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ABSTRACT A continuous increase in privacy attacks has caused the research and application of differential
privacy (DP) to gradually increase. We can improve the efficiency of the DP model by Optimizing its
parameters significantly. Inspired by the performance of various optimization methods for differential
privacy, this paper proposes an improved RDP-AdaBound optimization method with bias correction, which
is called ‘‘AdaBias’’, to increase the performance of Rényi differential privacy (RDP). The bias correction
is used to realize the learning rate and speed up the convergence by upper and lower bound functions.
We evaluate our method on the three datasets by training two different privacy model. We further compare
three traditional optimization algorithms, namely, RDP-SGD, RDP-Adagrad, and RDP-Adam. And we use
AdaBias to verify the performance of privacy protection on the COVID-19 dataset. Experimental results
show that the new variant better implements learning rate adjustment to accommodate updates of noisy
gradients. As a result, it can achieve higher accuracy and lower losses with a lower privacy budget, thereby
better protecting data privacy.

INDEX TERMS Differential privacy, deep learning, optimization algorithm.

I. INTRODUCTION
The development of the Internet, cloud computing, and big
data continues to cause severe privacy crises. The differential
privacy (DP) mechanism [1] adds noise to the data to distort
sensitive data to maintain specific statistical characteristics.
It uses strong privacy mathematical guarantees against the
largest background knowledge attacks. DP uses parameters to
quantify the degree of privacy protection, which can make up
for the shortcomings of traditional privacy protection models.
It is now used for privacy protection based on support vector
machines, regression, decision trees, and deep learning mod-
els and has been widely used in industries such as healthcare
and financial services.

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

Rényi differential privacy (RDP) [2], [3] provides a unified
definition for some privacy concepts, such as pure DP (ε-DP),
approximate DP ((ε, δ)-DP) and CDP [4]. RDP is a relaxation
of pure DP, which always indicates approximate DP. (α, ε)-
RDP has a budget curve parameterized by the order α, which
combines the concept of privacy budget, the theorem’s appli-
cation, and the Rényi divergence to better measure the change
in the loss. It provides a convenient, quantitative, and more
accurate way to monitor the accumulated privacy budget loss
in real time for a single differential privacy stage.

The DP learning mechanism [5], [6] usually needs to solve
the privacy violation of the model itself, training and testing
data. When applied to deep learning models, the training
process consists of multiple modules, such as networks, eval-
uation functions, algorithms, and datasets. The performance
of the final model also varies with the different noise addition
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mechanisms, gradient clipping algorithms, loss functions,
and optimization strategies used. An optimization problem in
deep learning usually refers to finding a set of parameters on a
neural network that can significantly reduce the loss function.
The learning rate greatly influences the final convergence
effect of the neural network in the optimization algorithm.
It determines the step size of the parameter space search.
A step size that is too large will result in non-convergence,
but a step size that is too small will also result in slower
convergence. Both articles [7] and [8] found possible privacy
breaching and reconstruction attacks from published models.
Therefore, an optimizer that protects model privacy while
training a model becomes increasingly important. We study
the similarities and differences of existing optimization algo-
rithms and consider modifying the gradient algorithm after
combining it with the RDP privacy model, aiming to provide
provable privacy guarantees in training.

A. RELATED WORKS
The stochastic gradient descent algorithm (SGD) [9] is one
of the most commonly used methods to solve deep learning
optimization problems. Bu et al. [10] studied the scalable
framework of privacy protection SGD. Song et al. [11] intro-
duced DP-SGD and proposed a differential privacy method
of single point and small-batch SGD, but how to track the
privacy of the whole training process was not studied. DP-
SGD adds random noise to the gradients during the optimiza-
tion process [12]. Abadi et al. [6] improved the computational
efficiency of DP-SGD and proposed a ‘‘moment estimation’’
method to track the cumulative privacy loss. The specific
improvement of its privacy parameters and the demonstra-
tion of the practicability of its neural training model make
DP-SGD one of the up-and-coming privacy machine learning
methods. However, it faces two challenges: the gap between
its accuracy and privacy-free methods may be significant
and the considerable training time overhead (cost of gradient
clipping).

Lin et al. [13] examined and quantitatively analyzed the
relative effects of different factors on the performance of the
model, including the optimization algorithm, noise addition
order, and gradient clipping threshold. Liu et al. [14] designed
an adaptive cubic quasi-Newton optimizer that can help
eliminate suboptimal solutions and improve the performance
of deep neural networks on medical image analysis tasks.
Zhou et al. [15] introduced new second-order momentum
and dynamic learning rate bounds in the proposed adaptive
momentum online algorithm LightAdam, which improved
the model generalization ability. FracM [16] can partially
solve the trap problem of local minima and speed up the train-
ing process. Jie et al. [17] proposes a novel adaptive learning
rate strategy with different layers based on the hypergradient
descent framework.

The privacy budget (ε, δ) and verification loss are highly
dependent on the selected values of the noise scale σ and
learning rate η, respectively. Frisk et al. [18] focused on
three optimization methods of these two super parameters in

the DP-SGD model, which provides a basis for finding the
balance point between privacy and utility. Zhou et al. [19] pro-
vided the proof of convergence for DP-SGD and DP-Adam
and provided an empirical risk analysis for the DP variables
of the adaptive gradient method.Wu et al. [20] proposed a dif-
ferentially private random block coordinate adaptive gradient
algorithm that randomly selects a block coordinate to update
model parameters and adds Laplacian noise at each iteration.
Koskela et al. [21] proposed ADADPwith automatic learning
rate optimization, and the performance is comparable to that
of DP-SGD. DP-LSSGD [22] utilizes a Gaussian mecha-
nism to make the trained non-convex models more stable.
Chen et al. [23] proposed an RDP-SGD algorithm for convex
empirical risk minimization. Anil et al. [24] proposed an
improved DP-SGD algorithm and added RDP that can be
converted to DP. Improving the privacy analysis part of the
RDP can improve the performance of the model, Wang et
al. [25] proved that the results of RDP can be amplified by
downsampling, which provided the basis for the research in
this paper.

B. CONTRIBUTIONS
This paper proposes a rigorous adaptive method to find a
better learning rate and apply it to the RDP learning setting.
We find that AdaBound achieves a gradual transition of the
learning rate in the process. However, since the upper and
lower bound functions are manually designed and fixed,
it will affect the value of the final learning rate. Therefore,
we improve the RDP-AdaBound algorithm and set a dynamic
upper and lower bound function for the adaptive learning
rate to prevent the calculated learning rate from upgrading
quickly. Our main contributions are as follows:
• We introduce several optimization algorithms in
deep learning in the Rényi DP model and improve
the AdaBound to improve the level of privacy
protection.

• We propose a novel method called AdaBias to imporve
the performance of RDPmodel.We use a bias correction
to the upper and lower bound functions for learning rate
clipping during training, which can better realize the
soft cutting of the learning rate, speeding up the model
convergence process.

• Extensive experiments on three benchmark datasets
demonstrate the effectiveness of the proposed AdaBias.
It can improve the accuracy of the privacy model and
reduce the model loss while reducing the privacy bud-
get. And we use AdaBias to verify the performance of
privacy protection on the COVID-19 dataset [26].

II. PRELIMINARIES
Fig. 1 is the train process of the RDP optimization model.
First, the data are transformed and cropped by a gradient, and
the differential privacy mechanism is applied to add noise and
optimize the gradient. Finally, the model result is output after
model training.
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FIGURE 1. The training process of different optimization methods in the
Rényi differential privacy model. Instead of calculating the gradient
average of a batch of samples, we calculate the gradient of each sample
and clip their `2 norm. Next, they are aggregated into a set of gradients,
and then sampled Gaussian noise is added.

A. Rényi DIFFERENTIAL PRIVACY
Definition 1: (ε, δ)-DP. For neighboring databases D,D′ ∈
Dn, a randomized mechanism M:D → R, and any O ∈ R
satisfies the following inequality:

Pr[M (D) = O] ≤ eεPr[M (D′) = O]+ δ. (1)

The boundary of privacy loss can also be called the privacy
budget ε. The probability Pr[·] is controlled by the random-
ness of M. When δ = 0, the guarantee is called pure DP,
while δ > 0 is a relaxation of pure DP called approximate
DP. That is, the original definition of differential privacy does
not include the additional term δ, and its variant allows the
possibility of ε-DP [27] being destroyed by the probability δ.
The smaller the value of ε, the higher the degree of privacy
protection.
Definition 1: RDP. Dα is the α-Rényi divergence. A ran-

domized mechanism M satisfies (α, ε)-RDP if:

Dα(M (D′)‖M (D)) ≤ ε. (2)

If M obeys (α,ε)-RDP, then M obeys (ε + log(1/δ)
(α−1) , δ)-DP

for all 0 < δ < 1.
Definition 1: Sampled Gaussian Mechanism (SGM). Let f

be a subset of function mapping from S to Rd , the sampling
rate is 0< q < 1, the noise scale σ > 0, and each element of
S is randomly and independently sampled with probability q.
The SGM SGq,σ (S) of the function f in RDP is composed of
subsampling and additive Gaussian noise, which is described
as follows:

SGq,σ (S)f (x : x ∈ S)+ N (0, σ 2Id ). (3)

where the noise scale σ is the standard deviation of the
additive Gaussian noise, which determines the privacy cost of
each iteration. The privacy amplification of this mechanism
is obtained through sampling. It extracts a random subset
from a large dataset and then uses a function with an output
space of Rd to add the variance of each coordinate of σ 2 to
d-dimensional spherical Gaussian noise.

TABLE 1. Factors and types affecting the proposed method.

B. RDP OPTIMIZERS
DP-SGD has five primary hyperparameters that affect the
results: several training iterations (more iterations lead to
more significant privacy cost), batch size, learning rate, gra-
dient clipping threshold, and noise scale.

Fig. 2 shows a selection of some algorithms for gradient
descent analysis. SGD keeps going forward at a constant
rate. The adaptive learning rate method Adagrad [28] and
RMSProp [29] will immediately start in the right direc-
tion and converge at the same speed. However, Momen-
tum [30] and its variant NAG [31] will deviate from the
track, while NAG can quickly correct the route because it
improves responsiveness by constantly adjusting the direc-
tion. Although the adaptive moment estimation algorithm
Adam [32] that combines Momentum and RMSProp con-
verges slowly in the early stage, it can quickly converge
through a correction in the later stage. AdaBound [33] is
the fastest to move in the relatively correct direction. The
disadvantage is that it loses its early lead by the end of
training.

As shown in Fig. 3, we first describe the connections and
differences between various existing optimization methods
with RDP models. The optimization algorithms are mainly
divided into momentum and adaptive algorithms. From the
most classic SGD to Adam and then to various variants
of Adam, AdaBound’s constraint on the learning rate is an
excellent new optimization idea.

III. RDP-AdaBias OPTIMIZATION
We improve the AdaBound for Rényi differential privacy
protection based on bias correction. To facilitate the presen-
tation, Table 1 summarizes the parameters. The optimization
algorithm SGD samples a batch of data from the sample
to perform a gradient descent, computes the gradient gt of
the loss function concerning previous parameters, and then
refreshes the parameters to obtain a new θt , as shown in
Equations (4) and (5).

gt =
h

θ

ft (θt−1). (4)

µt = ρg̃t . (5)
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FIGURE 2. The state of the optimization algorithm on the surface profile of the Beale function loss with a step. Gradient lines are drawn with
x and y and star points are set. For example, the definition domain of the Beale function is [−4.5, 4.5] when the star point (x,y) is (3, 0.5) and
the global minimum point f is 0. After the initial number of steps, AdaBound is faster and does not take unnecessary routes.

Equation (6) shows that DP-SGDmakes twomodifications
to the standard SGD algorithm: clipping the gradient to a
fixed maximum norm C and adding noise to the gradient of a
given σ .

g̃t =
gt

max(1, ‖gt‖2C )
+ N (0, σ 2Id ). (6)

Our training optimization stage is improved by combining
DP-SGD and the AdaBound algorithm. In each training step,
we randomly select a prespecified number of examples. Since
the size of the gradient has no a priori bound, we clip every
single gradient in the `2 norm. If ‖gt‖2 ≤ C , then gt will be
retained, and if ‖gt‖2 > C , it will reduce to norm C. We add
sampled Gaussian noise to the aggregated gradient and then
use the AdaBias method to trim the step size and update
the gradient. Finally, we compute and return the privacy loss
using the RDP. After balancing the accuracy and privacy of
the model, we choose better parameters for the training and
validation of the differentially private learning model.

We notice the β function mentioned in AdaBound [33],
which experimented with constants and proved that
β1t = β1λ

t−1 (λ is a constant parameter) can be used to

guarantee O(
√
T ) regret. On the other hand, Adam uses

the first- and second-moment estimations mt and vt and
applies bias corrections m̂t and v̂t to correct their values.
To obtain a smoother momentum decay, we modify the first-
and second-order moment estimation functions and turn β
into a function of time t . As time increases, the numerical
values of the first and second moment estimates decrease,
thereby reducing the size of the iteration θt , as shown in
Equations (7) and (8).

mt = (β1/
√
t)mt−1 + (1− β1/t)g̃t . (7)

vt = β2vt−1 + ((1− β2)/t)g̃2t . (8)

If we use ρt = ρ/
√
t to reduce the step size, this will cause

the learning rate to decay sharply and reduce the performance
of the model. Therefore, we omit the step of dividing by

√
t

in our algorithm and update the learning rate in the form
of θt−1 = θt − ρ̂tmt to speed up the convergence rate of
the model. Different levels of privacy can complicate the
learning process. The larger the gradient perturbation is, the
more careful the design required when accessing the data,
which has a privacy cost. We improve the performance of our
models by saving computation time and efficiently utilizing
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FIGURE 3. Evolution diagram of the RDP-gradient descent optimization algorithm. Eleven optimization algorithms are summarized here. We use red,
green, and yellow to identify the origin and development of various excellent algorithms, divide them into momentum algorithms and adaptive learning
rate algorithms, and introduce the characteristics of each algorithm. For example, there are five steps in the RDP-SGD algorithm. The numbers marked in
the figure are the differences between the algorithms, and the unmarked parts are the same as RDP-SGD. We use a thick yellow box to identify the
algorithm that the article needs to use.

the privacy budget. We admit that dividing β by t is just
a trick. The core of our method is to control the learning
rate. We use bias corrections m̂t and v̂t to constrain the
learning rate change; with increasing time, the lower bound
of the learning rate increases, while the upper bound becomes
smaller. Then, we multiply the learning rate’s upper and
lower bound functions by an additional sine function, which
includes the bias correction v̂t , that is, sin(

final_lr
v̂t

), where
final_lr is the final learning rate we manually set and is
generally set to 0.1. In this way, we make the learning rate
fluctuate in a cosine-like manner at the beginning to better
find the best direction and speed of gradient descent and
reduce unnecessary rounds.

m̂t = 1− β t1, v̂t = 1− β t2. (9)

ηl(t) = 1−
1

m̂t t + 1
, ηu(t) = 1+

1
m̂t t

. (10)

ρ̂t = clip(
ρ

v̂t
√
vt
, ηl(t), ηu(t). (11)

Since AdaBound does not use the method of moment
estimation for bias correction, we use a new bias correction
method, such as Equation (9). We combine them with the
lower limit function ηl(t) and upper limit function ηu(t)
(Equation (10)) of the learning rate. Then, we tailor the

learning rate ηt and adjust the step size more reasonably to
reduce the loss of the model, as shown in Equation (11).

Compared with RDP-AdaBound, which is shown
in Fig. 3, RDP-AdaBias can be described by Equa-
tions (4), (6), (7), (8), (9), (10), and (11), it is described
as Algorithm 1. Given an initial model Net with an RDP
optimizer, we use Algorithm 1 to train a final privacy model
Net ′ with different datasets.

IV. EXPERIMENTS
We train the Rényi differential privacy model with var-
ious neural networks, such as CNN [34], LeNet5 [35],
ResNet18 [36], DenseNet121 [37] and LSTM [38]. We com-
pare the proposed method with traditional optimization meth-
ods based on different privacy parameters. We also analyze
the performance of the proposed method.

A. EXPERIMENT SETTINGS
1) DATASETS
In this paper, we evaluate our method on the MNIST [39],
CIFAR10 [40], and IMDB [41] datasets. The MNIST dataset
includes a train set of 60,000 samples of handwritten digital
images and a test set of 10,000 samples of handwritten digital
images. The handwritten digital images are 28 × 28-pixel
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Algorithm 1 Improved AdaBound Optimization Method for
Rényi Differential Privacy Protection
Input: Default settings for a initial model Net are ρ = 0.001,
β1 = 0.9, β2= 0.999, the optimizer O.
1: Set m0 = 0, v0 = 0
2: for t=1 to T do
3: Calculate the gradient gt at timestep t using Equa-
tion (4)
4: Calculate g̃t by clipping gradient gt and add sampled
Gaussian noise N (0, σ 2Id ) using Equation (6)
5: Update biased first moment estimate mt by Equa-
tion (7)
6: Update biased second raw moment estimate vt by
Equation (8)
7: Set bias corrections m̂t and v̂t by Equation (9)
8: Learn a new upper bound function ηl(t) and lower
bound function ηu(t) using Equation (10)
9: Tailor the learning rate ηt of optimizer using Equa-
tion (11)
10: Calculate the loss f of initial model Net
11: Back propagate f
12: Update gradient θt by θt−1 − ρ̂tmt
13: Compute the overall privacy cost ε′(α)
14: end for
Output: The final trained model Net ′

FIGURE 4. The examples of the COVID-19 chest x-ray dataset.

grayscale images. The CIFAR10 dataset contains ten color
images of different item classifications. The train set has
50,000 samples, and the test set has 10,000 samples. The
IMDB dataset contains 50,000 comments with obvious bias,
of which 25,000 are used as the train set, and 25,000 are used
as the test set. In addition to this, we also train and test with a
dataset of Chest X-ray images of COVID-19 [26], including

TABLE 2. Factors and categories affecting our experiment.

10,192 normal images, 3,616 COVID-19 images, and 7,357
pneumonia images. The examples of the dataset are shown in
the Fig. 4.

2) EVALUATION METRICS
The accuracy rate is the ratio of correctly predicted samples
to the total number of input samples. The higher the classifi-
cation accuracy is, the higher the model’s utility, so we use
it as the primary measurement standard. The loss function
reflects the degree to which the model fits the data and illus-
trates the difference between the predicted and actual values.
The model’s generalization performance refers to the learned
model’s predictive ability on anonymous data, which is often
related to the test loss. Robustness means that the model’s
efficiency changes little when the learning rate changes and is
often used tomeasure the algorithm’s stability. Finally, we use
them to measure the effects of different RDP optimization
models.

3) BASELINES
Wecompare our algorithm not onlywith RDP-AdaBound [33]
but also with the traditional privacy-preserving optimiza-
tion methods RDP-SGD [9], RDP-Adagrad [28] and RDP-
Adam [32]. Ourmethod can show considerable advantages by
using different noise scales and gradient clipping thresholds
to train the model. Since our method performs mediocrely in
low noise, and its privacy model performs better in a high
noise environment, we infer that our approach can better
preserve model privacy.

4) SETTINGS
The experimental environment comprises the Linux
18.04 platform, 12 GB GPU memory, and Python 3.6.
The code is improved based on Opacus [42]. Table 2 lists
the essential parameters that affect the experimental results
of differential privacy learning models and the different
values.

We consider the effect of the additive Gaussian noise scale
σ and the gradient clipping threshold C. Accuracy decreases
as the privacy budget decreases. Table 3 also shows that
noise affects the efficiency of the model. When we increase
the noise scale, while the model accuracy shows an overall
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FIGURE 5. When σ is 3 and ε is 0.26, the accuracy of the AdaBound method on the MNIST dataset is 67.88%, and the accuracy of our approach is
84.44%. The horizontal axis is the number of steps, and the vertical axis is the size of the learning rate. We performed similar experiments on the
remaining models, with both learning rate changes as shown above.

TABLE 3. The impact of different noise scales σ of RDP on the MNIST
dataset (Gradient clipping threshold C = 1).

TABLE 4. The effect of different gradient clipping rates C of RDP.

downward trend, it also fluctuates due to various factors,
such as network structure, batch size, and the number of
experimental rounds. Then, we train different privacy models
when C is 0.5, 1, and 1.5, as shown in Table 4. The exper-
iments defaulted to 0.001 as the learning rate. We obtained
the privacy-preserving experimental parameters of different
models on the MNIST, CIFAR10, and IMDB datasets and
tested the model performance with varying optimization
algorithms.

TABLE 5. The performance comparison on the COVID-19 dataset between
RDP-Adabound and RDP-AdaBias.

We also compare our AdaBias with Adabound on the
COVID-19 dataset to verify the performance of RDP. The
performance comparison result show as Table 5. From
the Table 5, our AdaBias have higher accuracy, preci-
sion and recall with lower loss, which indicate that the
AdaBias performs much better than Adabound. In other
words, our method can indeed significantly improve the
privacy-preserving efficiency on the COVID-19 dataset.

B. ANALYSIS AND DISCUSSION
The ideal learning rate algorithm searches with a large learn-
ing rate early on and then adjusts with a small learning
rate. The gradient update equation of the privacy model
can be simplified as ‘‘future gradient = original gradient -
learning rate * current gradient.’’ The initial learning rate of
RDP-AdaBound in Fig. 5 (a) reaches above almost 100 and
then decreases. When we adjusted the learning rate at equal
intervals, the model accuracy was significantly improved,
reaching 91.2%, as shown in Fig. 6 (b). When the noise
increases, the information carried by the existing gradient
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TABLE 6. The test accuracy of different optimization methods of RDP (%; mean ± std).

FIGURE 6. (a) is the gradient change under the noiseless model. (b) and (c) are the changes in the learning rate and first layer gradient weights of
RDP-AdaBound after using the equally spaced learning rate descent strategy. At this time, the model’s accuracy can reach 91.2% at the beginning, but
it will not increase in the later period and stabilize at approximately 91.4%.

FIGURE 7. The changes in model gradient weights using RDP-AdaBias and RDP-AdaBound on the MNIST dataset as the noise scale σ increases.

increases, and an excessively high learning rate will affect
the gradient update and reduce the model’s performance.

Therefore, we bias-correct the upper and lower bound func-
tions of the learning rate so that the learning rate starts
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FIGURE 8. The relationship between epsilon ε and train accuracy of the two models on MNIST and
DenseNet121 on CIFAR10.

FIGURE 9. Analysis and Discussion with privacy budget ε and noise scale σ .

with a cosine-like fluctuation and then decreases slowly in a
step-like fashion, as shown in the three-stage changes of the
learning rate of Fig. 5 (b).

We experimented with the weights of the privacy-free
model and compared them with the weights in the noisy case,
as seen in Fig. 6 (a)(c). As the noise increases, the gradient
weight range updated by the AdaBias method increases,
which can effectively adapt to the influence of noise. In the
same situation, as shown in Fig. 7, the weight of AdaBound
does not change significantly with the increase in noise. The
learning rate and clipping norm have no a priori bounds,
and the hyperparameter grid generated during optimization
increases privacy costs. In this way, we assign the value of the
learning rate more reasonably, improving the privacy model’s
performance.

As the privacy budget ε increases, the cost of privacy
recovery increases, which leads to an increase in accuracy
but a decrease in privacy. Only some of the results are
shown here for illustration. We denote our proposed method

RDP-AdaBias with a dashed line in Fig. 8 (a), which can
achieve higher accuracy under the same privacy budget. That
is, our differentially private learning model has better privacy,
and (b) also confirms this. From Fig. 9, we observe that on the
MNIST or CIFAR10 dataset, when the noise increases, σ is
set to 3 and ε is 0.2, which is higher than the model accuracy
when sigma is 2 and ε is 0.3. The degree of privacy protection
increases, but the difference in accuracy between our method
and the original method increases.

Table 6 shows the difference in mean accuracy of our
model with that of the original method RDP-AdaBound
under different privacy budgets. AdaBias can maintain higher
accuracy and better protect privacy data when the privacy
budget is small, with a maximum increase of 5.17%. Table 7
is the final result of model testing with different optimiza-
tion algorithms on the RDP model. With such a high pri-
vacy budget, the improvement effect of our method is also
acceptable compared to the original form and the traditional
method.
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FIGURE 10. (a)(b)(d)(e) are accuracy and loss of test on the MNIST and IMDB datasets; (c)(f) are train and test accuracy on the CIFAR10 dataset of
DenseNet121.

TABLE 7. Mean test accuracy of different models corresponding to
different ε values of AdaBound and AdaBias (3 runs).

Fig. 10 (a)(b) and (d)(e) depicts the variation in accuracy
and loss for model testing on different MNIST and IMDB
datasets. It can be seen from the figure that compared with
RDP-AdaBound, our method has a faster improvement in
accuracy and a smoother convergence trend. The lower the
test loss is, the better the model’s generalization performance.
Our approach has shown promising results in all three sit-
uations. Although the final effect of LSTM loss on IMDB
is not ideal, it reaches the end earlier and is more stable
than the original method. As shown by the orange lines
in Fig. 10 (b)(e), compared to our green lines, due to the com-
plexity of the experimental network model environment and
the applicability of different optimization algorithms, even
if the parameters are the same, the RDP-Adagrad algorithm

does not converge in the first 100 epochs but does not
converge until 200 periods. Even so, our method achieves
better results than other methods in the presence of privacy
protection. It can reach the end point earlier and is more stable
than the original method. Furthermore, the privacy budget
of the privacy-preserving gradient optimization method is
inversely proportional to the square of the number of steps.
The faster the convergence, the higher the privacy guarantee,
which also proves the superiority of RDP-AdaBais.

Fig. 10 (c)(f) shows the train and test accuracy on the
CIFAR10 dataset. Due to the limitation of image size,
we compress the ups and downs of the data in Fig. 10 (f) to a
minimum. As a result, there is a histogram-like vertical line
effect on each epoch, but an upward trend in accuracy can
be seen. Compared with the original method, the accuracy of
our approach is greatly improved. AdaBound’s article points
out that in complex models such as ResNet, the learning rate
is frequently too large or too small, affecting the final con-
vergence result. So we verify the robustness of the proposed
algorithm concerning the learning rate. We selected three
common initial learning rates of 0.1, 0.01, and 0.001 for train-
ing. As shown in Fig. 11, the accuracy of the RDP-AdaBias
model changes less when the rest of the settings are the same
except for the learning rate. Therefore, the results are more
robust than RDP-SGD and RDP-Adam.
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FIGURE 11. The accuracy of RDP-SGD(M), RDP-Adam and RDP-AdaBias at different learning rate learning rateρ in ResNet18 on the CIFAR10
dataset.

V. CONCLUSION
Rényi differential privacy plays an essential role in pro-
tecting data privacy and models in social networks, and its
application to deep learning will become a popular trend.
In this paper, we have improved the RDP-AdaBound method.
To further illustrate the performance of this method, we also
extended other RDP optimization methods to compare and
analyze them. Experimental evaluation and analysis verified
the effectiveness of our proposed modification method. Our
method is suitable for model environments with high noise
and can achieve higher accuracy and lower loss than the
original method, effectively improving the privacy protection
efficiency of deep learning models.

Machine learning and privacy research are not necessarily
a zero-sum game between utility and privacy as they have
similar goals. Since our method performs modestly on pri-
vacy models at low noise scales, we will focus on improving
model performance in this area in the next step.
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