
Received 21 September 2022, accepted 29 September 2022, date of publication 4 October 2022, date of current version 11 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3211949

Evolution of Software Testing Strategies and
Trends: Semantic Content Analysis of Software
Research Corpus of the Last 40 Years
FATIH GURCAN 1, GONCA GOKCE MENEKSE DALVEREN 2, NERGIZ ERCIL CAGILTAY 2,
DUMITRU ROMAN 3, AND AHMET SOYLU 4
1Department of Computer Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
2Department of Software Engineering, Faculty of Engineering, Atilim University, 06830 Ankara, Turkey
3Department of Sustainable Communication Technologies, SINTEF AS, 0373 Oslo, Norway
4Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology,
2815 Gjøvik, Norway

Corresponding author: Ahmet Soylu (ahmet.soylu@ntnu.no)

ABSTRACT From the early days of computer systems to the present, software testing has been considered
as a crucial process that directly affects the quality and reliability of software-oriented products and services.
Accordingly, there is a huge amount of literature regarding the improvement of software testing approaches.
However, there are limited reviews that show the whole picture of the software testing studies covering
the topics and trends of the field. This study aims to provide a general figure reflecting topics and trends
of software testing by analyzing the majority of software testing articles published in the last 40 years.
A semi-automated methodology is developed for the analysis of software testing corpus created from
core publication sources. The methodology of the study is based on the implementation of probabilistic
topic modeling approach to discover hidden semantic patterns in the 14,684 published articles addressing
software testing issues between 1980 and 2019. The results revealed 42 topics of the field, highlighting
five software development ages, namely specification, detection, generation, evaluation, and prediction.
The recent accelerations of the topics also showed a trend toward prediction-based software testing actions.
Additionally, a higher trend on the topics concerning ‘‘Security Vulnerability’’, ‘‘Open Source’’ and ‘‘Mobile
Application’’ was identified. This study showed that the current trend of software testing is towards
prediction-based testing strategies. Therefore, the findings of this study may provide valuable insights for the
industry and software communities to be prepared for the possible changes in the software testing procedures
using prediction-based approaches.

INDEX TERMS Software testing, topic modeling, trend analysis, test strategies.

I. INTRODUCTION
Today, software is an indispensable component of the major-
ity of systems and integrated into the daily life of the society.
With the advancements of technologies, such as open systems
and highly automated or networked devices, software sys-
tems are becoming very complex [1]. Additionally, several
people from different areas of expertise are usually required
to be involved in a software project, which also increases

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

its complexity level. Since software is developed by human
beings, it is usual that people make mistakes; thus, in every
commercial software some errors always occur [2], and as the
level of complexity increases, then these error ratios become
even higher [3]. Therefore, the errors that occur need to be
detected and removed as soon as possible in the development
process. In order to improve the quality of the software,
various activities are performed under the heading of software
testing. This process is an economically and technically vital
component for a high-quality software product [2] and an
integral part of the software development life cycle intended

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 106093

https://orcid.org/0000-0001-9915-6686
https://orcid.org/0000-0002-8649-1909
https://orcid.org/0000-0003-0875-9276
https://orcid.org/0000-0001-6397-3705
https://orcid.org/0000-0001-6034-4137
https://orcid.org/0000-0002-2767-0501

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

to produce more reliable and higher quality software prod-
ucts [4]. For systems in which there is zero tolerance of
error, such as in medical systems and space missions that
are directly related with human safety, as well as banking
systems, the importance of ensuring a higher quality software
development process becomes even more critical.

In the literature, there are a very high volume of studies
that have been conducted on software testing from different
perspectives. However, only a few early systematic review
studies have analyzed research studies showing the trends,
developmental stages and topics related to software testing.
This information is extremely critical in creating a big picture
of the software testing studies, which can guide decision
makers, practitioners and educators in the field of software
testing to improve their current systems, and thus signifi-
cantly improve the quality of the software product [5]. These
earlier systematic review studies were also conducted with a
limited perspective. Currently, there is no study that aimed to
analyze all major research articles conducted in the domain of
software testing. Accordingly, this study aims to fill this gap
by analyzing the articles addressing software testing to create
a big picture of the domain.Considering this background, the
methodology of the study was designed to investigate the
following research questions (RQ):

RQ 1:What are the bibliometric characteristics of software
testing studies?

RQ 2: What are the software testing strategies and themes?
RQ 3: How do the trends of software testing strategies and

themes change over time?

II. BACKGROUND OF THE STUDY
Testing is defined as ‘‘an activity in which a system is exe-
cuted under specified conditions, the results are observed
or recorded, and an evaluation is made of some aspect of
the system’’ (ISO/IEC 24765, 2006) [6]. In parallel to this
definition of testing, amajor task of the software development
process, software testing is defined as the process of observ-
ing and demonstrating the behavior of a software system for
compliance with its specifications [7]. As it requires several
strategies and techniques with the involvement of several
tools and resources, software testing is also considered as
a complex task [8]. The background for this study is given
below, summarizing the important role of software testing
in the software development life cycle, potential impact of
software testing strategies, and review studies conducted on
software testing.

A. IMPORTANCE OF SOFTWARE TESTING IN SOFTWARE
DEVELOPMENT
Software testing covers several activities of the software
development processes starting from the validation of initial
requirements through to the acceptance of the end product
by the customer [9]. Starting from the requirement specifi-
cations, the software testing tasks need to be planned and
implemented in different stages of the software development
process. Furthermore, software testing needs to be performed

during different stages of the software development process
for different purposes, such as the testing of the software
product lines [10] and the graphical user interface [11].

Software testing is usually conducted in the three stages
of creating, executing and evaluating the test cases [12], [13];
thus, the creation of appropriate test cases is critical [14], [15].
In other words, the appropriateness of test cases with software
features, such as the technology used, the domain in which
the software will be used, and the end-user skills is a critical
factor in a successful testing process. Matalonga et al. defined
the following seven elements to compose a test case: item
(product/functionality under test), input (input variables that
will stimulate the test item, output (response returned by the
test item after receiving a test input), oracle (expected result,
predicted behavior under specified conditions based on its
specification or another source), result (comparison between
the test output and the test oracle), environment (facilities,
hardware, software, firmware, procedures, and documenta-
tion intended for or used to perform the software testing),
and script (procedure specification for manual or automated
testing) [16].

An analysis of the whole software development process
reveals that the testing stage has the longest duration and
is the most expensive phase [17] involving labor-intensive
tasks [18]. As the software testing process is usually per-
formed with limited resources under time constraints, cur-
rently, several research studies are being conducted to
improve software testing techniques in order to obtain
higher-quality and more reliable software products [19].

B. POTENTIAL IMPACT OF SOFTWARE TESTING
STRATEGIES
Different software technologies require various test-
ing methodologies and strategies. For instance, testing
approaches on context-aware software systems [16], seman-
tic web-enabled software testing [19], testing embedded
software systems [20], mobile systems [21], or testing in
service oriented architectures [22], [23] may require different
strategies. Accordingly, several research studies have been
conducted to improve the software testing methods and
approaches specific to the technologies being used.

There is also a need for a better estimation of testing effort
whichmay be related to the software technology and is impor-
tant for completing its processes appropriately. For instance,
as a result of a systematic literature review study, Kaur and
Kaur reported that it was possible to improve the existing
testing effort estimation techniques of mobile applications by
weighting the specific characteristics and considering sug-
gestions from experienced developers and testers [24].

Other studies and strategies are also needed for improving
the testing process itself. For instance, test case prioritization
approaches in regression testing [25], [26], designing the soft-
ware testing processes [27], improving the regression testing
costs [28] and using genetic algorithms compared to pure
random testing [1], [2]. Deciding on the appropriate testing
strategy for the testing process is another challenge [29].

106094 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

FIGURE 1. An overview of the methodology of the study.

To summarize, some heterogeneity and ambiguity exist
among the different concepts dealing with testing methods
and processes; therefore, Tebes et al. analyzed software test-
ing ontologies to conceptualize software testing concepts,
concluding that there was a lack of addressing non-functional
software requirements and static testing terminological cov-
erage where none of the ontologies directly linked functional
and non-functional software requirements [30]. Accordingly,
understanding the trends and development stages of software
testing is critical for the development of conceptual models
for software testing methods and processes. The literature on
software testing provides a large number of studies, regarding
both general and specific issues; however, among these stud-
ies, there are only a few reviews evaluating the trends and
topics related to software testing, which are summarized in
the next section.

C. REVIEW STUDIES ON SOFTWARE TESTING
Barmi et al. conducted a systematic review to better under-
stand the connections between the specifications and test-
ing requirements and reported that ‘‘Model-based testing’’
was the most commonly studied topic (26%), followed by
‘‘Formal Approaches’’ (24%), and ‘‘Traceability’’ (18%)
and concluded that there was a significant gap between the
specification and testing requirements [31]. Their study is
considering the relationship between the specifications and
testing requirements, not the whole process of software test-
ing. In this context, Garousi and Mäntylä reported that over
101 secondary research studies (as a study of studies) had

been published in the area of software testing since 1994, with
model-based software testing being the most popular method,
web-services the most popular system, and regression testing
the most popular testing phase [32]. Since this was a ternary
study, it has limitations in showing the whole picture of
the software testing studies. Zein et al. performed a system-
atic mapping study in order to reveal testing techniques for
mobile application and mapped 79 empirical studies to a
taxonomy [33].

There are also several topic modeling studies conducted in
the field of software engineering [34], [35], [36]. However,
to the best of the authors’ knowledge, there is no topic mod-
eling study conducted on the software testing area by using
text-mining analysis and considering whole software testing
processes though its literature from its early years to today.
Using the methodology described below, this study aims to
fill this gap of the literature and provide a larger picture of
the software testing field.

III. RESEARCH METHODOLOGY
In this study, a semi-automated methodology was developed
in order to analyze the empirical corpus consisting of the
software testing articles. The methodology of the study was
based on the implementation of Latent Dirichlet Allocation
(LDA) [37], a probabilistic topic modeling algorithm used
to discover hidden semantic patterns on the software testing
corpus created in two consecutive stages.

In this context, the research methodology designed in
accordance with the purpose of the study consisted of the

VOLUME 10, 2022 106095

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

following stages (see Figure 1). Initially, the experimental
corpus of this study was prepared. Afterwards, the data pre-
processing was applied to the corpus, which was followed
by LDA implementation. Finally, interpretation and visu-
alization procedures were conducted. This methodology is
described in detail below.

A. CREATION OF SOFTWARE TESTING CORPUS
Testing is a comprehensive concept related to the develop-
ment of each system. In the software engineering discipline,
testing is a crucial task of the software development life cycle.
In contrast, software testing in any field other than software
engineering can be considered as an end-user testing focused
on the suitability of a software developed for a specific
purpose in this field. For this reason, the multidisciplinary
use of software testing makes it difficult to create a specific
corpus of software testing studies in the scope of software
engineering. In this context, to create a specific corpus of
software testing within the scope of software engineering,
a methodology including two sequential stages was followed
for corpus creation, which included identifying core publica-
tion sources for the software engineering field and extracting
articles specific to software testing.

From this perspective, firstly, publication sources (core
conferences and journals) within the scope of the software
engineering field were tried to be identified. As a result, the
44 core publication sources (28 conferences and 16 journals)
specific to the software engineering field, which we identified
in our previous study [38], were used as the data source for
the creation of the software research corpus of this study.

After creating the software research corpus, the process
of obtaining articles specific to software testing was carried
out on this corpus. To extract the articles in this context,
firstly, the keywords related to software testing were selected
using an iterative process and keywords related to software
testing including ‘‘test∗’’, ‘‘fault∗’’, ‘‘bug∗’’, ‘‘debug∗’’, and
‘‘defect∗’’ were identified.

During this iterative process, we initially searched for arti-
cles with the term ‘‘test∗’’ in the software research corpus and
filtered them. Then, we examined the keywords in the filtered
articles and found that the term ‘‘fault∗’’ is frequently seen
in them. Therefore, we added the term ‘‘fault∗’’ as a second
keyword to the search string. Then we searched for articles
with the terms ‘‘test∗’’ or ‘‘fault∗’’. We examined the key-
words in these articles, and this time we added the frequently
seen word ‘‘bug∗’’ to the search string. We re-examined the
keywords that appear frequently in these articles, and this
time we added ‘‘bug∗’’, an another high-frequency term,
to the search string. Finally, we added the terms ‘‘debug∗’’
and ‘‘defect∗’’ to the search string, repeating these sequential
steps each time.

Then, the articles containing these five keywords (‘‘test∗’’,
‘‘fault∗’’, ‘‘bug∗’’, ‘‘debug∗’’, ‘‘defect∗’’) in the title, abstract,
and author keywords were searched. In conclusion, the search
string was finalized by adding the time period (1980-2019)
and language (only English) criteria of the articles. As a

result, the final version of the search query was created as
follows:

((EXACTSRCTITLE (‘‘Empirical Software Engineering’’
OR ‘‘Information and Software Technology’’ OR ‘‘Journal
of Systems and Software’’ OR ‘‘IEEE Transactions on Soft-
ware Engineering’’ OR. ‘‘other publication sources
in Table 2’’) AND (PUBYEAR< 2020) AND (PUBYEAR>
1979)) AND (TITLE-ABS (test∗ OR fault∗ OR bug∗ OR
debug∗ OR defect∗) OR AUTHKEY (test∗ OR fault∗ OR
bug∗ OR debug∗ OR defect∗)) AND (LIMIT-TO (DOC-
TYPE, ‘‘cp’’) OR LIMIT-TO (DOCTYPE, ‘‘ar’’) OR LIMIT-
TO (DOCTYPE, ‘‘re’’)) AND (LIMIT-TO (LANGUAGE,
‘‘English’’))

This search string created with these criteria was employed
on SCOPUS, a bibliometric database that indexes all jour-
nals and conferences selected for the corpus [38], [39], [40].
As a result of this search carried out on July 28, 2020,
a software testing corpus was created containing 14,684
articles (9,205 conference proceedings, 5,349 research arti-
cles, and 130 review articles) published in English over the
last 40 years. This empirical corpus contains only the title,
abstract, and author keywords of each article because these
sections best describe the characteristics of an article, such as
purpose,method, conclusion, and scope [35]. The distribution
of the numbers of these articles in the corpus by publication
sources and years is given in the results section.

B. DATA PREPROCESSING
Data preprocessing is an important task and critical step for
the success of analysis based on text mining and natural
language processing [41]. It renovates textual data into a form
that can be predicted and analyzed more effectively so that
machine learning algorithms can perform better [42]. In this
regard, with the aim of preparing the software testing corpus
for probabilistic topic modeling, a series of necessary textual
data processing steps were respectively implemented on the
corpus. As a first step, the word tokenization procedure was
performed on texts in the corpus to separate the texts into sin-
gle tokens (words). This was followed by the process of con-
verting all text to lowercase. Subsequently, publication source
titles, links, misleading words, special characters, and punc-
tuations were removed. The stop words (is, and, a, an, the, of,
for, etc.), which have a high frequency in English and do not
make any sense alone, were also deleted [39]. The Snowball
stemming algorithm [43] was applied to the remaining words
to combine different variations of the words derived from the
same root into a single root form.Moreover, with the intention
of investigating theword phrases having high frequency in the
software testing corpus, the N-gram based text categorization
approach at word level was performed on the texts, and thus
high-frequency phrases were identified as unigrams, bigrams,
and trigrams [41]. Subsequently, each article in the empirical
corpus was demonstrated as a word vector making avail-
able the numerical representation of the texts in the corpus.
To conclude, a document-termmatrix, which is the numerical

106096 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

matrix form necessary for topic modeling implementation,
was created by combining these vectors [44].

C. LDA IMPLEMENTATION
Topic modeling is an approach that provides for semantic
analysis and understanding of the themes in large collec-
tions that contain unstructured textual content [37], [44].
In this way, it offers perspectives for the analysis, modeling,
understanding, and summarizing of huge collections, which
include a large number of text documents. LDA is one of
the widely used topic modeling algorithms and an unsuper-
vised method for probabilistic topic modeling to discover
groups of words called ‘‘topics’’ in a text document [37],
[44]. In the LDAmodel, each document is assumed to consist
of a collection of topics and each word in the document
corresponds to one of these topics. These topics can be
defined as a set of words that are frequently used together
and often reveal a common theme. The topics discovered by
LDA, represented by predefined word sets, are considered as
a tool to best describe the entire document semantically [37],
[44], [45]. In this study, the fitting and implementation of the
LDA [37] topicmodeling techniquewithGibbs sampling [46]
to the empirical corpus of software testing was achieved using
the tmtoolkit package [47], an effective toolkit developed
in Python that includes a wide spectrum of tools for text
mining and topic modeling approaches. In order to fit the
LDA model to the software testing corpus, the values of the
prior parameters (α, β and K) that provide the optimization
of the model were used with α = 0.1 and β = 0.01, which
are the values suggested for the topic modeling of short texts
in previous studies [39], [42]. Subsequently, the LDA model
was implemented on the corpus for different values between
15 and 75 of parameter K, which indicates the number of top-
ics. With the intention of empirically identifying the optimal
number of topics, coherence measure CV was calculated for
each topic number from 1 to 75 using semantic coherence
model [48]. Maximum coherence score was achieved with a
topic number of K = 42. As a consequence, these 42 topics
discovered in line with the coherence measure were used in
all subsequent analysis.

D. INTERPRETATION AND VISUALIZATION
The scope and consistency of the 42 topics and their temporal
trends discovered by LDA were evaluated and interpreted at
this stage, taking into account the background and dimensions
of software testing, which was the context of the study. Each
of these 42 topics contained top 15 descriptive keywords
reflecting the characterization of the topics. Taking into con-
sideration the first five of these keywords with the highest
frequency, the topic labelling process was performed manu-
ally for each topic [35], [39]. Furthermore, the distribution
percentage of each topic per document and the distribution
percentage of the topics in the entire corpus were calculated,
and the annual changes of these percentages were interpreted
and visualized for each topic, and a taxonomy that reflects

the evolution of software testing from past to present from a
panoramic perspective was proposed.

IV. RESULTS
First, the results of the study are given descriptively to provide
the general figure, followed by the topic modeling analysis,
and temporal analysis.

A. DESCRIPTIVE ANALYSIS (RQ1)
Table 1 shows a total of 14,684 articles related to software
testing that were analyzed in this study. The volume of articles
published in each five-year period can be seen to continually
increase.

TABLE 1. Distribution of articles in five-year periods.

Table 2 reveals the publication sources [38], their type as
conference (C) or journal (J), number of articles selected from
these sources (N), their percentages to the total number of
articles considered in the corpus of software testing articles.

The data created using the procedures described in the
research methodology section was analyzed first to under-
stand the keywords’ unigram, bigram and trigram distri-
butions. As seen from Table 3, the keyword ‘‘test’’ had
the highest unigram ratio for all studied articles (67.64%)
whereas ‘‘software develop’’ had the highest bigram ratio
(12.12%) and ‘‘open source project’’ had the highest trigram
ratio (2.65%).

B. TOPIC MODELING ANALYSIS (RQ2)
Implementing the LDA-based topic modeling analysis,
42 topics describing the software testing strategies were
found. The top 15 keywords of each topic and their ratio in
the corpus are given in Table 4. The topic names are given
by considering the first four keywords classified under each
topic. The topics in Table 4 also illustrate software testing
strategies, so the terms ‘‘topic’’ and ‘‘software testing strate-
gies’’ are used interchangeably throughout this paper. These
topics are listed in Table 4 according to their ratio among
all corpus, with ‘‘Test Generation’’ having the highest ratio
(5.85%) considering the number of articles published under
this topic, and the lowest ratio (1.21%) belonged to ‘‘Security
Vulnerability’’.

C. TEMPORAL TRENDS OF THE TOPICS (RQ3)
In order to better understand the temporal trends of the dis-
covered topics and their temporal developmental ages, the

VOLUME 10, 2022 106097

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

TABLE 2. Publication sources included in the corpus.

percentage of each topic was analyzed in five-year periods.
As a result, the percentage of the topics in the corpus (C%),
and percentage of the topics in the same yearly period (Y%)
are given in the table in Appendix-A. In addition, the average
acceleration (AC) value for each year was calculated by
subtracting the Y% of the previous year (percentage of the
topics in the same year period) from that of the current year.
Considering these yearly AC values, the five-year average
acceleration values for each topic were then calculated and
presented in Appendix-A. Furthermore, the overall AC values
of each topic over the last 40 years are given in the last column
of the table in Appendix A.

Considering these overall AC values (see Appendix A –
AVG), we identified whether the acceleration values of the
topics were positive (increasing) or negative (decreasing)
from 1980 to 2019. Following, we illustrated the top ten

topics with positive AC values in Figure 2 and the top ten
topics with negative AC values in Figure 3. As seen in
Figure 2, the topic ‘‘Prediction’’ had the highest acceleration
(0.11), followed by ‘‘Empirical Evaluation’’ (0.10), ‘‘Source
Code’’ (0.09), and ‘‘Bug Reporting’’ (0.09). On the other
hand, Figure 3 revealed that ‘‘Programming Tools’’ (−0.21),
‘‘Language Specification’’ (−0.19), ‘‘Graph Algorithms’’
(−0.18) and ‘‘Database’’ (−0.18) were the top topics with
negative AC values.

In order to visualize our findings given in Appendix-A and
to provide a better understanding of the temporal changes in
the trends of the topics, we presented acceleration graphs of
the top ten topics with positive accelerations (see Figure 4)
and the top ten topics with negative accelerations (see
Figure 5). In Figures 4 and 5, the blue lines show the accel-
eration (AC) values calculated for each five-year period for

106098 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

TABLE 3. Top 25 unigrams, bigrams, and trigrams in the corpus.

that topic and the red line shows the linear trend-line that
enables predictions of the near-future trend of that topic.
Taking into account Figures 4 and 5, a number of implications
can be drawn as to which software testing strategies will dom-
inate and which will withdraw in the near-future. Temporal
changes in volume and acceleration of other topics can be
seen in Appendix-A.

D. THE LATEST TRENDS IN THE TOPICS (RQ3)
Due to the rapid paradigmatic transformations in software
technologies, we specifically analyzed the trends in software
testing strategies in the last 5 years from 2015 to 2019. In this
way, the recent acceleration values of the topics during the
last five-year period were also calculated and presented in
Figures 6 and 7. Specifically, Figure 6 shows the top ten
topics with positive acceleration values from 2015 to 2019.
On the other hand, the top ten topics with negative accel-
eration values from 2015 to 2019 are given in Figure 7.
As seen in Figure 6, interestingly, the topic ‘‘Prediction’’ had
a significantly higher recent acceleration (0.75) compared
to the other topics. Here, it should be noted that even the
average volume of the topic ‘‘Security Vulnerability’’ was the
lowest (see Appendix-A, 0.15) while its recent acceleration
was one of the highest (see Appendix-A, 2015-2019, 0.30).
A similar trend was observed for the topics ‘‘Open Source’’
and ‘‘Mobile Applications’’ where their average volume
was lower compared to the other topics (see Appendix-A,
0.20 and 0.16 respectively) but their recent accelerations
were the highest (see Appendix-A, 2015-2019, 0.29 and 0.24,
respectively). On the other hand, as emphasized in Figure 7,

the topics ‘‘Web Applications’’ (−0.23), ‘‘Fault Detection’’
(−0.22), and ‘‘Project Management’’ (−0.22) had the lowest
recent accelerations.

E. DEVELOPMENTAL AGES OF SOFTWARE TESTING (RQ3)
With the aim of providing a better understanding of the
developmental ages of software testing strategies over the
last 40 years from 1980 to 2019, the top ten topics of each
five-year period were identified and presented in Table 5. The
newly included ones in the top ten topics in each period are
highlighted in bold (see Table 5). In order to more clearly
demonstrate the changes in software testing over the timeline
of the last 40 years and to define its developmental ages,
we visualized the top five topics in each five-year period
and presented Figure 8. As shown in Figure 8, from 1985 to
1995, topics such as ‘‘Model Reliability’’, ‘‘Programming
Tools’’ and ‘‘Fault Detection’’ were in the top five list of all
topics. The testing processes during this period can be con-
sidered as more programming environment-oriented and fault
detection-based. Accordingly, this period was labelled as
‘‘Detection Age’’, which can be considered as programming-
oriented. After 1995, topics such as ‘‘Empirical Evaluation’’
and ‘‘Test Generation’’ became dominant; thus, the period
from 1995 to 2005 was referred to as the ‘‘Generation Age’’
of software testing. ‘‘Testing Practices’’ then became one
of the dominating topics, with the period from 2005 to
2015 being called the ‘‘Evaluation Age’’. Interestingly, after
2015, the topic ‘‘Prediction’’ became one of the dominating
topics, indicating a change in the field and was named the
‘‘Prediction Age’’.

VOLUME 10, 2022 106099

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

TABLE 4. Discovered topics and top keywords by LDA.

106100 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

TABLE 4. (Continued.) Discovered topics and top keywords by LDA.

FIGURE 2. Top ten topics with positive acceleration values.

V. DISCUSSION
This study analyzed the last 40 years of the software test-
ing studies and provided several contributions to the soft-
ware engineering field. These contributions are summarized
below under six headings, namely systematic methodology
for corpus-based topic modeling, the wide spectrum of soft-
ware testing topics, insights into the methods and strategies,
developmental ages of software testing, and the future out-
look for software testing. Finally, the limitations and sugges-
tions of the study are presented.

A. SYSTEMATIC METHODOLOGY FOR CORPUS-BASED
TOPIC MODELING
The first contribution of this study is the proposed two-
stage corpus creation methodology, which was used due to
the challenges in creating an appropriate search term for

selecting articles related to the software testing domain. This
two-stage corpus creation approach has not been reported in
earlier studies, and accordingly this is a significant contribu-
tion to the corpus creation method of mapping studies. For
certain specific domains such as software testing, the pro-
posed methodology improves the existing approaches. As the
corpus is very important for mapping studies, our corpus
creation methodology is expected to improve future studies
significantly.

B. INSIGHTS INTO THE METHODS AND STRATEGIES
In the software testing stages, the aim is to develop software-
oriented products and services in a systematic and efficient
manner, in which a wide range of tasks, methods, and strate-
gies are used. Depending on the type, scope and context of the
software designed and developed, the methods and strategies

VOLUME 10, 2022 106101

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

FIGURE 3. Top ten topics with negative acceleration values.

FIGURE 4. The acceleration graphs of the top ten topics with positive trends.

chosen during the software testing stages vary considerably.
The findings of this study offer awide-ranging insight into not
only the themes and trends in focus but also the tools, tasks,
methods, and strategies specific to software testing. Specif-
ically, the discovered topics reveal that the most focused
tasks in software testing are specification, transformation,
detection, localization, generation, evaluation, optimization,
verification, and prediction. The important background pro-
vided by the core tasks highlighted in this study for software
testing has also been addressed by previous studies [49].
Likewise, the findings draw clear attention to methods and

strategies, such as ‘‘Test Generation’’, ‘‘Empirical Evalua-
tion’’, ‘‘Fault Localization’’, ‘‘Regression Testing’’, ‘‘Muta-
tion Testing’’, ‘‘Program Analysis’’, ‘‘Bug Reporting’’,
‘‘Algorithm Optimization’’, ‘‘Event Tracing’’, and ‘‘Prod-
uct Line Inspection’’, which are revealed as discrete topics.
Among these topics, which also emphasize methods and
strategies, attention is drawn to ‘‘Test Generation’’, ‘‘Empir-
ical Evaluation’’, and ‘‘Testing Practices’’ as the top three
topics having the highest percentages. Hence, results of
these earlier studies and this current study validates each
other.

106102 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

FIGURE 5. The acceleration graphs of the top ten topics with negative trends.

FIGURE 6. Top ten topics with positive acceleration values from 2015 to 2019.

C. FIVE DEVELOPMENTAL AGES FROM SPECIFICATION TO
PREDICTION
The results indicate that the formation of the topics in soft-
ware testing started in 1980, which marks the year when
IBM released the first personal computer on the mass market.
From this date, since many users started to use software appli-
cations, testing became more critical. In the current study,
starting from 1980, the developmental periods of software
testingwere classified under five developmental ages, namely
specification, detection, generation, evaluation, and predic-
tion. As indicated by Boehm, during the early 1980s, the

testing process was mainly conducted on fixing bugs in the
codes [50]. This is also confirmed by our results, and we
named the period between 1980 and 1985 as the specification
age of software testing. After 1985, defect detection and
understanding the distribution of defects as well as building
connections between defects and requirements were the con-
cepts that influenced testing [51], [52]. Researchers started
to develop methods to classify and mathematically model
defects [53]. This situation is also supported by our results
and indicates the impact of fault detection on testing from
1985 to1995, which we called the detection age of software

VOLUME 10, 2022 106103

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

FIGURE 7. Top ten topics with negative acceleration values from 2015 to 2019.

TABLE 5. Discovered topics and top keywords by LDA.

testing. Starting from 1995, test generation concepts began
to be introduced by researchers such as [54], and this was
also supported by our results, indicating the generation age
between 1995 and 2005. As also reported by van Dam, the
steps for software testing were taken after 1998, indicat-
ing the beginning of the software development age in the
software testing process [55]. However, a systematic imple-
mentation on testing procedures started after 1995. Then,
after 2008, testing started to be considered as part of the
software development processes [55], which may support
the current study’s findings on the evaluation age. Currently,

since time is critical for software projects, automation in
software testing procedures was reported as very important,
for which prediction is an inevitable part. Hence, studies on
software testing indicate a trend toward better defect pre-
diction and removal of bugs, and thus improving software
quality [55].

D. FUTURE OUTLOOKS FOR SOFTWARE TESTING
In this study, considering the volume percentages of the
topics, even ‘‘Prediction’’, a younger topic that started to be

106104 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

FIGURE 8. Five developmental ages of software testing.

studied more often, after 1995 (see Appendix-A), was one
of the top five topics from 2015 to 2020 (see Figure 8). The
average acceleration of ‘‘Prediction’’ (see Figure 2, 0.11) was
also the highest among all topics, and its recent acceleration
value was significantly higher (see Figure 6, 0.75) com-
pared to the other topics where its trend-line also indicates
a steady increase (see Appendix-A). Additionally, although
their average volumes were lower (see Appendix-A, 0.15,
0.20 and 0.16 respectively), the topics of ‘‘Security Vulner-
ability’’, ‘‘Open Source’’ and ‘‘Mobile Application’’ are also
showing higher recent accelerations (see Figure 6) with an
increasing trend-line (see Figure 4). These results indicate
that in the next decade, the topics of ‘‘Prediction’’, ‘‘Security
Vulnerability’’, ‘‘Open Source’’ and ‘‘Mobile Application’’
will dominate the testing studies. With the improvements in
artificial intelligence studies, prediction in the testing pro-
cess and improvements through the automation of the testing
process can be expected to take place in the next decade
[52], [56]. This trend shown in the current study is also sup-
ported by van Dam [55], referring to the possible impact of
artificial intelligence on testing automation studies. However,
this does not mean that there will be no need for software
test engineers or software developers; rather, it is an indicator
of their changing roles and how they work in a software life
cycle.

E. LIMITATIONS AND SUGGESTIONS
This corpus-based topic modeling study, revealing the emerg-
ing themes and trends in the field of software testing from
a panoramic perspective, provides a starting point and a
methodological understanding for more in-depth research
into the software testing phenomenon. In addition to the
findings that reveal this background, this study has some lim-
itations. The empirical corpus created for this study contained
only articles published in core publication sources. In this
respect, further research is recommended to expand the find-
ings of this study using a comprehensive content analysis that
includes a wider range of publication sources. In addition,
the proposed semi-automated methodology can be applied
to different sub-contexts of software testing processes, such

as parallel computing, mobile applications, web applications,
and open-source software systems, and more specific infer-
ences can be obtained. As a result, deeper studies, which
include specific content analysis on software testing and
other sub-contexts of the software engineering field based
on automated text mining and topic modeling, should be
encouraged. The methodology of this study, which focuses
on corpus-based LDA topic modeling, can be supported
by approaches with different backgrounds, such as Non-
Negative Matrix Factorization, Probabilistic Latent Semantic
Analysis, and Hierarchical Dirichlet Process.

VI. CONCLUSION
The results of this study offer insights into software testing
through the analysis of a rich corpus. This methodology
can be applied regularly to analyze the trends and develop-
ments in the field of software engineering. Presenting regu-
lar feedback for the decision makers, educators, researchers
and industry is critical to future-proof software testing and
to take appropriate strategic decisions. The results of this
study show a current trend through prediction, which is an
indicator of the signals of a change in testing procedures
and in the roles of software test engineers. Additionally, the
findings of this study indicate an increasing trend for the top-
ics ‘‘Security Vulnerability’’, ‘‘Open Source’’, and ‘‘Mobile
Application’’. The results of the study may provide valuable
insights for the industry and software communities in order
to be better prepared for the possible changes in the software
testing procedures using prediction-based approaches. From
this perspective, new research can be conducted to better
understand this change and develop strategies for educators to
better prepare future test engineers with the necessary skills,
thus enabling the industry to adapt and develop their testing
strategies by considering these signals of change, and for
decision makers to consider this information for their future
decisions.

APPENDIX A
Details of the discovered topics.

VOLUME 10, 2022 106105

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

TABLE 6. Five-year percentages and acceleration values of the topics.

106106 VOLUME 10, 2022

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

TABLE 6. (Continued.) Five-year percentages and acceleration values of the topics.

REFERENCES

[1] F. Pudlitz, F. Brokhausen, and A. Vogelsang, ‘‘What am i testing and
where? Comparing testing procedures based on lightweight requirements
annotations,’’ Empirical Softw. Eng., vol. 25, no. 4, pp. 2809–2843,
Jul. 2020.

[2] T. Mantere and J. T. Alander, ‘‘Evolutionary software engineer-
ing, a review,’’ Appl. Soft Comput., vol. 5, no. 3, pp. 315–331,
Mar. 2005.

[3] M. Kuhrmann, P. Diebold, and J. Münch, ‘‘Software process improvement:
A systematic mapping study on the state of the art,’’ PeerJ Comput. Sci.,
vol. 2, p. e62, May 2016.

VOLUME 10, 2022 106107

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

[4] S. K. Swain, D. P. Mohapatra, and R. Mall, ‘‘Test case generation based on
use case and sequence diagram,’’ Int. J. Softw. Eng., vol. 3, no. 2, pp. 21–52,
Jul. 2010.

[5] A. A. Salatino, F. Osborne, and E. Motta, ‘‘How are topics born? Under-
standing the research dynamics preceding the emergence of new areas,’’
PeerJ Comput. Sci., vol. 3, p. e119, Jun. 2017.

[6] S. Ahmed, ‘‘Overview of software testing standard ISO/IEC/IEEE 29119,’’
Int. J. Comput. Sci. Netw. Secur., vol. 18, no. 2, pp. 112–116, 2018.

[7] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge,
U.K.: Cambridge Univ. Press, 2016.

[8] É. F. de Souza, R. D. A. Falbo, and N. L. Vijaykumar, ‘‘Knowledge
management initiatives in software testing: A mapping study,’’ Inf. Softw.
Technol., vol. 57, pp. 378–391, Jan. 2015.

[9] P. Tripathy and K. Naik, Software Testing and Quality Assurance: Theory
and Practice. Hoboken, NJ, USA: Wiley, 2011.

[10] P. A. Da Mota Silveira Neto, I. D. C. Machado, J. D. McGregor,
E. S. De Almeida, and S. R. De Lemos Meira, ‘‘A systematic mapping
study of software product lines testing,’’ Inf. Softw. Technol., vol. 53, no. 5,
pp. 407–423, May 2011.

[11] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, ‘‘Graphical user
interface (GUI) testing: Systematic mapping and repository,’’ Inf. Softw.
Technol., vol. 55, no. 10, pp. 1679–1694, Oct. 2013.

[12] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng, ‘‘Generating test
cases from UML activity diagram based on gray-box method,’’ in Proc.
11th Asia–Pacific Softw. Eng. Conf., 2004, pp. 284–291.

[13] C. Catal and D. Mishra, ‘‘Test case prioritization: A systematic mapping
study,’’ Softw. Quality J., vol. 21, no. 3, pp. 445–478, 2013.

[14] A. K. Jena, S. K. Swain, and D. P. Mohapatra, ‘‘Model based test case
generation from UML sequence and interaction overview diagrams,’’ in
Computational Intelligence in Data Mining (Smart Innovation, Systems
and Technologies), vol. 32. NewDelhi, India: Springer, 2015, pp. 247–257.

[15] P. Samuel, R. Mall, and P. Kanth, ‘‘Automatic test case generation from
UML communication diagrams,’’ Inf. Softw. Technol., vol. 49, no. 2,
pp. 158–171, Feb. 2007.

[16] S. Matalonga, F. Rodrigues, and G. H. Travassos, ‘‘Characterizing test-
ing methods for context-aware software systems: Results from a quasi-
systematic literature review,’’ J. Syst. Softw., vol. 131, pp. 1–21, Sep. 2017.

[17] A. A. Pomeransky and I. B. Khriplovich, ‘‘Equations of motion of spinning
relativistic particle in external fields,’’ J. Exp. Theor. Phys. vol. 14, no. 1,
pp. 839–849, 1999.

[18] N. M. Minhas, S. Masood, K. Petersen, and A. Nadeem, ‘‘A systematic
mapping of test case generation techniques using UML interaction dia-
grams,’’ J. Softw., Evol. Process, vol. 32, no. 6, p. e2235, Jun. 2020.

[19] M. Dadkhah, S. Araban, and S. Paydar, ‘‘A systematic literature review on
semantic web enabled software testing,’’ J. Syst. Softw., vol. 162, Apr. 2020,
Art. no. 110485.

[20] V. Garousi, M. Felderer, Ç. M. Karapýçak, and U. Yýlmaz, ‘‘Testing
embedded software: A survey of the literature,’’ Inf. Softw. Technol.,
vol. 104, pp. 14–45, Dec. 2018.

[21] R. Suman and S. Sahibuddin, ‘‘User acceptance testing in mobile health
applications: An overview and the challenges,’’ in Proc. 2nd Int. Conf. Inf.
Sci. Syst., Mar. 2019, pp. 145–149.

[22] M. Bozkurt, M. Harman, and Y. Hassoun, ‘‘Testing and verification in
service-oriented architecture: A survey,’’ Softw. Test., Verification Rel.,
vol. 23, no. 4, pp. 261–313, Jun. 2013.

[23] M. Palacios, J. García-Fanjul, and J. Tuya, ‘‘Testing in service oriented
architectures with dynamic binding: A mapping study,’’ Inf. Softw. Tech-
nol., vol. 53, no. 3, pp. 171–189, Mar. 2011.

[24] A. Kaur and K. Kaur, ‘‘Investigation on test effort estimation of mobile
applications: Systematic literature review and survey,’’ Inf. Softw. Technol.,
vol. 110, pp. 56–77, Jun. 2019.

[25] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, ‘‘Test
case prioritization approaches in regression testing: A systematic literature
review,’’ Inf. Softw. Technol., vol. 93, pp. 74–93, Jan. 2018.

[26] B. Jiang, T. H. Tse, W. Grieskamp, N. Kicillof, Y. Cao, X. Li, and
W. K. Chan, ‘‘Assuring the model evolution of protocol software specifi-
cations by regression testing process improvement,’’ Softw., Pract. Exper.,
vol. 4, no. 10, pp. 1073–1103, 2011.

[27] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and
Techniques to Guide Test Design. London, U.K.: Pearson Education, 2010.

[28] S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul, ‘‘A systematic review
on test suite reduction: Approaches, experiment’s quality evaluation, and
guidelines,’’ IEEE Access, vol. 6, pp. 11816–11841, 2018.

[29] M. Grindal, J. Offutt, and S. F. Andler, ‘‘Combination testing strategies:
A survey,’’ Softw. Test. Verification Rel., vol. 15, no. 3, pp. 167–199,
Sep. 2005.

[30] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari, and L. Olsina,
‘‘Analyzing and documenting the systematic review results of soft-
ware testing ontologies,’’ Inf. Softw. Technol., vol. 123, Jul. 2020,
Art. no. 106298.

[31] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, ‘‘Alignment of requirements
specification and testing: A systematic mapping study,’’ in Proc. IEEE
4th Int. Conf. Softw. Test., Verification Validation Workshops, Mar. 2011,
pp. 476–485.

[32] V. Garousi and M. V. Mäntylä, ‘‘A systematic literature review of literature
reviews in software testing,’’ Inf. Softw. Technol., vol. 80, pp. 195–216,
Dec. 2016.

[33] S. Zein, N. Salleh, and J. Grundy, ‘‘A systematic mapping study of mobile
application testing techniques,’’ J. Syst. Softw., vol. 117, pp. 334–356,
Jul. 2016.

[34] K. Cosh, S. Ramingwong, N. Eiamkanitchat, and L. Ramingwong,
‘‘Automatically identifying themes and trends in software engineering
research,’’ in Proc. 10th Int. Conf. Knowl. Smart Technol. (KST), Jan. 2018,
pp. 106–111.

[35] G. Mathew, A. Agrawal, and T. Menzies, ‘‘Finding trends in software
research,’’ IEEE Trans. Softw. Eng., early access, Sep. 14, 2019, doi:
10.1109/TSE.2018.2870388.

[36] H. Nabli, R. Ben Djemaa, and I. A. Ben Amor, ‘‘Efficient cloud service dis-
covery approach based on LDA topic modeling,’’ J. Syst. Softw., vol. 146,
pp. 233–248, Dec. 2018.

[37] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, nos. 4–5, pp. 993–1022, 2003.

[38] F. Gurcan, G. G. M. Dalveren, N. E. Cagiltay, and A. Soylu, ‘‘Detecting
latent topics and trends in software engineering research since 1980 using
probabilistic topic modeling,’’ IEEE Access, vol. 10, pp. 74638–74654,
2022.

[39] F. Gurcan, N. E. Cagiltay, and K. Cagiltay, ‘‘Mapping human–computer
interaction research themes and trends from its existence to today: A topic
modeling-based review of past 60 years,’’ Int. J. Hum. Comput. Interact.,
vol. 37, no. 3, pp. 267–280, 2021.

[40] P. Mongeon and A. Paul-Hus, ‘‘The journal coverage of web of science
and scopus: A comparative analysis,’’ Scientometrics, vol. 106, no. 1,
pp. 213–228, Jan. 2016.

[41] F. Gurcan and N. E. Cagiltay, ‘‘Research trends on distance learning: A
text mining-based literature review from 2008 to 2018,’’ Interact. Learn.
Environ., early access, pp. 1–22, Sep. 2020.

[42] F. Gurcan and N. E. Cagiltay, ‘‘Exploratory analysis of topic interests and
their evolution in bioinformatics research using semantic text mining and
probabilistic topic modeling,’’ IEEE Access, vol. 10, pp. 31480–31493,
2022.

[43] M. F. Porter, ‘‘Snowball: A language for stemming algorithms,’’ 2001.
[44] D. M. Blei, ‘‘Probabilistic topic models,’’ Commun. ACM, vol. 55, no. 4,

pp. 77–84, Apr. 2012.
[45] F. Gurcan, O. Ozyurt, and N. E. Cagitay, ‘‘Investigation of emerging trends

in the e-learning field using latent Dirichlet allocation,’’ Int. Rev. Res. Open
Distrib. Learn., vol. 22, no. 2, pp. 1–18, Jan. 2021.

[46] A. E. Gelfand, ‘‘Gibbs sampling,’’ J. Amer. Stat. Assoc., vol. 95, no. 452,
pp. 1300–1304, Dec. 2000.

[47] M. Konrad. (2017). Text Mining and Topic Modeling Toolkit. Accessed:
Jan. 21, 2022. [Online]. Available: https://pypi.org/project/tmtoolkit/

[48] D. Mimno, H. M. Wallach, E. Talley, M. Leenders, and A. McCallum,
‘‘Optimizing semantic coherence in topic models,’’ in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2011, pp. 262–272.

[49] A. A. Sawant, P. H. Bari, and P. Chawan, ‘‘Software testing techniques and
strategies,’’ Int. J. Eng. Res. Appl., vol. 2, no. 3, pp. 980–986, 2012.

[50] B. W. Boehm, ‘‘Software engineering economics,’’ IEEE Trans. Softw.
Eng., vol. SE-10, no. 1, pp. 4–21, Jan. 1984.

[51] D. Gelperin and B. Hetzel, ‘‘The growth of software testing,’’ Commun.
ACM, vol. 31, no. 6, pp. 687–695, 1988.

[52] J. W. Cangussu, S. W. Haider, K. Cooper, and M. Baron, ‘‘On the selection
of software defect estimation techniques,’’ Softw. Test., Verification Rel.,
vol. 21, no. 2, pp. 125–152, Jun. 2011.

[53] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, andM.-Y.Wong, ‘‘Orthogonal defect classification—Aconcept
for in-process measurements,’’ IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, Nov. 1992.

106108 VOLUME 10, 2022

http://dx.doi.org/10.1109/TSE.2018.2870388

F. Gurcan et al.: Evolution of Software Testing Strategies and Trends: Semantic Content Analysis

[54] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, ‘‘The AETG
system: An approach to testing based on combinatorial design,’’ IEEE
Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.

[55] K. Van Dam, ‘‘The future of testing,’’ in The Future of Software Quality
Assurance. Cham, Switzerland: Springer, 2020, pp. 197–205.

[56] B. Caglayan, A. T. Misirli, A. B. Bener, and A. Miranskyy, ‘‘Predicting
defective modules in different test phases,’’ Softw. Quality J., vol. 23, no. 2,
pp. 205–227, Jun. 2015.

FATIH GURCAN received the Ph.D. degree in
computer engineering from Karadeniz Technical
University. He was an Instructor at the Department
of Informatics, Karadeniz Technical University,
from 2001 to 2014, where he has been an Instruc-
tor with the Center for Research and Application
in Distance Education, since 2015. His research
interests include trend analysis, sentiment anal-
ysis, statistical topic modeling, engineering edu-
cation, data mining, machine learning, big data
analytics, and text mining.

GONCA GOKCE MENEKSE DALVEREN recei-
ved the Ph.D. degree in software engineering
from Atilim University. She was a Post-Doctoral
Researcher at the Department of Computer Sci-
ence, Norwegian University of Science and Tech-
nology. Currently, she is with the Software
Engineering Department, Atilim University. Her
research interests include software engineer-
ing, eye tracking, medical informatics, and
human–computer interaction.

NERGIZ ERCIL CAGILTAY received the Ph.D.
degree in instructional technologies from Middle
East Technical University. She worked for com-
mercial and government organizations as a project
manager for more than eight years in Turkey. She
also worked for the Indiana University Digital
Library Program as a System Analysis and a Pro-
grammer for four years. She has been a Professor
with the Software Engineering Department, Atilim
University, Turkey, since 2003. Her main research

interests include information systems, medical information systems, engi-
neering education, instructional systems technologies, distance education,
e-learning, and medical education.

DUMITRU ROMAN is currently working as a
Senior Research Scientist with SINTEF, Norway.
He has wide experience with initiating, lead-
ing, and carrying out (research-intensive) projects
on data management and service-oriented topics.
He is also active in the data management field, par-
ticularly in the emergingData-as-a-Service (DaaS)
domain. He holds an Adjunct Associate Professor-
ship with the University of Oslo, Norway.

AHMET SOYLU received the Ph.D. degree in
computer science from University of Leuven,
in 2012. He is currently an Associate Pro-
fessor at the Norwegian University of Science
and Technology. His main research interests
include ontology-driven information systems and
ontology-driven design of information systems
from a human–computer interaction perspective.

VOLUME 10, 2022 106109

