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ABSTRACT Detection of vital signs for motional human targets in complex environment has always been a
major challenge in the field of remote detection, remote healthcare and emergency rescue, because polytropic
and multimodal interferences make intelligent signal processing more difficult. In this paper, a systematic
intelligent signal processing scheme which contains signal preprocessing, vital signs identification, motion
trajectory estimation and respiratory signal and heartbeat signal extraction is established. Based on CNN
(Convolutional Neural Networks) model, accurate identification of motional vital signs getting rid of the
interference of harmonics and distortion can be realized. Then, the misidentified outliers are eliminated with
K-means clustering algorithm. Next, the motion trajectory of human targets can be estimated with Kalman
filtering algorithm. Finally, the SVD-EEMD algorithm is proposed for respiratory signal and heartbeat signal
extraction of dynamic human targets. The introduction of deep learning algorithms makes the proposed
method have good performance of high accuracy, good robustness, strong adaptability and high efficiency,
which can be observed in actual detection tasks contrast experiments.

INDEX TERMS Intelligent signal processing, vital signs detection, deep learning, convolutional neural
networks (CNN), Kalman filtering, SVD-EEMD, ultra-wideband (UWB) radar.

I. INTRODUCTION
Radar remote detection is an emerging technology, which is
not only applied in military, but also in the fields of national
economy and scientific research [1], [2]. With the develop-
ment of electronic equipment and bioscience, the method of
life detection with radar device breaks through the traditional
detection technology, it emits electromagnetic waves and
obtains information without directly contacting the target and
can even detect across obstacles. The electromagnetic waves
will modulate with human life characteristics such as breath-
ing, heartbeat, gait movement and other motion information,
and the modulated signal will be received and analyzed, so as
to remote detect, locate and identify life targets. Among all
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kinds of radar detection devices, the performance of UWB
radar is particularly outstanding [3]. It has the advantages of
high range resolution, strong penetration ability, low power
consumption and strong anti-jamming ability.

After years of research, radar remote detection technol-
ogy has made great progress, but there are still some dis-
advantages in some aspects [4]. In particular, the disaster
site environment is always very complex, at the same time,
the trapped people may be injured, in which condition the
vital signs are weaker than normal situation, so it also puts
forward high requirements on the hardware and software of
the system. In the aspect of UWB radar signal processing and
life target recognition technology, people urgently need an
algorithmwith sensitivity, accuracy, robustness, and real-time
performance to realize the accurate recognition and extraction
of weak, disturbed and even distorted vital sign signals.
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Among the preprocessing technologies of radar signal,
mean subtraction (MS) [5] and linear trend subtraction (LTS)
[6] are effective time-domain processing methods, which can
effectively remove the static clutters and the linear trend term.
Mean filtering [7] and median filtering [8] can also reduce the
impact of static environment such as walls and obstacles on
vital signs signals by filtering out low-frequency components.
The auto gain control (AGC) [9] method realizes the enhance-
ment and amplification of weak vital sign signals through
the setting of adaptive compensation parameters. The above
traditional processingmethods can remove the interference of
specific components in the signals, consequently, they have
been widely used in the signal preprocessing steps.

Vital signs remote detection tasks are often carried out
under the circumstances of very low signal-to-noise ratio.
With the high complexity of the detection environment, the
difficulty of effective extraction of vital information is also
increasing [10]. In recent 20 years, the widely used methods
for vital sign signal extraction include Fourier transform [11],
wavelet transform (WT) [12] and empirical mode decompo-
sition (EMD) [13]. In 2011, Tariq et al. adopted wavelet trans-
form method to accurately extract respiratory signals [14].
He developed a method based on empirical wavelet transform
to extract respiratory and heartbeat signals separately [15].
The University of Pennsylvania has effectively extracted
the micro-Doppler features of human respiratory, heartbeat
and gait through empirical mode decomposition (EMD)
[16], [17]. Since then, the vital sign extraction methods
evolved from EMD [18], [19], [20] has become an important
branch in this field. Yang adopted ensemble empirical mode
decomposition (EEMD) algorithm and effectively solved the
mode aliasing problem of EMD [21], [22]. According to the
number of targets in the detection scene, Yan used variational
mode decomposition method to suppress mode aliasing and
successfully extracted multi-target vital signs [23].

With the rise of artificial intelligence algorithm and big
data analysis technology in recent years [24], remote sensing
and detection technology has a new breakthrough. Currently,
the widely applied deep learning models include convolu-
tional neural network (CNN) [25], recurrent neural network
(RNN), long short term memory (LSTM) [26], deep belief
network (DBN) [27] and so on.

Deep learningmethods greatly improve the performance of
signal processing algorithm, making it possible to detect vital
signs efficiently and accurately in complex emergency rescue
scenes such as crossing obstacles [28], moving targets [29]
and multiple life targets [30]. Based on the singular value
decomposition (SVD) method, Liu decomposed the UWB
matrix into eigen vectors in time-space dimension to real-
ize the through-wall, multi-targets personnel positioning and
vital signs extraction in complex scenes [31]. Bao proposed
a novel people counting algorithm exploiting convolutional
neural network (CNN) using IR-UWB radar [32]. Lv adopted
an adaptive Kalman filter to fuse multisensory information,
which solved the respiration detection problem caused by
the human targets’ body orientation [33]. Kwon proposed a

hybrid model architecture that combines CNNs and LSTM
for real-time Apnea-Hypopnea events detection based on
IR-UWB radar [34].

However, above multitudinous studies seldom provide a
good solution for the remote detection method of vital sign
information of motional people in complex environment.
A few applicable methods, such as CLEAN algorithm [29],
CFAR algorithm [35], [36] and SVM [37], [38], are some-
times limited by their accuracy, effectiveness, stability, and
real-time performance. In the tasks of moving target detec-
tion, vital signs signals are not only disturbed by a lot of
noises and clutters, but also affected by human movement.
The changing distance and dynamic characteristics bring
great challenges to the accurate identification of vital signs
information. In addition, the diverse movements bring a
large number of harmonics and serious distortions to the
signals [39], in this case, an intelligent signal processing algo-
rithm with high resolution, accuracy, efficiency and robust-
ness is urgently needed.

In order to solve the above problems, some scholars
have developed a distributed radar system, which integrates
multiple UWB signals to achieve high-precision detection
function. In contrast, this paper proposes an algorithm frame-
work based on single IR-UWB radar system to address these
problems. The convolution neural network (CNN) model is
constructed to realize the accurate detection of targets, and the
motion information is extracted through clustering algorithm
and Kalman filtering. Finally, the SVD-EEMD algorithm is
proposed to realize the accurate extraction of vital signs under
interference environment.

II. IR-UWB RADAR SIGNAL MODEL
UWB technology is a special technology for communication
and detection by transmitting and receiving pulse signals
ranging from nanoseconds to picoseconds. According to the
definition formula of bandwidth:

µ =
1f
f0
=

2(fH − fL)
fH + fL

(1)

where, fH and fL are the maximum and minimum frequencies
of the signal at −10 dB of the peak amplitude, respectively.
When µ ≥ 20%, the impulse signal is regarded as ultra-
wideband (UWB) signal. IR-UWB radar achieves detection
by transmitting and receiving continuous pulse sources, with
good range resolution and resistance to clutter and multipath
interference. The essence of radar wave is an electromagnetic
wave, when propagating electromagnetic waves touch the
human body, most of the electromagnetic waves are reflected
by the human body and then received by the receiving
antenna, and this part occupies the main energy of the radar
echo signals. A small part of the electromagnetic waves will
be absorbed by the environment and attenuated, and still a
small amounts of radar waves will be received by the antenna
after secondary reflection.

The signal models of IR-UWB radar when detecting static
person and dynamic person have been shown in Figure 1.
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FIGURE 1. IR-UWB radar detection signal model.

When detecting the area, IR-UWB radar device sends out
multiple continuous signals at a fixed pulse time interval and
receives all the radar data to form a radar echomatrix which is
characterized with two dimensions of fast time and slow time.
The fast time characteristic reflects the change of radar signal
with detection distance at a fixed time point. The slow time
characteristic reflects the change of radar signal with time at
a fixed distance point.

According to the characteristics of different target objects,
the radar signal received by IR-UWB radar device can be
expressed as follows:

R(t, τ ) = αsp(τ − τs)+
∑
i

αdp(τ − τd (t)) (2)

where τ denotes the sampling time of the UWB radar
along the propagation direction, namely, the fast time. And
t denotes the accumulated time of multiple UWB pulses,
namely, the slow time. The former term of equation (2) repre-
sents the static response generated in the environment, and the
latter terms represent the dynamic signal response generated
by the target persons, which includes the modulation effects
of the person’s movement, respiratory, heartbeat, etc. The
dynamic terms vary not only regard with fast time, but also
with slow time. The macro and micro movements of people
cause the UWB signal showing dynamic characteristics. The
above principled analysis lays a foundation for IR-UWB
radar to detect vital signs in complex environment.

III. SYSTEM SETUP AND ALGORITHM
A. EXPERIMENTAL CONSTRUCTION
Based on the NVA6100UWB radar system, this paper studies
the UWB radar detection technology. The experimental sys-
tem setting is shown in Figure 2. The IR-UWB radar system
is equipped with two transceiver antennas based on Vivaldi
antenna structure and transmits first-order Gaussian pulse
signals aligned with the detection area. In order to ensure the

efficient operation of deep learning algorithm, the processor
should be equipped with GPU or FPGA to realize algorithm
acceleration. The key parameter settings of NVA6100 UWB
radar system are shown in Table 1. In particular, the fast time
sampling frequency (Fs) is set to 5 GHz, the total sampling
points number is set to 768, and the slow time radar pulse
transmission frequency (fs) is set to 8 Hz.

FIGURE 2. Experimental construction of vital signs detection system.

TABLE 1. Parameters configuration of system.

Under emergency rescue conditions, UWB radar signal
often needs to penetrate the ruins to find survivors. In order
to simulate the complex scenes, indoor and outdoor experi-
mental sites are built up respectively. The obstacle set in the
indoor experimental site is a 4.2 cm thick wooden board with
a density of 750 kg/m3, which can be moved along the chute.
The obstacle set in the outdoor site is a concrete wall with
a thickness of 28 cm and a density of 2500 kg/m3, the UWB
radar devicewas placed on one side of thewall, and the person
targets were arranged in the outdoor environment on the other
side of the wall. During the experiments, the positions or
motion states of the targets were recorded according to the
scale marks and timer.

In addition, as shown in Figure 2, this project has also
set up four experimental scenarios. In scenario 1, the three
detected persons were standing still at positions of 5 m, 8 m,
and 11m from the reference point, respectively. In scenario 2,
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one detected person was performing a uniform reciprocating
movement from 3m to 7.5 m from the reference point. In sce-
nario 3, three detected persons were forming in a row along
the direction of UWB signal and performing a constant speed
reciprocating movement from 4 m to 12 m simultaneously.
In scenario 4, one detected person was walking freely in
the detection area along the detection direction of IR-UWB
radar. Experimental scenarios 1 and 2 were tested in the
indoor experimental environment shown in Figure 3 (b), and
experimental scenarios 3 and 4 were tested in the outdoor
experimental environment shown in Figure 3 (c). The relevant
personnel in the experiments were randomly selected from
5 volunteers, and the information of the 5 volunteers is shown
in Table 2.

FIGURE 3. Physical maps of experimental sites setting: (a) IR-UWB radar
detection device, (b) Indoor experimental site setup, (c) Outdoor
experimental site setup.

TABLE 2. Brief physical information of the five volunteers.

B. ALGORITHM ARCHITECTURE
Figure 4 shows the algorithm architecture proposed in
this paper. In order to realize the vital signs intelligent
detection function of multitargets and dynamic targets in
complex emergency rescue scenes, the algorithm includes
the following modules: signal preprocessing module,
CNN intelligent recognition module, motion estimation mod-
ule and vital signs extraction module.

FIGURE 4. Specific flowchart of proposed algorithm.

In the signal preprocessing module, the range profile sub-
traction (RPS) and time mean subtraction (TMS) methods
are adopted to remove a large number of clutters and noises,
and the automatic gain control (AGC) method is adopted to
enhance the signal-to-noise ratio. In the CNN intelligent iden-
tification module, an intelligent identification model based
on convolutional neural network is built. After being trained
by numerous samples, the CNN model has been endowed
with the ability to identify the life information, environmental
information, and interference information. When the system
performing the detection task, the two-dimensional sliding
window will traverse the received UWB radar signals and
input the data matrices into CNN model to obtain the identi-
fication results of life information in the detection time-space
range. In the motion estimation module, K-means clustering
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algorithm is used to classify the identified data information
firstly, and the misidentified outliers are eliminated at the
same time. Then the Kalman filtering algorithm is adopted
to estimate the trajectories of the dynamic targets, and then
the shaped life signals are obtained from a large number
of data points. Finally, the shaped signals are input into
the vital signs extraction module, the principal component
characteristic vectors can be extracted based on singular value
decomposition (SVD), and then several IMFs components are
obtained by EEMD algorithm, the respiratory and heartbeat
signals are extracted according to energy threshold.

IV. SIGNAL PREPROCESSING
In the actual detection tasks, the original UWB echo signal
contains not only vital signs information, but also many other
interference components. Therefore, the UWB echomatrix in
the real measurement environment is modeled as:

R[m, n]=r[m, n]+c[n]+w[m, n]+d[m]+l[m, n]+t[m, n]

(3)

where R[m, n] indicates the original echo matrix obtained in
the detection environment, r[m, n] indicates the vital signs
signal, c[n] indicates static background clutter, w[m, n] indi-
cates additive white noise, d[m] indicates the unstable fast
time DC component, l[m, n] indicates the linear trend along
slow time axis due to the unstable amplitude of the radar
system, t[m, n] indicates the harmonic and signal distortion
caused by dynamic target. Some clutters and noises interfer-
ences could be removed by preprocessing method.

Firstly, range profile subtraction (RPS) is adopted to
remove static background clutter c[n], and the method is as
follows:

R′[m, 1] = R[m, 1]

R′[m, n] = R[m, n]− R[m, n− 1]

× (m = 1, . . . ,M , n = 2, . . . ,N ) (4)

Then, time mean subtraction (TMS) is adopted to filter the
DC component d[m]. The method is as follows:

R′′[m, n] = R′[m, n]−
1
N

N∑
i=1

R′[m, i]

× (m = 1, . . . ,M , n = 1, . . . ,N ) (5)

In order to improve the signal-to-noise ratio, automatic
gain control (AGC) is adopted to enhance weak vital signs
in the fast time direction. The specific algorithm steps are as
follows:

g(m, i) =
2ds + 1√

i+d∑
k=i−d

R′′(m, i)2

(6)

gmask (m, i) =

{
gmax, g(m, i) > gmax

g(m, i), g(m, i) ≤ gmax
(7)

X (m, i) = gmask (m, i)R′′(m, i) (8)

where ds indicates the set sliding window length and gmax
indicates the maximum gain threshold.

V. CNN INTELLIGENT RECOGNITION
Convolutional neural network (CNN) is a common deep
learning method in the field of image recognition. Based on
CNN, an intelligent model which can automatically distin-
guish vital signs information, environmental information and
interference information is designed in this paper. The estab-
lishment and application of CNNmodel include the following
steps: data set construction, CNN model construction, model
training and testing, and vital signs identification.

A. DATA SET CONSTRUCTION
The input data of CNN is often in the form of matrix. In order
to realize the precise and refined perception, various exper-
imental environments (indoor and outdoor, with and with-
out obstacles, static and dynamic targets, single target and
multi-targets, different detection distances, etc.) are settled to
acquire multifarious UWB radar echo matrices. According to
the position of the tested personnel, the positions of vital signs
information and environmental information in UWB echo
matrix can be deduced. In the data acquisition experiments,
two typical groups of preprocessed UWB radar echo matrices
are shown in Figure 5, in which Figure 5 (a) shows that the
tested person is stationary at 4 m and Figure 5 (b) shows that
the tested person is reciprocating from 3 to 12 m.

FIGURE 5. Preprocessed UWB radar echo matrices in data acquisition
experiments: (a) Group 1: Tested person stationary at 4 m, (b) Group 2:
Tested person reciprocating from 3 to 12 m.

When constructing the data set, in order to ensure that the
CNN model can effectively identify vital signs on a small
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FIGURE 6. Input matrices of samples: (a) Vital signs sample,
(b) Environmental information sample, (c) Interference information
sample.

scale, the input data size u × v of the CNN model is deter-
mined according to the characteristics of human vital signs in
the time-space dimension:

u = [
2α1FsDm

c
], v = [α2Dnfs] (9)

where, c indicates the speed of light, sampling frequency (Fs)
equals to 5 GHz, radar pulse frequency (fs) equals to 8 Hz,
Dm indicates the fast time characteristic resolution, and
Dn indicates the slow time characteristic resolution,
α1 indicates the fast time scale coefficient, α2 indicates
the slow time scale coefficient. According to the dynamic
characteristics of human vital signs, taken Dm = 0.3 m,
Dn = 2.5 s, α1 = α2 = 1, then one can obtain that the size of
input matrix is (1,10, 20).

As shown in Figure 5, despite the preprocessing, the vital
signs in the UWB radar echo are still not obvious, and it
is easy to be submerged in various clutters and noises. And
with the increase of detection distance, the vital signs signal
becomes weaker and even difficult to be observed directly.
In particular, when detecting dynamic targets, human motion
always produces harmonics, which cause the distortions of
UWB radar echo signal behind it. These distortions often
have the same phase with human vital signs, so it is difficult to
distinguish them effectively by traditional signal processing
methods and machine learning methods. Based on the above
situation, after acquisition of the vital sign’s information in
various experimental environments, one can obtain abundant
u × v input matrices and form the vital signs samples, the
classification labels of vital signs samples are set to 0. Simi-
larly, the u × v data matrices of noises, clutters, and various
empty environments are obtained to form the environmental
information samples, and their classification labels are set
as 1. In particular, in order to ensure the effectiveness of the
algorithm when detecting dynamic targets, the u× vmatrices
of harmonic and distortion data behind moving targets are

obtained to form interference information samples, and their
classification labels are set as 2. The input matrices of the
above three types of samples are shown in Figure 6.

Deep learning usually requires a large amount of data
as support. In order to prevent over fitting problems and
ensure that the algorithm has a high detection success rate
and stability in various complex environments, the following
data augmentation technologies are randomly used to process
the acquired samples: flip, translation, rotation, scale, crop,
Gaussian noise, centralized brightness adjustment, etc. After
the above augmentations, the irrelevant accidental features in
the samples are greatly reduced, the numbers and types of
samples are increased, and the generalization ability of CNN
model is guaranteed.

B. CNN MODEL CONSTRUCTION
The CNN model architecture constructed in this paper has
been shown in Figure 7. Its overall architecture is a five-layers
neural network, including four convolution layers (‘‘Conv1’’,
‘‘Conv2’’, ‘‘Conv3’’ and ‘‘Conv4’’) and a full connection
layer (‘‘FC’’). In addition, a residual layer is set to ensure
the optimal mechanism of training effect. In CNN model, the
key parameters of each convolution layer include: numbers
of filters (NC ), kernel size (FH × FW ), stripe length (SL) and
padding (Pn). Assuming that the input feature map size of
each convolution layer is (ch,Hin,Win), its output feature map
size is (NC ,Hout ,Wout ). In this paper, channel of input data is
equal to 1, and other parameters can be calculated as follows:

Hout=
Hin−FH+2Pn

SL
+1, Wout=

Win−FW+2Pn
SL

+1

(10)

The input of the whole CNN model is a three-dimensional
array with a size of 1 × 10 × 20. In order to ensure that the
size of the output feature map remains unchanged after each
convolution layer feature extraction, namely Hout = Hin, the
key parameters of each convolution layer should be specially
designed, and the parameters values have been shown in
Table 3. After each convolution layer, the Batch normaliza-
tion layer and a non-linear activation layer ‘‘ReLU’’ are set
to standardize the weight parameters, so as to improve the
performance of CNNmodel and solve the problem of gradient
disappearance. Different with other three convolution layers,
a Max-pooling layer is set at the output of the ‘‘Conv4’’
for down-sampling of the feature map, it has a 2 × 2 pool
size each with stride 2. After the Max-pooling layer, a full
connection layer (‘‘FC’’) with 3 units (outputs) are included
to generate predicted value for each category. Finally, the
‘‘softmax’’ layer outputs the most possible prediction label
as the final result according to the maximum of the three
prediction values.

In particular, in order to solve the degradation problem
in deep network, this paper designs the residual layer with
reference to ‘‘ResNet’’ neural network model [40]. When
the original data has been trained by two convolution lay-
ers (‘‘Conv1’’, ‘‘Conv2’’), most essential features have been
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FIGURE 7. Network architectures for proposed CNN model.

TABLE 3. Key parameters values of the constructed CNN model.

extracted. In order to ensure that there is no gradient dis-
persion / explosion in the deeper network layers behind and
further reduce the recognition rate, a shortcut connection
mechanism of residual layer is set up. According to Figure 8,
the design principle is as follows:

F(x) = W [4] ReLU(W [3]x + b[3])+ b[4] (11)

R(x) = W [r]x (12)

H (x) = F(x)+ R(x)

= W [4] ReLU(W [3]x + b[3])+ b[4] +W [r]x (13)

whereW [3] and b[3] indicates the weight and bias parameters
of ‘‘Conv3’’, W [4] and b[4] indicates the weight and bias
parameters of ‘‘Conv4’’, W [r] indicates the weight param-
eters of residual layer. Whereas the calculation formula of
nonlinear activation function ‘‘ReLU ‘‘is as follows:

ReLU(x) = max(αx, x) (14)

In order to ensure that R(x) and F(x) have the same
dimension, in the residual layer, 32 convolution filters with
kernel size of 1 × 1 and stripe length of 1 are adopted for
linear transformation, and the dimension of the feature map is
transformed from 16 to 32. The parameters values of residual
layer have also been shown in Table 3.

When CNN model is iterative updating, back propagation
step needs to be carried out to calculate the weight parameter
gradients of each convolution layer. In the network structure
of residual layer, the training goal of model optimization is to
approximate the residual F(x) = H (x) − x to 0. In this way,
the identity transformation of residual layer can ensure that
the CNN model will not degenerate as the depth increases,
and the deep convolutional layers (‘‘Conv3’’, ‘‘Conv4’’) will
continue looking for a further optimization mechanism based

FIGURE 8. Principle of residual layer in CNN model.
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on the original performance, that is to optimize the residual
error of the identity transformation with small disturbances.

C. MODEL TRAINING AND TESTING
The algorithm is trained based on the CNNmodel established
above. For all data samples, the vital signs samples, envi-
ronmental information samples and interference information
samples are randomlymixed and divided into several batches.
The data of one batch at a time are taken for model training.
For each input data xi, after CNN model operation, its output
is a K-dimensional vector containing the predicted values of
all classification labels, which can be represented as:

Eq(xi) =
[
qi,0, qi,1 . . . , qi,K−1

]
(15)

In this paper, there are three types of labels for all data sam-
ples, namely, K = 3. After each updating iteration of CNN
model, the loss function needs to be calculated. According to
the characteristics of multi classification tasks in this paper,
the loss function is defined as:

loss=−
1
N

N−1∑
i=0

K−1∑
k=0

yi,k ln(qi,k )+λ
∑

l

∑
n
(W [l]

n )2 (16)

In the loss function, the former is the cross entropy of the
prediction results, and the latter is the regularization penalty
term. Where N is the batch size, K is the number of classi-
fication labels, and qi,k represents the output value for the
ith sample being predicted to be the k th label. λ is a
regularization parameter, which is a very small constant.

W [l]
n represents the weight parameter of each layer in CNN

model, l represents the number of layers, and n represents
the number of weights in this layer. The introduction of
regularization penalty term makes CNN take into account
the universality of weight parameters and further reduce the
risk of overfittingwhile training and optimizing continuously.
The key parameters and options for model training have been
shown in Table 4.

TABLE 4. CNN model training parameters and options.

As shown in Table 4, 80% of all data samples are used
for CNN model training, and the remaining 20% are used
for CNN model testing, and the maximum number of train-
ing epochs is set to 80. The Adam optimization strategy

FIGURE 9. Training effect of CNN model: (a) Curve of loss value, (b) Curve
of prediction accuracy.

FIGURE 10. Normalized confusion matrix of constructed CNN model.

is selected, and the initial learning rate is set to 0.003.
After every 10 times updating, the learning rate will be
attenuated with the drop factor of 0.8, so as to slow down
the weight parameters updating gradient and optimize the
CNNmodel more finely. With the continuous optimization of
CNNmodel, the curves of loss value and prediction accuracy
of training data samples and testing data samples have been
shown in Figure 9.

From Figure 9, one can observe that the CNNmodel finally
obtains a very low loss value and high prediction accuracy
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for both training data and testing data. In the last few epochs,
the performance of CNN model is almost stable, and there
is no big fluctuation in both loss and accuracy. It is worth
noting that the prediction accuracy of testing data is slightly
lower than that of training data, however, the gap is small and
acceptable, which means that CNN model has not produced
fitting phenomenon. During the CNN model training, the
lowest loss value is 0.1292, the highest prediction accuracy
for training data is 96.41%, and the highest prediction accu-
racy for testing data is 92.47%. The CNN model parameters
of the best testing prediction accuracy are chosen as the pre-
ferred final selection. In addition, the normalized confusion
matrix shown in Figure 10 reveals the specific correct and
incorrect prediction situation. The prediction success rate for
vital signs is the highest among three types of data samples,
and most of the failure predictions happened when the CNN
model confusing the environment data and the interference
data, which have no impact on the vital signs identification
purpose for this paper.

For better illustration the performance of the proposed
CNN model in our paper, Table 5 records some impor-
tant properties of the constructed CNN model compared
with some standard common CNN models. The basic CNN
structure is composed of convolution layer and full con-
nection layer. When the number of convolution layers is
too small, the required accuracy cannot be achieved, on the
contrary, if the number of convolution layers is too large,
the real-time performance of the algorithm will be greatly
reduced. After many tests, the 4-layer convolution layer CNN
has been proved to be the optimal structure, and the residual
layer effectively further improved the identification accu-
racy. In Table 4, some typical CNN frameworks for image
recognition, such as VGG and ResNet-50 have also been
verified, due to the differences between this project and image
recognition tasks, some important properties, especially the
real-time performance, are not applicable for the vital signs
identification. The CNN model constructed in this paper not
only has a high identification accuracy which satisfy the life
detection requirements, but also has the good characteristic
of fast detection to ensure the timeliness of rescue.

TABLE 5. Properties comparison of different CNN models.

D. VITAL SIGNS IDENTIFICATION
The UWB echo matrix is obtained through IR-UWB radar
device and processed with techniques above mentioned.

Then, a two-dimensional sliding window is adopted to tra-
verse the matrix, convert the data into u × v form and input
it into the trained CNN model. For the four scenarios shown
in Figure 2, the vital signs identification effects have been
shown in Figure 11. To reveal the superior performance of
proposed algorithm, another model based on multi feature
fusion and SVM [37], [38] is selected as the comparison
group.

From Figure 11, one can conclude that the constructed
CNNmodel has an obvious more superior performance com-
pared with the reference method. For complex tasks such
as static multiple targets, regular moving target, multiple
simultaneous moving targets and irregular moving targets,
the effective recognition of vital signs’ information can be
realized. The trajectories of the detected targets can be clearly
distinguished, and there are only a few false recognition
phenomena. In contrast, the reference method can success-
fully identify human in the static targets’ detection task of
scenario 1, but it can almost be considered as failures for
the dynamic target detection tasks. This is because traditional
machine learning algorithms such as SVM cannot extract the
potential depth features of data, however, the harmonics and
signal distortion caused by moving objects are similar to the
vital signs’ information in many appearance features, which
are difficult to be distinguished.

VI. MOTION ESTIMATION
A. MISIDENTIFIED OUTLIERS REMOVAL
The results of vital signs identified by CNN model still
contain a small amount of false identification information
(It is not necessarily that CNN model is inaccurate, but also
that there are maybe interference factors in the on-site envi-
ronment.) Interference cancellation of the misidentified out-
liers based on K-means clustering algorithm [41] is necessary
according to the following steps:

According to the Euclidean distance, the k nearest neigh-
bor points matrices as well as the corresponding indexes of
each data xi (i = 1, 2, . . . ,m) in the recognition results can
be obtained. The Euclidean distance can be calculated as:

dxy =

√√√√ n∑
k=1

|xk − yk | (17)

where n indicates the data space dimension. According to
Euclidean distance, one should find k points closest to each
data xi (i = 1, 2, . . . ,m), and record the data set represented
by these k points as Nk (x).
In Nk (x), the cluster category yi for each xi (i =

1, 2, . . . ,m) is determined according to the following clas-
sification rules:

y = argmax
j

∑
xi∈Nk (x)

I {yi = Cj},

i = 1, 2, . . . ,m, j = 1, 2, . . . s (18)

s is the total number of clusters, and then a k-MST struc-
ture is established for identification result data. Calculate the
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FIGURE 11. Vital signs identification effects of proposed algorithm and reference method: (a) Identification result of constructed CNN model for
scenario 1, (b) Identification result of reference method for scenario 1, (c) Identification result of constructed CNN model for scenario 2, (d) Identification
result of reference method for scenario 2, (e) Identification result of constructed CNN model for scenario 3, (f) Identification result of reference method
for scenario 3, (g) Identification result of constructed CNN model for scenario 4, (h) Identification result of reference method for scenario 4.

maximumEuclidean distance and average Euclidean distance
for each category yi, one can realize the removal of misiden-
tified data. The misidentified outliers’ removal effects for all
four scenarios have been shown in Figure 12. The k-MST
structures are plotted with black lines, and the red cross
markers indicate the points considered as the misidentified
outliers which should be removed from the identification
result data.

B. MOTION TRAJECTORY ESTIMATION AND SHAPED
SIGNAL ACQUISITION
After eliminating the misidentified outliers, the real-time
motion state of the target can be estimated through

appropriate technology. For the static targets in scenario 1,
the personnel’s position does not change with time, therefore
the trajectory presents a straight line in the UWB radar echo
matrix. The static target trajectory can be estimated by cal-
culating the centroid position of each cluster data points. The
centroid of each cluster in the data clusters {C1, C2, . . . ,Ck}
can be calculated as follows:

µj =
1∣∣Cj∣∣ ∑x∈Cj x (19)

The centroid positions and trajectory estimation results
of detected targets in scenario 1 have been shown
in Figure 13 (a). In contrast, the motion trajectory estimation
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FIGURE 12. The misidentified outliers’ removal effects: (a) Result for scenario 1, (b) Result for scenario 2,
(c) Result for scenario 3, (d) Result for scenario 4.

method of dynamic targets in scenario 2, 3 and 4 is more
complex. In this paper, Kalman filtering is adopted for opti-
mally estimation of themotion state from the observation data
which is identified by CNN model.

In the UWB radar detection system of this paper, with
the change of slow time, the state equation and observation
equation of the system are as follows:

Xk = AkXk−1 + BkUk + wk (20)

Zk = HkXk + vk (21)

In the state equation,Xk is the estimated value of the system
state at time k , Uk represents the control quantity applied
to the system at time k , Ak is the state transition matrix at
time k-1, Bk is the control matrix on Uk , which describes the
influence of control quantity on system state, wk indicates
the process noise, which follows the independent normal
distribution with mean value of 0 and covariance ofQk . In the
observation equation, Zk is the measured value of the system
state at time k , and Hk is the observation matrix, which
describes the mapping relationship from the actual state to
observation state; vk indicates the observation noise, which
follows the independent normal distribution with mean value
of 0 and covariance of Rk .

Kalman filtering algorithm includes two stages: prediction
and updating. In the prediction stage, the algorithm calculates
the current state according to the previous records of system

state. In the updating stage, the algorithm comprehensively
considers the current measured value and the predicted value
of previous time and gives the optimal estimation of the
current system state.

In the prediction stage, the calculation method is as
follows:

X̂−k = Ak X̂k−1 + BkUk (22)

P−k = cov(Xk − X̂
−

k ) = AkPk−1ATk + Qk
× (Qk = cov(wk )) (23)

Firstly, according to the state estimation value at k-1 time,
the system prior prediction at k time X̂−k can be obtained,
where X̂k−1 represents the optimal estimation of the system
state at k-1 time. Then, the estimation error P−k between the
predicted value and the actual value of the system at time k
is calculated, whereQk indicates the covariance matrix of the
process noise wk .
In the updating stage, the calculation method is as follows:

Kk = P−k H
T
k (HkP

−

k H
T
k + Rk )

−1

× (Rk = cov(vk )) (24)

X̂k = X̂−k + Kk (Zk − Hk X̂
−

k ) (25)

Pk = (I − KkHk )P
−

k (26)

Firstly, the Kalman gain Kk is calculated, where Rk indi-
cates the covariance matrix of the observation noise vk .
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FIGURE 13. The motion trajectory estimation and shaped signal acquisition results: (a) Result for scenario 1, (b) Result for scenario 2,
(c) Result for scenario 3, (d) Result for scenario 4.

The Kalman gain describes the relationship between the pre-
dicted value and the measured value of the system state at
time k , and its optimization makes the estimated state close
to the real state to the greatest extent. Then, the optimal esti-
mation X̂k of the system state is calculated by integrating the
prior prediction X̂−k , the measured value Zk and the Kalman
gain Kk . Finally, the posteriori error covariance matrix Pk is
updated.

As in the above steps, the Kalman filtering algorithm is
continuously updating and iterating to obtain the motion
trajectory estimation results of the dynamic targets.

In order to simplify the task, the constant velocity model
is adopted to describe the motion properties of the dynamic
targets. When estimating the system state with Kalman fil-
tering algorithm, the state of the system Xk includes two
two-dimensional parameters of position and velocity. The
measured value Zk of the system can be obtained from the
average position of the identification results by CNN model
in each slow time, that is:

Xk =


xk
yk
vxk
vyk

 Zk =

[
N̄x |t = k

N̄y |t = k

]
(27)

The state transition matrix Ak , the control matrix Bk and
the observation matrix Hk can be defined as:

Ak =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 Bk =


0
0
0
0


Hk =

[
1 0 0 0
0 1 0 0

]
(28)

The process noise wk and the observation noise vk are
regarded as invariant parameters, and according to the UWB
system characteristic, their covariance matrices can be evalu-
ated as:

Qk = 10−4 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Rk = 10−2 ·
[
1 0
0 1

]
(29)

After the above Kalman filtering method calculation, the
motion trajectory estimation results of detection targets in
all scenarios can be obtained. Simultaneously, according to
the estimation trajectories, the original curve-shaped life sig-
nals are shaped into straight lines to lay the foundation for
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the follow-up vital signs extraction. The results have been
shown in Figure 13. In particular, the identified signal band
of vital signs in Figure 13 (c) is significantly wider, because
it contains vital signs of three tested personnel. According to
the motion trajectory extracted by Kalman filter, the whole
signal band can be divided into three parts for extraction of
respiratory and heartbeat signals of three people respectively.

VII. VITAL SIGNS EXTRACTION
In the detection tasks of this paper, due to the motion of
the objects, a large number of dynamic interference clut-
ters are introduced, and the originally regular vital signs are
also distorted. Therefore, traditional vital signs extraction
methods are hardly applicable. Based on EEMD method,
this paper develops an improved SVD-EEMD algorithm to
achieve dynamic vital signs extraction under interference and
distortion. Due to the length limitation of this paper, the
following texts will take the detection task in scenario 2 as
an example to illustrate the SVD-EEMD algorithm, while for
scenarios 1, 3 and 4, only the final results will be shown, and
the intermediate process will not be described in detail.

Firstly, Singular Value Decomposition (SVD) is performed
on the shaped life signal XNxM . The process is as follows:

XN×M = UN×N6N×MV T
M×M =

k∑
i=1

uiσivTi (30)

6N×M =



σ1 0 0 0 0 0
0 σ2 0 0 0 0
0 0 σ3 0 0 0
...

...
...

. . . 0 0

0 0 0 0
. . . 0


N×M

(31)

UN×N =
[
Eu1, Eu2, Eu3, · · · EuN

]
(32)

VM×M =
[
Ev1, Ev2, Ev3, · · · EvM

]
(33)

where 6NxM is the singular value matrix, the main diagonal
elements σ1, σ2, . . . , σk are k singular values of XNxM (σ1 ≥
σ2 ≥ σ3 ≥ · · · ≥ σk ). ui represents the ith column vector
of the matrix UNxN , which is called the ith order left singular
vector. vi represents the ith column vector of the matrix VMxM
which is called the ith order right singular vector.
SVD algorithm can perform macro analysis on the

acquired shaped vital signals and extract the universal charac-
teristic components of vital signs from interference, clutters,
and distortion. After SVD, the first-order principal compo-
nent of the signal can be regarded as the most important
component, and the singular value of the first-order prin-
cipal component σ1 represents the specific gravity of the
principal component. The first order left singular vector u1
represents the change of the principal component signal in
spatial position (fast time), which is related to the distortion,
deformation, and dynamic characteristics of the signal. The
first order right singular vector v1 represents the change of
the principal component signal in the time dimension (slow
time), which includes the change characteristics of vital signs

such as heartbeat and respiration. In the detection task of
scenario 2, the first order right singular vector of acquired
life signal is shown in Figure 14.

FIGURE 14. The first order right singular vector of the acquired life signal
in scenario 2.

The first order right singular vector of the obtained life
signal is performed with EEMD to extract vital signs of
respiration and heartbeat. The specific steps are as follows:

Firstly, Gaussian white noise is added to first order right
singular vector v(t):

si(t) = v(t)+ ni(t) (34)

where, ni(t) represents the Gaussian white noise signal, and
si(t) represents the signal after the ith time addition process of
white noise. Then, perform empirical mode decomposition
(EMD) on si(t) according to the steps described in [22] to
obtain all IMF components:

si(t) =
n∑

k=1

ci,k (t)+ ri,k (t) (35)

where, n is the number of IMF decomposed by EMD, ci,k (t)
are IMF components (IMFs), ri,k (t) is the residual compo-
nent. Repeat the above process forM cycles, add white noise
with different amplitude in each cycle, and a series of IMFs
can be obtained:

[{c1,n(t)}, {c2,n(t)}, . . . , {cM ,n(t)}]

n = 1, 2, . . . ,N ; i = 1, 2, . . . ,M (36)

Then average all IMF components, and take it as the final
target IMF component of EEMD cn(t):

cn(t) =
1
M

M∑
i=1

ci,n(t) (37)

where ci,n(t) is the IMF component in the ith cycle. The time
domain waveform of each IMF component after EEMD for
scenario 2 has been shown in Figure 15.

Important components are concentrated in the low fre-
quency range, in which the distribution range of heartbeat
frequency is 1∼2.2Hz and the distribution range of respira-
tory frequency is 0.2∼0.8Hz. Therefore, some IMFs within
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FIGURE 15. Waveform of IMF components after EEMD for scenario 2.

the spectrum of vital signs can be used to reconstruct respi-
ratory signals and heartbeat signals. Preform Fourier trans-
formation on each IMF component, then calculate the total
energy E(f ) in frequency domain, the energy Er(f ) within
the respiratory frequency distribution range (0.2∼0.8Hz), and
the energy Eh(f ) within the heartbeat frequency distribution
range (1∼2.5Hz). The Energy proportion of respiratory and
heartbeat range are calculated as Er(f )/E(f ) and Eh(f )/E(f )
respectively, and the IMF selection threshold for respiratory
signal and heartbeat signal are set as 0.8 and 0.5 respectively.

Therefore, the energy percentage within respiratory and
heartbeat bands of each IMF component for scenario 2 has
been shown in Figure 16. Finally, the first IMF component is
selected to reconstruct the heartbeat signal and the third IMF
component is selected to reconstruct the respiratory signal.

In order to further extract the heartbeat signal, a Butter-
worth filter is established, the upper and lower boundary
frequencies of the passband are set to 1.0 Hz and 2.2 Hz
respectively, the passband attenuation is set to 0.1 dB. The
upper and lower boundary frequencies of the stopband are set
to 0.7 Hz and 2.5 Hz, respectively, the stopband attenuation
is set to 1 dB. The order of the Butterworth filter equals 2.
Finally, the vital signs extraction of respiratory signal and
heartbeat signal can be realized. Perform the above proce-
dures for the tasks in scenarios 1, 2, 3, and 4, one can obtain
the final vital signs extraction results, the waveforms and

FIGURE 16. The energy percentage within respiratory and heartbeat
bands of each IMF component for scenario 2.

power spectrums of respiratory and heartbeat signals for all
objects in scenarios 1, 2, 3, and 4 are shown in Figure 17.

VIII. RESULTS AND DISCUSSION
In order to verify the progressiveness of the proposedmethod,
20 sets of repeated experiments for the proposed algorithm
and some existing methods in the above four scenarios with
different setting parameters were carried out, some important
indicators were calculated during each detection task in four
scenarios, the results have been shown in Table 6. Where,
the indicator ‘‘Accuracy’’ indicates the vital signs identifica-
tion accuracy of specific algorithm, the indicator ‘‘RMSE’’
indicates root mean square error of the estimation trajectory
relative to the real motion trajectory, the indicator ‘‘RF’’
indicates respiratory frequency, the indicator ‘‘R-SNR’’ indi-
cates signal-to-noise ratio of extracted respiratory signal, the
indicator ‘‘HF’’ indicates heartbeat frequency, the indicator
‘‘H-SNR’’ indicates signal-to-noise ratio of extracted heart-
beat frequency, the indicator ‘‘Time’’ indicates algorithm
running time in specific device configuration for each detec-
tion task, and the indicator ‘‘Success rate’’ indicates the
task success rate of 20 groups of repeated experiments after
changing the settings of different personnel, distance, move-
ment speed, obstacles and so on. In addition, most of the
exiting methods have only achieved dynamic target trajectory
detection, and not extracted vital signs information, therefor
the ‘‘CLEAN-KF’’ method [29], ‘‘SVM’’ method [37] and
OS-CFAR [35] are chosen as the control group for indicators
‘‘Accuracy’’, ‘‘RMSE’’, ‘‘Time’’ and ‘‘Success rate’’ to illu-
minate the improvement of proposed method, other indica-
tors are advanced functions that have not been implemented
before.

The measurement results of key indicators in Table 6 show
that the proposed algorithm has high accuracy, real-time per-
formance, robustness and stability. In multiple static targets
detection task, most of the algorithms can ensure the success-
ful detection, however the CNN model recognition accuracy
and position detection accuracy of the algorithm in this paper
are the highest. In the dynamic target detection tasks, the
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FIGURE 17. The waveforms and power spectrums of respiratory and heartbeat signals for all detected person in
scenarios 1, 2, 3, and 4: (a) Waveform of respiratory signal of personnel 1 in scenario 1, (b) Waveform of
heartbeat signal of personnel 1 in scenario 1, (c) Normalized spectrum of respiratory and heartbeat signals of
personnel 1 in scenario 1, (d) Waveform of respiratory signal of personnel 2 in scenario 1, (e) Waveform of
heartbeat signal of personnel 2 in scenario 1, (f) Normalized spectrum of respiratory and heartbeat signals of
personnel 2 in scenario 1, (g) Waveform of respiratory signal of personnel 3 in scenario 1, (h) Waveform of
heartbeat signal of personnel 3 in scenario 1, (i) Normalized spectrum of respiratory and heartbeat signals of
personnel 3 in scenario 1, (j) Waveform of respiratory signal of personnel in scenario 2, (k) Waveform of heartbeat
signal of personnel in scenario 2, (l) Normalized spectrum of respiratory and heartbeat signals of personnel in
scenario 2, (m) Waveform of respiratory signal of personnel 1 in scenario 3, (n) Wave-form of heartbeat signal of
personnel 1 in scenario 3, (o) Normalized spectrum of respiratory and heartbeat signals of personnel 1 in
scenario 3, (p) Waveform of respiratory signal of personnel 2 in scenario 3, (q) Waveform of heartbeat signal of
personnel 2 in scenario 3, (r) Normalized spectrum of respiratory and heartbeat signals of personnel 2 in
scenario 3, (s) Waveform of respiratory signal of personnel 3 in scenario 3, (t) Waveform of heartbeat signal of
personnel 3 in scenario 3, (u) Normalized spectrum of respiratory and heartbeat signals of personnel 3 in
scenario 3, (v) Waveform of respiratory signal of personnel in scenario 4, (w) Waveform of heartbeat signal of
personnel in scenario 4, (x) Normalized spectrum of respiratory and heartbeat signals of personnel in scenario 4.
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FIGURE 17. (Continued.) The waveforms and power spectrums of respiratory and heartbeat signals for all
detected person in scenarios 1, 2, 3, and 4: (a) Waveform of respiratory signal of personnel 1 in scenario 1,
(b) Waveform of heartbeat signal of personnel 1 in scenario 1, (c) Normalized spectrum of respiratory and
heartbeat signals of personnel 1 in scenario 1, (d) Waveform of respiratory signal of personnel 2 in scenario 1,
(e) Waveform of heartbeat signal of personnel 2 in scenario 1, (f) Normalized spectrum of respiratory and
heartbeat signals of personnel 2 in scenario 1, (g) Waveform of respiratory signal of personnel 3 in scenario 1,
(h) Waveform of heartbeat signal of personnel 3 in scenario 1, (i) Normalized spectrum of respiratory and
heartbeat signals of personnel 3 in scenario 1, (j) Waveform of respiratory signal of personnel in scenario 2,
(k) Waveform of heartbeat signal of personnel in scenario 2, (l) Normalized spectrum of respiratory and
heartbeat signals of personnel in scenario 2, (m) Waveform of respiratory signal of personnel 1 in scenario 3,
(n) Wave-form of heartbeat signal of personnel 1 in scenario 3, (o) Normalized spectrum of respiratory and
heartbeat signals of personnel 1 in scenario 3, (p) Waveform of respiratory signal of personnel 2 in scenario 3,
(q) Waveform of heartbeat signal of personnel 2 in scenario 3, (r) Normalized spectrum of respiratory and
heartbeat signals of personnel 2 in scenario 3, (s) Waveform of respiratory signal of personnel 3 in scenario 3,
(t) Waveform of heartbeat signal of personnel 3 in scenario 3, (u) Normalized spectrum of respiratory and
heartbeat signals of personnel 3 in scenario 3, (v) Waveform of respiratory signal of personnel in scenario 4,
(w) Waveform of heartbeat signal of personnel in scenario 4, (x) Normalized spectrum of respiratory and
heartbeat signals of personnel in scenario 4.
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TABLE 6. Results and performance comparison with the referenced algorithm.

SVM method is difficult to achieve successful detection, the
CLEAN-KF method and OS-CFAR method have good per-
formance, and proposed method has a higher identification
accuracy, a smaller motion trajectory estimation error and
only a little bit longer running time relative to CLEAN-KF
method and OS-CFAR method. At the same time, when the
experimental settings are changed, the CLEAN-KF method
and OS-CFARmethod fail in some highly complex scenarios
such as multi-target interference and long-range detection,
however the proposed method still has a high detection suc-
cess rate, which illustrates the high sensitivity and stability of
it. Furthermore, a more complete scheme which can extract
the vital signs information of respiratory and heartbeat signals
is proposed. For most detection tasks, the extracted respi-
ratory signal is relatively pure and accurate, but the signal-
to-noise ratio of heartbeat signal is relatively low, this is
because the human heartbeat signal is inherently unstable and
vulnerable to interference during motion.

IX. CONCLUSION
In this paper, an intelligent signal processing method for
remote vital signs detection which is suitable not only for
stationary targets but also for dynamic targets is proposed.
The detection experiments are carried out based on NVA6100

pulse radar system and four different simulation scenarios
under complex rescue conditions are established. A CNN
model which contains four convolution layers, one full con-
nection layer and a residual layer structure is established for
vital signs identification, the identification results show that
the CNNmodel can achieve precise recognition of vital signs
for both stationary targets and dynamic targets getting rid
of the interference of harmonics and distortion. The motion
trajectory is estimated by misidentified outliers’ elimina-
tion with K-means clustering algorithm and Kalman filtering
algorithm, then the curved life signals can be shaped into
straight lines according to the motion trajectory. Finally, the
SVD-EEMD algorithm is proposed for vital signs extraction
of dynamic targets, the feature vector of principal component
is extracted after SVD to obtain the important characteristics
of vital signs, then EEMD algorithm is adopted for respira-
tory signal and heartbeat signal extraction. The experiments
results and some important indicators compared with ref-
erence methods illustrates that the proposed algorithm not
only has high accuracy, real-time performance, robustness
and stability for dynamic targets identification and motion
trajectory estimation, but also build amore systematic scheme
which can extract the vital signs information of respiratory
and heartbeat signals.
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