototype is built
based on the SunFounder Rascam,5 a camera kit designed for

5https://www.sunfounder.com/products/rpi-camera-kit

FIGURE 3. The hardware appearance and diagram of our prototype.

Raspberry pi 4B+.6 Since our system utilizes a CNN-based
feature extractor, we also use the Coral USB Accelerator7 for
fast deep feature extraction.

1) HARDWARE DESIGN
Figure 3b shows the detailed diagram of the system. The
Raspberry pi 4B+ features a Broadcom BCM2711 1.5 GHz
quad-core 64-bit CPU with Cortex-A72 processors, as well
as a boosted GPU that is capable of running lightweight
machine learning algorithms such as SVMs and random
forests. A USB 3.0 port that connects the Coral Edge TPU
to the Raspberry Pi. The shutter button and joystick on the
Rascam PCB board are controlled via a GPIO interface.
A 2.4-inch TFT screen powered by ST7789 with a resolution
of 320× 240 resolution is also connected to the development
board via the SPI protocol and the corresponding ports. The
CSI port is used to connect the P5V04A camera module.
The power supply module is powered by a 18650 battery,
which feeds power to the development board through a 5V
DC header with a minimum current of 3A.

2) USER INTERFACE
We created the user interface using only Rascam hard-
ware, which consists of one shutter button and one joy-
stick, to achieve the required interactions. The flow of user

6https://www.raspberrypi.com/products/raspberry-pi-4-model-
b/specifications/

7https://coral.ai/products/accelerator/

VOLUME 10, 2022 107351



T. Liu, Y. Sugano: IML on Edge Devices With User-in-the-Loop Sample Recommendation

FIGURE 4. The overall usage flow of our IML prototype on the edge
device. During the input phase, (1) By pressing the shutter button, users
can capture a training sample, and (2) assign the label by selecting the
target ID with the joystick. (3) Users can enter the feedback phase by
pressing the joystick, (4) where users provide feedback by operating the
joystick. (5) They can leave the feedback phase by pressing the shutter
button.

interaction in our prototype system is depicted in Figure 4.
When the system is first turned on, users are taken to the input
phase, where the system attempts to make predictions. Users
can capture a training sample by pressing the shutter button
(Fig. 4 (1)). Label assignment is accomplished by using the
joystick to select the target ID (left / right) and then pressing
the joystick to confirm the decision (Fig. 4 (2)).
After the input phase, users can choose to press the joystick

(Fig. 4 (3)) to enter the feedback phase. As illustrated in
Fig. 4 (4), users can provide answers to the system’s question
by operating the joystick to the left, right, or down, which
corresponds to Yes, No, and Noise, respectively. Finally, users
can press the shutter button (Fig. 4 (5)) to exit the feedback
phase.

3) SOFTWARE IMPLEMENTATION DETAILS
We built our system based on Python with the default Rasp-
berry Pi OS. The TPU unit is used by the CNN feature
extractor, where the quantized model was obtained from
pre-trained weights using the TensorFlow Lite converter. The
classifier and noise filter were implemented using the scikit-
learn library [70] with the same hyperparameter settings. The
penalty coefficient for the SVM classifier was set to C = 1
and the tolerance for stopping the criterion is set to 1e − 3.
The coefficient γ for the RBF kernel is set to γ = 1/(1280σ ),
where σ denotes the variance of 1280-dimensional feature
elements from all training data. The default settings were
used for the other parameters. The parameters of the sigmoid
function are set as a = 1, b = 10, c = 3 to calculate
the relevance score. The threshold parameters N ,M ,L for
model updates are set differently for each experiment and are
described in the following sections.

IV. USER STUDY
In this section, we assess the usability of our ternary feed-
back design. The additional option of Noise to the ternary
feedback design increases the complexity of the operation,
potentially resulting in a poorer user experience. We con-
ducted a real-world user study to compare the usability of
our system with the baseline system to investigate this issue.

We also examine whether interactive noise filtering improves
the recommendations and user experience.

We assume a simplified use case scenario in which the
user first defines all target objects and assigns labels in one
room. The user moves the device to a different room to
perform a qualitative performance check before switching to
the feedback phase to review the system recommendations.
As a result, the sample pool only contains images taken in
environments other than those used in the initial training
data.

We created a baseline system using active learning with
binary feedback for comparison. In the same way that our
proposed system receives the image and the associated uncer-
tainty information in the input phase, the baseline system
does as well. However, it interacts with users in binary form
(Yes or No), where the classification module can receive new
training data if the user answers the question with Yes. As a
result, in the baseline system, noise filtering and sample pool
re-ranking based on task relevance do not occur, and the
weight w is always equal to u. Therefore, even for task-
irrelevant samples, this baseline continues to request binary
feedback (if ranked higher in the recommendation phase).
The sample is ignored only if the user did not accept any of
the potential IDs.

A. PROCEDURE
Participants in the user study were recruited on the university
campus by posters and mailing lists. We provided only a
brief overview of these announcements, and none of them
knew the details of the experiment in advance. Seven male
and three female participants aged 23 to 28 years (M = 25,
SD = 1.99) participated in the study. Nine of them had a basic
knowledge of machine learning and/or computer vision, but
none had experience in developing edge devices or interactive
machine learning systems. A detailed tutorial on the system
was given to each participant before the user study, and they
were familiarized with the system and the basic concept of
IML through hands-on experience. During the experiment,
the main objective of the participants was to identify three
categories of objects: Electronic device, Daily necessity, and
Stationery. The participants’ judgments were used to deter-
mine which category a particular object belongs to.

Because the only difference between the proposed and
baseline designs is in the feedback phase, each participant
onlywent through the training and inference phases once. The
participants used the device to freely collect initial training
data in one room for 5 minutes as a first step. The system
operates in the input phase, and the classifier is updated with
these annotations. Subsequently, the participants were moved
to another room and given 10 minutes to perform inference
by pointing the device to some new objects. The sample
pool is newly constructed during this inference step, and
participants then provide feedback using the two interfaces,
in turn, with the same data. Each participant was instructed to
provide feedback on 50 images using both interfaces, where
the order of using two interfaces was randomized. During

107352 VOLUME 10, 2022



T. Liu, Y. Sugano: IML on Edge Devices With User-in-the-Loop Sample Recommendation

FIGURE 5. The comparison between different feedback designs in terms
of the number of Yes/No/Noise operations users made to
50 recommended images. Each box plot corresponds to each design that
denotes a summary of the data. The star annotation indicates statistical
significance.

this step, we only update the noise filter with threshold M =
3 to strictly evaluate the feedback scheme. The classifier is
updated only after the feedback phase (L = 50). After that,
as the final step, participants return to the inference phase to
assess the model performance qualitatively.

We saved all time-stamped interaction logs, input data, and
the sample pool they created throughout the session. After
completion of the task, participants were asked to complete
a questionnaire with the following questions on a 5-point
Likert scale to compare the two interfaces and provide their
feedback (Q1 - Q5) and comment with as many descriptive
expressions as possible on subjective questions (Q6 - Q9):
Q1. The usage flow was intuitive and easy.
Q2. The recommendation in the feedback interface helped

annotate some ignored potential data.
Q3. I could quickly answer the questions raised by the

system.
Q4. Too many useless recommendations occurred, which

influence my interaction efficiency.
Q5. Such an IML system with a feedback interface can

make model refinement more convenient.
Q6. Was there a difference between the two interfaces and

what was your impression?
Q7. Do you think that themodel performancewas improved

after you provide feedback?
Q8. Was this device more efficient than the existing

GUI-based IML system as we introduced, and what
was your impression?

Q9. Was there anything inconvenient about this system?
Furthermore, they were asked to provide their 5-point Likert
scale preference score and complete the questionnaire based
on the NASA-TLX [71] evaluation for each design.

B. USER BEHAVIOR
Fig. 5 shows the difference between the two systems in terms
of the number of user operations. Statistics of the number
of responses Yes made during the feedback phase are shown

FIGURE 6. Example recommendation results in the user study. Each
image shows an image recommended to one participant in the user
study, and the green check mark indicates that the image was confirmed
as a valid sample.

in Fig. 5a. Each box plot corresponds to each design of the
system. The median is represented by the middle line of each
box, and themean value of the data is represented by thewhite
marker on each plot. The whisker visualizes the minimum
and maximum, while the length of the box represents the
range of interquartile. On average, the number of responses
Yes for the proposed and baseline systems is 35.0 and 23.5,
respectively. There is a statistically significant difference
between the two systems (p < 0.01, Wilcoxon signed-rank
test). Furthermore, the data has a shorter interquartile range
and a shorter whisker range, indicating a better result with a
less scattered data distribution. On the contrary, the statistics
of No and Noise operation required by different systems to
handle the 50 recommended images are shown in Fig. 5b.
On average, the baseline system required 97.7 corrections,
while our system required only 40.3 corrections in total to
handle the 50 recommended images. The mean value of our
system is significantly lower than that of the baseline system
(p < 0.01, Wilcoxon signed-rank test). Significantly lower
operating demand and higher user acceptance (Yes) demon-
strate that our system provides better recommendations with
higher quality.

Figure 6 shows some qualitative recommendation results
obtained from a participant. Each image in the figure rep-
resents an image recommended to the participant. Images
confirmed as valid samples by the participant are indicated
by the green check mark. Images were chosen at random and
arranged in the order in which the recommendations were
given (from left to right, from top to bottom). Using the base-
line system (Fig. 6a), 12 valid samples were recommended
from these 30 images. The baseline system, for example,
provides more irrelevant images, such as the floor and cor-
ridors. These recommended noise images require users to
provide many responses No to skip. On the contrary, 17 of
themwere valid samples using our proposed system (Fig. 6b).
The diversity of the valid recommendation also improves as
the number of noise images decreases. As shown in the third
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FIGURE 7. Average rating between 2 feedback design and their
preference score. Each bar shows the average rating of all participants,
and the error bars show the standard deviations. The star annotation
indicates statistical significance.

FIGURE 8. NASA-TLX results. Each bar shows the average rating of all
participants, and the error bars show the standard deviations.

row, the recommended images from our system contain more
types of items than the baseline, such asmasks, white staplers,
large staplers, and tape tools.

C. EVALUATION SCORES
Figure 7 shows the difference in subjective user evaluation
of the two interfaces. The bar plot visualizes the 5-point
Likert scale preference scores for each design of partic-
ipants. The mean score of all participants is represented
by each bar in the figure, while the error bars show their
standard deviations. Our system scored higher on most of
the questions, although the difference was not significant.
Q4 resulted in significantly different ratings between the
two interfaces (p = 0.03, Wilcoxon signed-rank test), and
our proposed interface is capable of reducing the frequency
of useless data in the recommendations. There also exists
a significant difference in preference scores between the
two interfaces (p = 0.04, Wilcoxon signed-rank test), and
our proposed interface received a higher overall preference
score.

Furthermore, Fig. 8 shows the results of the NASA-TLX-
based questionnaire that illustrates the summary of work-
load assessment. Similarly to Fig. 7, each bar in the figure
shows the mean score of all participants, and the error bars
show their standard deviations. Although our method occa-
sionally shows a slightly higher workload than the baseline
system, no significant differences were found in any of the
dimensions.

D. SUBJECTIVE FEEDBACK
In Q7, most of the participants (8 of 10) stated that the
option of noise increases their efficiency and the inter-
action becomes more intuitive and easier to comprehend.
One of them commented that ‘‘The operation of the (base-
line) is more straightforward than (the proposed method).
But I think (the proposed method) is more efficient’’.
And another participant commented that ‘‘(The proposed
method) is great, while on (baseline) interface too much
incorrect and noise were recommend.’’ Two participants
expressed their mixed opinion that our proposed method
has better functional integrity, while the baseline has better
simplicity. One of them said: ‘‘From a practitioner’s view,
(the proposed method) is better because I can actively control
which ones should be background class, but it sometimes
takes time to decide which image should be regarded as noise
or not. I prefer the simplicity of (baseline), and it might be
easy for novice users.’’. Another participant commented that
‘‘I would prefer the binary feedback on the operation side, it’s
easier. The noise annotation (background class) poses a high
mental demand’’.

In general, participants were more receptive to edge
IML devices. Most of the participants (9 out of 10)
have observed an improvement in model performance in
Q8 and expressed positive impressions about tangible IML
devices in Q9. Seven participants simply agree that the
tangible device is more convenient. One of them left the
comment with a mixed opinion that such an IML sys-
tem working on edge devices cannot directly replace desk-
top IML as ‘‘I think if we seriously need a good model
I may have no hesitation towards using GUI-based IML
system, but the experience of immediately receiving the
feedback was fairly good, and I enjoyed it in general.
’’ Another participant also did not like the edge IML
device and said ‘‘GUI is easier to understand how to
use it’’

Furthermore, some participants expressed their dissat-
isfaction with the experiment and pointed out some
improvements. Five participants said that the operation was
uncomfortable with the functional button and that they
could not find how to cancel the misoperation. One of them
said: ‘‘The part I found most inconvenient was remembering
the commands for each option. In addition, I was under
pressure not to make a human error while the annotation
was done, as there was no back or undo button.’’. Another
common annoyance mentioned by the three participants is
mapping the numerical label to the real object category.
One participant said that ‘‘Mapping the index numbers to
an actual label’’ was the biggest inconvenience. The super-
vised noise filtering method takes some time to update the
filter, which makes two participants unsatisfied and com-
mented: ‘‘response time is slow’’, ‘‘latency is not good’’,
and ‘‘The second interface was better in my opinion as it
took into consideration the samples which did not belong to
any of the 3 classes. But the first interface required lesser
time to think.’’

107354 VOLUME 10, 2022



T. Liu, Y. Sugano: IML on Edge Devices With User-in-the-Loop Sample Recommendation

V. PERFORMANCE EVALUATION
In terms of category definition, the user study mentioned
above contains some subjectivity. It was impossible to estab-
lish ground truth labels a priori because it was up to the
participants to decide which objects each category should
include. As a result, we conducted a second experiment
to evaluate the performance of the back-end algorithm to
supplement the quantitative evaluation of the first.

In the following experiments, we evaluate recommenda-
tion algorithms assuming an oracle user who always pro-
vides correct feedback based on ground-truth annotations.
In other words, we label the images in the sample pool with
ground-truth category labels and compare how the feedback
algorithms extract information from them. To accomplish
this, we create a fully re-annotated dataset made up of images
gathered during the user study.

To reflect real-world use cases, we simulate two usage
patterns for each part of the evaluation. The first is fixed
category definition, where all target categories are defined in
the beginning as in the user study. The second is incremental
category definition, where the user adds another class after
completing the first feedback phase. We compare the perfor-
mance under different noise ratios in each use case to evaluate
their performance under different conditions. In the following
experiments, the system is run with the threshold parameters
M = 3, N = 3, and L = 3 and the model’s performance is
recorded every 20 (oracle) user feedback.

Our proposed algorithm is compared with three baseline
algorithms, which are listed below.
• Binary (Random Sampling) This baseline uses binary
feedback from the oracle user and chooses the feedback
candidate completely randomly.

• Binary (Uncertainty Sampling) This baseline also
employs binary feedback, selecting candidates’ feed-
back based on the uncertainty sampling strategy.
It selects data solely based on the ranking of prediction
uncertainty u.

• Binary (Auto-filter) This baseline uses the result of
an unsupervised noisy sample filter for sample recom-
mendation. Specifically, features in the sample pool are
projected onto a 2D distribution using the t-SNE algo-
rithm [72], and noisy samples are identified by fitting
the Gaussian Mixture Model [73].

A. RESULTS
We created a fully annotated dataset for quantitative eval-
uation using the data collected from all participants in the
user study. We manually annotated the recorded images fol-
lowing these three basic categories, rather than relying on
user-defined training samples obtained through the study.
Specifically, we used 2,574 images collected during the user
study. If a single dominant object in the center of the image
is clearly captured without motion blur, we label it as one
of the target categories. To avoid overlap, we manually split
the object images into a sample pool and test data in this
experiment after annotating them. As a result, the sample pool

TABLE 1. Summary of the sample pools with different noise ratios. From
left to right, each column indicates the target noise ratio, the total size of
the sample pool, the number of noises, and the number of valid samples
in it.

contains 405, 275, 223 valid images for Electronic devices,
Stationery, andDaily necessities, respectively. For these three
categories, the test set contains 77, 87, and 81 valid images,
respectively. The remaining 1,426 images in the sample pool
were classified as noise images. We also controlled the ratio
of noisy images in the sample pool using these data by
randomly removing some images. Table 1 summarizes the
noise ratio in each setting. Each column shows the target noise
ratio, the total size of the sample pool, the number of noises,
and the number of valid samples in the sample pool, in order
from left to right.

1) FIXED CATEGORY DEFINITION
In this section, we evaluate the performance in a simple
setting with a fixed category definition. We assume that,
before the feedback phase, the user had already defined
all object categories with some training images and had
gathered a sufficient amount of candidate images in the
sample pool. We randomly selected three images from each
of the three object categories as initial training data, and
these nine images were used to train a shared initial model
under all conditions. The accuracy of this initial model
on the test set was 0.44. Using this as a starting point,
we assess how performance changes with (oracle) user
feedback.

Fig. 9a depicts the performance of each algorithm in differ-
ent noise ratios. The horizontal axis of each graph represents
the number of oracle user feedbacks, while the vertical axis
represents the accuracy of the classification in the test data.
The number of images recommended by each algorithm is
shown in Fig. 9b. The number of images encountered by users
during the same 400 feedbacks is shown on the vertical axis
in each plot.

Our proposed algorithm increased the accuracy to
0.65 after 300 feedbacks, when the noise ratio is 40%.
Similarly, our proposed algorithm increased the accuracy to
0.64 when the noise ratio is 60%. In contrast, none of the
baseline methods performs as well as the proposed method,
with an accuracy below 60%. In more difficult situations
with higher noise ratios, this tendency is more pronounced.
With the 80% noise ratio, the baseline algorithms almost
failed to improve the model performance, while the proposed
algorithm still improved the accuracy to 0.67. As illustrated
in Fig. 9b, one of the reasons is that our algorithm results in
more training data with respect to feedback.
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FIGURE 9. The comparison of different systems in terms of classification performance and image handling efficiency under various noise ratios. Each plot
shows the system performance evolution using the sample pool with a certain noise ratio, and horizontal axes show the number of feedbacks. The
vertical axis corresponds to (a) the accuracy and (b) the number of images the system recommended.

2) INCREMENTAL CATEGORY DEFINITION
In this section, we assess the performance in a more com-
plicated task with incremental category definition. Here,
we assume that the user only defined two object categories at
the beginning, and then we used half of the images in the sam-
ple pool to provide feedback. After the first feedback phase,
it is assumed that the user defines another object category
and gives another feedback using the rest of the images in
the sample pool. The category and its corresponding samples
are the same as in the fixed category definition experiment.
In this case, we evaluate the class average accuracy using
only the classes that are currently available, ignoring the
categories that have not yet been defined. At the begin-
ning, the test accuracy for the two-category classification
was 0.64.

Fig. 10a illustrates the performance of the algorithms in
different noise ratios, which is similar to the previous experi-
ment. After the 200th feedback, a new category is defined,
and we can see a clear performance drop. Fig. 10b also
shows the number of images recommended by each algorithm
in different noise ratios. When the noise ratio is 40%, our

proposed algorithm increased the accuracy to 0.71 after the
first 200 feedbacks and finally reaches 0.66 after the total
400 feedbacks. Similarly, when the noise ratio is 60%, our
proposed algorithm increased the accuracy to 0.75 after the
first 200 feedbacks and finally reached 0.69 after 400 feed-
backs. In more difficult situations with a noise ratio of 80%,
the proposed algorithm still used 200 feedbacks to improve
the accuracy to 0.72, and then achieved 0.64 after another
200 feedbacks. As can be seen, none of the other baseline
methods performs as well as the proposed method, with the
exception of random sampling, which slightly outperforms
our algorithm in the first half of the case of 40% noise ratio.
Similarly to the previous experiment, Fig. 10b indicates that
our algorithm results in more training data.

VI. DISCUSSIONS
A. ADVANTAGES OF THE PROPOSED APPROACH
We discovered that the recommendation module can benefit
both the user and the system during our tests. Edge IML
devices can learn more efficiently from users thanks to the
feedback scheme and improve recognition accuracy. Users
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FIGURE 10. The comparison between different systems in terms of both average class accuracy and image handling efficiency under different noise
ratios. The number of feedback is represented by the horizontal axis in each graph. The vertical axis represents the recognition accuracy when comparing
performance in (a). In the comparison of the number of images the user meets in (b), the vertical axis represents the number of images.

can also actively intervene and take complete control of the
training process by providing feedback.

The user study also revealed that the ternary feedback
system has no discernible impact on user experience. Par-
ticipants were not confused by the additional noise option
during the feedback phase. Instead, it provides users with
a simple way to provide more information about the sys-
tem. The ternary feedback design has its own advantages
in terms of intuitiveness and efficiency compared to binary
feedback.

Furthermore, we found that using ternary feedback in con-
junction with our proposed algorithm improves performance.
Our proposed system consistently outperformed the baseline
algorithms without user-defined noise in quantitative testing.
In our IML scenario, existing active learning strategies do
not work well in the noisy sample pool, and unsupervised
noise filtering is also challenging. Human feedback can make
the recommendation module more efficient and accurate than
the baseline systems, according to our findings. In addition,
the baseline system without noise filtering tended to perform
poorly as the noise rate in the sample pool increased. It shows

that binary user feedback on the target class alone is not
sufficient for sample recommendation, and noise filtering is
an important part of the feedback loop design.

B. LIMITATIONS AND FUTURE WORK
We discovered that our system still has many limitations after
analyzing the behavior of the participants and their subjective
feedback in the user study, as well as the data from each
part of the experiment. These drawbacks are primarily related
to operational efficiency, ease of use, and versatility of the
system.

We found that there is still room for improvement in
interaction design. Our prototype relies heavily on the joy-
stick for interaction and lacks undo and modification fea-
tures. This design imposes a relatively higher mental load
on the user, as indicated by subjective feedback. Although
the limited interaction modality was the driving force behind
this research, users should benefit from more discriminative
buttons. In particular, usability could be greatly improved
by designing custom hardware. Buttons with more intuitive
shapes and colors, such as green check, red cross, and gray
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question, could be used to represent ternary feedback options
in a more intuitive way.

The user experience was also influenced by the latency
of the model update during the input phase. To improve
the efficiency of the system, the current training strategy
should also be changed. When the target category does not
change, one possible method is to perform incremental learn-
ing and only retrain the model from scratch when a new
category is defined, which can further save computational
resources.

Due to the processing capabilities of edge devices, when
the prediction is not stable, users tend to stay in front of
the object longer to achieve a stable result. As a result of
this common behavior, the sample pool contains an excessive
number of similar images. As a result, the sample pool
contains a lot of redundant information, which is another
reason for inefficiency. Integration of smarter ways to reduce
redundant images in the sample pool is also important for
future work. One possible way is to implement simple or fast
algorithms to compute image similarities. An efficient sample
pool construction would be possible if similar images could
be removed in real-time on the device.

The advantage of our system over active learning is not
as obvious in the incremental category definition experiment
as in the fixed category definition. In this case, the filter
may have saved some outdated information during the first
feedback phase. To improve the filter, it should be able to
forget some old information, such as removing images from
its training set that are relatively similar to newly defined
category images.

Besides, one participant wondered how the system would
interpret the current frame if there weremultiple objects in the
same frame. Since the current system is specifically designed
for the basic image recognition task, this question made us
realize that more generic feedback loops designed for various
AI tasks are also worth considering. More specific feedback
and annotation interfaces are required for other tasks. One
of our future research directions is to apply the concepts of
sample recommendation and noise filtering to other visual
recognition tasks on edge devices equipped with interactive
machine learning systems. For example, the recommendation
module should be able to suggest and ask user feedback on
bounding boxes in order to apply our approach to object
detection and tracking tasks.

VII. CONCLUSION
In this paper, we present a novel system design of an edge
IML device. We propose introducing user feedback based on
ternary feedback to achieve efficient sample annotation with
the limited interaction modality on small devices. We added
an option for users to specify noisy samples unrelated to the
target task to use an active learning-like sample recommen-
dation strategy with the noisy sample pool available during
interactive system usage. Despite allowing users complete
control over the target task definition, the system updates
both the classifier and the noise filtering modules. We built

a prototype device and conducted a qualitative user study as
well as a quantitative performance assessment. Throughout
the experiments, we found that our feedback design reduces
the annotation burden without affecting the user experience
while improving the classification performance over the base-
line algorithms.
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