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ABSTRACT With the increasing deployment of renewable energy sources, peer-to-peer (P2P) energy trading
has recently garnered considerable attention. Many studies have investigated P2P energy trading between
prosumers without considering the existing main grid. However, integrating the P2P energy trading of
renewable energy in microgrids into the existing systems is a key measure to meet the requirements of energy
policy and complement the existing systems. Thus, we propose a decentralized P2P energy trading model
to encourage and manage energy transactions among prosumers in a grid-connected microgrid network
with photovoltaic systems. Each peer, as a prosumer in the network, forms relationships in which an agent
only needs to communicate and negotiate with its neighbors through communication layer to reach an
optimal solution for P2P trading in a decentralized manner without requiring any central authority. In our
proposed P2P energy trading model, prosumers with demand response availability optimize their objectives
by maximizing social welfare and minimizing costs while considering carbon emissions and transaction
costs. The proposed model is completely decentralized, privacy-preserving, and scalable by effectively
applying a distributed alternating direction method of multipliers. A detailed case study considering a group
of eight prosumers is presented to demonstrate the performance and superiority of the proposed P2P energy-
trading system. Considering the global convergence criterion, prosumers achieved a maximum total social
welfarewhileminimizing both the energy cost from the grid and costs related to tradingwith other prosumers.

INDEX TERMS ADMM, carbon emission, demand response, energy trading, peer-to-peer, peer-to-grid,
transaction cost.

NOMENCLATURE

ABBREVIATIONS
ADMM Alternating Direction Method of

Multipliers.
CO2 Carbon Dioxide.
RU Residential Unit.
DR Demand Response.
RESs Renewable Energy Sources.
P2P Peer-to-Peer.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alon Kuperman .

P2G Peer-to-Grid.
SWM Social Welfare Maximization.
PV Photovoltaic.

INDICES AND SETS
NS Set of producers in the energy market.
NB Set of consumers in the energy market.
N Set of prosumers (peers) in the energy market.
ω Set of N peers in the communication graph.
ωi Set of neighbors of peer i in the communication

graph.
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V Set of edges in the communication
graph.

G Undirected connected graph.

SYMBOLS
αi,wi Positive parameters for the utility

function of prosumer i.
δP2P, σP2P Emission penalty constants for P2P.
δGrid , σGrid Emission penalty constants for

P2G.
pi Energy consumption/generation of

prosumer i.
pmini , pmaxi Maximum and minimum energy of

prosumer i.
pGi Energy traded between the grid and

prosumer i.
pij Energy traded between prosumer i

and partner j.
γij Transaction price per unit between

prosumer i and partner j.
γ Unique unit fee (c| /kWh).
γd Distance unit fee c| /kWh · km).
dist (i, j) Geographical distance between

prosumer i and partner j.

λG, λ
G

Selling and buying price to/from
the grid.

λkij Bilateral price of prosumer i and
partner j at iteration k .

ρ Penalty parameter.
εpri, εdual Primal and dual feasibility toler-

ances.
rk+1i , sk+1i Local primal and dual residuals of

prosumer i in each iteration k .
Wi Welfare function of prosumer i.
U (pi) Utility function of prosumer i.
DE

(
pj
)

Carbon emission cost of prosumer
i.

DL
(
pij
)

Transaction cost of between pro-
sumer i and partner j.

I. INTRODUCTION
The increasing penetration rate of renewable energy sources
(RESs) in energy systems has triggered the development
and adoption of a more decentralized paradigm for energy
systems and electricity market operations. Enabling energy
trading inmicrogrids is effective for energy resources. In such
a market, each residential unit (RU) is considered a prosumer
that can act as a producer or consumer. RUs are equipped
with demand response (DR) programs [1] and photovoltaic
(PV) systems that allow them to optimize their energy costs.
Prosumers who own an amount of surplus energy expect to
earn some benefit by selling it, whereas those with an energy
deficit opt to purchase the required energy from another house
or the main grid. Subsequently, energy matching is used to

solve the problem of social welfare maximization (SWM)
[2] whose objective is to maximize participants’ profits or
minimize their electricity cost subject to individual energy
balance constraints of electricity for both the generation and
demand sides.

Peer-to-peer (P2P) trading is a promising approach to
implement a decentralized electricitymarket [3], [4], inwhich
each agent has the capability to operate autonomously and
independently and can set individual preferences based on
certain interests. This form of trading allows market par-
ticipants to perform direct negotiations in energy transac-
tions with the minimum amount of any intervention; thus,
agents can enhance their profits when the market is clear.
However, users may not be willing to join the market by
revealing their private information [5]. This leads to an imbal-
ance between the supply and demand in the market system.
Therefore, developing P2P energy trading that incentivizes
the participation of agents in the market while maintain-
ing their privacy is needed; however, it is a challenging
task.

In addition, the integration of P2P with the existing grid
network is a challenging task because prosumers must deal
with both regulated markets, including the main grid and
deregulated P2P trading markets [6]. For example, a pro-
sumer should purchase energy from a regulated electricity
market (i.e., main grid) and a deregulated market (i.e., P2P
trading) only during peak hours [7]. Moreover, without grid
connection, the P2P market may not converge when con-
sumers cannot buy minimum required amount of energy
from their partners to run their base loads. In this case, the
decentralized market will fail because the demand–supply
balance constraint cannot be satisfied for all participants.
Thus, all prosumers should be able to trade with the grid,
and developing a flexible P2P trading structure that permits
prosumers to trade with both P2P and peer-to-grid (P2G)
simultaneously is necessary.

Another challenge when integrating P2P with the existing
grid is that the design of a P2P trading market needs to fit
the current political, economic, and environmental policies
associated with the existing grid [8], [9]. Political and eco-
nomic policies are referred to as transaction costs, whichmust
be considered in a practical environment in which the grid
operator charges a fee to the participants using its services.
Environmental policies, such as carbon emissions, are also
considered as emission costs to minimize the damage of
energy consumption to the environment. To calculate these
costs, two conventional methods exist: one considers a third
party of the network owner and the other assumes no third
party. With a third party of the network owner, these costs can
be calculated readily; however, relaying data to a centralized
entity may lead to a low system reliability. Moreover, without
a third party, the complexity of the agent model and associ-
ated running time can increase because each agent calculates
those costs independently. Therefore, the third challenge is
to develop a P2P trading market without sharing data with
the network owner such that each prosumer considers carbon
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emissions and transaction costs with a minor effect on the
computation time.

Hence, we aimed to address these challenges by designing
a privacy-preserving and flexible structure between P2P and
P2G systems at different times of day. In addition, carbon
emissions and transaction costs were considered, while main-
taining a low computation time for decentralized P2P energy
trading among prosumers in a grid-connected system. In par-
ticular, we examined a P2P energy trading system among
prosumers that functioned in a decentralized manner based
on the alternating direction method of multipliers (ADMM)
without revealing each user’s private information such as
energy generation, consumption, and user behavior. Themain
contributions of this study are summarized as follows:

1) A completely decentralized P2P energy trading opti-
mization model for residential energy systems with
DR capability is presented in which grid-connected
prosumers can freely adjust their generation or demand
to maximize their benefit according to the supply
and demand balance constraints from other prosumers.
Trading is decomposed and solved in a decentralized
manner using ADMM in a microgrid network.

2) A new P2P solution is proposed to maximize social
welfare for each grid-connected participant with PV
systems, while minimizing the overall costs. Using
bilateral negotiation, prosumers autonomously deter-
mine their optimal energy usage with their partners.

3) The SWM problem, which includes a utility function,
grid cost, carbon emissions, and transaction cost, was
solved using a decentralized approach without reveal-
ing any private information of agents. In our proposed
method, optimal social welfare was achieved without
requiring any of agents’ preferences or violating their
privacy.

4) We try to evaluate our proposed method by perform-
ing extensive simulations with a variety of scenar-
ios. Simulation results show that our proposed method
maximizes total social welfare and achieves conver-
gence.We further analyze the effect of carbon emission
cost and transaction cost in detail. We finally provide
detailed analysis on scalability and the operation of an
intraday market.

The remainder of this paper is organized as follows.
Section II presents a literature review on P2P energy trading.
In Section III, the problem is defined and mathematical mod-
els representing the participants are presented. Section IV
provides a P2P energy-trading algorithm for RUs that oper-
ates in a decentralized manner. Section V discusses the simu-
lation results to verify the efficacy of the proposed approach.
Section VI discusses the conclusions.

II. LITERATURE REVIEW
The existing studies have considered P2P trading using
negotiation models among participants in electricity mar-
kets, such as game theory, cooperative or noncooperative

games, auction-based mechanisms, and optimization-based
approaches such as consensus protocols and ADMM.

The game theory can be used to model the behavior and
decision making of market participants. In [7], a cooperative
game representing P2P trading using the Stackelberg game
was introduced in which centralized power systems acted as
the leader and prosumers as followers. In the interaction, the
follower made decisions corresponding to the price set by
the leader to optimize their objectives. The game exhibited a
unique and stable equilibrium for all participants. In [10], two
noncooperative games for supply side traders that considered
coordinators were introduced in which dynamic pricing was
applied to suppliers. External pricing signals determined the
selling price for the supplier and an internal price model
determined the buying and selling prices of local prosumers.
In addition, implementation of the blockchain technology
using smart contracts was considered.

In auction-based methods, each participant in the P2P
trading market submits a bid/ask to the auctioneer [11], [12].
In [11], an intraday P2P trading mechanism for residential
houses was proposed. The platform could update and modify
user schedules corresponding to DR of devices in a house.
In [12] using a similar method, P2P energy trading with a
combination of double auctions and the game theory was pro-
posed. The double auction was used to determine the range
of trading prices and winner lists, and the Stackelberg game
was used to determine the clearance price for all participants
in the market. The implementation of P2P energy trading in
blockchain has also been studied.

An optimization-based approach in which P2P trading was
considered as an optimization problem was presented in [13]
and [14] for the consensus protocol and ADMM [15], [16].
In [13], local energy trading with voltage management in
a microgrid was proposed. The pricing mechanism deter-
mined the energy price and each market participant calcu-
lated its optimal quantity. Once energy was received from
the market participants, voltage management was executed
to achieve an optimal power flow. In [14], a novel two-tier
market that operated through coordinated negotiation among
multiregional prosumers was presented. The gradient pro-
jection method and a consensus-based algorithm were used
as pricing algorithms to solve the SWM problem consider-
ing network constraints. Another study presented a model
using ADMM [15] and proposed bi-level energy trading for
prosumers with energy storage systems in which prosumers
interacted with an operator of distributed systems. To prevent
cheating behavior of some users to achieve higher profits,
an ADMM was used to clear the market. In [16], energy
trading on a small-scale in which prosumers negotiated with
the operator to optimize their benefit, was proposed, and a
combined technique called the distributed Douglas–Rachford
splitting method was used to find a global solution. Although
all aforementioned studies considered the economic aspect
of increasing welfare or decreasing the cost of agents, they
assumed negotiations through an intermediary centralized
authority instead of direct negotiation among agents.
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TABLE 1. Comparison of Our Model With Existing Proposals.

Direct negotiation is another type of P2P energy trading
in which prosumers do not relay their data to a centralized
entity. In [17], a noncooperative game representing pricing
competition among sellers was proposed, while the selection
of buyers with their partners was considered as an evolution-
ary game. Once sellers determined their price and quantity,

each buyer could adjust their energy consumption in response
to their behavior. In contrast, in [18], a distributed approach
based on consensus and innovation methods was proposed to
coordinate local generation, flexible load, and storage devices
in microgrids to derive a distributed economic dispatch algo-
rithm. Other examples of direct negotiations can be found
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in [19] and [20]. In [19], a peer-selection strategy using
learning-based intelligence to increase the quality of agree-
ments considering the fairness and success rate of negotiation
was proposed. In [20], a framework for local energy markets
was presented in which all prosumers automated negotiations
with one another through P2P trading. Subsequently, the
negotiation strategy of each prosumer was determined using
a negotiation concession algorithm. In [21], a decentralized
energy management system for multiagent-based smart grids
is developed. In addition, the uncertainty of generation is
considered using deep learning, and the averaging consensus
protocol is used to clear the energy market. A limitation of
these studies is that no grid-related costs, such as transmission
fees, were considered.

Many studies have employed transaction fees for trade in
P2P markets to recover the costs incurred owing to energy
transactions [22], [23]. In [22], decentralized bilateral energy
trading, in which market participants can directly negotiate
with each other to match demand and supply, was proposed.
The primal-dual gradient method was then used to clear
the market with network constraints. In [23], a peer-centric
architecture for P2P trading was proposed. A distribution
locational marginal pricing coordinator was used to coor-
dinate and design the network charge fees in a distributed
system. Nevertheless, these studies calculated grid-related
costs using third-party network operators. Other studies [24],
[25] were conducted considering each participant to directly
calculate the related costs of trading. In [24], a consumer-
centric framework with different grid cost allocation strate-
gies was developed that permitted grid operators to benefit
from P2P energy transactions among users. In [25], a P2P
trading was introduced in which sellers considered power
losses in transferring energy and buyers considered the net-
work fees of their use. However, in these studies [22], [23],
[24], [25], the proposed energy models and market systems
did not consider the grid connection, which is a key factor
for decision-making in energy transactions. Hence, in this
study, we assumed that the market prosumer is aware of
both the buying price from the grid and selling price to
the grid, and the interaction with the grid is considered to
be a part of the welfare function. Moreover, as noted in
Section I, the decentralized market in those papers [22], [23],
[24], [25] can fail to converge due to minimum generation
or load is not enough and there is zero profit for the pro-
sumer. In contrast, the proposed model allows prosumers to
trade simultaneously with P2P and the main grid. Thus, our
proposed model can benefit all participants with the help of
the grid even if the minimum energy is not satisfied by P2P
trading, in comparison to those papers [22], [23], [24], [25].
Additionally, this study examined the interaction between the
energy trading and environmental pollutant proxies of carbon
dioxide (CO2) emissions that each prosumer should consider
when consuming energy to decrease greenhouse gas emis-
sions and carbon emission costs. Table 1 provides comparison
of our proposedmethod with existing works to emphasize our
contributions.

III. SYSTEM MODEL
A. NETWORK MODEL
Let NS denote the set of producers with surplus energy and
NB the set of consumers with deficit energy indexed as 1, 2,
. . . ,NS andNS +1,. . . ,N , respectively, whereN=NS +NB
is a set of prosumers in the energy market. An undirected
connected graph G = {ω,V} is used to represent the com-
munication topology of the network, where ω is the set of
N peers and V ⊂ ω × ω is the edge set. We assume that
the prosumers are connected to a physical network layer
and main grid. In the information layer, prosumers and grid
operators communicate through a P2P platform. Three types
of communication structures exist in the P2P trading market,
including unstructured, structured, and hybrid [26] models.
In this study, we considered a structured communication
graph, as shown in Fig. 1, such that each prosumer could
negotiate with any other prosumer. Notably, (i, j) ∈ V if and
only if peer i could receive information from peer j, that is,
peer j was the incoming neighbor of peer i. The neighbor
set of peer i is defined as ωi = {j| (j, i) ∈ V, j 6= i}.
Each prosumer have the capability to negotiate with other
prosumers based on their deficit or surplus energy.

B. P2P ENERGY TRADING
An energy market system consisting of RUs is considered.
Each RU can be an individual house with RESs, such as
installed PV systems. The entire community can be divided
as follows:

1) Prosumers: End users are prosumers who can sell or
buy energy in the P2P trading market. Each prosumer
chooses its role based on the predicted PV generation
and energy consumption in the next time slot.

2) Grid operator: This entity provides the entire energy
trading service, that is, the grid price, database, and
grid-related costs. Notably, the grid operator does not
manage P2P energy trading.

3) Smart controller: This component supports the pro-
sumer in exchanging market information. Each pro-
sumer has a smart controller that communicates and
exchanges information with others in the P2P trading
market.

A simplified diagram of the bilateral P2P energy trading
system is shown in Fig. 1. Prosumers participating in a P2P
market scheme are divided into two subsets: producers and
consumers. Prosumer i (i ∈ N ) is a producer, where i ∈ NS
if it has more energy generation than demand and can sell that
energy to consumers or the main grid. Otherwise, prosumer
i (i ∈ N ) is a consumer (i ∈ NB) if it has less generation
than demand; consumers must opt to purchase energy from
producers or the main grid to meet their demand.

In a forward market, prosumers negotiate trades for the
next time interval. Let us consider the length of each slot
to be constant 1t = 1 h and each day to be divided into
different slots t ∈ T . Let t = {1, 2, . . . ,T } denote the set of
operating time slots, where T , T indicates the total number
of operating time slots.
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FIGURE 1. Structured communication graph of the P2P energy trading system.

C. PROSUMER MODEL
Prosumer behavior can be modeled as a utility function with
the amount of energy generated or consumed to measure the
satisfaction level. A utility function is a common concept
used to measure preference for a set of goods and services,
which represents the welfare or satisfaction of a prosumer
when consuming or producing a certain amount of energy.
The common form of the utility function is a non-decreasing
function. The level of satisfaction is represented by a non-
increasing marginal benefit. In addition, zero-energy gener-
ation or consumption does not benefit prosumers. Thus, the
utility function U (pi) for prosumer i with an energy amount
of pi should satisfy the following three properties:

∂U (pi)
∂pi

≥ 0;
∂2U (pi)

∂p2i
≤ 0; U (0) = 0. (1)

To satisfy these three properties, a piecewise quadratic
utility function for prosumer i was considered, as proposed
in [27] and [28].

U (pi) =


wi ∗ pi − αi ∗ (pi)2 , if 0 ≤ pi ≤

wi
2αi

w2
i

4αi
, pi >

wi
2αi

,

(2)

where pi indicates the total energy generated by producer i or
that consumed by consumer i. Moreover, αi and wi are pre-
determined positive parameters. These parameters determine
how prosumer i responds to different prices from its neigh-
bors. As each prosumer in the market behaves independently,
these parameters vary among prosumers and throughout the
day. Prosumers with a lower αi and higher wi are willing to
sell or buy more energy. In contrast, prosumers with higher
αi and lower wi would sell or buy less energy. According
to (2), prosumers with higher αi tend to achieve lower utility
than those with lower αi when wi is fixed. In this study,

we assumed that each prosumer could choose its own trading
strategy in each time slot by selecting different αi and wi.

Any prosumer can buy or sell energy from/to different
prosumers or the main grid. The total energy deficit or surplus
of each prosumer i is represented as

pmini ≤ pi ≤ p
max
i , ∀i ∈ N , (3)

where pmini and pmaxi,t are the minimum and maximum
required/available electricity of the prosumer i, respec-
tively. We can set pmini and pmaxi by considering a realistic
load demand to enable scheduling flexible loads, that is,
scheduling the use of flexible devices to later time slots or
rescheduling devices from later time slots to the present time
slot. Moreover, pmini and pmaxi are determined independently
at each time slot [2].

We consider the case in which a prosumer is a producer
i ∈ NS , and pGi and pij indicate the amount of energy sold
to the grid and consumer j from producer i, respectively.
Similarly, when a prosumer is a consumer i ∈ NB, pGi and
pij indicate the amount of energy purchased from the grid
and producer j by consumer i, respectively. Thus, the sum of
bilaterally traded quantities by each prosumer i is expressed
as

pi = pGi +
∑
jεωi

pij. (4)

D. CARBON EMISSION COST
Environmental protection has recently emerged as a major
goal owing to increasing carbon emissions resulting from
extensive energy consumption. Carbon emissions are typi-
cally generated from fossil fuels. To reduce carbon emissions,
using the energy generated by RESs such as PV systems,
and avoiding the use of energy generated by non-RESs such
as fossil fuels, is highly encouraged. In addition, according
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to [29], the use of energy from both RESs and non-RESs gen-
erates significant carbon emissions. Thus, the environmental
costs associated with environmental damage are presented
in the proposed model. We considered a factor that reduces
carbon emissions by defining a cost function in the energy
exchange. Moreover, the cost function varies for different
types of participants and differs between the P2P and P2G
trading mechanisms.

For a prosumer to buy energy and satisfy demand, the cost
of carbon emission for the consumed electricity can be repre-
sented as a linear function [30]. Therefore, we assumed that
the carbon emission cost model when consumer j purchases
electricity pji from producer i and electricity pGj from themain
grid can be expressed as

DE
(
pj
)
= (δP2P)

2 pji + σP2Ppji + (δGrid )2 pGj + σGridp
G
j ,

(5)

where δ > 0, σ > 0, and δ and σ are the emission penalty
constants for the consumer [30]. In addition, δP2P and σP2P
are the carbon emission parameters for P2P trading. Similarly,
δGrid and σGrid are carbon emission parameters for P2G
trading. In a realistic environment, the energy generated by
RESs has a lower pollutant level than that of non-RESs such
as the main grid [29]. Thus, the values of δP2P and σP2P were
considerably lower than those of δGrid and σGrid .
Nonetheless, a prosumer as a producer with DR can sell

its surplus energy generated by RES to other prosumers
after satisfying its local minimum load, which helps other
prosumers reduce trading with the main grid as a non-RES,
thereby, reducing carbon emissions. Hence, it is reasonable to
assume that producers do not need to pay for emission costs
and thus, δ = 0, σ = 0; therefore, DE (pi) = 0 [30].

E. TRANSACTION COST
Network operators who provide energy-trading services con-
sider their benefits when building an energy-trading system.
A transaction fee is one approach to allow the network oper-
ator to collect money from participants when they use its
services. The transaction cost can be used for any purpose,
including the recovery of the maintenance cost, moderniza-
tion of power lines, taxes, and policies. The bilateral transac-
tion fee is calculated as a linear function of the quantity traded
with each neighboring prosumer [25]. Thus, the transaction
fee between prosumers i and j is written as follows:

DL
(
pij
)
= γijpij, (6)

where pij represents the quantities bilaterally traded with a
neighboring prosumer j ∈ ωi. The transaction price γij is the
price coefficient indicated by the grid operator to set the price
for recovering the aforementioned costs.

Moreover, we consider an equal allocation cost for all
participants involved in the network and thus, the cost is
shared between a producer and consumer as follows:

γij =
γ

2
. (7)

where γ is a unique unit fee expressed in c| /kWh for an hourly
time unit.

Moreover, transaction costs can be allocated according to
the transmission distance of participants. This cost-allocation
policy encourages prosumers to trade with their partners.
Therefore, the transaction fee can be expressed as

γij =
γddist (i, j)

2
, (8)

where γd is the distance unit fee expressed in c| /kWh · km for
an hourly time unit; and, dist (i, j) is the geographical distance
between prosumer i and its neighbor j ∈ ωi, which is often
measured by the proximity level according to a predefined
distance measurement, such as the Euclidean distance [31].

At each time slot, each prosumer attempts to trade with
partners with whom exchanging energy yields a lower trans-
action cost, that is, each prosumer avoids trading energy
with partners far from their house because of increase in
transaction costs.

IV. PROPOSED DECENTRALIZED ENERGY TRADING
APPROACH BASED ON DISTRIBUTED ADMM
In this study, we aimed to solve the local problem of each
prosumer using only P2P communications to guarantee the
data privacy of prosumers. Therefore, a completely decen-
tralized and efficient P2P energy-trading algorithm based on
ADMM [32] was proposed. The benefit of this approach was
that a central authority was completely avoided and data were
shared only with neighbors.

A. MARKET OBJECTIVE
Thewelfare function of a prosumer as producer i in themarket
can be defined as

Wi = U (pi)+ λGpGi , ∀i ∈ NS , (9)

where U (pi) is the utility function of producer i in (2); λGt
denotes the price of selling energy to the grid, which is fixed
for each time slot; and pGi is the amount of energy sold by
producer i to the main grid.

Similarly, the welfare function of a prosumer as consumer
i in the market is expressed as

Wi = U (pi)− DE (pi)− λ
G
pGi , ∀i ∈ NB, (10)

where U (pi) is the utility function of consumer i; DE (pi)
is the carbon emission cost that consumer i must pay when
buying energy of pi; λ

G
denotes the price of buying energy

from the grid, which is fixed for each time slot; and, pGi is the
amount of energy that consumer i buys from the main grid.

The market aims to find the optimal solution in energy
dispatch among prosumers such that their total cost is min-
imized or total economic surplus is maximized, in which
each prosumer considers a transaction fee, as indicated by
γij in (6), required by the grid operator. Hence, the SWM
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problem can be described as

max
pij,pGi

∑
iε�

Wi −
∑
jεωi

γij ∗ pij

 . (11)

By taking negative sign, the optimization problem can be
reformulated as

max
pij,pGi

∑
iε�

f (pij, pGi )+∑
jεωi

γij ∗ pij

 , (12a)

subject to

P = −PT , [3] , ∀i ∈ N , (12b)

pi = pGi +
∑
jεωi

pij, [µi] , ∀i ∈ N , (12c)

pmini ≤ pi ≤ pmaxi , ∀i ∈ N , (12d)

where f
(
pij, pGi

)
= −Wi,∀i ∈ N . Matrix P contains the

quantities of all bilateral trades in the network. In addition,
it is associated with the dual-variable matrix [3] , which
contains the prices of all trades. The reciprocity of trading
quantities P and trading prices [3] is enforced by Con-
straint (12b) in the optimal solution of the SWM problem.
Constraint (12c) originates from the local demand or supply
in which the net energy of prosumer i represents the relation-
ship between the total amount of traded energy of prosumer
i and its partner prosumer j, and the amount of energy traded
with the grid to satisfy their demand or generation. The
dual variable µi in (12c) associated with Constraint (12c)
represents the energy price perceived by prosumer i. The
objective is to maximize the overall benefit of the network
for both producers and consumers. These benefits stem from
electricity trade through the bilateral energy mechanism with
other households and the main grid.

B. DECENTRALIZED FORMULATION
To solve the SWM problem, we adopted the approach pre-
sented in [33], where the ADMM algorithm decomposes
the problem into subproblems and solves locally for each
consumer and producer. Each prosumer solves the subprob-
lems by updating the local decision variables. The set of
decision variables for the prosumer was {pij, pGi }. Moreover,
a negotiation process exists in the market in which prosumers
iteratively determine their variables and exchange their infor-
mation pij without revealing their private information such as
user satisfaction, energy generation, and energy consumption.

According to [33], a new global variable C =

(P− PT )/2 is defined as the average trading quantity sent
from prosumer i to prosumer j and the average trading quan-
tity sent back from prosumer j to prosumer i. C contributes
to reaching consensus and aims to represent all possible
amounts of trade, P. Convergence between all prosumers
is achieved when their trading values are equal, which is
confirmed by an optimal ADMM because the optimiza-
tion problem formulated in (12) is convex. Therefore, for
each iteration k , the completely decentralized augmented

Lagrangian for the bilateral trading model for each prosumer
i can be formulated as(
pij, pGi

)k+1
= arg min

pij,pGi

fi
(
pi, pGi

)
+

∑
jεωi

γij ∗ ∣∣pij∣∣
+
ρ

2

(
pkij − p

k
ji

2
− pij +

λkij

ρ

)2
 , (13a)

subject to

pi = pGi +
∑

jεωi
pij, [µi] ,∀i ∈ N , (13b)

pmini ≤ pi ≤ pmaxi , ∀i ∈ N , (13c)

where ρ is the penalty parameter; pmini and pmaxi in
Constraint (13c) of each prosumer is positive if prosumer i
is a producer, or negative if prosumer i is a consumer; λkij is a
dual variable that represents the price of each bilateral trade
updated in each iteration k of ADMM, which is formulated
as

λk+1ij = λ
k
ij − ρ

(
pk+1ij + p

k+1
ji

)
/2. (14)

The algorithm was repeated iteratively until the conver-
gence conditions were reached. Conditions (15) and (16)
were evaluated based on the primal and dual residual values,
which can be defined as follows:∥∥∥rk+1∥∥∥

2
=

∑
i=1

rk+1i ≤ εpri, (15)∥∥∥sk+1∥∥∥
2
=

∑
i=1

sk+1i ≤ εdual, (16)

where εpri and εdual are primal and dual feasibility tolerances.
The local primal rk+1i and dual sk+1i residuals are expressed
as

rk+1i =

∑
j=1

(pk+1ij + p
k+1
ji )

2
, (17)

sk+1i =

∑
j=1

(pk+1ij − p
k
ij)

2
. (18)

Both thresholds are typically assigned an extremely low
value [32]. The local subproblem (13a) can be solved using
an optimization tool such as Gurobi [34].

C. PROCEDURE OF PROPOSED P2P ENERGY TRADING
In this subsection, we describe the detailed procedure of our
proposed P2P energy trading method based on the presented
market objective and formulas.
First, each prosumer submits their role to the database

according to their generation and demand, and then calculates
the distance between their house and the trading partner’s
house, as shown in Fig(s). 2 and 3. After all the participants
have finished this process, the matching algorithm begins,
and each prosumer i determines their trade proposal pij locally
by solving the optimization problem, as presented in (13a).
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FIGURE 2. Interactions between prosumers and a database where
producers and consumers access the database to obtain the information
of partners and prices of the main grid.

FIGURE 3. Communication graph representing data transmission in
negotiation processes between producers and consumers.

Subsequently, each individual prosumer sends trade propos-
als to each of their partners jεωi. After receiving all proposals
pij, the prosumer can update the trading prices λij in (14) and
local residuals (ri, si) using (17) and (18), respectively. Each
prosumer broadcasts its local residuals when they receive all
other local residuals from their neighbors, and then prosumer
i checks the global stopping criteria (15) and (16). This
process is repeated when the global convergence criteria are
not met or the maximum iteration is reached, as illustrated in
Algorithm 1.

In our decentralized energy-trading model, each prosumer
is supposed to be a rational and non-strategic prosumer [35].
Thus, through the decentralized solution and by decomposing
the objective function, all prosumers focus on solving their
local welfare maximization problem and contribute to the
total welfare of market players in the electricity market.

V. PERFORMANCE EVALUATION
In this section, we analyze our proposed P2P energy trading
model under a variety of scenarios in full detail. We first
show that our proposed model maximizes the total social
welfare and converges to the optimal value very fast. We then
investigate the effect of carbon emission cost and transaction
cost. After discussing the scalability, we further demonstrate
the efficacy of the proposed model for intraday operations.

Algorithm 1 Completely Decentralized for Energy Trading
1: Initialization:
2: for prosumer i ε N do
3: Access the database to get a list of participants,

γij, λG, λ
G
, and partners location

4: Set λ0ij = p0ij = 0
5: end for

//run the energy matching
6: while 1 ≤ k ≤ max_iteration or convergence condition

does not meet:
7: for prosumer i ε N do

//update quantity step
8: Calculate

(
pij, pGi

)k+1
according to (13a)

//update price step
9: Calculate λk+1ij according to (14)
10: Send pij to partners of i and receives pji neighbors’

information
11: Compute rk+1i and sk+1i , then broadcast to all

participants
12: end for
13: k = k + 1
14: end while
15: if k > max_iteration
16: All participants trade directly with main grid
17: end if
18: Close market

To evaluate the performance of the proposed model,
we conducted a simulation using eight prosumers generated
based on the parameters (αi,wi, pmini , pmaxi ) employed from
[27]. The pollutant parameters were inspired and modified
from [29] and [30]. We assumed that all consumers had an
extremely small and identical δP2P of 0.01 and σP2P of 0.1.
Because the carbon emission for trading with the grid is
described as a linear function, we can merge the pollutant
parameter (δGrid )2 + σGrid in (5) into the selling price of
the main grid λ

G
in (10). In addition, the buying price λG

and selling price λ
G
of the main grid during the entire day

were fixed at 20 and 2 c|/kWh employed from Singapore
dataset [36], respectively. The penalty parameter ρ was set to
0.01 and the maximum number of iterations k was 5,000. The
primal εpri and dual εdual values were selected as 10−4, which
was acceptable termination criteria of the ADMM-based opti-
mization algorithm [32]. Table 2 summarizes all parameters
used in the simulation. It is important to note that the chosen
parameters were specific to this study and can be changed
depending on the energy demand, PV generation, countries,
number of RUs, and trading policy.

A. TOTAL SOCIAL WELFARE MAXIMIZATION AND
CONVERGENCE
The convergence of the bilateral process in Algorithm 1 in
time slot 11 is illustrated in Fig. 4. It was assumed that the
market had four producers and four consumers. The chosen
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TABLE 2. Parameter setup.

TABLE 3. Parameter setup of prosumer ii ∈ N at time slot 11.

parameters are presented in Table 3 . According to Fig. 4,
the proposed model reached global convergence at a low
number of 23 iterations, in which both the primal and dual
values were lower than 10−4. The ADMM algorithm found
the convergence for the proposed model in only 0.23 s.

In negotiations, prosumers adjust their sales or purchases
using the objective function with constraints from their part-
ners, as expressed in (13a). As shown in Figs. 5–8, P2P energy
trading was successfully performed between the four selling
houses and four buying houses, namely, from 1 to 4 per side.
The algorithm achieved an optimal price of 2.25 c|/kWh per
prosumer, which indicates that the transaction cost is equal
for all participants, clearing themarket at a uniform price. The
total energy generation sold to their partners by producers 1,
2, 3, and 4 was 8.96, 6.00, 6.85, and 5.02 kW, whereas the
total energy purchases of consumers 1, 2, 3, and 4 from the
producers was 7.54, 6.55, 4.59, and 8.16 kW, respectively.
Thus, through the P2P energy market, residential energy
consumers could buy sufficient energy to meet their demand
from residential producers 1, 2, 3, and 4.

Moreover, there was a small amount of energy sold to the
grid (1.78 kW), in which 0.53, 0.41, 0.47, and 0.37 kW was
sold by producers 1, 2, 3, and 4, respectively. As mentioned in
Section III.C, producers can trade their energy with both con-
sumers and the main grid during each time slot. More specif-
ically, producers sell their surplus energy to other prosumers

FIGURE 4. Convergence of the proposed ADMM approach.

or the grid in order to maximize their utility function and
reduce transaction costs. As the buying price of the main grid
is lower than that of another prosumer, a substantial amount of
energy is sold to the consumer and relatively small quantities
of energy are sold to the grid.

We note that the market participants are aware of other
prices, such as the buying and selling prices of the main grid.
Thus, a buyer cannot offer a price lower than the main grid
selling price and a seller cannot provide energy at a price
higher than the main grid buying price. All P2P transactions
must be lower than the buying price of the main grid and
higher than the selling price of the main grid. Therefore, the
prosumer can make profit from more beneficial prices by
participating in the P2P market.

To demonstrate the efficacy of DR in the proposed model,
we compared the results of the proposed market with those
of the case in which prosumers traded with the grid only
(no-DR) considering the total social welfare and number of
energy trades. The energy traded in case of no-DR is the
maximum amount of energy bought and sold on the main
grid. Comparative results are presented in Table 4 . As the
results show, P2P trading reduced the imported energy from
the grid and further reduced the energy consumption based
on their preferences compared with no-DR, thereby reducing
the energy cost. Similarly, the energy exported to the grid
was reduced compared with that of the case of no-DR and
increased the amount of energy sold to partners to obtain
benefits. The results confirmed that prosumers can increase
their social welfare by participating in P2P services, although
participants must pay an extra fee, that is, the carbon emission
and transaction fee to the grid operator. Meanwhile, the total
social welfare of trade with the grid only had a negative value
because producers sold their excess energy at low prices and
consumers compensated for deficit energy at high prices.

B. EFFECTS OF CARBON EMISSION COST
To investigate the effects of the pollutant parameter σP2P on
the carbon emissions in themarket, δP2P was fixed for all con-
sumers, as shown in Fig. 9. We discovered that carbon emis-
sion costs were reduced at the convergence of the ADMM
algorithm. In addition, even if pollutant levels increased for
each consumer, reductions in carbon emissions were linearly
increased. It is because when the pollutant levels increased,
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FIGURE 5. Convergence of energy and price for Producer 1.

FIGURE 6. Convergence of energy and price for Producer 2.

the carbon emission cost increased in (5); thus, consumers
preferred to consume less energy, which resulted in lower
cost of emissions. Therefore, energy cost was reduced in the
global solution when the pollutant parameter of consumers
was considered in the proposed model. Clearly, a higher
level of pollutants reduces the total energy consumption
by consumers, thereby reducing the total social welfare in
P2P energy trading; however, it is highly environmentally
friendly. Conversely, a lower level of pollutants increases
social welfare; however, it is less environmentally friendly.
Therefore, the tradeoff between the financial development
and environmental protection should be considered when
choosing pollutant parameters [37].

C. EFFECTS OF TRANSACTION COST
At each trading period, an individual prosumer i involved in
the P2Pmarket attempts to maximize its profit by minimizing
trading costs with their partners j, particularly the trading cost
for selling or buying pij per unit distance at a transaction price
γij. Therefore, we used the proposed model to investigate the
effects of the distance between producers and consumers on
the decision-making of each prosumer in a microgrid.

As shown in Fig. 10, in Case 1, we first studied a market
setup with zero transaction cost of preference criteria, that
is, all values dist (i, j) were equal to zero in (13a); thus,
DT

(
pij
)
= 0. Prosumers in green are producers, and pro-

sumers in blue are consumers. In this situation, the com-
munication graph is expected not to affect the global social
welfare, where producer 1 decides to trade 4.53 kW with the
household outside its local community, 4.78 kW is traded
with the household inside its local community, and only
0.19 kW is sold to the main grid for incentive.

FIGURE 7. Convergence of energy and price for Producer 3.

FIGURE 8. Convergence of energy and price for Producer 4.

TABLE 4. Comparative results of p2p trading and trading with grid in time
slot 11.

However, if transaction costs are not zero, different market
outcomes occur depending on the distance dist (i, j) between
the involved prosumers, as shown in Fig. 10 in Cases 2 and 3.
In Case 2, we consider trade-based transaction costs that
are effective within communities. As expected, the social
welfare of P2P trading was negatively affected using γd of
0.5 c|/kWh · km, where dist (i, j) between users in the com-
munity was 0.5 km, and the distance between two commu-
nities was 1 km. Compared with a zero transaction cost,
the results proved that the distance forced producer 1 to
raise the amount of energy sold to consumers 1 and 2 from
4.78 to 7.94 kW and to decrease the amount of energy sold
to consumers 3 and 4 from 4.53 to 0.12 kW. The remaining
energy of 1.44 kW was sold to the main grid.

Similarly, in Case 3, we continued to increase the dis-
tance between the two communities to 1.5 km and maintain
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FIGURE 9. Consumer’s carbon emission as the pollutant parameter σP2P
varies with δP2P= 0.01.

FIGURE 10. Effect of distance on the decision making of producer 1.

γd = 0.5 c|/kWh · km. Owing to the effect of distance,
producer 1 increased the results of the local community
instead of trading with consumers outside its local commu-
nity. Therefore, the local selling of electricity increased from
7.94 to 7.97 kWand selling to other communities was reduced
from 0.12 to 0 kW, and 1.53 kW was traded with the main
grid. In addition, in P2P trading scenarios, approximately all
surplus PV energy was exchanged in the local community
instead of being traded with other prosumers in other commu-
nities owing to the effect of the transaction costs, as discussed
in Subsection III.E. Hence, considering transaction costs as
a single value or energy per unit distance is an approach to
improve the local P2P trade and mitigate problems in long-
distance energy transactions, such as congestion and losses
on the existing grid.

Subsequently, we varied the distance to investigate its
effects on the optimal price, as shown in Fig. 11. The results
show that transaction costs change the optimal prices between
producer 1 and its partners at different distances. Prices tend
to increase when distance increases. In particular, a trading
price of 2 c|/kWh in Case 1 is unique to all consumers.
In Case 2, the market is cleared at higher optimal prices that
those of Case 1, and prices are different in different commu-
nities. Consumers in the same community buy their goods at a
lower price than those in other communities. The selling price
of producer 1 to consumers 1 and 2 is 2.125 c|/kWh and that of
consumers 3 and 4 is 2.24 c|/kWh. In Case 3, an optimal price

FIGURE 11. Producer 1 updates prices during P2P negotiations in
different cases.

of 2.26 c|/kWh is increased for consumers 3 and 4, while it
remains the same for consumers 1 and 2, compared those in
Case 2.

Instead of showing the decisions-making made by pro-
ducer 1, Table 5 highlights the results in different cases for
all prosumers using the proposed model. Because of network
constraints, the amount of energy traded and total social
welfare between trading prosumers was less in Cases 2 and 3
and thus, the trade with the grid was increased compared
to the same situation in Case 1. Consequently, the aver-
age optimal price was higher in Cases 2 and 3 than that of
Case 1. Because the complexity of each agent model was
increased according to the transaction cost is considered in
Cases 2 and 3 compared to that of Case 1, as presented in
Subsection III.E. It is obvious that the proposed model with-
out transaction cost achieves a lower number of iterations to
find the optimal solution than with transaction cost.

D. SCALABILITY AND SIMULATION IN INTRADAY MARKET
In this subsection, we first investigate whether the number
of prosumers has a significant impact on the performance of
ADMM, and then analyze the social welfare, total amount
of energy, and optimal price of the P2P trading market at
different times of the day.
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TABLE 5. Results at different distances for all prosumers with a
transaction price of γd = 0.5 c|/kWh in time slot 11.

FIGURE 12. Scalability of the proposed approach.

The computational time for each prosumer versus the
system size is shown in Fig. 12, which confirms that the
computation time of the proposed model is not sufficiently
high to obtain the convergence solution when the number
of RUs increases. Hence, the proposed model is expected
to be satisfactorily scaled in a realistic environment with
many prosumers. Moreover, the computation time slightly
increases in a real environment where communication and
synchronization between prosumers is considered.

Finally, the simulation results of the proposed model illus-
trate the intraday market. Because energy generation using
PV systems for each producer was zero in time slots 0–7 and
19–24, no energy could be traded inside the market. That
is, producers make no profit in these time slots; hence, the
social welfare of consumers in these time slots remains zero.
Conversely, in time slots 7–19, as shown in Fig(s). 13–15, the
surplus energy is traded; hence, the social welfare, total traded
energy, and price are optimized by the proposed model.

Figure 13 shows that each prosumer in the proposed model
always attempts to maximize their benefit by solving the
problem expressed in (13a) at each time slot t . Therefore, our
proposed method always achieves a higher benefit compared
with the grid only. Figure 14 shows that the energy traded
with the grid in time slots 7–10, 14, and 16–19 is zero, and
only a small amount of energy is tradedwith the grid, which is
selling 1.79, 1.32, 1.41, and 1.19 kW at high sun hours of 11,
12, 13, and 15, respectively, and buying 1.11 kW at a low sun
hour of 19. Figure 15 shows that P2P trading prices are lower

FIGURE 13. Total social welfare in the intraday market.

FIGURE 14. Total electricity energy exchange with the grid in the intraday
market.

FIGURE 15. Optimal electric price in the intraday market.

in time slots 11–13 owing to the increase of PV generation
while the energy consumption decreases. Otherwise, during
time slots 16–19, trading prices are high. In addition, all P2P
trading prices in a day of the proposed model are always
lower than the selling price (20 c|/kWh) of the grid and higher
than its buying price (2 c|/kWh). In the proposed method,
the lowest price is 2.25 c|/kWh at t = 11 and highest one is
19.65 c|/kWh at t = 19. Thus, the proposed model can handle
P2P trading in a grid-connected condition in the intraday
market.

VI. CONCLUSION
In this study, we introduced a P2P energy trading model for
grid-connected prosumers in microgrids. We formulated a
social welfare model for prosumers considering their will-
ingness to shift loads, carbon emissions, transaction costs,
and grid trading. Additionally, the proposed model permits
prosumers to trade with regulated electricity markets and
deregulated P2P markets simultaneously in different time
slots. The negotiation process automates execution without

106214 VOLUME 10, 2022



H. T. Doan et al.: Optimal Peer-to-Peer Energy Trading Under Load Uncertainty Incorporating Carbon Emission

revealing sensitive user data or relaying data to a centralized
entity. The SWM problem was designed and investigated
in a decentralized manner, in which all involved prosumers
attempted to optimize their utility and costs, thus contributing
to the total SWM of market prosumers in the electricity mar-
ket. The proposed model was tested for convergence consid-
ering a wide range of scenarios. Convergence was achieved
with a small number of interactions at a short calculation time.
As proof of the convergence between supply and demand,
primal and dual values were displayed for all network partici-
pants. The simulation results proved that PV prosumers could
achieve a higher social welfare than those who directly traded
with the main grid, even if they must pay carbon emissions
and transaction costs, and increase PV consumption locally.
Furthermore, we conducted a simulation to determine the
effect of carbon emissions and transaction costs on the user’s
decision making. The implementation was tested for scala-
bility in multiple interactions with hundreds of users. Finally,
P2P energy trading was extended multiple times to illustrate
variations in the total social welfare, prices, and quantities
within an intraday market.

In a future study, we will investigate the effects of batter-
ies on the grid-connection prosumers. In addition, we will
attempt to reduce the energy mismatch between producers
and consumers considering uncertainties in solar PV systems.
Applying the averaging consensus protocol to our proposed
method and considering the physical constraints in P2P trad-
ing will also be our future works.
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