
Received 19 July 2022, accepted 25 September 2022, date of publication 4 October 2022, date of current version 19 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3211969

Methodology and Infrastructure for TSN-Based
Reproducible Network Experiments
MARCIN BOSK 1, FILIP REZABEK 1, KILIAN HOLZINGER 1, ANGELA GONZALEZ MARINO 2,
ABDOUL AZIZ KANE 2, FRANCESC FONS 2, (Senior Member, IEEE), JÖRG OTT 1,
AND GEORG CARLE 1
1Department of Informatics, Technical University of Munich, 85748 Garching bei München, Germany
2Huawei Technologies Düsseldorf GmbH, 40549 Düsseldorf, Germany

Corresponding author: Marcin Bosk (bosk@in.tum.de)

Marcin Bosk and Filip Rezabek contributed equally to this work.

ABSTRACT Time-Sensitive Networking (TSN) is a set of standards offering bounded latency and jitter,
low packet loss, and reliability for Ethernet-based systems while allowing best-effort and real-time traffic to
coexist. Domains that use TSN include intra-vehicular networks (IVNs), aerospace, professional audio-video
solutions, and smart manufacturing. All these areas shift towards Ethernet due to its scalability, throughput,
easy to develop applications, and affordability to produce in a large scale. In this work, we devise a
methodology that introduces a workflow comprising several steps to assess TSN in various domains. The first
step defines requirements and assesses which real-time traffic is present within a given domain. The second
step focuses on configuration of a representative TSN-based network. The step proceeds with performance
evaluation of different TSN standards in the chosen configuration(s). The third – optional – step supports
optimizing the system to fulfill the identified requirements. The methodology is generalized by assessing the
various TSN domains and finding their commonalities. As a result, we see the methodology can be applied to
other TSN solutions. We provide a detailed case study for the domain of IVNs, from which the methodology
is derived. We summarize the key requirements, systematically analyze IVNs traffic patterns for real-time
and best effort traffic, and evaluate the performance of crucial TSN standards recommended by the IEEE
802.1DG Automotive Profile. The methodology builds on top of infrastructure framework, EnGINE, that
offers an environment for reproducible and scalable TSN experiments and relies on commercial off the
shelf hardware and open-source solutions. The framework allows to evaluate various standards and identify
suitable topologies with focus on Layer 2 solutions. Using EnGINE, we evaluated the various traffic patterns
and their corresponding TSN configurations and identified if and how the IVN requirements can be fulfilled.

INDEX TERMS Deterministic networking, experiment infrastructure, in-vehicular networking, networking
experiments, time-sensitive networking, time-sensitive networking methodology, reproducible experiments.

I. INTRODUCTION
Today’s networks are pursuing an ever greater data through-
put, accompanied by an increase in their scale and complex-
ity [1]. Operators of these systems are keen on lowering the
costs and shift towards Ethernet based solutions even in more
specialized domains [2]. However, with all its benefits, this
networking standard does not, by default, offer deterministic
behavior and guarantees on bounded latency and jitter, low

The associate editor coordinating the review of this manuscript and

approving it for publication was Yougan Chen .

packet loss, and reliability. These properties are especially
relevant for the real-time and time-sensitive systems, such
as Intra-Vehicular Networks (IVNs), aerospace applications,
smart manufacturing, professional audio and video, andmany
others.

The Time Sensitive Networking (TSN) capabilities and
performance have been an active research subject, with many
evaluations being conducted in simulation environments.
Using such environments brings multiple advantages. The
designed experiments are easy to reproduce and configure,
offer high flexibility, and fast development cycle. The main

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 109203

https://orcid.org/0000-0001-6754-9098
https://orcid.org/0000-0002-9090-5633
https://orcid.org/0000-0003-2098-6367
https://orcid.org/0000-0003-2123-7915
https://orcid.org/0000-0002-9817-736X
https://orcid.org/0000-0001-5901-7534
https://orcid.org/0000-0001-8311-8036
https://orcid.org/0000-0002-2347-1839
https://orcid.org/0000-0001-8345-1226

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

disadvantage is simulations’ deviation from realistic system
behavior, as real deployment artifacts such as clock deviation
or operating system overhead are lacking. On the other hand,
for real deployments, we need to consider what hardware
and software should be used to fulfill given real-time require-
ments, evaluate the impact of the various artifacts present in
the system, and get an understanding of such shortcomings.

Therefore, with this work we introduce a methodology that
aims to provide a structural approach to assess system behav-
ior, recommend how to utilize and configure TSN standards,
and identify ways of performance optimization to achieve the
real-time guarantees. Our approach combines simulations’
advantages while running in a physical topology contain-
ing machines emulating network switches and constrained
devices within various domains where TSN is required. In the
following, we aim to provide guidelines on how the new
generations of networks based on Ethernet can be assessed
and validated, considering their respective requirements.

The aforementioned methodology consists of two ele-
ments: an evaluation framework, and network performance
assessment guidelines with focus on system optimization to
meet defined Key Performance Indicators (KPIs). The first
component builds on top of already published results intro-
ducing the EnGINE framework (Environment for Generic
In-vehicular Network Experiments) [3]. Even though the
framework was originally designed for IVNs, with this work
we show that it can be generalized and used for multiple
other TSN domains. The framework brings high flexibility to
network and data sources configuration. Moreover, EnGINE
allows to monitor and record events for later evaluation or
traffic re-play in the network to identify architectural lim-
its. The experiments are easy to reproduce and configure.
Furthermore, the framework enables emulation of possible
malfunctions that can affect reliability, being a crucial aspect
of real-time networked systems. EnGINE can introduce link
failures and packet loss, to verify the system resilience.

With our methodology being based upon the EnGINE
framework, our approach utilizes the Linux networking stack
offering various queuing disciplines (qdiscs) configurations
and TSN capable Commercial off-the-Shelf (COTS) hard-
ware. We support the TSN standards recommended by var-
ious profiles, such as the IEEE P802.1DG TSN Profile
for Automotive In-Vehicle Ethernet Communications [4],
IEEE P802.1DP – TSN for Aerospace Onboard Ethernet
Communications [5], and IEC/IEEE 60802 TSN Profile for
Industrial Automation [6]. We place our focus on IEEE
802.1Qav [7], IEEE 802.1Qbv [8], and IEEE 802.1AS [9]
standards with potential for extension and also inclu-
sion of higher-layer mechanisms for time-sensitive network
operation.

The second part of the methodology focuses on definition
of individual actions needed to implement and deploy the
aforementioned TSN standards within a given domain. The
following steps are required:
S1 Definition of requirements and traffic patterns present

in the given TSN domain

S2 Configuration and evaluation of TSN standards using
the COTS hardware and open-source solutions

S3 System optimization to meet defined KPIs

Starting with S1, we need to understand what data and traffic
patterns are present in such real-time networks, what prior-
ities they have, and what KPIs they need to fulfill. Namely,
we investigate packet loss, latency, and jitter with respect to
packet sizes and spacing, and their priorities. To assess the
data traffic patterns and their metrics, we use the recommen-
dations presented by the AVNU Alliance for the individual
Stream Reservation (SR) classes. AVNU Alliance target is to
create an automotive ecosystem for the precise timing and
low latency requirements for various applications using open
standards. It stresses the importance of SR classes and their
prioritization [10].

With the S2, we configure and evaluate the performance
goals with respect to the defined requirements and assess the
TSN standards in such scenarios.

Using the S3, we optimize the system to avoid unwanted
artefacts and provide means for defining a suitable network
configuration and interconnections, while also considering
edge cases. These and other recommendations provide a good
baseline for the network performance evaluation with fixed
KPIs being the target for system optimization. Nevertheless,
the scope of the work does not aim to provide a suitable
solution, but rather required steps on how to achieve it.

We provide a detailed introduction and analysis of these
actions within our methodology and their generalization in
Section IV. This section also introduces a case study for the
example domain of IVNs, where we go through the individ-
ual methodology steps and assess the network requirements.
In addition, we introduce a sample topology that emulates
a high-end IVN to which we apply the outcomes of general
evaluations and identified traffic patterns. As a motivation for
the applicability of TSN to IVN we consider use-cases such
as shared mobility, vehicle-to-X communication, self-driving
vehicles, and over-the-air upgrades. All of these use-cases
require fast, secure, and reliable network. With this example,
we want to show the applicability of our methodology to a
smaller set of networks.

This work presents these Key Contributions (KCs):

KC1 Introduces methodology for assessment of TSN
domains using an infrastructure for reproducible net-
work experiments, e.g., EnGINE

KC2 Provides a case study using the defined methodology
focusing on the domain of IVN, covering IVN require-
ments and traffic patterns definition

KC3 Provides detailed system optimization and TSN stan-
dards configuration and evaluation using the COTS
hardware and open-source solutions

II. BACKGROUND
In this section, we introduce the requirements that IVNs in
general and, by extension, the methodology presented in this
work need to fulfill. Furthermore, we introduce all concepts

109204 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

and technologies and build a robust methodology for IVN
and TSN experiments. We also briefly introduce the EnGINE
framework, the experimental environment we developed and
used to evaluate the proposed methodology.

A. REQUIREMENTS FOR IN-VEHICULAR NETWORKS
The IVNs need to support a wide range of functions being
executed within the scope of a vehicle. Since such a network
carries information required for critical functionality, e.g.,
Advanced Driver Assistance Systems (ADAS) or brake-by-
wire, it has to fulfill strict requirements for the network
delay, jitter, packet loss, and robustness. Hence, in this work,
we focus on the requirements of IVNs and combine those
with the requirements of a hardware-based experimentation
environment, our System Under Test (SUT). The SUT needs
to enable IVN and TSN experiments as outlined in [3]. The
experimental deployment itself needs to be capable of pro-
ducing experiments which are, amongst others:

1) Repeatable – ease of experiment repetition within the
same setup

2) Reproducible – ease of experiment result reproduction
using the same setup

3) Replicable – ease of experiment result reproduction
with a different setup offering same capabilities

4) Configurable – ease of configuration
5) Autonomous – no human intervention required
6) Realistic – use of real-world traffic patterns
7) Scalable – experiments with various complexities
8) Diverse – use of a wide variety of input formats

Furthermore, the SUT needs to fulfill the requirements of
various IVN and TSN traffic types. We distribute these traffic
types across various SR classes as defined in the recom-
mendations of the AVNU alliance [10], based on the IEEE
8802-1BA [11] and the IEEE 1722-2016 [12] standards. An
SR class summarizes the needs of traffic of a certain type.
The resulting requirements on the performance of the network
within the SUT are listed in Table 1. We determine that in
order to enable IVN and TSN experiments, the hardware
deployment needs to offer a latency less than 2ms. Further-
more, the end-to-end delay jitter, that is the difference in
latency between two subsequent packets, needs to be kept
under 125µs. This requirement needs to hold over 7 network
hops for most critical traffic corresponding to SR class A.
Less critical traffic does not require such low latencies and
jitter. In the case of Best Effort (BE) traffic, no requirements
are applicable. Each of the SR classes is mapped to a cor-
responding Priority Code Point (PCP) which can be used to
derive the priority of the class used in packet scheduling.

B. TIME SYNCHRONIZATION
To achieve the required precision within the SUT, we need
accurately synchronized clocks in the network. Therefore,
in this section we outline standards offering time synchro-
nization and available implementations.

TABLE 1. SR class requirements [10], [11], [12], [13] over 7 network hops.

IEEE 1588 [14] standard describes Precision Time Proto-
col (PTP) for precise time synchronization in a networked
system. The individual clocks are synchronized via PTP
instances running on each participating device. The partic-
ipating devices are structured in a master-slave hierarchy.
Master and slave exchangemessages over the network and the
slave clock is synchronized to the master clock. The reference
time for the whole system is determined by the Grandmaster
Clock (GM) clock, that sits on top of the hierarchy.

There are three types of PTP clock devices: Ordinary Clock
(OC), Boundary Clock (BC), and Transparent Clock (TRCL).
The OC is the simplest PTP device and can only run as a
GM or a slave PTP instance. The BC has multiple BC ports,
where each port behaves as the OC. The BC can become the
GM, but then the node does not forward any PTP messages.
In comparison to the OCs and BCs, the traffic controls (tcs)
do not synchronize the clock of the machine they operate on.
Instead, tc forwards the received protocol messages to the
other ports and adjusts the time value in the PTP message
according to the residence time in the tc. OCs and tcs may be
combined.

On top of the PTP hierarchy is the GM. Any OC or BC
can become a GM, so GM does not categorize as a dedicated
clock type. The GM provides the time baseline within PTP
network, ideally receiving its reference time through a reli-
able source, such as GPS. All other clocks are synchronized to
the GM. Using the aforementioned clocks as building blocks
of a PTP topology, we demonstrate how a complex PTP
network is built. To establish the topology, a GM has to be
chosen to dictate the timing baseline to which other clocks
synchronize to. The Best Master Clock Algorithm (BMCA)
determines themost suitable GMautomatically by comparing
various clock quality parameters.

PTP prunes cyclic paths in topologies, i.e., mesh topolo-
gies, to avoid cyclicity in the network [14]. Figure 1 illus-
trates this concept. We assume that the network connections
between the BCs represent a mesh. Since there are two possi-
ble paths for synchronization of the bottom right BC, one of
the paths is pruned to avoid cyclicity.

The PTP clock synchronization requires nodes to be
exchanging timing information. The timing information is
used to compute the clock offset and path delay between the
nodes affecting the messages. Besides, the calculation of the
message path delay between two nodes can be achieved in
two distinct delay calculation modes, i.e., End-to-End (E2E)
or Peer-to-Peer (P2P).

Figure 2 shows how a master and a slave clock exchange
timestamps in the E2E mode. Equation 1 shows how the

VOLUME 10, 2022 109205

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 1. PTP topology with five nodes [14]. The dashed-line path is
pruned, yielding a tree-shaped topology.

FIGURE 2. Sequence diagram of the two-step E2E synchronization
model [14]. The slave keeps track of t1 through t4.

slave can compute the path delay dP with the help of four
collected timestamps. With the path delay, the slave clock
can calculate the offset and accurately synchronize itself.
An assumption is a duplex symmetric path between master
and slave, and if it does not hold, the clock synchronization
accuracy suffers [15].

dP =
(t2 − t1)+ (t4 − t3)

2
(1)

The P2P mode calculates the delay in the other direction.
Instead of using the Delay Req. and Delay Resp. message
types, two PTP ports on different nodes enter a peer-to-peer
relationship. They periodically exchange Pdelay messages to
determine the delay between each other, which is then used
in the clock synchronization procedure.
IEEE 802.1AS [9] standard relies on the methods defined

in IEEE 1588 and applies them to the TSN in the form of
a generic Precision Time Protocol (gPTP). In comparison
to PTP, gPTP exchanges messages only at Layer 2 (using
IEEE 802.1 MAC). Only two types of PTP devices exist in
gPTP: PTP End Instances and PTP Relay Instances. The end
instance corresponds to a PTP OC, whereas the relay instance
is equivalent to a tc. The gPTP network is constrained,
as packets are exchanged only between PTP instances and
the gPTP clocks must operate on the same frequency. Overall,
non-PTP devices cannot be used to forward PTP packets.

Within this work, we rely on the linuxptp project [16]
to synchronize various clocks in the network. The project
implements three individual tools - ptp4l, phc2sys, and pmc.
The ptp4l implements the PTP standard IEEE 1588 [14].

It can use Ethernet, IPv4, or IPv6 as an underlying proto-
col. To achieve nanosecond precision, it is crucial to use

a Network interface card (NIC) supporting IEEE 802.1AS
standard enabling hardware timestamping. Therefore, our
setup uses COTS Intel R© I210 NICs, which support the afore-
mentioned feature. The ptp4l daemon runs on all interfaces,
selects the most suitable GM, and synchronizes their clocks.

In case we need to synchronize additional clocks in the
system, we rely on the phc2sys [17]. The phc2sys can run
automatic mode in which phc2sys uses the information of
ptp4l to synchronize clocks. This is important as the Intel R©

I210 NIC has as many Physical Hardware Clocks (PHCs) as
the available ports. The tool is also needed synchronize the
system clock to the GM.

C. LINUX NETWORKING STACK & TSN STANDARDS
First, we introduce how the Linux networking stack works
and provide details on its implementation of individual TSN
standards. The introduced TSN standards are relevant for the
operation of IVNs and other TSN domains.

The networking process in Linux starts from the user space.
As a first step, the application creates data (or a packet)
that is passed using a system call into the kernel space. For
each packet passed via a system call, two data structures are
created: a buffer storing packet data, and a Socket Buffer
(SKB) storing all of the packet’s metadata. The packet with
its corresponding data structures then proceeds down the
ISO/OSI stack within the kernel space. It traverses through
transport, network, and link layers. Each traversed layer adds
the appropriate headers for the used protocols. Examples of
the protocols which add their headers to the packet are: User
Datagram Protocol (UDP) for Layer 4, IPv4 for Layer 3, and
MAC for Layer 2. These steps are shown in Figure 3.

The TSN standards as defined in the IEEE 802.1Q [13]
are meant for operation on the Link Layer. Within Linux,
these are implemented as a part of the qdiscs. qdiscs are
intermediary queues into which packets are inserted when the
kernel intends to forward packets towards the NIC. Generally,
there are two types of qdiscs: classless and classful. Classless
qdiscs do not follow any hierarchy and can be considered as
simple queues. An example of such qdisc is a Packet Limited
First In, First Out queue (PFIFO), which is a straightforward
first-in-first-out queue without any additional logic. Classful
qdiscs are structured in a parent-child hierarchy. A parent
qdisc can have several child qdiscs. Parent qdiscs generally
contain logic determining into which child qdisc the packet
is passed on. Only the child qdiscs at the end of the hierarchy
has queues into which packets are enqueued.

The packet’s priority is defined when it arrives in the kernel
space and the corresponding metadata is stored in the accom-
panying SKB data structure. These priorities correspond to
Traffic Classs (TCLs) encompassing packet’s dedicated for-
warding resources [18]. In essence, the TCLs are mapped
onto one or more Tx queues of a given NIC. The Tx queue
with the lowest number, and subsequently the highest priority,
is emptied first. The qdisc itself is responsible for the pacing
of the packets. It controls when a packet is forwarded to the
software queue associated with the NIC, in Linux referred

109206 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 3. Overview of the packet going through networking stack for
MQRPIO parent qdisc and ETF child qdisc. Encircled numbers correspond
to explanation steps for ETF qdisc.

to as a ring buffer. This driver queue is read by the NIC, with
packets then being stored within its hardware queues. Finally,
the frames are processed by the NIC and transmitted onto the
wire.

In practical applications, the command line tool tc is
used to manage the qdiscs configuration in the network-
ing stack [19]. For example, the Intel R© I210 NIC has four
hardware queues. Each of these queues can have a different
child qdisc associated with it. The highest traffic priority
corresponds to Hardware (HW) queue where the first qdisc
is configured. As mentioned, the priorities stored in the SKB
are read from their Virtual LAN (VLAN) PCP header field.
This approach is described in [20]. For TSN, within the scope
of this paper and the IEEE P802.1DG standard, we focus on
Multiqueue Priority Qdisc (MQPRIO) and TimeAware Prior-
ity Shaper (TAPRIO) as parents and Earliest Time First (ETF)
and Credit-Based Shaper (CBS) as child qdiscs. Some NICs
support the respective standards in HW, allowing for their
offload and possibly resulting in a speedup of the processing.
In the following, we introduce the relevant TSN standards and
their Linux configuration in detail.

1) EARLIEST TxTime FIRST
Figure 3 shows the functionality of ETF together with
MQPRIO configured as a parent qdisc. As mentioned, during
the packet lifetime a SKB storing packet’s metadata is allo-
cated. In 1©, we see the priority and the TxTime. The TxTime
is specified in the SKB SO_TXTIME option. Based on the
priority value a packet is mapped to the corresponding class
and later to a corresponding qdisc and HW queue. In 2© we
see, that that packets are sorted according to the TxTime T ,
where T + x > T . Next 3©, the packet is handed over to
the ring buffer delta ns before the TxTime from which the
packet is read to the Ethernet port on the NIC. The NIC stores
the frames in its own queue 4©, and sends the packet at the
TxTime according to its hardware clock 5©. Of note, we do
not have visibility on the packet once it leaves the ring buffer
until it reaches the next hop.

ETF can operate in two modes - strict and deadline. With
the strict mode, the packets are dequeued at the TxTime.
In case of the deadline mode, the packet can be dequeued
anytime before the TxTime is reached. The expected outcome

when using the deadline mode is a lower delay but a higher
jitter. As mentioned, we need to account for a delay before
the TxTime, when the ETF qdisc awakens and dequeues the
packet towards the NIC. The corresponding parameter is the
delta which also serves as a fudge factor for the system
delay. With HW support of the NIC, the ETF operation can
be offloaded for higher precision.

2) TIME AWARE PRIORITY SHAPER
IEEE 802.1Qbv [8], [21] known as Time-Aware Shaper
(TAS), TAPRIO qdisc [22] in Linux, or ‘‘Enhancements for
scheduled traffic’’ as a part of the IEEE 802.1Q-2018 [13]
standard. It offers support for synchronized scheduling of
multiple tcs on a single interface. The traffic flow is controlled
by gates for each traffic class, that operate according to a cycle
determined by the system configuration. The packets can be
dequeued only when the gate is opened. The functionality is
similar to Time Division Multiple Access (TDMA) scheme.

The various TCLs have a dedicated transmission window
within a cycle of configurable length. The gate of the given
class is open during its window. The packets are passed to the
child qdisc only if enough time remains for the transmission
until the gate closes. To ensure that the individual window
cycles and windows do not interfere, we can add guard win-
dows. These can have the size of a given packet serialization
time computed using the packet size and link speed. In sce-
narios when the transmission duration of a frame is unknown
in advance, e.g., in cut-through switching, the length of the
window should be compensated with an appropriate schedule
configuration.

Linux TAPRIO qdisc configuration maps the tcs to HW
queues and their corresponding transmission windows using
their assigned priorities. TAPRIO is enabled by the child
ETF qdisc, which is configured for each HW queue of a
corresponding port. ETF offers control over the sending time
of its packets. Due to that, some literature refers to it as
‘‘LaunchTime’’ feature. For sorting the packets in queues,
their pre-defined transmission time is used. The packets are
kept in the queue by the qdisc until this deadline arrives.

Figure 4 shows a configuration with eight traffic classes
and gates. TAPRIO must be configured as a parent
qdisc to manage the mappings of the PCP to TCLs with
respect to the gate opening. In this case, only a single gate is
opened to allow the traffic dequeuing. In addition, the frame
selected for transmission can also depend on the used child
qdisc. As an example, CBS could be used as the child qdisc,
restricting the sending rate despite the gate being open by
TAPRIO.

TAPRIO is part of the synchronous TSN standards. There-
fore, it requires to align the schedules of all devices in the
network. This is achieved by setting the base-time prop-
erly. The parameter indicates a start time of the schedule and
is set in nanoseconds.

To configure the duration for which the gate is opened,
the sched-entry S $MASK $DURATION parameter is
used. $DURATION is the time window duration, and $MASK

VOLUME 10, 2022 109207

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 4. Overview of TAPRIO qdisc with tcs mapped to HW queues and
corresponding gates [8].

indicates which gate is opened/closed during this window.
Sum of all the sched-entry is the cycle time.

Additional configuration parameter is flags. It supports
the TxTime mode (flags 0x1) and the full offload mode
(flags 0x2). The TxTime mode automatically sets the
packet’s TxTime, which is important for applications that do
not set this time. ETF qdisc uses the TxTime to control when
a packet is sent and in case no TxTime is set or the packet
arrives to the queue after the TxTime passes, the packet is
dropped.When theflags 0x1 is usedwe need to configure
also the txtime-delay that accounts for the system delay.
As per documentation, it should be greater than the ETF qdisc
delta value.

When combining the TAPRIO with ETF, we have to con-
sider their corresponding parameters. The txtime-delay
is added to the overall TxTime of a given packet. The packet
is passed through the parent qdisc gate once its open for a
given priority to the ETF queue. In case the windows are too
large, the packet may reach the queue too short before the
TxTime and is dropped. This is especially a problem if the
delta value is set too high. Similarly, when the window
sizes are too small, the txtime-delay has to account
for that, as the packets might spend additional time waiting
before the TxTime is reached.

3) CREDIT-BASED SHAPER
IEEE 802.1Qav [7], also known as the CBS algorithm
belongs to the IEEE 802.1Q-2018 [13] family of standards.
The algorithm is used to select frames that will be transmitted
next on the interface from a set of SR classes and their
associated hardware queues. CBS itself enables bandwidth
allocation to pre-defined SR classes. The algorithm ensures
this allocation for every SR class using a scheduling system
based on credits and with that offers some bounds on delay,
jitter, and packet loss.

The algorithms’ credit-based operation is visualized in
Figure 5. The start of a frame transmission is allowed only
when the collected credit is ≥ 0 and no frames from other
SR classes are currently being transmitted by the NIC. The

FIGURE 5. Example credit level over time during CBS algorithm
operation [13].

amount of accumulated credit over time for any SR class X is
governed by four parameters:
• hiCreditX - maximum allowed credits
• loCreditX - minimum, negative, allowed credits
• idleSlopeX - rate at which credits are replenished
• sendSlopeX - rate at which credits are spent

Credit is accumulated when at least one packet is present in
the queue of class X. When a frame is present in the queue of
class X and a frame from another SR class is being transmit-
ted by the NIC, the credit is accumulated at idleSlopeX rate
until hiCreditX is reached. After the other frame’s transmis-
sion is over, the frame of class X can be transmitted. During
transmission, credit is spent at sendSlopeX rate. The amount
of accumulated credit can be negative but never lower than
loCreditX . If there are no additional frames in the queue of
class X and the associated credit was> 0, the available credit
is set to 0. When a new frame arrives for class X, and no
frame from other SR class is being transmitted, the packet
can be sent out immediately. In this case, the credit is spent
at sendSlopeX rate during transmission and it is replenished
afterward at idleSlopeX rate until it reaches 0 again.
The values of the four aforementioned parameters are cal-

culated based on the bandwidth fraction BX allocated to the
SR class X, the maximum frame size in bits MFSX for the
class X, the NIC transmission rate PTR in bit/s, and the maxi-
mum frame size in bits expected on the associated NICMFS0.
In the following equations, we denote any other SR classes
using the interface as class Y. Of note, CBS configuration
includes the Physical Layer (PHY) overhead in the frame size.

idleSlopeX = BX · PTR (2)

sendSlopeX = idleSlopeX − PTR (3)

loCreditX = MFSX ·
sendSlopeX

PTR
(4)

hiCreditX = idleSlopeX · (
MFS0
PTR

+ IFX) (5)

IFX =
Y<X∑
Y

(
hiCreditY
−sendSlopeY

+
MFSY
PTR

) (6)

109208 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 2. PCP to TCL mapping according to the IEEE 802.1Q
specification [13].

The idleSlopeX parameter is defined in Equation (2).
It specifies the rate at which a class accumulates tokens
while frames are queued in their corresponding queue and
directly corresponds to the bitrate allocated to an SR class
X. The sendSlopeX follows in Equation (3) as a difference
of NIC’s bitrate subtracted from the bitrate allocated to class
X. loCreditX is specified in Equation (4), signifying that at
least one packet ofMFSX size can be transmitted when credit
is 0. The hiCreditX shown in Equation (5) is a combination
of the rate which is guaranteed for class X and the maximum
interference that can be caused by best-effort traffic or any
other SR class with higher priority than X. The SR class
priorities introduced in Table 2 show a default mapping of
PCP to TCL. Higher TCL value corresponds to a higher
priority within the packet scheduler. The table distinguishes
between the number of available tc classes in the system and
presents values for 4 and 8 classes corresponding to NICs
with 4 and 8 queues respectively. Given that mappings, SR
class A has the highest priority and SR class B the second-
highest priority. The interference from other SR classes is
introduced in Equation (6).

To mention, the parameters introduced above use B and
kbit/s in Linux, but the IEEE 802.1Qav [13] standard defines
them in bit or bit/s. As an example, for the Linux config-
uration with packets of 1250 B at a bitrate of 100 Mbit/s
and maximum packet size of 1542 B with interface bitrate
of 1 Gbit/s, the corresponding qdisc parameters for SR class
A are: idleSlopeA = 100000, sendSlopeA = −900000,
hiCreditA = 155, and loCreditA = −1125.

Furthermore, in Linux, CBS needs to be associated with
MQPRIO qdisc to distinguish between packets corresponding
to specific SR classes. The MQPRIO enables mapping of
SR classes to defined priorities and hardware queues of the
NIC and is an implementation of the strict priority forward-
ing [23]. The CBS qdisc are configured per HW queue as
MQPRIO’s child qdiscs.

D. THE EnGINE FRAMEWORK
An important addition to the introduced methodology is
the infrastructure and framework for experiment evalua-
tion called EnGINE (Environment for Generic In-vehicular
Network Experiments) [3]. The framework uses Linux net-
working stack, which as mentioned offers a variety of qdiscs
configurations together with and TSN capable COTS NICs.
EnGINE supports IEEE 802.1Qav [7], IEEE 802.1Qbv [8],
and IEEE 802.1AS [9] standards introduced previously and
their corresponding qdiscs along with the ETF and MQPRIO
qdiscs. The framework is designed for TSN experiments
with a focus on smart manufacturing and IVNs. Therefore,

FIGURE 6. Overview of experiment components [3].

it fulfills the requirements introduced in Section II-A with
additional details covered in [3].

The framework orchestration tool is built using Ansible,1

which brings flexibility to the network and data sources con-
figuration. It allows for traffic generation or replay, collection
of artifacts for further evaluation, and post-processing of
results providing valuable insights. As a part of the require-
ments, the experiments are reproducible and configurable.

Figure 6 shows the structure of an experiment within the
EnGINE framework. It consists of three elements - input,
SUT, and output. First, input defines a scenario and the
traffic type under which the network is tested. Second, SUT
contains the networked elements used in an experiment.
EnGINE allows the network structure to be configured for
various topologies and network configurations. Finally, out-
put handles the collected experiment results.
In practice, each experiment campaign has four phases:

install, setup, scenario, and process. During the install
phase, the required nodes are booted with the Operating
System (OS) image of preference. This step utilizes the
plain orchestration service (pos) [24]. The second, setup step
ensures the required software artifacts are properly installed
and prepared for the individual experiments. The third, sce-
nario handles the execution of the individual experiments.
During this, a network topology, individual interfaces and
also linuxptp for clock synchronization are configured for
each experiment. Next, all used applications during the indi-
vidual experiments are started. As an example, an application
could be a traffic generator or packet capture. If needed,
we can also add dynamic behavior to the experiment, e.g.,
switching off a link or introducing an additional traffic path.
The generated artifacts of each experiment are processed on
the individual node, and on the management host to which
all of the artifacts are copied to. To note, post-processing is
possible on individual or several experiments at once.

III. RELATED WORK
Several resources describe application domains of TSN pro-
viding understanding of common requirements and chal-
lenges. For our methodology, we rely on various traffic 6 and

1https://www.ansible.com, Accessed 15.07.22

VOLUME 10, 2022 109209

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

sources identified via a brief survey of TSN traffic character-
istics. Finally, we provide an overview of other approaches
used in building of testbed infrastructure focusing on TSN
experiments and measurements.

A. APPLICATION DOMAINS OF TSN
The survey publications [2] and [1] investigate the current
state of technology and ongoing developments in the field
of IVNs. The ongoing focus on ADAS and multi-media
functions in the vehicles results in an increased transferred
data volume. Network gateways connect sensors and actu-
ators partially using other bus systems such as Controller
Area Network (CAN), Local Interconnect Network (LIN),
or FlexRay [1], [2]. Ethernet with TSN, due to their low cost,
flexibility, and popularity have the capability of becoming the
backbone of the IVN.

In [25] the authors present a case study of an aerospace
application using TSN. The publication provides an overview
of possible traffic flows and analyses the network and hard-
ware bottlenecks in such domain. Even though, not all of the
TSN standards might be recommended or used, a subset of
them is considered by the authors. TSN support for satellite
development, new recommendations, and Quality of Service
(QoS) guarantees for networks inside satellites are discussed
in [26]. The authors analyze the state-of-the-art standards and
architectures while providing recommendations on transition
to Ethernet networks with TSN. For that, they summarize the
available traffic patterns and their requirements with respect
to bounded latency, jitter, and data rate.

Within [27] the authors focus on the aspects of OPC Uni-
fied Architecture (OPC UA) along with TSN and its appli-
cability to industrial automation. They design an architecture
specifying how industrial automation with Internet of Things
(IoT) applications can benefit from TSN. The authors sepa-
rate the network functionality on Layer 2, which is crucial
for TSN, from Layer 3 for cloud connectivity. TSN offers
bounded latency, jitter, and a very low-packet loss ratio suit-
able for such deployments.

Audio Video Bridging (AVB) that closely relates to TSN
also offers a new set of use-cases and scenarios. In [28],
a theoretical evaluation of AVB and TSN protocols within
the IVNs is performed. The authors use CBS, TAS, and
SR classes categorization similarly as we introduce in this
work. In addition, as analyzed in [29], AVB considers Frame
Preemption IEEE 802.1Qbu together with Cyclic Queuing
and Forwarding IEEE 802.1Qch [28]. The authors also com-
pare AVB scheduling with the IEEE 802.1Qbv standard [21].
Finally, the publication summarizes other standards in the
TSN domain and mentions open issues with them.

B. TRAFFIC CHARACTERISTICS OF TIME SENSITIVE
NETWORKS
Several publications look into the characterization of the
traffic within IVNs. The open dataset ApolloScape [30] gives
an impression of the high throughput required to transport
sensor data over the network. In [31], the authors describe

traffic and topologies of IVNs. Furthermore, they evaluate
the impact of traffic shaping on the various traffic classes.
A detailed overview of common traffic types in industrial
automation systems and recommendations for suitable traffic
shaping is presented in [32].

C. TSN TESTBEDS
A poster publication [33] describes a TSN testbed managed
by a central Software Defined Networking (SDN) controller.
Similarly to EnGINE framework, only COTS hardware is
used. Unfortunately, an in-depth description of the approach
and its evaluation is not available.

Another report describes a testbed with TSN capabilities
using custom FPGA-based hardware extensions [34]. It is
used to assess metrics such as latency and jitter of the TAS.
An important conclusion is that end nodes software stacks are
the main contributors to outliers in the packet delays.

[35] studies the integration of the industrial communi-
cation protocol OPC UA PubSub into TSN. The OPC UA
software stack has been improved to achieve low and deter-
ministic latency. In contrast to our approach presented within
this work, the measurements the authors performed used
point-to-point node topology with a fixed traffic pattern.

In another study, a TSN testbed was built to assess the
functionality of a simulation framework [36]. The topology
within the experiments is fixed, consisting of two proprietary
TSN hardware switches, four talkers, and four listeners. The
authors show that a good similarity between the results from
simulation and physical testbed could be achieved.

Finally, the Industrial Internet Consortium (IIC) operates
two TSN testbeds on two continents [37], [38]. Several TSN
manufacturers integrate their solutions and test for device
compatibility to show TSN support. A main goal of the
testbed is to achieve interoperability by standard compliance.

D. MODELLING OF TSN
In [39], Network Calculus was used to assess the performance
characteristics of the various TSN traffic shapers and also
possible combinations thereof. The publication furthermore
contains guidelines for flow shaping under certain require-
ment trade-offs.

Instead of using TSN traffic shaping to achieve bounded
latencies in IVNs, a more simple approach of using FIFO
queues without reshaping at the switches was studied
in [40]. Additionally, a complete framework for distributed
time-sensitive embedded applications communicating over
TSN is presented in [41]. The authors combine a timing
model of the software stack and of the network stack.

E. SIMULATION OF TSN
Several, both open-source and proprietary, TSN simula-
tors are currently available. Core4Inet [42] and NeST-
iNg [43] frameworks, together with recently extended INET

109210 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

framework2 [44], bring TSN capabilities to the open-source
discrete event simulator OMNeT++ [45]. For example,
Core4Inet is used in the evaluation of a heuristic-based TSN
scheduling algorithm to compute gate control lists for the
TAS [46]. Furthermore, the INET framework stresses its
capabilities supporting a realistic TSN deployment as well as
the framework’s applicability to IVN simulation.3

Another study focuses on the assessment of the CBS with
realistic automotive network traffic using the OMNeT++
simulator [47]. The authors indicate that bounded jitter,
an important promise of the CBS algorithm, can be achieved
in this scenario. Another proprietary solution is the Real-
Time at Work (RTaW) Pegase software4 which is used as an
evaluation tool in some publications such as [25] and [31].

IV. THE METHODOLOGY & CASE STUDY
This section analyses the introduced methodology and covers
a sample use-case relevant for the IVNs which we consider as
a case study of the introduced methodology.

A. METHODOLOGY INTRODUCTION
This work has two fundamental building blocks, as briefly
outlined in Section I. The first is the infrastructure framework
EnGINE. The second is the methodology with individual
steps and actions showing how to utilize the infrastructure to
collect valuable insights for suitable TSN configuration and
system optimization to achieve defined KPIs.

The EnGINE framework [3] offers the infrastructure for
reproducible TSN experiments ranging from small deploy-
ments (two nodes and a single traffic flow) to more complex
scenarios (up to thirteen nodes and numerous flows). The
framework was designed with flexibility and scalability in
mind to allow for the evaluation of various topologies that can
represent realistic IVNs and encompass current and future
use-cases that can be encountered in such scenarios.

The methodology steps investigate the TSN standards and
their applicability in various domains. For S1, we need to
define requirements and traffic patterns present in a given
(TSN) domain. S2 focuses on configuration and evaluation
of TSN standards using the COTS hardware and open-source
solutions, but not limited to such solutions. Lastly, the S3
looks into system optimization needed to meet defined KPIs.
In the following paragraphs, we focus mostly on the example
of IVNs and outline how the EnGINE framework is used to
follow the individual steps.

1) S1 - SYSTEM REQUIREMENTS
Starting with the S1, we provide an overview of the
requirements present in IVNs. A similar investigation can be
performed for any other domain. Section II-A defines require-
ments on the methodology itself with respect to the TSN

2https://inet.omnetpp.org/2022-06-15-tsn-released.html, Accessed
17.07.22

3https://inet.omnetpp.org/docs/showcases/tsn/combiningfeatures/
invehicle/doc/index.html, Accessed 17.07.22

4https://www.realtimeatwork.com/rtaw-pegase/, Accessed 17.07.22)

experiments within the scope of IVNs. An important factor is
the analysis of possible traffic patterns within the IVNs and
their categorization to SR classes and their mappings to the
tc. Table 1 indicates what bounded latency and jitter each SR
can tolerate over seven hops and to which PCP priority the
traffic should be assigned. To note, a different traffic pattern
might require a different qdisc configuration to achieve the
required properties and system performance characteristics.
For instance, if CBS qdisc is not configured correctly for a
specific traffic pattern, we might observe large delays due to
the time required to build up credit and possible packet drops
due to overflowing queues.

A factor that is not considered within the SR classes is
the allowed packet loss. Based on literature identified in
Section III, we assume that packet loss might vary among
different real deployments and applications using the given
data. Nevertheless, we aim to offer as low packet loss as
possible, which we achieve with the proper configuration of
given parameters and optimization of the OS.

A crucial aspect in the IVNs is redundancy to overcome
failures, i.e., link, interface, or a node failures. Therefore,
the deployed topologies offer multiple connections among
the Zonal Gateways (ZGWs) or Vehicular Control Comput-
ers (VCCs). We consider such mesh-like topologies in our
configuration, but the protocols investigated within the scope
of this work do not offer additional redundancy. Of note,
within the TSN, IEEE 802.1CB considers Frame Replication
and Elimination for Reliability (FRER) that duplicates every
packet between source and destination [48]. Nevertheless,
evaluating this solution is out of scope for our approach, as we
focus mainly on fulfilling the SR class requirements.

Finally, COTS HW and custom Linux kernel cannot offer
real-time guarantees. Therefore, we identify suitable ways to
optimize the Linux OS to fulfill the requirements as described
in Section V and supported by the definition of S3.

2) S1 - ANALYSIS OF AVAILABLE TRAFFIC PATTERNS FOR
IVNs
The second part of S1 focuses on the definition of traffic
patterns and is the first step when defining the domain. As
TSN aims to be used within real-time environments that
usually have a limited scope, identifying and analyzing a list
of present traffic patterns is possible. Table 3 summarizes the
individual traffic patterns generally found in IVNs based on
literature and our internal analysis. The table not show an
exhaustive list of all possible traffic patterns and types, but
should provide enough insights to apply the methodology to
other domains or use-cases. The list provides various cate-
gories from sensors needed for the ADAS covering video,
Light Detection and Ranging (LiDAR), radar, and ultrasound,
entertainment systems for audio, video, and file transfers,
diagnostics, and Command & Control (C&C) traffic for net-
work management. Besides, the table categorizes whether the
traffic is periodic, to which SR class it belongs, including a
corresponding PCP priority, and summarizes the frame sizes,

VOLUME 10, 2022 109211

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

inter-frame packet spacing, and generated throughput for a
given family of sensors.

To fill in the aforementioned table with the traffic patterns,
we started with resources presented in Section III-B. In [31],
the authors provide a case study of various traffic patterns that
are implemented and evaluated in the RTaW simulation tool.
It provides an overview of the number of streams, packet sizes
or their range, timing constraints, and categorization. To note,
for all traffic patterns we selected the upper part of the range
for the frame sizes.

A similar notion of traffic patterns is introduced in [2], pro-
viding categorization of different traffic classes with respect
to their latency. In [1], the authors do not only focus on
Ethernet-based solutions, but also on other bus systems, e.g.,
CAN and LIN, and provide frame parameters information for
them. The publication [49] compares a TSN network with
a cut-through switching optical architecture. The solution
is proposed using OMNeT++ simulator with Core4INET
framework. For their analysis, they describe various traffic
patterns, e.g., ADAS video, infotainment, and other sensors,
used for their evaluation. [40] evaluates TSN for the use-case
of IVNs and provides assumptions on the used traffic within
their theoretical evaluation model.

We also utilize the SR class recommendations for audio
with strictly defined period, frame size, and priority [10],
[11], [12]. These are used to define the corresponding SR
classes and PCP. Next, we derive our traffic patterns based on
available physical sensors within EnGINE framework, such
as cameras and LiDAR, or derived traffic patterns from pub-
licly available documentation. Having access to the physical
device allows for detailed traffic pattern analysis, possible
modification of parameters, and recording of the traffic to
packet captures. It is especially relevant for aperiodic traffic
patterns, as we can observe traffic bursts from the packet cap-
ture. However, using own hardware has two main drawbacks
- the need of the device and packet format differences among
manufacturers resulting in various traffic patterns.

As a result, we also evaluate other available data
sources, e.g., the Apollo dataset [30], Waymo open-source
dataset [50], and the Oxford Robotcar dataset [51]. All of
these datasets provide quality footage from a plethora of
sensors used for autonomous driving. Unfortunately, none of
them offers the data in a suitable format, e.g., packet capture,
that could be later on replayed in the network for additional
analysis. It must be noted that these datasets are mainly used
for the training of machine learning models.

3) S2 & S3 - SYSTEM CONFIGURATION
The S2 focuses on providing required steps to properly con-
figure various qdisc parameters relevant to the corresponding
traffic pattern (e.g., CBS idleSlope parameter and win-
dow sizes for TAPRIO) or which are system dependent (ETF
delta value). The underlying infrastructure - the EnGINE
framework - allows to evaluate the suitable configuration and
assess if the requirements can be fulfilled. The details of the
S2 parts are described in Section V where we focus on the

setup and configuration aspects and Section VII that provides
the evaluation details, based on the defined experiments from
Section VI. On the other hand, the S3 focuses on the pre-
liminary results, that do not fulfill the defined requirements
and showcase various artifacts caused by the operating sys-
tems. Section VII covers in detail possible optimization for
TAPRIO with respect to traffic patterns, window sizes, and
window alignments. The goal is to identify the cause of the
artifacts and optimize the system to mitigate them. Section V
offers a sample configuration that showcases the observed
artifacts and ways how to remove them.

4) SUMMARY OF THE METHODOLOGY
The infrastructure (EnGINE framework) and the methodol-
ogy steps Sections IV-A1 to IV-A3 form the building blocks
needed to optimize the system performance towards defined
requirements in a form of KPIs. A possible challenge is
the mapping the observed traffic patterns and network loads
within a given domain. The challenge is especially present
in large-scale systems, but real-time systems are more con-
strained and identifying high-priority traffic should be fea-
sible. Once the traffic is identified, we can devise a set of
experiments to evaluate suitable configurations and evaluate
the requirement fulfillment. Finally, in case the KPIs are not
met, we have to optimize the system to constrain scheduling
overhead or context switching.

5) APPLICABILITY TO OTHER TSN DOMAINS
Following the methodology steps, we believe it is not limited
to the IVNs and can be generalized and used in other TSN
deployments. The related work supports this in Section III-A,
showing that the TSN is being actively researched in other
domains. First, industrial manufacturing and OPC UA pro-
tocol aim to standardize the profile IEC/IEEE 60802 for
Industrial Automation [6]. Nevertheless, TSN is not the only
part of the architecture, as for certain scenarios Layer 3 func-
tionality is also important. Next, the audio-video bridging is
not only heavily discussed within the vehicular domain, but
also by audio-video equipment manufacturers [52]. Lastly
introduced is the IEEE 802.1DP profile - TSN for Aerospace
Onboard Ethernet Communications will be standardized
soon [5], which proposes solutions for aerospace, covering
airplanes, helicopters, and satellites [26].

The methodology originates from the vehicular domain,
but after a detailed analysis of other TSN domains, we see
many similarities with respect to the requirements, used TSN
standards, and layers of operations, which is summarized
in Table 4. The requirements focus on the QoS with respect
to bounded latency, jitter, low packet loss, and reliability.
The list of TSN standards is not exhaustive but provides an
overview of commonly used standards. Based on the related
work and profiles, the selected standards are dependent on the
specific use-case within a given domain. Similarly, many of
the other domains focus on Layer 2 functionality, but possible
extensions to Layer 3 could help if the underlying layer
cannot fulfill the requirements. Finally, all of the domains

109212 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 3. Overview of various traffic patterns present in IVNs and their required throughput.

TABLE 4. Overview of TSN domains with respect to the methodology.

have rather bounded network sizes with respect to traffic
patterns, traffic criticality, and the scale of nodes.

Therefore, using the described steps and analysis of other
deployments, we believe the methodology is applicable to
other domains. In case additional TSN standards need to
be evaluated, the underlying EnGINE framework can be
extended to cope with additional standards to assess the
qdiscs configurations and evaluate their performance.

B. EXEMPLARY USE-CASE
The S1 details the available traffic patterns presented in the
domain of IVNs. A subset of the traffic patterns is used within
the exemplary use-case. Figure 7 shows the overall infrastruc-
ture offered by the framework along with a sample topology
emulating a high-end vehicle with six ZGWs and one VCC.
The high-end topology is used as a base for our exemplary
use-case, which is later extended in Section VI. The use-case
covered in detail comprises of five connections with varying
or same number of hops, sample traffic patterns for different
PCP traffic classes, and cross-traffic on a subset of the nodes.
Depending on the configuration, different nodes act as a
source or a sink. With respect to S2, Section V provides
details on the used tools and their precision along with OS
optimizations and configuration parameters. Detailed design
of experiments is shown in Section VI, offering steps on
how to configure the qdiscs based on the provided require-
ments. Finally, we provide results in the Section VII for the

experiment campaigns that showcase the fulfillment of the
requirements and verify the methodology capabilities.

The exemplary use-case serves two purposes. First, it ver-
ifies the newly introduced methodology following the indi-
vidual steps - definition of requirements and traffic patterns,
the configuration of the qdiscs, and optimizations to fulfill
the given KPIs. The use-case is from the domain of IVNs,
but once suitable traffic patterns are identified, e.g., from the
domain of aerospace, the qdiscs can be configured accord-
ingly and evaluated with respect to their requirements. The
resulting configuration of the experiments associated with the
use-case is outlined in Section VII-B.

Second, the use-case provides and guides through the
details of the individual parts of the infrastructure capabilities
and configuration aspects. Section V introduces the perfor-
mance evaluation of used tools, observed artifacts in Linux
without OS optimization techniques, and system precision.
Furthermore, it explains in more detail the challenges of qdisc
configuration. This is a fundamental aspect of getting an
understanding of observed behavior and identifying possible
limitations. Next, Section VI provides the relation with the
traffic patterns and their applicability to the given use-case.
The Section VII shows additional results focusing on the
evaluation of performance up to seven hops. Even though,
the sample use-case does not include many hops, it serves as a
format that can be built and expended on. As seen in Figure 7,
the infrastructure supports more than seven hops between
source and sink. The HW specification can run numerous
flows, various traffic patterns generated live or replayed from
recorded packet captures, and network topologies matching
real-world scenarios.

V. EXPERIMENT SETUP
In the following, we introduce the experimental setup, includ-
ing the infrastructure provided by the EnGINE framework.
We furthermore showcase the utilized traffic generation
applications, as well as outline the system precision and ways

VOLUME 10, 2022 109213

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 7. Simplified EnGINE infrastructure overview. Red outline of the nodes and links indicates elements used for high-end in-vehicular network
topology.

TABLE 5. Hardware used for experiments with details on supported TSN
standards by NICs [3].

in how to optimize it. Finally, we go into detail on how to con-
figure the traffic shaping in the network upon consideration
of available network topologies. These aspects are relevant
for the upcoming experiment design and evaluation. First,
we provide details on the tools used to affect the evaluation
results. Next, we optimize the system to mitigate certain
artifacts caused by kernel resource management. Finally,
we evaluate system dependant qdisc parameters that have to
be taken into consideration. The last steps contribute to the S3
step of the methodology with respect to system optimization.

Table 5 shows an overview of available and used hardware
for experiments and what TSN standards the NICs support.
This is a representation of devices we performed our exper-
iments with and a showcase indicating what hardware is
available within theEnGINE framework deployment.Mostly,
we use the Intel R© I210, I350, but for other experiments,
we could also rely on the I225 and X552 NICs which are not
investigated further within this work. To note, it is possible to
use any NIC that does not support any standards and purely
relies on the SW support provided by qdiscs.

A. TRAFFIC GENERATION
In our experiments, we mostly rely on synthetic traffic gener-
ators to produce traffic patterns outlined in Table 3. The fol-
lowing applications can be generally used to create periodic

traffic. With some modifications or custom configurations,
these could also be used to generate certain aperiodic traffic
patterns, however, we do not focus on those within the scope
of this publication. As such traffic patterns are challenging
to generate, we omitted them but see a potential for their
emulation using realistic devices, e.g., LiDARs or cameras.
For some of the applications, we additionally provide config-
uration insights to achieve the desired traffic. Finally, we per-
form tests using certain applications, verifying their accuracy
in traffic generation and applicability to the methodology
introduced within this work.

1) Iperf3
For generation of synthetic, periodic traffic patterns we uti-
lize the Iperf35 network performance measurement tool.
The tool’s primary use is to evaluate the achievable network
throughput between two hosts in a network. To achieve that,
Iperf3 generates a stream of packets towards the other
end-point that aims to saturate the link, in essence transmit-
ting as many packets as possible through the network. Thanks
to its flexibility, it also allows for creation and generation of
periodic traffic patterns between a source and a sink. These
patterns can be configured using the -b and -l options of
the Iperf3 client. The aforementioned parameters enable
setting of a specific target bitrate RI3 in bit/s and payload
size BP in Bytes respectively. Since the required traffic is
usually specified as a combination of PHY frame size BPHY
and period tP, we derive Equation (7) and (8) allowing us
to adequately prepare the client. Of note, to find the BP we
also need to consider the overhead BO induced by various
layer headers, in order to achieve the desired BPHY as shown
in Equation (7). For instance, UDP traffic transmitted via a
VLAN-tagged network, we derive BO = 70Byte as shown in

5https://iperf.fr/, Accessed 01.07.22

109214 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 8. Structure of PHY Iperf3 frame with UDP as transport layer.

Figure 8. The RI3 is defined as a product of Iperf3 payload
size in bits and the frequency with which they are supposed
to be sent on the wire.

BP = BPHY − BO (7)

RI3 = 8 · BP ·
1s
tP

(8)

To ensure that Iperf3 is a suitable tool for our methodol-
ogy, we conducted an experiment in which we measured how
accurately the application is able to generate packets when a
certain spacing between them is desired. For that investiga-
tion, we configured Iperf3 to send frames of 1250 B with
a target spacing of 100 µs. Using Equation (7) and (8), the
aforementioned parameters were achieved by configuring a
target bitrate of 94.4 Mbit/s and a packet size of 1180 B.
To note, we also use the CBS qdisc configured accordingly.
The results of this investigation are shown in Figure 9. Inmost
cases, the interval between the sent packets does not deviate
by more than ±3 µs from the target 100 µs. The remaining
outliers are not significant in the scope of our experiments,
since we focus on the end-to-end latency of the system.

2) NETPERF
Netperf6 is a utility for testing and verification of network
performance. The tool supports numerous protocols, includ-
ing Transmission Control Protocol (TCP) and UDP, and var-
ious modes of operation that enable uni- and bi-directional
(round-trip, denoted as RR) testing. Netperf consists of
two applications: a client and a server. The client connects
to the server and is the one that accepts configuration for the
type and details of the test to be performed. The server’s role
is to adhere to the client’s requests and react appropriately.
The tool provides numerous test-specific settings, enabling
the configuration of amongst others:

• Number of test iterations
• Inter-packet/burst interval
• Packet/burst byte size
• Conversation TCP/UDP ports
• Central Processing Unit (CPU) affinity
• CPU performance measurement

Netperf provides numerous configuration options that
could be beneficial for the experiment design. However,
it has one major limitation preventing us from using it
within the introduced methodology. The lowest setting inter-

6https://hewlettpackard.github.io/netperf/doc/netperf.html, Accessed
06.07.22

FIGURE 9. Measured Inter-Frame Spacing for Iperf3 set for a target of
100 µs.

packet/burst interval is 1ms which is too high for many of the
traffic patterns introduced in Table 3 we aim to utilize.

3) MoonGen
MoonGen [53] is an open-source software tool based on
the high-speed packet processing framework DPDK.7 It is
designed to be used as an efficient packet generator. The util-
ity can create and send packets at a rate of more than 10 Gbit/s
using minimum-sized UDP packets. That bitrate corresponds
to a packet rate of roughly 14.88 Mpps. The tool achieves
this by generating packets via user-defined Lua scripts run
utilizing the full potential of a single CPU core. To enable
high-precision packet generation, MoonGen supports times-
tamping assisted by the hardware clock of the NIC. The inte-
gration with the hardware clock enables the tool to achieve
sub-microsecond accuracy of packet generation. This accu-
racy is further enhanced by PTP.While MoonGen is a power-
ful tool, its integration within the methodology would require
extensive implementation effort to support all required traffic
patterns. Since other tools are available, we do not employ
MoonGen within our experiments.

4) SEND UDP
send_udp is a custom application implemented in the C
language. The tool is heavily influenced by the udp_tai.c
first introduced by Tx Tools.8 The application relies on the
socket API and utilizes the sendmsg and recvmsg func-
tions enabling custom packet generation and reception. Fur-
thermore, it makes extensive use of several socket flags, most
notably the SOF_TIMESTAMPING_TX_HARDWARE which
enables hardware timestamping of generated and received
packets within the application. Besides, send_udp further
supports modification of packet metadata and payload data.
Especially the ability to modify the payload content allows
for entering the sequence number of a given packet and addi-
tional timestamps on the system taken before the packet is
sent. A crucial functionality enabled bymodification of meta-
data is the configuration of packet priority directly within the
application. Therefore, we can use the application to generate
traffic according to specific traffic patterns respecting the

7https://dpdk.org, Accessed 17.01.22
8https://gist.github.com/jeez/bd3afeff081ba64a695008dd8215866f,

Accessed 05.07.22

VOLUME 10, 2022 109215

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 10. Measured Inter-Frame Spacing for send_udp set for a target
of 100 µs.

given priority. In comparison to Iperf3, it has the ability
to define a precise timestamp in the cmesg at which the NIC
places the packet on the wire. This parameter enables the use
of the Intel R© LaunchTime feature present in Linux Kernel
as ETF introduced in Section II-C1. Similarly, if we want to
use TAPRIO qdisc without the TxTime mode, we need the
send_udp application, which can specify when the packet
should be dequeued with respect to its window. This might
be of relevance when TAPRIO is used in the offload mode,
as TxTime and offload mode are mutually exclusive [22].

Due to the custom packet creation process, send_udp
is unable to generate packets at as high of a bitrate as,
e.g., Iperf3, and therefore both applications are used
extensively within the proposed methodology. Especially,
for experiments with TAPRIO and ETF over multiple hops,
we rely on the usage of TxTime mode. Otherwise, we would
need to use a custom forwarder on each hop similar to
send_udp to specify the packets dequeue time.

Figure 10 shows the inter-frame spacing for the commonly
used scenario where we generate packets every 100 µs with
payload size of 256 B, generating 20.48 Mbit/s. The packet
inter-framce spacing does not deviate by more than ±2 µs
from the targeted 100 µs. Similarly like for Iperf3, the
remaining outliers are not significant in the scope of our
experiments, since we are focusing on the system perfor-
mance in terms of the end-to-end latency.

B. SYSTEM PRECISION
In our experiments, we mostly use the Intel R© I210 NIC.
For the setup purely relying on software measurements we
want to assess the precision it offers. To note, the I210 and
other NICs offer hardware support that achieves higher pre-
cision due to hardware timestamping capabilities. The main
challenge with precision measurements is to compare two
values at the same node. To get an understanding of this error,
we execute a specific experiment in which we synchronize a
PHC to CLOCK_REALTIME and compare it to the exactly
same PHC via phc_ctl. This experiment provides details
on two possible origins of an error — the approximate com-
parison operation of phc_ctl and the synchronization of a
PHC to another clock, in this case the CLOCK_REALTIME.
Both of these errors are the main source of imprecision.

The phc_ctl tool is bundled with linuxptp [16].
It offers a comparison operation to query the system clock

FIGURE 11. Intel R© I210 NIC offset fluctuations.

offset. The value is measured relative to a given PHC using
ioctl system calls. With the Linux kernel 5.0 or higher,
three methods offering varying accuracy are supported in the
form of ioctl system calls to a PTP character device [54].
Our approach compares a PHC to CLOCK_REALTIME with
phc2sys and CLOCK_REALTIME to a second PHC using
phc_ctl. Also, thephc2sys uses the sameioctl system
call as the phc_ctl for the system clock synchronization
and is built into linuxptp.
Figure 11 shows the offset fluctuations of ±40 ns for

12000 data points, where a data point is taken every 0.05 s.
We deduce that the error is predictable in our system, but
can potentially skew the results making a comparison on a
a small scale more challenging. Yet, for the results we mostly
look at values in the microsecond range, being the order of
magnitude required by the SR class requirements.

C. SYSTEM OPTIMIZATION
The hardware and software of the network deployment need
to fulfill the requirements outlined in Section II-A. To ensure
the deterministic nature of experiments, we perform several
experiments that verify the system’s proper functionality.
During that verification, we encountered several artifacts
stemming from the COTS and open-source nature of the
EnGINE framework deployment, requiring several optimiza-
tions of the system. In the following, we outline the encoun-
tered challenges and describe the necessary optimizations
applied within the framework.

1) OPTIMIZATION METHODS AND TOOLS
To enhance the determinism of the SUT we utilize several
tools and methods which are provided within the Linux
ecosystem. In the following, we describe those approaches
and outline the functionality they bring into the methodology.

CPU Affinity describes the ability of the Linux scheduler
to enables manual assignment of execution threads to indi-
vidual CPU cores [55]. The literature distinguishes between
two affinity types: ‘‘hard’’ affinity and ‘‘soft’’ affinity. With
hard affinity, a CPU core is defined that the thread is explicitly
bound to. Such thread allocation is strictly respected by the
CPU scheduler. The scheduler will never move the thread to a
non-explicitly selected CPU core when hard affinity is used.
With soft affinity, the CPU scheduler is less strict while keep-
ing the threads running on the specified CPU cores.While the
scheduler will try to keep the thread running on the same core

109216 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

over its run-time, there is nothing stopping the scheduler from
moving the process onto different CPU cores. This type of
affinity is generally used within modern operating systems.
In Linux, the affinity of a thread is configured using the
taskset9 tool. This utility allows to set into which CPU
cores the process with its process id is assigned. To achieve
that functionality, taskset employs a bitmask where each
bit corresponds to a CPU core. It is furthermore possible to
set affinity of hardware Interrupt Requests (IRQs). The prin-
ciples of IRQ affinity are the same as for threads, the methods
of the IRQ binding to a CPU core are different. The allocation
is achieved by setting the smp_affinitymask of the IRQ
to the desired cores.10

CPU Isolation describes the ability to isolate pre-defined
CPU cores from the influence of the system scheduler. The
isolated CPU cores are excluded from the Symmetrical Mul-
tiprocessing (SMP) balancer and the task scheduler is pre-
vented from automatically placing any user or OS threads on
them [56]. Despite not being able to place any tasks on the
isolated cores, the processes can still be allocated manually
to these processing units using CPUAffinity. Therefore, CPU
Isolation enables a preparation of an enclave into which
experiment-relevant tasks and hardware IRQs can be placed
and protected from the influence of other functions which run
on the system. In Linux, the CPU isolation is achieved using
the isolcpus11 system boot parameter.
Low-latency Ubuntu Kernel utilizes a flavor of the Linux

kernel that is tailored for operation in environments where
precise timing is required. This version of the kernel intro-
duces several optimizations which enable the elimination of
various influences induced by the SMP and system sched-
uler [57]. Main feature that supports the timing-optimized
operation within the low-latency kernel is the consideration
of hardware IRQs as threads. The threaded IRQs enable the
configuration of their priority within the system scheduler.
For our approach, this setting is essential for the operation
of NICs. Threaded IRQs enable configuration of Real-Time
(RT) priority for the IRQs ofHWqueues of theNICs. Another
relevant innovation of the low-latency Ubuntu kernel are
preemption points. This feature forces the task scheduler
to intently search for threads with high priority and enable
their execution before lower-priority tasks. The downside of
preemption is that such execution of high priority functions
may interrupt the run of low priority tasks. In Linux, the
thread and IRQ priority is configured using the chrt12 utility.
CPU Configuration and Power Management are pow-

erful options enabling further optimization of system’s per-
formance. In the following, we introduce three options

9https://man7.org/linux/man-pages/man1/taskset.1.html, Accessed
05.07.22

10https://www.kernel.org/doc/html/latest/core-api/irq/irq-affinity.html,
Accessed 06.07.22

11https://www.linuxtopia.org/online_books/linux_kernel/kernel_
configuration/re46.html, Accessed 06.07.22

12https://man7.org/linux/man-pages/man1/chrt.1.html, Accessed
06.07.22

helping optimize the low-delay and low-jitter system
operation.

Starting with the Simultaneous Multi-Threading (SMT)
[58] which introduces execution of multiple (usually two)
threads in parallel on a single hardware CPU core. The
technology achieves this by keeping multiple architectural
states in each core, while maintaining only a singe iteration
of the computation hardware. From the OS perspective, this
means that separate ‘‘logical’’ cores which can execute tasks
at the same time are available, despite only one hardware
core being present on the CPU. The expectation for SMT
is the improvement of general CPU performance via a more
efficient utilization of each of its cores.

Another CPU feature impacting its performance is the
Automatic Overclocking (AO), in Intel R© CPUs known as
Turbo Boost [59]. This CPU option enables a dynamic adap-
tation of its clock frequency under high load scenarios with
the goal of improving performance while increasing CPU’s
power consumption. While AO increases system perfor-
mance and can potentially reduce task execution delay, it may
have negative side effects such as increasing the system’s
jitter.

Final CPU option is the configuration of the Dynamic
Voltage and Frequency Scaling (DVFS) governors. These
CPU governors control the frequency at which the clock runs
(excluding overclocking) and can be set to enable dynamic
scaling of the frequency or to a pre-defined value. Within
Intel R© processors considered in this methodology, the DVFS
governors are limited to two settings13: powersave and
performance. The most significant difference between
those two modes is that the performance mode will not
consider the energy-saving features of the CPU. These fea-
tures in powersave mode, may include lowering the CPU
frequency when no load is present or putting the CPU into
sleep states. The default configuration in Linux involves the
CPU configured in powersave mode.

2) ELIMINATION OF OBSERVED SYSTEM ARTEFACTS
During verification of the fulfillment of SR classes require-
ments outlined in Table 1, we observed periodically occurring
increases in the end-to-end delay, in the following referred
to as delay spikes. This discovery prompted an investiga-
tion into the reasoning behind these occurrences. As a first
step, to confirm the periodicity of the observed delay spikes,
we conducted a 16-minute experiment EXSP1 using Iperf3
as a traffic generator in a 3-hop scenario. The traffic was
configured for a frame size of 1250 B and a frame spacing
of 100 µs. The experiment was performed with the CBS
configured on all interfaces along the path of the flow.

We then verified the end-to-end delay over the duration of
the experiment. In this case, we calculate the delay as the
time difference between when the packet is sent from the
source and arrives at the sink. Such calculation is enabled

13https://www.kernel.org/doc/html/v4.19/admin-
guide/pm/intel_pstate.html, Accessed 06.07.22

VOLUME 10, 2022 109217

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 12. Delay over time for EXSP1 with observed periodic spikes.

FIGURE 13. RTT over time for EXSP2 with observed periodic spikes.

due to the high timing precision of the system as described in
Section V-B. The results can be observed in Figure 12. During
the general experiment run, the delay stays below the 2ms
level required by SR class A. However, we observe periodic
spikes in the delay occurring roughly every 60 s.

To ensure that the observed delay spikes are not caused by
the behavior of the Iperf3 traffic generator or the appli-
cation of the CBS qdisc, we performed an additional experi-
ment EXSP2. The second experiment used the ping utility to
measure the Round Trip Time (RTT) between two directly
connected hosts. Ping was run with timestamp functionality
enabled, requests being sent every 100 µs over the course of
180 s. The output of the utility was collected into a text file
and subsequently evaluated and visualized.

The results of experiment EXSP2 are shown in Figure 13.
We generally observe a very low RTT of under 0.5ms, which
is to be expected between directly connected hosts. However,
again we observe the delay spikes occurring roughly every
60 s, confirming that some system behavior causes the spikes.

We considered a few hypotheses as to what system behav-
ior could be causing the spikes. However, investigating the
possible causes did not result in a clear answer. We looked at
the following parameters and behavior of the system:
• Periodic system service – Verification of the syslog and
CPU usage monitoring did not show in any correlation

• Network reconfiguration – No network reconfiguration
found during the experiment

• PTP synchronization – ptp4l reconfigurations found,
however, shown no clear correlation to delay spikes

• Power supply issues – No artifacts in system power
use/supply found

While these investigations did not yield any results,
we strongly suspected that the delay spikes were caused by a
system task/service that is run periodically and may interrupt

the execution of the applications or the operation of the NIC
interrupts. To eliminate these influences, we applied CPU
Isolation to isolate CPU cores from the system scheduler. Fur-
thermore, we used CPU affinity to isolate system functions
that are critical to the performance of the experiment from
any other tasks ran within the OS. Both of those approaches
are enabled by the use of a low-latency kernel. The following
functions were isolated:

• Interrupts originating from the NICs
• Traffic generators such as Iperf3 or send_udp
• Traffic sinks for Iperf3

We considered additionally isolating the packet capturing
tcpdump application, however, the packet timestamps are
recorded within the kernel and the CPU isolation for this tool
would not benefit its performance.

To verify the functionality of our system optimization,
we conducted the experiment EXSP3 using the same config-
uration as in EXSP1. The experiment was run for 3 minutes.
Results of EXSP3 are presented in Figure 14. The outcomes
of the experiment show that the delay spikes were eliminated,
with the end-to-end delay oscillating around 0.5ms through-
out the experiment run. We observe some fluctuation in the
measured delay over time, however the jitter values in EXSP3
are under 125µs inmost cases what satisfies the requirements
of the high priority SR class A.

While we were unable to identify the exact cause of the
delay spikes, we argue that theywere caused by some periodic
system service that is run roughly every 60 s. We could elim-
inate the periodic delay increases with a low-latency Linux
kernel and the usage of CPU Isolation and CPU affinity with
critical functions needed for the experiment.

3) SYSTEM AND CPU PERFORMANCE OPTIMIZATION
To further optimize the experiment execution, we investigated
a few combinations of the three CPU Configuration and
Power Management options. The considered option combi-
nations correlated with the experiment name are outlined
in Table 6. The default system configuration is represented
by experiment EXSO1, where AO and SMT are enabled, but
the DVFS governor is set to powersave mode. We only
test a subset of all possible configurations, since some of
the options, e.g., DVFS governor in performance mode,
or the use of AO improves the obtained results. For all these
experiments, the system optimization parameters resulting
from Section V-C2 were applied. Similarly as in Section V-
C2, the traffic was generated using Iperf3 and configured
for a frame size of 1250 B and a frame spacing of 100 µs.
The packets traversed a 2-hop network with CBS adequately
configured for 1250 B frames every 100 µs on all interfaces
along the path of the flow. Each of the four experiments was
run for 10 s.

The results of the individual CPU configuration option
experiments are presented in Figure 15 and 16 with Figure 15
showing the measured delay over experiment time and
Figure 16 presenting an ECDF of the measured jitter.

109218 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 14. Delay over time for EXSP3 with system optimization applied.

TABLE 6. Combinations of investigated CPU configuration option
combinations.

Figure 15a shows the observed delay for experimentEXSO1
using the default Linux configuration. We observe that the
delay oscillates in the range of 0.15ms to 0.35ms (with some
outliers) as denoted by the dashed lines. For the jitter shown in
Figure 16a we observe values anywhere from −200 µs up to
240 µs with the majority of them within the range of−50 µs
to 50 µs.
For experiments EXSO2, EXSO3, and EXSO4 with non-

default configuration, we compare their results against the
default Linux configuration applied in EXSO1. In EXSO2 we
observe that the disabled Overclocking and SMT negatively
impact the upper bound of the delay as shown in Figure 15b
with outliers of up to 0.7ms. These settings also negatively
impact jitter shown in Figure 16b with some of the observed
values exceeding 300 µs.
With AO additionally enabled and still disabled SMT,

we notice much better jitter in EXSO3. While majority of
the values remains in the −50 µs to 50 µs range, the lower
bound is raised to −60 µs as indicated in Figure 16c. This
observation implies that with disabled SMT we can achieve
a better system performance in terms of jitter. However, the
improvement does not apply to EXSO3’s delay shown in Fig-
ure 15c. While the delay is more consistent due to the lower
jitter, the overall latency is higher than in other experiments,
with all values being greater than 0.2ms.

With all CPU options enabled and DVFS governor set to
performance mode, EXSO4 shows similar performance
to EXSO1 concerning the delay shown in Figure 15d. While
there are some outliers, the delay has a clearer lower bound
at around 0.15ms compared to that shown in Figure 15a.
The jitter of EXSO4 presented in Figure 16d also performs
similarly to the default Linux configuration, with its lower
bound of −140 µs being better than that of EXSO1.
With these observations, we conclude that the configuration

introduced with EXSO4 improves the system performance
compared to the default Linux configuration and performs
best out of all investigated configuration combinations.
Therefore, we perform all subsequent experiments with AO

and SMT enabled, together with the DVFS governor config-
ured for performance mode.

D. SETUP PARAMETERS
To achieve the required determinism and enable the TSN
experiments, the parameters configured for each experiment
must match and consider the system’s capabilities. These
parameters are configured system-wide and concern, for
example, the NICs or time synchronization and include the
associated supporting applications, functions, and hardware.
This is especially relevant for ETF and TAPRIO as their
settings are heavily system dependent and do not only rely
on the expected traffic patterns.

1) QDiscs DEFAULT PARAMETERS
For a proper TSN operation, the qdiscs need to have an
adequate configuration that considers the capabilities of the
system and the expected traffic. ETF, as introduced in
the Section II, has an adjustable parameter delta. To iden-
tify the optimal value of delta, we can measure the base
latency of the system using the cyclictest [60] appli-
cation. It measures the latency of a thread’s intended and
actual wake-up times. We run cyclictest on the ZGW
and VCC hosts with the priority for SR class A for 60 s. The
results show smaller maximum values when using the lowla-
tency kernel with optimizations from Section V-C2 applied.
For both node types we observe an average of 3 µs and a
maximum for individual threads below 100 µs. On the other
hand, the standard kernel showed themaximumvalues of over
300 µs. To note, the average and maximum values depend on
the system’s load. Using higher values of delta lowers the
risk of dropping a packet before it is dequeued.

The delta is a ‘‘fudge’’ factor accounting for various sys-
tem delays. In case the selected value is too high, the packets
dequeue operation is delayed, introducing additional latency.
On the other hand, if the delta value is too low, delays are
lower, but packets have a higher probability of being dropped.
Of note, in case the TxTime is expired the packets are dropped
immediately. Therefore, selecting a proper interval is impor-
tant for the end-to-end delay, jitter, and packet drops. The
performance is also affected by the current system utiliza-
tion caused, e.g., by other running applications. Therefore,
using the OS optimization techniques improves the stability
significantly.

We investigated the impact of delta value in detail for
our two available hardware setups representing the ZGWs
and VCCs. We executed experiments with 25 µs steps and
observed latency, absolute jitter values, and packet statistics.
For all of the experiments 300 000 packets with inter-frame
spacing of 100 µs and payload size of 256 B are sent. The
packet statistics include the amount of captured packets (out
of 300 000 packets), the number of packets lost between
source and sink once placed on the wire, and the drop rate
using the captured and sent packets data.

Figure 17 shows the overview of the results for 25-300 µs
delta values for ZGWs setup, where ETF functionality is

VOLUME 10, 2022 109219

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 15. Delay over experiment time for CPU performance optimization experiments. Horizontal dashed lines represent the range where we
expect most of the measured values based on EXSO1.

FIGURE 16. ECDF of Jitter for CPU performance optimization experiments.

either not offloaded or offloaded to the NIC. The delay and
jitter figures show mean values along with 1st and 99th per-
centiles. For the case of no-offload, the results show similar
behavior for delay and jitter with minimal fluctuations as
shown in Figure 17a and Figure 17b respectively. The lowest
values can be observed for 99th-percentile for delta value
of 175µs, where delay is 0.0226ms and jitter 0.4768µs. The
1st-percentile shows similar values as the mean. On the other
hand, the offload shows a constant increase of delay with
higher delta values as well as the jitter values. The jitter
values fluctuate between −10 to 10 µs. Figure 17c shows

drop rate, which behaves similarly to the experiments without
offload. The number of captured packets for this value is
299 326 with a droprate of 0.0022. The dropped packets are
always the first packets that are being sent. This behavior is
verified by evaluating the sequence numbers stored in the
payload. We assume those packet drops are caused by the
ramp-up phase of the send_udp service, where the connec-
tion has to be prepared or the TxTime is missed.

As the results for ZGWs and VCCs are similar, we decided
to showcase only those for ZGW. Since the delta value is
also relevant for TAPRIO, we consider the values of 175 and

109220 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 17. ETF delta values with and without offload, delay and jitter mean with 1th and 99th-percentiles for various delta values, and packet
received and droprates. Colored area represents the range between 1st and 99th percentiles values.

275 µs that perform the best for the case with no offload.
With offload, these values perform similarly with respect to
jitter and delay, but we can see an increase in delay. Therefore,
175 µs is a preferred option. Next, we evaluate these values
together with the TAPRIO parent qdisc to determine the best
parameter for future experiments. The 275 µs is a more
conservative value, but could account for fewer packet drops
caused by too tight TxTime value.

TAPRIO itself classifies packets into traffic classes.
We use TAPRIO in the TxTime assisted mode, i.e., TAPRIO
configures a TxTime for each packet. This configuration is
important when we want to use it together with Iperf3.
A configuration parameter dependent on the performance is
the txtime-delay, that accounts for the maximum delay
between TAPRIO qdisc and theNIC. If a child ETF qdiscwith
activated offloading is installed for a traffic class, packets are
sent precisely at the TxTime. Since this is the case in our
experiments using TAPRIO, we name the TxTime mode as
ETF assistedmode. For this configuration the child ETF qdisc
must be configured with skip_sock_check. Otherwise
the ETF would drop packets coming from TAPRIO.

For TAPRIO evaluation, we also need to configure the indi-
vidual gates’ opening times. We define a cycle time of 1ms
with three windows. First window is 300 µs wide and is used
for the SR class A traffic with ETF child qdisc configured in
the strict mode. Second window is 300 µs wide and is used
for the SR class B traffic with ETF child qdisc configured in
the deadline mode. The last window is 300 µs and is used
for remaining traffic without any qdisc configured. For our
experiments, we use a singleIperf3 stream sending packets
every 100 µs and payload size of 256B. The experiment
runs for 10 s resulting in approximate 100 000 packets. This
is due to the number of experiments and the configuration

and processing time, as a longer evaluation period results in
longer processing. Besides, we believe many packets should
provide sufficiently strong statistics about the performance
and trends. Since our target is to assess the performance
over seven hops, we assess the txtime-delay and delta
values over seven hops with and without HW offload.

Figure 18 shows the evaluation of the various
txtime-delay over a single hop with the two pre-selected
delta values with and without offload. Similarly, like for
the ETF, the line represents the mean with 1st and 99th
percentiles. Of note, the values of txtime-delay must be
always greater than the delta value. We evaluate values in
range of 200 to 300µs with steps of 25µs due to proximity of
the delta values, then from 300 to 550 µs with steps of 50 µs,
and 180 as a closer value to the delta.

Figure 18c shows the number of packets received and a
drop rate. In this specific example, we see 0 packet loss on the
wire with minor differences in the success rate. Even though
we are sending 100 000 packets, we observe fewer packets
is captured. These packet drops are most likely caused by a
sudden load on the given node, but not in a continuous trend
because of too strict parameter selection.

Figure 18b assesses the jitter, where the 99th percentile
varies between 6.9141 to 11.2057 µs for the case of
no-offload and 6.1989 to 14.782 µs for offload. The 1st
percentile shows lower values than the 99th percentile, show-
ing slight asymmetry. In contrast, the mean jitter values
are low, but the 99th percentile shows higher values which
might become more prominent over a larger number of hops.
Finally, Figure 18a presents the delay values for those con-
figurations, we see that all delay values are approximately
0.0422ms for the no-offload scenario. On the other hand,
with offload, we see an increase of values starting from

VOLUME 10, 2022 109221

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 18. TAPRIO txtime-delay and ETF delta values with and without offload, delay and jitter mean with 1st and 99th-percentiles for various
delta values, and amount of received packets and drop rate. Colored area represents the range between 1st and 99th percentiles values. Off. - offload.

0.1693 to 0.2725ms. Especially interesting is to observe
the behavior with different delta values for the same
txtime-delay values, as the 100µs is added to the overall
delay. This confirms the findings regarding the offload and
no-offload behavior of ETF. Therefore, we closely consider
the delta value for the upcoming experiments. The 1st-
percentile for jitter values is further from the mean than the
99th percentile.

To summarize the described approach, we choose the
delta value of 175 µs and txtime-delay of 200 µs.
The values for all of the experiments are similar, so choosing
a lower value can especially positively impact the multi-hop
scenarios. Regarding the ETF offload and no-offload mode,
there is no significant difference in jitter, but delay plays in
favor of no-offload. For future experiments we consider both
offload and no-offload mode for the ETF with TAPRIO in
TxTime assist mode to see its impact over a larger number
of hops. When selecting higher txtime-delay we would
observe a constant increase in delay, as it is automatically
added to the given packet TxTime in case of the ETF in strict
mode. Offload, as introduced for the ETF, increases delay but
is better for the sake of stability. Worth of a note, that these
parameters are system dependent, and also, if the window
sizes are changed, the outcome might vary concerning the
observed KPIs. Therefore, the results of the experiments are
applicable to the current setup within our EnGINE framework
but might vary even if the nodes are run under a higher CPU
load. We dive into details of possible TAPRIO experiment
traffic artefacts in Section VII.

For completeness, we also mention CBS as introduced
in Section II-C3. The qdisc requires idleSlope, sendSlope,
hiCredit , and loCredit parameters for its configuration.
Since these settings are mostly system independent, except

available NIC bitrate, and only rely on the expected traffic
patterns, Equation (2) to (5) can be used to calculate the four
parameters without experimental investigation. Of note, the
priorities of the configured CBS qdiscs matter, as the lower
priority configuration needs to consider the interfering traffic
of the higher priority one.

2) PTP CONFIGURATION
Within our methodology, we use the linuxptp project
for PTP. As we are mainly using the Intel R© I210 NIC,
we need to consider the many PHCs as available ports.
Therefore, we have to run the ptp4l in the Just a Bunch
of Devices (JBOD) mode (boundary_clock_jbod),
which ensures that individual PHCs get later synchro-
nized on a single device. For the synchronization of the
clocks, we use the phc2sys service that takes the infor-
mation taken from the ptp4l and applies the configuration
accordingly.

Listing 1 shows a configuration based on gPTP.cfg
profile, with corresponding settings for each used interface.
The PTP for the message exchange only utilizes Layer
2 and operates in the P2P delay mechanism. Besides, the
configuration uses the two-step mode for synchronization.
All nodes operate as the BCs or OCs. This can result
in larger clock deviations over more hops [61], but we
believe the clock performance does not significantly impact
our measurements. The messages between the individual
nodes are exchanged every 2−3 = 0.125s based on
the logSyncInterval.

Of note, challenges with the coexistence of PTP and
TAPRIO require us to use a PTP in the form of an overlay
network, where we have additional connections that allow for
the clock synchronization.

109222 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

Listing 1. Sample of gPTP.cfg.

E. NETWORK ARCHITECTURE
Figure 7 shows the underlying infrastructure provides a high
flexibility with respect to connections and topologies. Within
the scope of IVNs mesh like topologies are often discussed
due to reliability aspects, where in case of a node or cable
failure, the traffic can use a redundant path. For our exper-
iment design and later on evaluation we mainly rely on the
two types of topologies - the line and mesh topology. The
line topology is relevant for the evaluation of the performance
over various number of hops, which are relevant to fulfill the
SR class requirements. On the other hand, the mesh topolo-
gies are assessed with the exemplary use-case that focuses on
the cross traffic operation emulating the realistic topologies
inside of vehicles. Worthy of a note, we focus on the Layer
2 evaluations of the individual TSN standards.

VI. EXPERIMENT DESIGN
Emulating a complex system that represents a real-world
deployment of a TSN and IVN network requires a robust
experiment design and preparation methodology. In this
work, we distinguish between three types of experiments:

1) Environment validation
2) Configuration validation
3) Solution evaluation

The goal of the initial environment validation experiments
is to show that the hardware deployment can fulfill all
requirements and therefore support the investigated use-case.
The subsequent configuration validation experiments check
whether the network and qdisc configurations are correct and
well understood. These further verify whether the system can
support the requirements placed on it. Finally, the solution
evaluation experiments investigate actual IVN or TSN use-
case that can be proposed by the users of this methodology.

In the following, we describe how each of the three exper-
iment types could look. These descriptions are prepared

with the EnGINE hardware deployment in mind. However,
we generalize them so that the proposed settings can be
applied to any experimental environment that fulfills the same
requirements as those placed on the EnGINE framework.
Of note, the configurations proposed for TAPRIO and ETF
require additional considerations when deployed on different
hardware than that of EnGINE as outlined in Section V-D.

A. EXPERIMENTAL ENVIRONMENT CAPABILITIES
To ensure that the experimental environment can support the
envisioned experiments, we prepare several scenarios verify-
ing the capabilities of the physical deployment. Since in the
scope of this work, we focus on IVNs and TSNs, these exper-
iments are tailored towards verification of the fulfillment of
SR class A and SR class B requirements outlined in Table 1.
In the following, we introduce these experiments and outline
the configurations used to execute them. Of note, we define a
network hop as a link traversed between two network nodes.
As an example, a 2-hop line network topology would include
three nodes ZGW 6, ZGW 1, and ZGW 2 in that order and
utilize the links numbered 1 and 2 between them as shown in
Figure 19.
For the following experimental scenarios, we define two

types of flows that can be placed within the network: limited
and unlimited. For each of the two types, the traffic is gen-
erated using the Iperf3 application. A limited flow has a
configuration that enables it to send 1250B PHY size frames
every 100 µs. Such configuration amounts to as bitrate of
100µs with Iperf3 configured according to Equation (7)
and (8). With these equations, the resulting relevant settings
of the Iperf3 client are:

• Bitrate RI3 = 94.4 Mbit/s
• Payload Size BP = 1180 B
• UDP as the Transport Layer protocol

In contrast, the unlimited flow do not have any configuration
limiting their sending bitrate. Therefore, in this case, the
Iperf3 client sends as many UDP maximum size packets
as possible. In general, the client for each flow is always con-
figured on the source node, while the server is present at the
sink node. The packets are transmitted from the client to the
server. In the following experiments, we utilize the network
topology introduced in Figure 19, mapped to the physical
EnGINE deployment introduced in Figure 7. We vary the
number of traversed hops in the network from one up to seven,
with ZGW6 always considered as a source node. The sink for
the flows is placed on the appropriate ZGW for the number of
hops indicated by the number next to the link. As an example,
with 4 hops network, the sink node is ZGW 5. For each
experiment run we collect at least 100000 packets.

1) MQPRIO VALIDATION
We first verify the capabilities of the deployment in a
non-overloaded setting with four flows placed along the same
path in the network. The placement of the verification flow
with the varying number of hops is shown in Figure 19. The

VOLUME 10, 2022 109223

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 19. 1 to 7 hop experimental environment validation flow, as an
example, placed within the EnGINE deployment.

primary goal of this EXMQ scenario is to verify whether each
of the queues presents within the NICs behaves in a similar
way. Hence, we do not employ any TSN traffic shaping and
test solely the functionality of the MQPRIO qdisc configured
on each interface in the network. Furthermore, we run seven
experiments in a campaign to verify whether the experimental
environment can fulfill the requirements of SR classes over
seven hops without any TSN shaping. With those experi-
ments, we cover a range where the number of hops is varied
from 1 up to 7.

ForMQPRIO validationwe run two experiment campaigns
which differ only in the configuration of the flows generated
by Iperf3 clients:

1) EXMQ1 - All four flows are limited flows
2) EXMQ2 - Two flows (Flow 3 and 4) are limited flows

placed on NIC queues 1 and 2. Two flows (Flow 1 and
2) are unlimited flows placed on NIC queues 3 and 4.

Experiment EXMQ1 aims to verify whether SR class A
requirements are attainable without TSN qdiscs when each
flow does not try to take all bandwidth for itself. EXMQ2
additionally aims to showcase why TSN traffic shaping is
necessary to fulfill SR class A requirements when some flows
do not respect bandwidth allocations.

2) CBS SINGLE FLOW VALIDATION
To verify the experimental environment’s capability of sup-
porting traffic of SR class A when CBS is used, the exper-
iments within the second EXCS validation scenario includes
one flow traversing the network. Since the SR class’s require-
ments need to be fulfilled over seven hops, the experimental
campaigns in this validation scenario again utilizes the net-
work shown in Figure 19 and consist of 7 individual experi-
ments. In each case, we vary the number of hops covering all
possibilities from one to seven.

As these EXCS experiments are used to validate the hard-
ware deployment, we are not following any previously intro-
duced traffic patterns. Instead, we are using one limited
Iperf3 flow configured for PCP 3, corresponding to SR
class A. The CBS is configured accordingly for the desired
1250B PHY size frames and the bitrate of 100Mbit/s. Using

Equation (2) to (5), we obtain the appropriate values needed
to set up the qdisc:
• idleSlopeA = 100000
• sendSlopeA = −900000
• hiCreditA = 155
• loCreditA = −1125

In EXCS , the CBS qdisc for the flow is configured with the
help of MQPRIO for VLAN Tag PCP 3 and associated with
queue 1 of the NIC. Of note, the qdisc was not configured in
offload mode. We observed that with hardware offload, the
behavior of the NIC is non-deterministic.

We perform two experiment campaigns for the second
EXCS verification scenario. Experiment EXCS1 has CBS con-
figured only on the source node, with all remaining nodes
along the flow having no shaping applied. Experiment EXCS2
has CBS applied on all nodes along the flow. The goal of these
experiments is to assess the impact the CBS qdisc has on the
delay and jitter in various circumstances.

3) CBS MULTIPLE FLOW VERIFICATION
To verify the coexistence of multiple SR classes when the
CBS qdisc is used, we further propose scenario EXCM that
combines certain aspects of the previous two, introduced in
Sections VI-A1 and VI-A2. EXCM utilizes the same network
topology shown in Figure 19 as in previous experiments. The
scenario includes the configuration of flows introduced in
experiment campaign EXMQ2, where two flows are limited
and two are unlimited. The limited flows are placed on PCPs
3 (Flow 4) and 2 (Flow 3) corresponding to SR classes A and
B respectively. Flows 1 and 2 are unlimited and are assigned
to PCPs 0 and 1 respectively.

The CBS configuration for SR class A is the same as shown
in Section VI-A2. For SR class Bwe again apply the Equation
(2)to (5). Of note, the settings for SR class B do consider the
traffic of SR class A as well. The resulting configuration is
shown in the following:
• idleSlopeB = 100000
• sendSlopeB = −900000
• hiCreditB = 297
• loCreditB = −1125
As in Section VI-A2, we again distinguish between two

experimental campaigns with EXCM1 having CBS configured
only on the source node and EXCM2 having the qdisc on all
interfaces along the flow. On interfaces where CBS is not
present, we still configure MQPRIO witch each flow having
its own NIC queue assigned.

4) TAPRIO VALIDATION
Within the Section V-D we provided a detailed steps how to
find a suitable setup parameters for the ETF and TAPRIO.
Mainly, the focus is on the ETF in the strict mode. In the
upcoming experiments, we aim to assess the strict mode
and the deadline mode, and BE traffic. Each of the different
modes operates in its own window, which should result in
minimal influence on each other. A target of the experiments

109224 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

is to verify if the time division of various traffic priorities
satisfies the defined requirements. In addition, we want to
assess how the corresponding queues affect the performance
and whether the TAPRIO configuration for window sizes
achieves the targeted metrics. The experiments campaigns we
present can be categorized as follows:

1) EXTS - shows performance of ETF in deadline and strict
mode with a single traffic flow over one to seven hops
for SR class A and B

2) EXTM - shows performance of ETF in deadline and
strict mode with a three traffic flows corresponding to
SR class A, B, and BE over one to seven hops

3) EXTS−T - shows relation between traffic pattern and
a window size, uses ETF in strict mode with a single
traffic flow (SR class A) over seven hops

4) EXTS−W - shows performance of smaller window sizes
and cycle time with ETF in strict mode with a single
traffic flow (SR class A) over seven hops

For better comparability among the experiments, we start
with the same traffic patterns as in CBS experiments for
Flows 4 and 3, which correspond to SR classes A and B,
respectively. In comparison, Flows 1 and 2 that use the unlim-
ited traffic are assigned to PCPs 0 and 1 respectively and share
the same window allocated for the BE.

The experiments we plan to conduct are depicted in Fig-
ure 20 along with a sample configuration of the window cycle
and the SRs classes mappings. EXTS assesses and serves as
the baseline with a single flow at a time either for SR class A
or B. Besides, it evaluates the impact of the txtime-delay
on the performance over seven hops compared to the single
hop setup as done in Section V-D. EXTM builds on top of the
EXTS and uses additional traffic categorized as policed and
unpoliced traffic as already outlined. In addition, it provides
insights into the impact of various window sizes, their shift
over the hops, and the behavior of the offload functionality
provided by the Intel R© I210 NIC.
EXTS−T analyses the outcomes of EXTM and provides

experiment results, where we assess the traffic pattern genera-
tion with a given window size with and without offload. Since
all of the previous experiments relied on the traffic pattern
generating packets each 100 µs with a window cycle of 1ms,
we show the behavior if we align the packet generation time
to the window cycle time.

Finally, EXTS−W shows if lowering the window cycle to
100µs with a shift on each hop as done in EXTM is possible
using the COTS hardware and open-source solutions.

B. EXEMPLARY USE-CASE
With a properly tested and validated experimental environ-
ment, solutions and use-cases can be evaluated. To better
visualize such experiments, we propose an exemplary use-
case. The experiment showcases a sample network topology,
initially introduced in Figure 7 as a high-end vehicle network
topology. We build upon this network, introducing five flow
paths as visualized in Figure 21. Along each of the first

FIGURE 20. Example of TAPRIO window configuration and planned child
qdiscs configuration with respect to SR classes.

FIGURE 21. Network topology including flow paths for the exemplary
use-case. Based on the high-end vehicle network topology from Figure 7.

three paths, we generally place traffic of one SR class and
additionally include one flowwith BE traffic. Flow path 1 fol-
lows from ZGW 5, through ZGW 3 and terminates at VCC
1 forming a 2 hop connection. Flow path 2 originates at ZGW
1 and continues towards VCC 1 via ZGW 6, ZGW 5, and
ZGW 4, thus representing a 4 hop flow configuration. Flow
path 3 also starts at ZGW 1 and flows through ZGW 2 and
ZGW 3, terminating at VCC 1, being a 3 hop connection. The
paths 4 and 5 only include some BE cross-traffic. Flow path
4 has its source at ZGW 6 and continues through ZGW 2 and
ZGW 3 with its sink again on VCC 1. The last path starts
at ZGW 5 and passes through ZGW 3 and ZGW 4 before
terminating at VCC 1.

Along each of the flow paths, we configure a few individual
flows as shown in Table 7. The traffic patterns are inspired by
Table 3. Apart from the BE traffic, along flow path 1 we place
C&C as well as ADAS flows on priority 3 corresponding to
SR class A. Flow path 2 receives some LIDAR and RADAR
flows, also associated with priority 3 and SR class A. The
third flow path has three flow types: RADAR, ultra-sound
(US), andGPS. These flows are associatedwith priority 2 cor-
responding to SR class B. The final two flow paths have only
one BE flow each placed on priority 0. Such configuration
aims to test the impact of cross-traffic on the delay and jitter
of SR classes A and B.

The traffic was generated using the Iperf3 application
using the values outlined in Pkt. Size and Period columns of
Table 7. These packet sizes and periods were then processed
using Equations (7) and (8) to obtain the necessary settings
used to configure the traffic generator.

This is an exemplary configuration using findings pre-
sented in the previous sections. Furthermore, we propose the
used network topology based on the EnGINE deployment we

VOLUME 10, 2022 109225

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 7. Traffic Matrix for the exemplary use-case.

had access to. However, the described configuration can be
adapted to any other deployment, assuming enough nodes
and connections are available. This use-case exemplifies how
a TSN and IVN experiment methodology works and can be
used to obtain results for any solution one wants to evaluate.

In the following, we introduce two variations of the intro-
duced use-case experiment. The first includes the CBS qdisc
used to police the traffic of SR classes A and B. The second
experiment uses TAPRIO and ETF to achieve the same effect.

1) CBS VARIANT
To prepare the qdisc configuration of the CBS variant of the
use-case experiment, we again utilize the Equations (2) to
(5). Due to the similarity of traffic flowing across multiple
network interfaces, we only require four distinct CBS qdisc
configurations to attain the necessary traffic policing for SR
classes A and B. The configurations and their assignments
are described in Table 8. The remaining priorities and queues
were configured for BE traffic. Of note, we apply the configu-
rations on a per-interface basis. On interfaces in Figure 21 not
specified in the Table 8 we apply the MQPRIO configuration
outlined in Section VI-A1.
We propose four experiments for the CBS variant config-

uration. In EXUCC we use all five flow paths and their cor-
responding traffic as described in Table 7. We then perform
an experiment set EXUCC−F , consisting of three individual
experiments EXUCC−F1, EXUCC−F2, and EXUCC−F3. In each
of the three sub-experiments, we only use one flow path
with just the CBS policed traffic flows present in the net-
work. In more detail, considering flows presented in Table 7,
EXUCC−F1 includes flows F1C&C and F1ADAS . EXUCC−F2
uses flows F2LIDAR and F2RADAR, while EXUCC−F3 utilizes
flows F3RADAR, F3US , and F3GPS .

2) TAPRIO AND ETF VARIANT
Similar to the CBS variant, we evaluate policed traffic for
windows 1 and 2 for SR classes A and B respectively, based
on the Figure 20. The last, third, window is allocated for
the BE traffic. The configuration is applied per interface,
according to the present flow paths. We apply the MQPRIO
configuration outlined in Section VI-A1 on the interfaces not
specified in the Table 8.

The EXUCT experiment campaign assess the usage of strict
and deadline modes of ETF qdisc. We use the same delta
and txtime-delay values as specified in Subsection V-D
and the results provided by EXTS . To assess the impact of
cross traffic on the hop between ZGW 1 and VCC 1, we run
two experiment sets. EXUCT−F does not include the cross
traffic, which should serve as a baseline measurement for the
given number of hops and traffic flow. Second, the EXUCT
setup uses the additional flows between ZGW 5 - ZGW 3 -
VCC 1, with a corresponding policed traffic as outlined in
Table 7. We can compare both results, but we focus on the
cross traffic overhead, which is relevant for Flows 1 and 3 on
the last hop towards the VCC 1.

C. EVALUATION METHODS
We mostly consider two evaluation metrics for the experi-
ments introduced above: delay and jitter. These metrics are
relevant for SR class requirement fulfillment. Due to the
time-sensitive nature of the experiments, and the high system
precision outlined in Section V-B, we can directly measure
the delay between the source and sink nodes.

The measurements are performed by collecting two Packet
Captures (PCAPs), one on the source and one on the sink of
a network flow. The captures are done using the hardware
timestamping feature of the NIC where possible. Since we

109226 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 8. CBS qdisc configuration for the CBS variant of the use-case
experiment. Combination of node and interface in format ZGW X If Y for
node X and interface Y corresponding to notation in Figure 21.

know that the source’s and sink’s clocks are accurately syn-
chronized using PTP, we can then correlate the two PCAPs
together. For correct correlation of the packets, we utilize the
timestamp and sequence numbers included in the payload of
packets generated by Iperf3 and send_udp applications.

1) DELAY CALCULATION
After the packets from the source and sink are correlated,
we calculate the end-to-end delay de2e as the difference
between the time at which the packet was received at the sink
tR and sent on the source tS . In the later sections, we abbrevi-
ate de2e as delay or latency.

de2e(X) = tR(X)− tS (X)− to (9)

The exact calculation for packet X is introduced in Equa-
tion 9. Due to the way how packet timestamps are recorded in
Linux, in certain cases theremight be an additional time offset
to that needs to be considered. Amongst others, this occurs
when a system and NIC hardware timestamps are compared.
In general the system time is given as Coordinated Universal
Time (UTC) and NIC hardware time as International Atomic
Time (TAI). The difference to for those two-time formats at
the time of writing amounts to 37 s.

2) JITTER CALCULATION
The calculation for end-to-end delay jitter, that is the differ-
ence in delay between two subsequent packets, is made based
on de2e introduced in Section VI-C1.

je2e(X) = de2e(X)− de2e(X − 1) (10)

Equation 10 introduces the calculation for jitter observed for
packet X . It is defined as a difference of packet X ’s delay
de2e(X) and the delay of the previous packet de2e(X −1). The
jitter for the first evaluated packet je2e(0) is ignored, as there
were no packets before to consider.

In the following, we look at two jitter value representations.
The first one is measured jitter which directly corresponds

to the value obtained for je2e(X). In the later sections we
often refer to measured jitter as jitter. The second one is
absolute jitter which takes an absolute value of the result of
Equation 10. We differentiate between the two to provide
more more detail with measured jitter where required and
provide enough abstraction with absolute jitter to concisely
introduce numerous results.

VII. RESULT EVALUATION
Based on the definitions introduced in Section VI, we pre-
pared and ran these experiments using the EnGINE deploy-
ment. In the following, we showcase the obtained results and
signify which metrics are relevant. In more detail, we show:

1) Delay and absolute jitter obtained during the validation
of the MQPRIO qdisc

2) Delay and measured jitter recorded during the vali-
dation of the CBS qdisc in a single and multi flow
scenarios

3) Delay and absolute jitter observed in the TAPRIO val-
idation experiments

4) Delay and measured jitter when modifying the
TAPRIO window placements, sizes, and traffic pattern

5) Delay and measured jitter from the experimentation
involving the exemplary use-case with CBS qdisc
applied

6) Delay and absolute jitter from the experimentation
involving the exemplary use-case with TAPRIO qdisc
applied

We furthermore show which KPIs provide valuable
insights and outline how the results can be interpreted to
assess system performance. Of note, the results below show a
subset of attainable values and are specific to the EnGINE
deployment. However, the presented methods and evalua-
tions can be generalized to any system with comparable
capabilities.

A. EXPERIMENTAL ENVIRONMENT CAPABILITIES
Using the methods introduced in Section VI-C, we start an
evaluation of the capabilities of the experimental environ-
ment. We focus mainly on the fulfillment of SR class A
requirements outlined in Table 1. The evaluation is based on
the scenarios introduced in Section VI-A.

1) MQPRIO VALIDATION
We first evaluate the MQPRIO verification experiments
EXMQ investigating the functionality of the qdisc and its
applicability for TSN experiments. The results of the first
MQPRIO validation experiment EXMQ1 with all four flows
generated with a bitrate of 100 Mbit/s. are shown in Table 9.
We look at the mean, median, and 99th-percentile values of
delay and jitter in these experiments for each of the flows
individually. Of note, for jitter, we show its absolute value.

In this scenario, we use the values to assess whether the
flows are treated equally across all queues. While there are
some differences in delay between the flows and subse-

VOLUME 10, 2022 109227

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 9. Experiment EXMQ1 mean (x̄), median (x̃), and 99th-percentile (99%ile) delay and absolute value of jitter for each flow.

quently NIC queues, no clear pattern shows when the number
of hops increases. We observe mean delay values as low as
0.03ms for one hop experiments, with the highest observed
average of 1.08ms for Flow 2 in 7 hop experiment. The
median delay closely follows the mean with the highest dif-
ference of 0.07ms recorded for Flow 1 in a six-hop scenario.
In most cases, the median is ≥ mean delay. In the 7 hop
experiment, we record the highest 99%ile delay of 1.24ms for
Flow 1, meaning that MQPRIO alone with limited Iperf3
configuration can satisfy the requirements of SR class A
across all four flows.

Similarly, we do not observe many variations in the abso-
lute jitter across all four flows recorded during experiment
EXMQ1 shown in the bottom part of Table 9. The highest mean
absolute jitter of 110.87 µs was observed for Flow 1 in the
six hop scenario. Such values indicate that the experimental
environment is capable of fulfilling the SR class A jitter
requirement of 125µs with justMQPRIO applied on all hops.
However, we observed higher 99%ile absolute jitter values of
up to 649.93 µs for Flow 1 in 6 hop scenario. Of note, all
flows exceeded the 99%ile absolute jitter of 125 µs required
for the fulfillment of SR class A requirements when more
than two hops were used in the network.

The outcome of EXMQ2 presented in Table 10 is more
varied. For this experiment, we again look at the mean,
median, and 99th-percentile delay and an absolute value of
jitter. In contrast to EXMQ1, for EXMQ2 we cannot directly
compare the results of all flows. Flows 1 and 2 were using the
unlimited Iperf3 configuration, while Flows 3 and 4 used
the limited one. The latter two will be considered as flows
corresponding to SR classes B and A respectively in the
subsequent experiments. This flow configuration means that
we inherently expect different values between the two flow
groups. Therefore, in EXMQ2 and subsequent experiments
involving CBS qdisc we focus on the fulfillment of the SR
classes A and B requirements.

For Flows 1 and 2 we observe higher delay values than for
Flows 3 and 4, with all mean delays in EXMQ2 being generally
higher than those in EXMQ1. The average delay for unlimited
flows reaches as high as 3.94ms for Flow 1, with the 99%ile
of 4.8ms. For limited flows the delay is much lower. The
highest recorded mean is 1.81ms, with the largest 99%ile of
2.19ms. Again, the median delay closely follows the average
in most experiments. The recorded delay values in EXMQ2
indicate that on average the MQPRIO qdisc alone can fulfill
the requirements of SR class A for limited flows, however the
99%ile values exceed the required delay of 2ms. Both Flows
3 and 4 fulfill the requirement of SR class B.

With the absolute values of jitter in EXMQ2 we observe
somewhat lower mean values for unlimited flows compared
to the limited ones. However, the median absolute jitter is
comparable across all four flows.While the mean andmedian
absolute jitter falls within the requirements of SR class A,
the 99%ile values are far higher than the 125 µs upper
bound. On the contrary, the highest 99%ile absolute jitter of
778.20 µs falls within the requirements of SR class B.

To summarize, in EXMQ1 we did not observe any clear
patterns that would indicate that any of the NIC queues are
prioritized. Furthermore, we notice that whileMQPRIO qdisc
by itself can support SR class A requirements on average,
to achieve the 125 µs requirement for the 99%ile absolute
jitter values, some optimization using TSN qdiscs is required.
Based on EXMQ2 we come to a similar conclusion, justifying
the need for experiments whose results are presented in the
subsequent sections.

2) CBS SINGLE FLOW VERIFICATION
Following the experiments involving MQPRIO, we investi-
gate the fulfillment of SR class A requirements with a single
flow policed by the CBS qdisc in EXCS experiments as intro-
duced in Section VI-A2. The measurements are presented in
Figure 22 showing the delay and jitter values corresponding

109228 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 10. Experiment EXMQ2 mean (x̄), median (x̃), and 99th-percentile (99%ile) delay and absolute value of jitter for each flow.

to the varied number of hops. The red dashed line indicates
the 2ms delay or the 125 µs jitter requirement of SR class
A. We distinguish between two types of experiments, EXCS1
where CBS is employed only on the source node and EXCS2
where the qdisc is applied on all network interfaces.

We observe that in both experiment types, the delay shown
in Figure 22a is comparable across the varying number
of hops. Furthermore, the average delay increases close to
linearly, with each hop adding approximately 0.2ms. The
highest average delay in both EXCS1 and EXCS2 is 1.43ms
for a network with 7 hops. Based on Figure 22a we can
also state that with one limited and CBS policed flow in the
network, we are able to fulfill the SR class A requirements of
a maximum 2ms in terms of delay over a 7 hop network.

The jitter for both CBS single flow experiments is shown
in Figure 22b. We again distinguish between the two types
of performed experiments with EXCS1 and EXCS2. The plot
shows the jitter in µs on a logarithmic scale depending on
the number of hops used in the network. The red dashed
lines indicate the 125 µs allowed jitter for SR class A. For
EXCS1 we see that the 1%ile and 99%ile of the measured
jitter values fall within the 125 µs target across all hop num-
ber combinations. However, in experiments involving two to
seven hops we observe outliers that exceed this requirement.
Furthermore, in each experiment, we measure a mean jitter
of 0 µs and observe a median jitter of 0 µs (not shown in
the plot), indicating that there is no clock drift in the system.
We can also conclude that the average delay stays constant
over time. In EXCS2 we see similar outcomes as in EXCS1, the
only difference being a smaller 1%ile to 99%ile jitter range
for experiment with two hops.

These results show that with one flow, the addition of the
CBS qdisc on each interface has little impact on the observed
delay and jitter. This does not imply that the qdiscs should not
be added on all network interfaces, as with competing traffic,
the flows could still be affected. The outcomes of EXCS1 and
EXCS2 indicate that the application of CBS on every node

in the investigated network does not negatively impact the
performance of the system.

3) CBS MULTIPLE FLOW VERIFICATION
As a next step in validating the experimental environment,
we perform the experiments verifying the coexistence of
traffic of SR classesA andBwith best effort traffic as outlined
in Section VI-A3. In this EXCM scenario with a fully loaded
network, we focus on the delay and jitter measured for the
two limited Iperf3 flows configured for PCPs 3 and 2 cor-
responding to SR classes A and B respectively. Similarly,
as in Single Flow CBS Verification, we run two types of
experiments, EXCM1 where the CBS qdiscs are configured
only on the source node and EXCM2 where the qdiscs are
configured on each interface in the network. We evaluate the
results in two parts, initially focusing on the higher priority
flow of SR class A shown in Figure 23, later comparing it
against the flow of SR class B presented in Figure 24.

We start with evaluating the delay of SR class A Iperf3
flow shown in Figure 23a. In scenarioEXCM1 we see themean
delay rising linearly with the increasing number of hops.
The maximum delay reaches 2ms similarly as in single flow
scenarios EXCS with the average increasing from 0.11ms
for 1 hop up to 1.54ms for 7 hops. Each hop increases the
average delay by 0.24ms. With CBS applied on all interfaces
in EXCM2, we observe a slightly higher delay compared to
EXCM1. While the latency for one hop remains the same, each
additional hop increases the delay by 0.3ms with the maxi-
mum measured of 2.42ms for seven hops. The mean latency
in EXCM2 increases from 0.11ms with 1 hop to 1.90ms for
7 hops. While the average latency fulfills the requirements of
SR class A, themaximum delay exceeds the 2ms requirement
denoted by the red dashed line in the plots.

To better understand the functionality of CBS for SR class
A Iperf3 flow in EXCM we also look at the jitter visualized
in Figure 23b. For both EXCM1 we measured an average
jitter of 0 µs indicating that the delay is not monotonically

VOLUME 10, 2022 109229

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 22. Measured mean delay and jitter for EXCS verification experiments. Colored area represents the range between minimum and
maximum values. The dotted lines represent the range between the 1%ile and the 99%ile. The red dashed line represents the target for
SR class A.

increasing or decreasing during the experiment run.While for
each number of hops, most measured jitter values stay within
the 125 µs requirement, we observe outliers exceeding the
target both in the positive and negative value range. The high
jitter shown for EXCM1 amounts to roughly 5% of all mea-
sured values. The largest jitter of −952.48 µs and 613.21 µs
occurs in experiment with 6 hops. In EXCM2 we observe
generally lower values compared to EXCM1. Again, the mean
jitter is 0 µs indicating that the average latency does not vary
over time. We still measure some outliers; however, only at
most 0.085% of, in the case of 5 hop experiment, observed
values lie outside of the target−125 µs to 125 µs range, with
the 1%ile and 99%ile also being within the aforementioned
range.

Similarly to SR class A results, we look at the delay and
jitter values for the SR class B Iperf3 flow in EXCM shown
in Figure 24. The EXCM1 delay of SR class B flow presented
in Figure 24a sees comparable delay to that of the higher pri-
ority class A flow in EXCM1. Of note, the plot does not show
the target maximum delay for SR class B of 10ms which is
outside of the visualized value range. Again, we observe a
linear increase in delay with each hop adding 0.24ms. The
measured values do not exceed 2ms in the 7 hop experiment,
well within the 10ms SR class B requirement. The flow of SR
class B experiences a slightly higher latency in EXCM2 with
themean increasing linearly from 0.11ms to 1.9ms, each hop
increasing it by 0.3ms. The maximum measured delay for
seven hops is 2.41ms.

Lastly, we look at the jitter of SR class B flow shown
in Figure 24b. In EXCM1, similarly to previous jitter mea-
surements, we observe a mean value of 0 µs. The same
observation can be made for the jitter in EXCM2. In both types
of experiments and across all possible numbers of hops, the
SR class B jitter requirement of maximum 1000µs, indicated
in the plot by the red dashed line, is fulfilled. Of note, the
application of CBS qdisc on all network interfaces in EXCM2
generally lowers the jitter compared to when CBS is only
configured on the source node in EXCM1.

4) TAPRIO VALIDATION
Starting with the validation of the TAPRIO along with ETF,
we introduce a first of results for the EXTS single flows

either categorized as SR class A or B and running a deadline
or strict ETF modes. Table 11 shows a comparison of the
two modes for one to seven hops. The parameters for this
results are txtime-delay=200 µs and delta=175 µs,
and windows are spaced as shown in Figure 20. Besides,
we show txtime-delay=450 µs with delta=175 µs,
to show the impact of higher txtime-delay. For brevity,
we only show the results for seven hops. Starting with the
deadline mode, we see approximately 200 µs increase based
on the 99th percentile results over each hop. Looking at the
absolute jitter, we see an increase with each hop where the
mean and median are around 130 µs for the seven hops,
but when observing the 99th percentile, we see much higher
values of up to 737.9055 µs The behavior for the SR class A
and B are comparable as well as for the txtime-delay of
450 µs.

When comparing the two modes, we observe that ETF
strict mode has high difference of mean and median values
ranging from 5.08 to 183.23 µs and 4.53 to 31.70 µs respec-
tively. Looking at the case of txtime-delay=450 µs
with delta=175 µs seven hops 99th percentile values,
we observe less than 11.5 µs when comparing the SR class
A and B results. On the other hand, when looking at the
delay, we observe an increase of roughly 1ms per hop, which
corresponds to the window cycle. We observe a lower delay
for the lower txtime-delay but higher absolute jitter.
On the other hand, the higher value results in packets waiting
for approximately one cycle before it is forwarded to the next
hop; thus, the absolute jitter gets lower.

Figure 25 shows an example configuration, where for each
hop, we account 1, which is the delay it takes to process the
packet on each hop. Such setup is evaluated in the EXTM .
Using the shift on each hop, once the packet reaches the
next hop, a corresponding priority window will be opened to
process the packet immediately, without waiting for a whole
window cycle. Therefore, it lowers the end-to-end delay in
the case of strict traffic. On the other hand, the jitter might
fluctuate if the1 is not properly configured, as some packets
might be forwarded right away while others need to wait.

Based on the results of the deadline mode, we see approx-
imately 150 µs overhead caused by each hop, so we set 1
to 200 µs. Worthy of a note, finding an optimal value for this

109230 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 23. Measured mean delay and jitter in EXCM verification experiments for the high priority SR class A flow. Colored area represents the
range between minimum and maximum values. The dotted lines represent the range between the 1%ile and the 99%ile. The red dashed line
represents the target for SR class A.

FIGURE 24. Measured mean delay and jitter in EXCM verification experiments for the lower priority SR class B flow. Colored area represents the
range between minimum and maximum values. The dotted lines represent the range between the 1%ile and the 99%ile. The red dashed line
represents the target for SR class B.

setup is challenging, and to the best of our knowledge, no ded-
icated algorithm can be used to find the optimal values for the
COTS hardware. As identified in the related work, network
calculus approaches can provide upper bounds, but those
models are directly applicable to a hardware setup, as there
are setup-dependent parameters that are not considered.

Table 12 shows three flows, corresponding to SR class A
and B and BE, where on each hop is added a 1 = 200 µs
corresponding to delay of each hop. In addition, EXTM eval-
uates the impact of offload and no-offload, as the results in
Section V-D provide non-inclusive results that are worthy
of evaluation over multiple hops. We adjusted the window
sizes so the SR class A window is 400 µs, SR class B is
300 µs and BE is 300 µs. With the 1 Gbit links and 1250B
packets (including all headers), we have a transmission time
of 100 µs, which should fit three to four packets, depending
on the window size. In comparison to EXTS , we also lowered
the txtime-delay value to 180 µs.
Starting with the behavior of ETF in deadline mode and

BE, we see many similarities to delay and absolute jit-
ter. The delay 99th-percentile over seven hops is for both
around1.44 ms and the absolute jitter is 708.1 and 469.21 µs
for the deadline mode and BE accordingly. We see an
improvement with no-offload in place for both setups, as the
delay and absolute jitter values get lower. Nevertheless, the
values for deadline and BE still fluctuate, which is to be
expected due to the nature of their operation. However, even
with that in mind, we see SR class B requirements can be
fulfilled using the ETF in deadline mode. When comparing
the results to EXTS , we see lower values that might be caused

FIGURE 25. Example of TAPRIO window shift over hops and planned
child qdiscs configuration with respect to SR classes.

partially by the lower txtime-delay value and window
shift.

Next, the ETF in strict mode shows delay mean from
0.17 to 3.09 µs with offload and 0.03 to 1.19 µs. Here
we see the impact of the shift in comparison to the naive
approach in EXTS along with the lower txtime-delay.
Absolute jitter mean and median improves significantly with
no-offload resulting in mean values of 112.97 µs and median
of 12.40 µs. On the other hand, the 99th percentile does
not show a significant improvement in the no-offload values.
Overall, looking at the ETF strict results, we see that with
no-offload SR class A requirements can be fulfilled when
considering mean and median, but it is not achieved for all
values. Nevertheless, aligning the windows over each hop
shows an improvement in the results.

Using the EXTM outcome and analysis, we observe that
the delay and absolute jitter mean and median show expected

VOLUME 10, 2022 109231

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 11. EXTS results - TAPRIO with ETF in deadline and strict mode for one to seven hops and a single flow, txtime-delay=200 and 450µs and ETF
delta=175µs with offload. Shows delay and absolute jitter mean (x̄), median (x̃), and 99th-percentile (99%ile) for increasing number of hops.

values with an increase of delay 200 µs per hop and bounded
jitter. However, the 99th percentile shows much higher val-
ues. The experiments demonstrate the artifacts caused by a
misalignment of the window cycle time and traffic genera-
tion. Therefore, EXTS−T increases the generated inter-frame
packet spacing from 100 µs to 1 ms. On the other hand,
EXTS−W lowers the window cycle to 100 µs, so we generate
traffic with 100 µs inter-frame packet spacing. This also
means the parameter1 is lowered to 20 µs. To note, for both
EXTS−T andEXTS−W , we consider only the seven hops results
for brevity reasons.

Figure 26 shows results for EXTS−T and EXTS−W with
and without offload. The EXTS−T delay performs better in
comparison to the EXTS−W , where mean and median reach
below 1.5 ms with and without offload. This behavior is
similar to the jitter, where EXTS−T reaches values below
12 µs for mean and median. EXTS−W shows similar behavior
as the EXTS for jitter, which makes us believe the parameter
1 is set too low in this case. Unfortunately, for all scenarios,
we see (not only) outliers above 2 ms for the delay.

Figure 26a presents both experiment results with and with-
out offload. Overall, the offload performs better with lower
spread and lower delay. Concerning jitter, Figure 26b shows
that the majority of values for EXTS−T are within bounds
SR class A bounds. In contrast, values observed in EXTS−W
experiments fluctuate more significantly.

Overall, EXTS−T and EXTS−W show behavior for traffic
patterns and their window sizes. Using higher inter-frame
spacing for packets allows for higher window cycles. After
all experiments, we can conclude that offload behaves worse
than no offload. This behavior might be specific to the

use of Intel R© I210 and would require investigation on
other NICs.

B. EXEMPLARY USE-CASE
In the following we showcase the results for the exemplary
use-case investigating the coexistence of traffic policed for
SR classes A and B with other types of traffic, mainly BE.
The experiments have been conducted using synthetically
generated, realistic traffic patterns as outlined in Table 7 and
investigated two policing configuration variants, one includ-
ing the CBS and the other the TAPRIO qdiscs.

1) CBS VARIANT
First, we consider the CBS variant of the experiments and
investigate the delay measured in the network for each of
the flow paths. We focus only on the policed traffic of flow
paths 1, 2, and 3, showing the delays for each of the individual
traffic types along the path. The resulting measurements are
presented in Figure 27. Starting with scenario EXUCC includ-
ing all five flow paths in the experiment shown in Figure 27a,
we observe that within all flow paths and traffic types we
can fulfill the respective requirements of SR classes A and
B. We also observe the lowest average delay for the shortest
flow path 1, with the mean increasing close to linearly with
the increasing number of hops for flow paths 3 and 2, respec-
tively. Furthermore, we observe that the delays for each of the
traffic types within a class are similar.

In scenario EXUCC−F presented in Figure 27b, we observe
similar or lower delay compared to EXUCC for each of the
flow paths. Again, the delays along a flow path across the var-
ious traffic types are similar. We further see that the minimum

109232 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 12. EXTM results -TAPRIO with ETF for one to seven hops for three flows corresponding to SR class A, B, and BE. txtime-delay=180 and ETF
delta=175 µs with offload and 1 = 200, delay and absolute jitter mean (x̄), median (x̃), and 99th-percentile (99%ile) for increasing number of hops.

delay is directly correlated with the path length. It increases
linearly with the increasing length of the path. The mean
delay shows a slightly different trend compared to EXUCC .
Due to the high number of outliers we do not observe a linear
increase in the average delay with the increasing number
of hops. This is caused by the various volumes of traffic
in each experiment and the absence of competing traffic
in the network. Flow path 1 supports the highest bitrate in
EXUCC−F of 89.152Mbit/s, hence we observe a wider spread
of the measured delays which is comparable with EXUCC .
Flow paths 2 and 3 with total bitrates of 26.4 Mbit/s and
12.82 Mbit/s do not experience as much competition within
their traffic classes. We observe a significantly lower delay
for flows in EXUCC−F , as the flows are placed alone in the
network in individual experiments and there is no external
competition for resources.

Continuing with the observed jitter presented in Figure 28
we again compare the jitter of EXUCC with that of EXUCC−F
shown in Figure 28a and 28b respectively. For EXUCC we
observe a similar distribution of jitter values across all flow
paths and traffic types. While the SR class B requirements
relevant for flow path 3 are fulfilled, the outliers observed for

traffic types along flow paths 1 and 2 exceed the correspond-
ing requirements of SR class A. This is expected, as CBS is
mostly tailored towards guaranteeing bitrates, and only gives
limited bounds on delay or jitter. With that, we still see that
the vast majority of the jitter values on flow paths 1 and 2 falls
within the 125µs required by the SR class A. InEXUCC−F we
observe a generally lower jitter compared to EXUCC with all
traffic types along flow path 2 achieving the requirements of
SR class A. With the higher bitrates, flow path 1 sees outliers
in the jitter above 125 µs.

To summarize, in the CBS variant of the use-case exper-
iments, we observe that the introduction of cross-traffic and
more complex flows negatively impacts the delay and jitter
observed in the network. Yet, the observed values in most
cases fall within the requirements of SR class A and com-
pletely fulfill the requirements of SR class B.

2) TAPRIO VARIANT
The exemplary use-case with TAPRIO showcases the results
coexistence of policed traffic for SR classes A and B with
BE. As for the CBS variant, we rely on the synthetically

VOLUME 10, 2022 109233

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

FIGURE 26. Boxplots of measured delay and jitter for the TAPRIO EXTS−T and EXTS−W with and without offload.

FIGURE 27. Boxplot of measured delay for the exemplary use-case in the CBS variant.

FIGURE 28. Boxplot of measured jitter for the exemplary use-case in the CBS variant.

generated traffic based on realistic traffic patterns as outlined
in Table 7. For the TAPRIO we investigate the difference of
using ETF in deadline and strict mode for the SR classes with
(EXUCT) and without cross traffic (EXUCT−F). We used the
same length of experiments and payload sizes and re-used
the default window sizes values as shown in Figure 20. For
all of the experiments we used txtime-delay=450 µs
and ETF delta=175 µs as with these values we achieved
lower absolute jitter as shown in EXTS . We do not aim to
find optimal results as shown for EXTS−T and EXTS−W . The
main focus of these experiments is on cross-traffic behav-
ior. Ideally, we would try to find window cycles respecting
the lowest packet inter-frame spacing based on the Table 7.
Also, we do not show results of the unpoliced traffic for
brevity reasons, as it is irrelevant compared to higher priority
traffic.

Table 13 shows all of the results for policed traffic corre-
sponding to SR class A and B. Starting with the SR class A
traffic that is presented in Flow 1 and 2, we observemaximum
delay values of the 99th-percentile for EXUCT−F of 1.17 µs
for Flow 1 and 3.17 µs. This corresponds to previous results
when no cross traffic is introduced and we observe roughly
one window cycle increase per hop. However, due to the
traffic patterns sharing a single window, we observe higher
absolute jitter with maximum values for the 99th-percentile
of 197.41 µs for Flow 1 and 257.73 µs for Flow 2. This is
much worse performance than previous absolute jitter values,
and it shows that single flows when sharing the window
compete with the same hardware queue and require window
size adjustments. This increase of absolute jitter is even more
prominent when continuing with EXUCT for Flows 1 and 2,
resulting in values higher than 800 µs. For Flow 1, we can

109234 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 13. Exemplary use-case for TAPRIO with ETF for Flow 1, 2, and 3 for corresponding SR class A and B flows. txtime-delay=450 µs and ETF
delta=175 µs with offload, delay and absolute jitter mean (x̄), median (x̃), and 99th-percentile (99%ile) with (EXUCT) and without cross-traffic (EXUCT−F).

even observe an increase of maximum delay of the 99th-
percentile from 1.17µs to 2.17µs, which is an increase of one
whole window cycle. This is an interesting outcome, as the
competing traffic is in this scenario SR class B traffic. Flow
2 stays the same as the cross traffic ismainly BE traffic, which
does not affect the higher priority class.

When observing the results for Flows 1 and 2 using the ETF
qdisc in deadline mode, we do not observe similar behavior
as with the strict mode. The delay and absolute jitter for Flow
1 with EXUCT and EXUCT−F show similar results without
a clear tendency. The results sometimes even showed better
performance for EXUCT .

The last part to compare is Flow 3, which corresponds
to SR class B. When comparing the EXUCT and EXUCT−F
for the strict mode, we see an improvement of absolute
jitter values from the previous maximum 99th-percentile of
274.66 µs to 152.52 µs. For the delay is the tendency to be
somewhat similar and can be an artifact of a given exper-
iment run. On the other hand, for the deadline mode we
can observe worse behavior of the maximum 99th-percentile
from 38.39 µs to 162.93 µs. However, for the delay, we see
lower values for delay for EXUCT . The explanation for this
behavior might be the functionality of the Intel R© I210 NIC
in offload mode, as once more than a single hardware queue
is used (as in the case of EXUCT−F) it enters different internal
algorithm how to process the traffic [62].

Overall, we see then even if we configure the SR classes
accordingly; the requirements cannot be easily fulfilled when
using TAPRIOwithout identifying optimal parameters for the
given setups as introduced in EXTS .

C. REQUIREMENTS FULFILLMENT
With the experiments outlined in Section VI and results
shown in Sections VII-A and VII-B we showcased how an
TSN experimental environment can be prepared, validated,
and used to perform experiments in the time-sensitive and in-
vehicular domains. The experiments were supported by the
methodology introduced with Section IV as well as various
system optimizations, traffic generation and qdisc parameter
optimization outlined in Section V. We performed the valida-
tion tests and experiments involving an exemplary use-case
using ourEnGINE deployment and verified the results against
requirements placed upon such networks, amongst others
outlined in Table 1.We concentrated on the highly demanding
SR classes A and B. These results aim to be an example as to
how the introduced methodology can be applied in practice
and how its results can be interpreted.

During the run of the experiments, we closely looked at the
CBS and TAPRIO qdiscs and their fulfillment of the afore-
mentioned requirements in both synthetic and more realistic
scenarios. The results and the capabilities of supporting the
SR classes are summarized in Table 14. In most of the exper-
iments, we fulfilled the SR class requirements in terms of
average andmedian delay and jitter. However, maximum (and
minimum in case of jitter) values were sometimes recorded
outside of the required ranges for SR class A.

For TAPRIO using ETF in strict mode (EXTS−S and
EXTM−S), we showcased that configuration can fulfill
bounded latency or bounded jitter with respect to SR class
A. Based on this result, we investigated the behavior of traffic
patterns concerningwindow cycle time inEXTS−T , showing it

VOLUME 10, 2022 109235

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

TABLE 14. Summary of SR class A and B requirement fulfillment by CBS
and TAPRIO qdisc in various configurations.

fulfills the SR class A requirements, except outliers. Overall,
the results show a possible direction of what parameters
can be evaluated and modified for the qdisc configuration
to fulfill the defined requirements. As expected, the ETF
in deadline mode offers low latency, but shows high jitter,
not fitting the SR class requirement. On the other hand, SR
class B requirements are easy to fulfill for both deadline
and strict modes, even with a more naive approach. Overall,
finding optimal parameters for the TAPRIO window sizes
is outside this paper’s scope. However, we showcased pos-
sibilities for configuring the parameters and their impact on
the performance.

Of note, these experiments were performed using the
EnGINE environment, and results obtained on other deploy-
ments may vary. The methods applied to obtain these results
apply to any deployment with similar capabilities to that of
EnGINE. As motivated and generalized in Section IV, the
outlined methodology is applicable to other TSN domains.

VIII. CHALLENGES & LIMITATIONS
This sections summarizes the challenges we faced with the
proposed methodology and limitations of our evaluation and
configurations.

A. METHODOLOGY CHALLENGES
We identified several challenges concerning the three individ-
ual steps of the methodology.

The S1 requires a detailed assessment for the given domain
to understand the requirements of the environment and map
what traffic patterns are present within the network. Defini-
tion of requirements might be less challenging, as many of
the real-time domain requirements are well standardized and
such requirements can also be applied to the TSN domain.
On the other hand, the analysis of the traffic patterns does not

scale well with more complex networks, where collecting all
details might be unfeasible. However, the approach in such
scenarios can be to focus only on the relevant high-priority
traffic with tight KPIs boundaries, which lowers the scope.

Similarly as for S2, the experiment scale might be chal-
lenging for the configuration and evaluation options. For
example, finding suitable parameters for TAPRIO window
sizes is a hard problem. Therefore, more automated solutions,
e.g. using novel machine learning techniques, for perfor-
mance assessment could be suitable.

The S3 focused on the optimization to fulfill identified
KPIs. Within the scope of this paper, we focused on OS and
configuration parameter optimizations. However, for other
use-cases, this might require even more low-level improve-
ments, e.g., using Real-time OS, hardware accelerators, or a
more detailed parameter study.

The introducedmethodology brings new challenges during
its deployment and execution that might not apply to every
TSNdomain. Nevertheless, we believe these challenges apply
to the execution rather than the required steps.

B. SETUP LIMITATIONS
For the measurement results, we identified several limitations
with our setup. First, we rely on the tcpdump to capture
traffic in egress and ingress directions. Unfortunately, the
egress direction supports only Software (SW) timestamping,
which is less precise than HW timestamping. This limitation
can introduce additional delay and jitter caused by the time
the packet spends in the Linux networking stack, which other-
wise would not be included if both timestamps were collected
by the NIC HW. Nevertheless, even with this challenge,
we see that most packets can fulfill given requirements.

Second, even though we rely on PTP, the clocks in the
network can deviate over a larger number of hops. We know
the clock synchronization precision on a single node, but it is
possible that the clock deviates over a larger number of hops.
Nevertheless, we believe that the clock drift is negligible
within our network setup and the number of hops.

Finally, in the domain of IVNs additional TSN standards
are used, that are not part of our evaluations. Extending the
infrastructure and including additional, for instance, asyn-
chronous, TSN standards could provide valuable insights.

IX. CONCLUSION
In this work, we provide a detailed description of a novel
methodology focusing on reproducible experiments in the
TSN domain. The experiments are enabled by the under-
lying infrastructure called EnGINE that is built using the
COTS hardware and open-source solutions. Despite initial
focus on IVNs, during the detailed methodology analysis
we provide a generalized approach applicable to any TSN
deployment. Especially when investigating the requirements
and comparing them among different application domains,
we identify many similarities that allow for generalization of
our methodology.

109236 VOLUME 10, 2022

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

The methodology and infrastructure come with some
challenges and limitations. Starting with the methodology,
it requires a lot of effort in the S1, concerning the require-
ments and traffic patterns mapping. As a part of S2, we search
for suitable configurations. Depending on the domain and
network size, it may be a time consuming process The infras-
tructure requires updates with respect to the offered TSN
standards to evaluate additional domains beyond the IVNs
focus. Finding COTS hardware is challenging, but there are
new open-source projects offering novel software solutions.

We present a case study focusing on the IVNs, including
a sample use-case and evaluation of their requirements. Fol-
lowing the introduced methodology steps, we define require-
ments and traffic patterns present within the IVN topologies.
Furthermore, we provide detailed configuration steps and
system optimization techniques to offer determinism in the
Linux kernel contributing to S3.
We cover detailed results for the system and configuration

performance in scenarios over seven hops and for a sample
use-case. The results identify that the requirements placed
on such networks are partially fulfilled, depending on the
specific scenario and hardware. The jitter, low packet loss,
and latency, even though bounded, sometimes do not reach
SR class A requirements. To note, some of these observations
are possibly caused by the used configuration specifics that
not always follow the identified traffic patterns and might
strain the system. However, we can fulfill other requirements
identified during the analysis. Furthermore, we show how
EnGINE can be used to perform TSN experiments based on
an experimental use-case with detailed configuration of indi-
vidual steps. Overall, the methodology and infrastructure are
applicable for reproducible and scalable TSN experiments.

ACKNOWLEDGMENT
The authors would like to thank Max Helm and Sebastian
Gallenmüller for the discussions during the course of this
research and also would like to thank the anonymous review-
ers for their valuable feedback.

REFERENCES
[1] W. Zeng, M. A. S. Khalid, and S. Chowdhury, ‘‘In-vehicle networks

outlook: Achievements and challenges,’’ IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 1552–1571, 3rd Quart., 2016.

[2] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
‘‘Intra-vehicle networks: A review,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, pp. 534–545, Apr. 2015.

[3] F. Rezabek, M. Bosk, T. Paul, K. Holzinger, S. Gallenmüller, A. Gonzalez,
A. Kane, F. Fons, Z. Haigang, G. Carle, and J. Ott, ‘‘EnGINE: Developing
a flexible research infrastructure for reliable and scalable intra-vehicular
TSN Networks,’’ in Proc. 3rd Int. Workshop High-Precision, Predictable,
Low-Latency Netw. (HiPNet 2021), İzmir, Turkey, 2021, pp. 530–536.
[Online]. Available: https://ieeexplore.ieee.org/document/9615529

[4] D. Pannell, L. Chen, J. Dorr, W. Lo, M. Potts, H. Zinner, and A. Zu.
(2019). Use Cases—IEEE P802.1DG V0.4. Accessed: Jun. 29, 2022.
[Online]. Available: https://www.ieee802.org/1/files/public/docs2019/dg-
pannell-automotive-use-cases-0919-v04.pdf

[5] TSN for Aerospace Onboard Ethernet Communications,
Standard P802.1DP. Accessed: Jul. 14, 2022. [Online]. Available: https://
1.ieee802.org/tsn/802-1dp/

[6] TSN Profile for Industrial Automation, Standard IEC/IEEE 60802.
Accessed: Jul. 14, 2022. [Online]. Available: https://1.ieee802.org/tsn/iec-
ieee-60802/

[7] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queuing
Enhancements for Time-Sensitive Streams, IEEE Standard 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005), 2010, pp. 1–72.

[8] IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic,
IEEE Standard 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014
as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014/Cor 1-2015), 2016, pp. 1–57.

[9] IEEE Standard for Local and Metropolitan Area Networks—Timing and
Synchronization for Time-Sensitive Applications, IEEE Standard 802.1AS-
2020, 2020, pp. 1–421.

[10] D. Pannell. (2019). Automotive Ethernet AVB Functional and
Interoperability Specification. Last accessed: May 10, 2022. [Online].
Available: https://avnu.org/wp-content/uploads/2014/05/Auto-Ethernet-
AVB-Func-Interop-Spec_v1.6.pdf

[11] ISO/IEC/IEEE International Standard—Information Technology—
Telecommunications and Information Exchange between Systems—Local
and Metropolitan Area Networks—Specific Requirements—Part 1BA:
Audio Video Bridging (AVB) Systems, Standard ISO/IEC/IEEE 8802-1BA,
2016, pp. 1–52.

[12] IEEE Standard for a Transport Protocol for Time-Sensitive Applications
in Bridged Local Area Networks, IEEE Standard 1722-2016 (Revision of
IEEE Standard 1722-2011), 2016, pp. 1–233.

[13] IEEE Standard for Local and Metropolitan Area Network—Bridges and
Bridged Networks, IEEE Standard 802.1Q-2018, 2018, pp. 1–1993.

[14] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE Standard 1588-2019,
2020, pp. 1–499.

[15] B. Moussa, M. Debbabi, and C. Assi, ‘‘A detection and mitigation model
for PTP delay attack in a smart grid substation,’’ in Proc. IEEE Int. Conf.
Smart Grid Commun. (SmartGridComm), Nov. 2015, pp. 497–502.

[16] R. Cochran. LinuxPTP. Accessed: Jul. 18, 2022. [Online]. Available:
https://sourceforge.net/p/linuxptp/code/ci/24220e87fdb7464/tree/

[17] R. Cochran and M. Lichvar. PHC2SYS(8). Accessed: Jul. 16, 2022.
[Online]. Available: https://linux.die.net/man/8/phc2sy

[18] W. Weiss, D. J. Heinanen, F. Baker, and J. T. Wroclawski, Assured
Forwarding PHB Group, RFC 2597, Jun. 1999. [Online]. Available:
https://www.rfc-editor.org/info/rfc2597

[19] TC(8). Accessed: Jul. 15, 2022. [Online]. Available: https://
linux.die.net/man/8/tc

[20] Configuring VLAN Interfaces, TSN Documentation Project for
Linux. Accessed: Jul. 13, 2022. [Online]. Available: https://tsn.
readthedocs.io/vlan.html

[21] IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic,
IEEE Standard 802, 2016, pp. 1–57.

[22] TAPRIO(8). Accessed: Jun. 11, 2022. [Online]. Available: https://
man7.org/linux/man-pages/man8/tc-taprio.8.html

[23] MQPRIO(8). Accessed: May 23, 2022. [Online]. Available: https://
man7.org/linux/man-pages/man8/tc-mqprio.8.html

[24] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, ‘‘The pos framework:
A methodology and toolchain for reproducible network experiments,’’ in
Proc. 17th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT), Munich,
Germany, Dec. 2021, pp. 259–266.

[25] C. Mauclair, M. Gutiérrez, J. Migge, and N. Navet, ‘‘Do we really need
TSN in next-generation helicopters? Insights from a case-study,’’ in Proc.
IEEE/AIAA 40th Digit. Avionics Syst. Conf. (DASC), Oct. 2021, pp. 1–7.

[26] P.-J. Chaine, M. Boyer, C. Pagetti, and F. Wartel, ‘‘TSN support for quality
of service in space,’’ in Proc. 10th Eur. Congr. Embedded Real Time Softw.
Syst. (ERTS), Toulouse, France, Jan. 2020, pp. 1–12. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02441327

[27] D. Bruckner, M.-P. Stanica, R. Blair, S. Schriegel, S. Kehrer,
M. Seewald, and T. Sauter, ‘‘An introduction to OPCUATSN for industrial
communication systems,’’ Proc. IEEE, vol. 107, no. 6, pp. 1121–1131,
Jun. 2019.

[28] A. Sabry, A. Omar, M. Hammad, and N. Abdelbaki, ‘‘AVB/TSN protocols
in automotive networking,’’ in Proc. 15th Int. Conf. Comput. Eng. Syst.
(ICCES), Dec. 2020, pp. 1–7.

[29] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. Lo Bello,
‘‘Schedulability analysis of Ethernet audio video bridging networks with
scheduled traffic support,’’ Real-Time Syst., vol. 53, no. 4, pp. 526–577,
Jul. 2017.

VOLUME 10, 2022 109237

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

[30] X. Huang, P.Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, ‘‘The Apol-
loScape open dataset for autonomous driving and its application,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 10, pp. 2702–2719,
Oct. 2020.

[31] J. Migge, J. Villanueva, N. Navet, and M. Boyer, ‘‘Insights on the per-
formance and configuration of AVB and TSN in automotive Ethernet
networks,’’ in Proc. 9th Eur. Congr. Embedded Real Time Softw. Syst.
(ERTS 2018), Toulouse, France, Jan. 2018, pp. 1–10.

[32] Time Sensitive Networks for Flexible Manufacturing Testbed Characteri-
zation and Mapping of Converged Traffic Types, Ind. Internet Consortium,
Milford, MA, USA, 2019.

[33] G. Miranda, E. Municio, J. Haxhibeqiri, D. F. Macedo, J. Hoebeke,
I. Moerman, and J. M. Marquez-Barja, ‘‘Evaluating time-sensitive net-
working features on open testbeds,’’ in Proc. IEEE Conf. Comput. Com-
mun. Workshops (INFOCOM WKSHPS), May 2022, pp. 1–2.

[34] M. H. Farzaneh and A. Knoll, ‘‘Time-sensitive networking (TSN): An
experimental setup,’’ in Proc. IEEE Veh. Netw. Conf. (VNC), Nov. 2017,
pp. 23–26.

[35] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, ‘‘Open source
OPC UA PubSub over TSN for realtime industrial communication,’’ in
Proc. IEEE 23rd Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2018, pp. 1087–1090.

[36] J. Jiang, Y. Li, S. H. Hong, M. Yu, A. Xu, and M. Wei, ‘‘A simulation
model for time-sensitive networking (TSN) with experimental validation,’’
in Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2019, pp. 153–160.

[37] P. Didier. (2020). Testbeds—Time Sensitive Networks for Flexible Man-
ufacturing. Accessed: Jul. 12, 2022. [Online]. Available: https://hub.
iiconsortium.org/time-sensitive-networks

[38] P. Didier and J. Fontaine, ‘‘Results, insights and best practices from IIC
testbeds: Time-sensitive networking testbed,’’ Ind. Internet Consortium,
Milford, MA, USA, Tech. Rep., 2017.

[39] L. Zhao, P. Pop, and S. Steinhorst, ‘‘Quantitative performance com-
parison of various traffic shapers in time-sensitive networking,’’ CoRR,
vol. abs/2103.13424, pp. 1–27, Jun. 2022.

[40] J. Walrand, M. Turner, and R. Myers, ‘‘An architecture for in-vehicle
networks,’’ IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 6335–6342,
Jul. 2021.

[41] S. Mubeen, M. Ashjaei, and M. Sjodin, ‘‘Holistic modeling of time sen-
sitive networking in component-based vehicular embedded systems,’’ in
Proc. 45th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2019,
pp. 131–139.

[42] T. Steinbach, H. D. Kenfack, F. Korf, and T. Schmidt, ‘‘An exten-
sion of the OMNeT++ INET framework for simulating real-time Eth-
ernet with high accuracy,’’ in Proc. 4th Int. ICST Conf. Simulation
Tools Techn. (SIMUTools). Brussels, Belgium: Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, 2011,
pp. 375–382.

[43] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, ‘‘NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++,’’ in Proc. Int. Conf. Netw. Syst. (NetSys), Mar. 2019,
pp. 1–8.

[44] L. Mészáros, A. Varga, and M. Kirsche, ‘‘INET framework,’’
in Recent Advances in Network Simulation. Springer, 2019,
pp. 55–106.

[45] A. Varga, ‘‘OMNeT++,’’ in Modeling and Tools for Network Simulation,
K. Wehrle, M. Güneş, and J. Gross, Eds. Heidelberg, Germany: Springer,
2010, pp. 35–59.

[46] H.-J. Kim, M.-H. Choi, M.-H. Kim, and S. Lee, ‘‘Development of an
Ethernet-based heuristic time-sensitive networking scheduling algorithm
for real-time in-vehicle data transmission,’’ Electronics, vol. 10, no. 2,
p. 157, Jan. 2021.

[47] L. Leonardi, L. L. Bello, and G. Patti, ‘‘Performance assessment of the
IEEE 802.1Qch in an automotive scenario,’’ in Proc. AEIT Int. Conf.
Electr. Electron. Technol. for Automot. (AEIT AUTOMOTIVE), Nov. 2020,
pp. 1–6.

[48] IEEE Standard for Local and Metropolitan Area Networks—Frame Repli-
cation and Elimination for Reliability, IEEE Standard 802.1CB-2017,
2017, pp. 1–102.

[49] O. Alparslan, S. Arakawa, and M. Murata, ‘‘Next generation intra-
vehicle backbone network architectures,’’ in Proc. IEEE 22nd
Int. Conf. High Perform. Switching Routing (HPSR), Jun. 2021,
pp. 1–7.

[50] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai,
B. Sapp, C. R. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam,
V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov, ‘‘Large scale
interactive motion forecasting for autonomous driving: The Waymo open
motion dataset,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 9710–9719.

[51] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, ‘‘1 Year, 1000 km:
The Oxford robotcar dataset,’’ Int. J. Robot. Res., vol. 36, no. 1, pp. 3–15,
2017, doi: 10.1177/0278364916679498.

[52] Milan Whitepaper. Accessed: Jul. 14, 2022. [Online]. Available:
https://avnu.org/wp-content/uploads/2014/05/Milan-Whitepaper_FINAL-
1.pdf

[53] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
‘‘MoonGen: A scriptable high-speed packet generator,’’ in Proc. Internet
Meas. Conf. (IMC), Tokyo, Japan, Oct. 2015, pp. 275–287.

[54] L. Torvalds. Linux Kernel V5.0. Accessed: May 19, 2022. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
?id=v5.0

[55] R. Love, ‘‘Kernel korner: CPU affinity,’’ Linux J., vol. 2003, no. 111, p. 8,
2003.

[56] R. Delgado and B. W. Choi, ‘‘New insights into the real-time performance
of a multicore processor,’’ IEEE Access, vol. 8, pp. 186199–186211, 2020.

[57] A. C. Heursch, D. Grambow,A. Horstkotte, andH. Rzehak, ‘‘Steps towards
a fully preemptable Linux kernel,’’Memory, vol. 48, p. 31, 2003.

[58] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton, ‘‘Hyper-threading technology architecture and microarchi-
tecture,’’ Intel Technol. J., vol. 6, no. 1, pp. 1–12, 2002.

[59] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, ‘‘Evaluation
of the Intel CoreT i7 turbo boost feature,’’ in Proc. IEEE Int. Symp.
Workload Characterization (IISWC), Oct. 2009, pp. 188–197.

[60] Linux Foundation.Cyclictest. Accessed: Jul. 14, 2022. [Online]. Available:
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/
cyclictest/

[61] D. M. Ingram, P. Schaub, D. A. Campbell, and R. R. Taylor, ‘‘Performance
analysis of PTP components for IEC 61850 process bus applications,’’
IEEE Trans. Instrum. Meas., vol. 62, no. 4, pp. 710–719, Apr. 2013.

[62] I210_Datasheet_V_3_7.pdf. Accessed: Jun. 30, 2022. [Online]. Available:
https://www.mouser.com/datasheet/2/612/i210_ethernet_controller
_datasheet-257785.pdf

MARCIN BOSK received the bachelor’s and mas-
ter’s degrees in computer engineering from the
Technical University of Berlin, in 2018 and 2020,
respectively. He is currently pursuing the Ph.D.
degree with the Chair of Connected Mobility,
Technical University of Munich. He is also a
Researcher with the Chair of Connected Mobil-
ity, Technical University of Munich. His research
interests include time-sensitive and in-vehicular
networks, with special interest on novel and

cross-layer approaches to their realization. He is also interested in the 5G and
beyond mobile network architecture, especially considering network slicing
and QoE-aware network management.

FILIP REZABEK received the Master of Sci-
ence degree in communications engineering from
the Technical University of Munich, in 2020.
He is currently pursuing the Ph.D. degree with
the Chair of Network Architectures and Ser-
vices. He is currently the Chair of Network
Architectures and Services, Technical University
of Munich. His research interests include net-
work security, applied and threshold cryptography,
and distributed systems resilience and robustness.

Besides, he is active in the area of TSN with focus on intra-vehicular
networks and smart manufacturing. For both areas are important aspects of
reproducible experiments.

109238 VOLUME 10, 2022

http://dx.doi.org/10.1177/0278364916679498

M. Bosk et al.: Methodology and Infrastructure for TSN-Based Reproducible Network Experiments

KILIAN HOLZINGER is currently pursuing the
Ph.D. degree with the Chair of Network Archi-
tectures and Services, Technical University of
Munich (TUM). He is also a Research Associate at
the Chair of Network Architectures and Services,
TUM. He studied at TUM and the University of
the French Antilles. His research interests include
time deterministic, reliable, and resilient network
architectures with a special focus on monitoring
and telemetry.

ANGELA GONZALEZ MARINO received the
bachelor’s degree in telecommunications engi-
neering from the Universidade de Vigo (UVIGO),
Vigo, Spain, in 2015, and the master’s degree in
electronics engineering systems from theUniversi-
dad Politecnica de Madrid (UPM), Madrid, Spain,
in 2016. She is currently pursuing the Ph.D. degree
with the Universitat Politècnica de Catalunya
(UPC), Barcelona, Spain. She was worked at HP
Inc., Barcelona, as a Research and Development

Electronics Engineer, from 2016 to 2020, designing electronics for large
format printers and supporting the full product lifecycle development. She is
currently with the Automotive Engineering Laboratory, Huawei Technolo-
gies, Munich Research Center, Munich, Germany, focusing on HW accel-
erators design for automotive networking solutions. Her current research
interests include HW design for automotive in-vehicle networks and system
on chip design.

ABDOUL AZIZ KANE received the master’s
degree in electrical engineering with a spe-
cialization/focus on embedded electronics from
the ESCPE Lyon, France, in 2013. He cur-
rently works at the Huawei Technology’s Munich
Research Center as a Principal Functional Safety
Researcher. Previously, he worked at Infineon
Technologies as an Application and Concept
Engineer for automotive microcontrollers. His
research interests include the conceptualization

and design of safe in-car communication networks for automated
driving.

FRANCESC FONS (Senior Member, IEEE)
received the bachelor’s degree in electrical engi-
neering, the master’s degree in automatic control
and industrial electronics engineering, and the
Ph.D. degree in electronics technology from Uni-
versitat Rovira i Virgili (URV), Tarragona, Spain,
in 1995, 2001, and 2012, respectively. He has
focused his professional career on the automo-
tive electronics industry, working on research and
development in the areas of embedded software,

systems, hardware, and networks. Along his career, he has beenwith different
automotive Tier 1 and Tier 2 suppliers from USA, Germany, and China, and
has participated in the successful launch of many commercial products for
OEMs in Europe and Asia. He is currently with the Automotive Engineering
Laboratory, Huawei Technologies, Munich Research Center.

JÖRG OTT received the Diploma degree in
computer science from TU Berlin, in 1991, the
Diploma degree in industrial engineering from
TFH Berlin, in 1995, and the Ph.D. degree from
TU Berlin, in 1997. He has been the Chair of
Connected Mobility at the Faculty of Informatics,
Technische Universität München, since August
2015. He was a Full Professor in networking tech-
nology at Aalto University, from 2005 to 2015,
and an Adjunct Professor, from 2015 to 2021.

His research interests include network architectures, (real-time) (transport)
protocols, and algorithms for connecting mobile nodes to the internet and to
each other. He explores edge and in-network computing and decentralized
services for achieving robustness and privacy.

GEORG CARLE received the degree from the
University of Stuttgart, the degree from Brunel
University, London, the degree from the Ecole
Nationale Superieure des Telecommunications,
Paris, and the Ph.D. degree in computer science
from the University of Karlsruhe, in 1996. He has
been a Professor at the Department of Informatics,
Technical University of Munich, since 2008. He is
currently holding the Chair of Network Architec-
tures and Services. He worked as a Postdoctoral

Scientist at the Institut Eurecom, Sophia Antipolis, France, and Fraunhofer
Institute for Open Communication Systems, Berlin. From 2003 to 2008,
he was a Professor at the University of Tubingen.

VOLUME 10, 2022 109239

