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ABSTRACT The stability issues assessment by the impedance-based method demands the computation
of accurate small-signal models. However, obtaining impedance models can be a time-consuming task if
analytical models or the perturbation-based method are used. Especially in large-scale, poorly damped,
distributed, and frequency-dependent parameter systems. A third approach, which has been less explored,
is based on numerical derivative approximations, rather than analytical equations or time-domain simula-
tions. This approach works with large-scale systems, avoiding tedious mathematical expressions and large
recursive time-domain simulations. As a step-forward in this approach, this paper proposes a numerical-
oriented method, based on the finite-difference method, to compute impedance models of time-delay power-
electronics-based power systems. An outstanding feature of the proposal is the capability to incorporate the
exact delays into the numerical models of impedance without resorting to approximations nor increasing the
size of the system model. We compare the proposed method with the analytical and perturbation methods
using a grid-connected microgrid with two power electronic inverters as a test system. The results confirm
the correct performance of the proposal.

INDEX TERMS Impedance-based method, small-signal stability, VSC-based systems, time-delay.

I. INTRODUCTION
The impedance based stability method [1] has been
considered as a tool that provides valuable information
related to the small-signal stability and performance of the
port-interactions in power systems with power electron-
ics penetration around steady-state operating points. Sys-
tems based on power converters have been analyzed with
impedance models in several reference frameworks, such as
wind farms type III and IV along with high voltage direct cur-
rent (HVDC) transmission systems based on line-commuted
converters (LCC) or voltage source converters (VSC) [2], [3]
were modeled with sequence impedance. Similarly, the effect
of inertial support techniques in the sequence impedance
models is studied in [4] and [5]. TheDQ framework is used to
study HVDC-VSC systems, power converters and microgrids
[6], [7], [8], [9], [10]. Impedance models of modular multi-
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level converters (MMC) are commonly derived in the har-
monic state space (HSS) to preserve the harmonic coupling in
these converters [11], [12], [13], [14]. Other proposals have
been presented as the αβ-domain [15], [16] and the modified
sequence domain [17], [18], [19]. Regardless of the selected
framework, the impedance models are got by either analytic
procedures or applying successive small perturbations at dif-
ferent frequencies of interest. The former option is commonly
preferred because of the following reasons: provides accurate
insights of the interactions between the subsystems, leads
to closed expressions, the exact effect of every parameter in
the small-signal models can be measured, helps to reinforce
the knowledge related to small-signal issues, among others.
Deriving impedance models with the analytical method can
be an overwhelming work, especially for large-scale systems.
On the other hand, the perturbation method [20] works with
measurements of voltages and currents at the terminals of
subsystems; measurements come from real systems or simu-
lations. Regarding to this, several approaches have been used
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to identify the impedance models injecting a small amplitude
signal at the point of interaction, where the subsystems need
to be identified. The injection corresponds to three phase
voltages (series) or currents (shunt) [21], [22] or single phase
perturbations [23]. These examples use a single-tone proce-
dure, applying the perturbation at different frequencies one
by one, which can be a slow procedure.

On the other hand, the approach based on pseudo-random-
sequence (PRS) perturbations can be a faster option to
identify the impedance. Typical signals are the binary,
near-binary and non-binary sequences, with binary being
preferred for identification applications in power electron-
ics [24]. Popular alternatives among the binary sequences
are the maximum-length pseudo random binary (MLBS),
the inverse-repeat binary (IRS), the discrete-interval binary
(DIBS) and orthogonal binary sequences [25], [26], [27].
Another method to determine the impedance applies changes
in the references of the active or reactive power in the
power electronics control [28]. This technique originally
uses measured information of the system when operates in
two conditions; however, there has been alternatives that uses
three [29] or four operating points [30] in order to esti-
mate the impedance. Employing more measured points can
improve the accuracy of the estimation, and reduces the effect
of the inherent coupling in the dq framework [31]. On the
other hand, a novel approach using artificial neural networks
to identify impedance under several operating conditions is
presented in [32]. In most of the reported works devoted
to the small-signal stability analysis present the identifica-
tion impedance as a backup to validate the analytic models,
although the intrinsic practical approach of this method lead
to its application in real systems as is reported in [33].

A third alternative little addressed is the numerical
approaches that seek to avoid the analytical work that rep-
resents the linearization of the nonlinear model and alge-
braic manipulation. The usage of built-in functions of MAT-
LAB is used in [34] to linearized models implemented in
SIMULINK; an iterative algorithm is used in [35] to iden-
tify the impedance; in both works, the impedance is com-
puted using the DQ framework. The periodic small-signal
analysis (PAC) is presented in [36] to numerically derived
impedance models of an MMC-VSC, then the vector fitting
is used to compute analytical transfer functions. The numeric
approach is not restricted to the impedance models, in [37]
is presented a methodology to derive a state space model
of electronic converters in the extended harmonic domain
(EHD) using a forward finite difference approximation. In
this regards, a previous work of the authors has introduced the
so-called finite-difference-impedance method (FDIM) where
the forward finite-difference approximation [38] is used to
compute a linear time invariant (LTI) model, and afterward
the impedance models are determined using a systematic
procedure. The method is oriented toward systems modeled
in DQ-domain, and its outstanding features are the gener-
ality to compute the impedance of large systems, it does
not matter the control techniques (linear/nonlinear), it takes

FIGURE 1. Separation of the subsystems.

less time to get the impedance compared to the analytic or
the perturbation approach, and its accuracy is much better
that the perturbation approach. Nonetheless, [38] needs the
ordinary differential equations (ODEs) system, which leads
to approximate the delays with rational functions. However,
incorporate the delay in this manner may lead to a deficient
model to assess stability because of high frequency dynam-
ics are overlooked; this is vital to understand the harmonic
stability issues related to power electronics, whose behaviour
exhibits non-passive properties in this frequency range related
to time-delayed [39]. Despite the order of the approximation
can be increased to improve its performance, this turns out in
a higher-order model. So, it is better trying to represent the
delay exactly. Motivated by this issue, the aim of the present
work is to introduce a procedure to incorporate the delays
into the finite-difference-impedance method in an exact form
without increasing the system order. This extension com-
plements the previous proposal and opens the possibility of
exploring hybrid approaches, where parts can be numerically
or analytically computed.

The structure of this document is: section II explains the
proposal to add the delay to the finite-difference-impedance
method that can be seen as an extension of the origi-
nal FDIM, but with an analytical term. In section III, the
proposal is compared with the analytical and perturbation
approaches; it is also shown the application of the numerical
Laplace transform to obtain time-domain responses from
the impedance models and the generalized Nyquist stability
criterion (GNSC) to assess small-signal stability. Finally,
in section IV the conclusions are given.

II. FORMULATION OF THE ANALYTIC EXTENSION
Let us consider a system that is divided as Figure 1 shows.
Here, the source subsystemwill be represented just as a power
electronic converter with closed-loop control; however, many
more devices components can be included. The source sub-
system has its average model in DQ as [38]:

dx1
dt
= f 1(x1, i,u1, v)

VOLUME 10, 2022 105759



J. S.-Ramírez et al.: Finite-Difference-Impedance Method for Time-Delay Systems

d i
dt
= g1(x1, i,u1, v) (1)

Hereinafter, lower case bold fonts indicate vector variables,
then x1 is for the state vector related to elements of the source
subsystem, u1 represents the control references, the current i
and the voltage v in the interface are also explicitly shown in
the ODE set. There is a passive filter (whose topology can be
whatsoever) in terminals of the converter that is represented
by the element Zf . It is worth noting that the control strategy
takes the control reference u1, and the voltage and current
v, i as inputs, and gives as output the modulation m1. Then,
the effect of the PWM causes that a delayed modulation
y1 be applied to the converter. In (1), the delay dynamics
are included in x1 and in the vector field f 1(); however, it is
observed that a relationship between m1 (which results of
algebraic operations m1 = q1(x1, i,u1, v)), and y1 is always
held, this can be written in the frequency domain as a linear
relationship:

Y1(s) = Gd (s)M1(s) (2)

where Gd (s) is the delay transfer function. If Gd (s) = e−Tss,
the pure delay is incorporated into the model, but in this case
it is not possible to get an ODE set (2), unless to resort to
delay differential equations. Now, y1 is considered as a new
input and (1) is rewritten as follows:

dx1
dt
= f 1(x1, i,u1, v, y1)

d i
dt
= g1(x1, i,u1, v, y1)

m1 = q1(x1, i,u1, v) (3)

Around the steady-state operating point (x01, i
0, v0,y01), the

following small-signal model is obtained:

d
dt

[
1x1
1i

]
=

[
A4 A3
A2 A1

] [
1x1
1i

]
+

[
B2
B1

]
1u1

+

[
C2
C1

]
1v+

[
G2
G1

]
1y1

1m1 = H21x1 +H11i+ F1v+ D1u1
1Y1(s) = Gd (s)1M1(s) (4)

The involved matrices are computed using a forward
finite-difference approach [40] column-by-column, e.g., the
ith column of A4 is obtained as follows:

Ai4 ≈
f 1(x

0
1 + εI

i
n, i

0,u01, v
0, y01)− f 1(x

0
1, i

0,u01, v
0, y21)

ε
(5)

The assumed dimensions of the variables are x1 ∈ Rn,
u1 ∈ Rk and v, i,m1, y1 ∈ R2; I in is the ith column of an
identity matrix of dimension n, and ε is a small perturbation
parameter. This system can be seen as an hybrid one, where
the involved matrices are numerically computed, whereas
the delay Gd (s) = e−Tss is analytically included. From a
small-signal perspective, the source subsystem can be thought
as either a Thévenin or Norton equivalent. If the former is

FIGURE 2. Test case: Two inverters connected to the grid.

FIGURE 3. Controls of the power electronic converters.

selected to represent the source subsystem, this can be written
as:

K s1U1(s) = Zs(s)1I(s)+1V (s) (6)

where K s, Zs are obtained if the state-space model and the
algebraic equation in (4) are changed into the frequency
domain, and then algebraic manipulations are done using
these terms together with the relationship between 1Y1 and
1M1. This results in:

K = (A2 + G1e−TssH2)(sIn − A4 − G2e−TssH2)−1

P = −
[
C1 + G1e−TssF+ K(C2 + G2e−TssF)

]−1
Zs = P

[
sI2 − A1 − G1e−TssH1 − K(A3 + G2e−TssH1)

]
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FIGURE 4. Impedance models computed with the FDIM-A (–), analytic
(- -) and perturbation (·) approaches: weak grid.

K s = P
[
B1 + G1e−TssD+ K(B2 + G2e−TssD)

]
(7)

where, In and I2 are identity matrices of dimension n and 2,
respectively; for brevity, the argument s is omitted. In the case
of the load subsystem, a similar derivation can be obtained,
it is assumed that its large-signal model is given as follows:

d i
dt
= g2(x2, i,u2, v, y2)

dx2
dt
= f 2(x2, i,u2, v, y2)

m2 = q2(x2, i,u2, v) (8)

And the delayed relationship is Y2(s) = Gd (s)M2(s), where
the delay function Gd (s) can have different delay values of
those in the source subsystem. The small-signal model is
similarly derived, and a Thévenin equivalent is also selected
to represent the load susbsystem:

1V (s) = Zl(s)1I(s)+ K l1U2(s) (9)

The matrices are computed as follows:

K = (A2 + G1e−TssH2)(sIn − A4 − G2e−TssH2)−1

FIGURE 5. Impedance models computed with the FDIM-A (–) and the
analytic (- -) approaches: stiff grid.

P =
[
C1 + G1e−TssF+ K(C2 + G2e−TssF)

]−1
Zl = P

[
sI2 − A1 − G1e−TssH1 − K(A3 + G2e−TssH1)

]
K l = −P

[
B1 + G1e−TssD+ K(B2 + G2e−TssD)

]
(10)

These expressions lead to the small-signal model regardless
of the type of control strategy or system size.

III. VALIDATION OF THE PROPOSAL
The test case shown in Figure 2 is used to illustrate the pro-
posal. It consists of two power converters interconnected to a
grid equivalent through transmission lines that are modeled
with a PI equivalent, the system is operating in balanced
conditions. The first converter has an LCL passive filter,
whereas the second one has an RLfilter. The control blocks of
both converters are depicted in Figure 3, eachVSC is based on
typical decoupled current control in the rotating synchronous
framework dq. TheVSC-1 additionally has outer controls that
regulate the DC-link voltage and the reactive power. A phase
locked loop (PLL) is used to synchronize each converter,
and the effect of the PWM and the digital implementation
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FIGURE 6. Effect of bandwidth in stability: 1.667 krad/s –, 1.818 krad/s –,
2 krad/s –, 2.222 krad/s –, 2.5 krad/s –.

is represented by the exact delay transfer function. Now, the
large-signal model is firstly presented, afterward the numeri-
cal linearization is carried out, and then the impedance model
is obtained.

A. LARGE-SIGNAL MODEL
A general frame is used to model all the system elements
(this is denoted with capital letters DQ), besides there are
other two frames oriented with the voltage at the point of
common coupling (PCC) vpcc1 and vpcc2 (these are denoted
with lowercase dq). The PLL gives either the angle δ1 or
δ2. The knowledge of these angles permits synchronizing
each power converter and so, the control strategies can be
developed. The change between any of the two frames and
the general one can be done using the rotation matrix [41]:

C(δ) =
[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]
(11)

It is worth noting that, due to that the natural framework of
the system is into the abc domain, this has to be referred into
the DQ frame. This change is accomplished using the Park

FIGURE 7. Effect of delay in stability: 198.4 µs –, 220 µs –, 240 µs –,
260 µs –.

transform:

T (θ ) =
2
3


cos (θ) cos

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
− sin (θ) − sin

(
θ − 2π

3

)
− sin

(
θ + 2π

3

)
1
2

1
2

1
2


(12)

where θ = ω0t , being ω0 the nominal frequency. To study
this system, the point of interface between both subsystems
is selected at the PCC of the voltage source converter 1
(VSC-1), i.e., vpcc1 . Hence, the VSC-1, its controls and
the LCL filter are taken as the source subsystem, while
the rest of elements are part of the load subsystem. Fig-
ure 3 shows the delays represented without rational approx-
imations in both VSCs. First, the state variables of each
subsystem are defined according to (3). Then, we have
x1 =

[
vdc1 δ1 xpll1 xd1 xq1 xv1 xQ1 ic1 vf1

]T , and ic1 =[
ic1D ic1Q

]T
, vf1 =

[
vf1D vf1Q

]T
. The current and voltage in

the interface point (in this case results that the interface point

is the same that the PCC of VSC-1) are iDQ =
[
if1D if1Q

]T
,

vDQ =
[
vpcc1D vpcc1Q

]T
, respectively; the control references
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are u1 =
[
v∗dc Q

∗
]T . The vector x1 contains the integral terms

of the proportional integral (pi) controls, the angle phase
computed by the PLL, the DC-link voltage and the current
and voltage in the LCLfilter. The dynamical model in per unit
(p.u.) of the source subsystem is as follows: (13), as shown
at the bottom of the page, where the most of the variables
can be found in Figure 3. Term ωb is the base frequency,
ω̂0 is the nominal frequency in p.u., and Leq1 = Lc1 + Lfa1 .
Due to ic1dq , vpcc1dq and yDQ1

are computed using the rotation
matrix (11) (see Figure 3), these terms contain nonlinearities
that are implicitly in the large-signal model. The voltage vpcc1
is an algebraic variable; however, considering a system with
a capacitor in the interface point, this can be a state variable.
On the other hand, the large-signal model for the load subsys-
tem is given in (14), as shown at the bottom of the next page.

B. SMALL-SIGNAL IMPEDANCE MODEL
The parameters of the balanced system are given in Table 1
(the meaning of each parameter is given in the Appendix A)
referred to base values of 0.8 MVA, 0.69 kV and 60 Hz;
the A-phase of the voltage vth is 1.02 cos(ω0t + 0.11) p.u.
The results are shown in Figure 4, where the impedance
magnitude of both subsystems (in the range 10 Hz-10 kHz)
computed with the finite-difference-impedance method with
analytical extension (FDIM-A) approach is compared against
the perturbation approach whose simulations are carried out
in SIMULINK/MATLAB, and analytic expressions (that are
given in the Appendix B). The three approaches give similar
results and they almost overlap each other, and this permits to
validate the proposal. As seen from Table 1, the impedance
of the equivalent grid gives a short-circuit ratio (SCR) of
4.5, so this grid is almost weak [42]. Now, it will be con-
sidered another operative scenario with a stronger grid with

SCR=18 but the same X/R relation. This time, the impedance
models are just computed using the analytic and the FDIM-
A; the results in Figure 5 show that Zs is less affected
by the impedance of the grid; however, some changes are
seen in the main diagonal elements. On the other hand, the
grid impedance impacts more the characteristic of the load
impedance Zl ; the off-diagonal elements seen in Figure 5-(b)
have a smaller magnitude in low frequencies compared to
4-(b), moreover, the resonance peaks have bigger values.
Regarding to the main diagonal elements, the changes are
notable in low frequencies. These results confirm that the
proposal correctly identifies weak or stiff systems.

C. NYQUIST STABILITY ANALYSIS
Checking the stability is a major concern because the system
can be undergone to parametric changes. Therefore, is vital to
understand how these changes impact in the stable behavior
of the system. This task is generally carried out using the
generalized Nyquist stability criterion (GNSC) [43]; with the
traces of the eigenvalues λ1(jω) and λ2(jω) of the open-loop
gain L(jω) = Zl(jω)Z−1s (jω). To verify that the FDIM-A
is able to retain the stability properties of the system, it is
assessed the sensitivity of the system to changes in the gains
of the inner-loop control. The bandwidth of the current con-
trol in VSC-2 is varied to find its effect in the stability.
The traces of λ1 and λ2 are shown in Figure 6 using the
FDIM-A. Initially, the control is tuned to have a bandwidth of
1.667 krad/s and neither λ1 nor λ2 encircles the critical point
(-1,0). As the bandwidth increases the traces of λ1 get closer
and closer, and eventually, with a bandwidth of 2.5 krad/s
the (-1,0) point is encircled. The system is unstable, and the
unstable oscillations are found around 84.988 Hz.

d
dt



vdc1
δ1
xpll1
xd1
xq1
xv1
xQ1

ic1D
ic1Q
vf1D
vf1Q



=



ωb
Cdc1

(
Idc − yD1 ic1D − yQ1 ic1Q

)
ωb(ω̂1 − 1)
ki1pll vpcc1q

ki1d (i
∗
d − ic1d )

ki1q (i
∗
q − ic1q )

kiv (v
∗
dc − vdc1 )

kiQ (Q
∗
− Q1)

ωb
Lc1

(vdc1yD1 − Rc1 ic1D + Lc1 ω̂0ic1Q − vf1D )
ωb
Lc1

(vdc1yQ1 − Rc1 ic1Q − Lc1 ω̂0ic1D − vf1Q )
ωb
Cf1

(ic1D − if1D + Cf1 ω̂0vf1Q )
ωb
Cf1

(ic1Q − if1Q − Cf1 ω̂0vf1D )


d
dt

[
if1D
if1Q

]
=

ωb

Lfa1

[
vf1D − Rfa1 if1D + ω̂0Lfa1 if1Q − vpcc1D
vf1Q − Rfa1 if1Q − ω̂0Lfa1 if1D − vpcc1Q

]
[
md1
mq1

]
=

1
vdc1

[
kp1d (i

∗
d − ic1d )+ xd1 − ω̂0Leq1 ic1q + vpcc1d

kp1q (i
∗
q − ic1q )+ xq1 + ω̂0Leq1 ic1d + vpcc1q

]
[
1Yd1 (s)
1Yq1 (s)

]
= e−Td1s

[
1Md1 (s)
1Mq1 (s)

]
(13)
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On the other hand, the stability of the scenario with a stiff
grid is also assessed. Reducing the bandwidth of the current
control in VSC-2 to the value of 1.667 krad/s does not cause
instability. So, this time it will be tested the impact of the
delay in VSC-2. Initially, Td2 = 198.4 µs and neither λ1 nor
λ2 encircle the critical point. Afterward, the delay increases
and the Nyquist traces of λ1 and λ2 are shown in Figure 7.
Checking the trace of λ1, is seen that the system loses stability
for a delay of 260 µs, expecting that the frequency of the
unstable oscillations be around of 973.7 Hz.

Time-domain simulations using the nonlinear model are
carried out with SIMULINK to reinforce the outcomes
obtained with the FDIM-A. Figure 8 shows that increasing
the bandwidth of current control in VSC-2 the system effec-
tively causes oscillations of 85.22 Hz; Regarding to the delay,
in Figure 9 is seen that a value of 260 µs drives the system
to present oscillations of 970 Hz. Both Figures match with
high accuracy regarding to the results of the proposal, so this
confirms that the FDIM-A retains the stability properties
of the system, and can be trustfully used in small-signal
studies.

FIGURE 8. Response of if1D
to a step change in Q∗ using several

bandwidths.

D. NUMERICAL LAPLACE TRANSFORM STABILITY
ANALYSIS
An alternative approach for assessing stability is to get the
time-domian waveforms of the system from the impedances

d
dt

[
if1D
if1Q

]
=
ωb

Lg1

[
vpcc1D − Rg1 if1D + ω̂0Lg1 if1Q − vπ1D
vpcc1Q − Rg1 if1Q − ω̂0Lg1 if1D vπ1Q

]

d
dt



vπ1D
vπ1Q
iπ1D
iπ1Q
eπ1D
eπ1Q
δ2
xpll2
xd2
xq2
ic2D
ic2Q
vπ2D
vπ2Q
iπ2D
iπ2Q
eπ2D
eπ2Q
igD
igQ
ithD
ithQ



=



(2ωb/Cπ1 )(if1D − iπ1D + ω̂0(Cπ1/2)vπ1Q )
(2ωb/Cπ1 )(if1Q − iπ1Q − ω̂0(Cπ1/2)vπ1D )

(ωb/Lπ1 )(vπ1D − Rπ1 iπ1D + ω̂0Lπ1 iπ1Q − eπ1D )
(ωb/Lπ1 )(vπ1Q − Rπ1 iπ1Q − ω̂0Lπ1 iπ1D − eπ1Q )
(2ωb/Cπ1 )(iπ1D − ithD + igD + ω̂0(Cπ1/2)eπ1Q )
(2ωb/Cπ1 )(iπ1Q − ithQ + igQ − ω̂0(Cπ1/2)eπ1D )

ωb(ω̂2 − 1)
ki2pll vpcc2q

ki2d (I
∗
d2
− ic2d )

ki2q (I
∗
q2 − ic2q )

(ωb/Leq2 )(Vdc2yD2 − Req2 ic2D + ω̂0Leq2 ic2Q − vπ2D )
(ωb/Leq2 )(Vdc2yQ2 − Req2 ic2Q − ω̂0Leq2 ic2D − vπ2Q )

(2ωb/Cπ2 )(ic2D − iπ2D + ω̂0(Cπ2/2)vπ2Q )
(2ωb/Cπ2 )(ic2Q − iπ2Q − ω̂0(Cπ2/2)vπ2D )

(ωb/Lπ2 )(vπ2D − Rπ2 iπ2D + ω̂0Lπ2 iπ2Q − eπ2D )
(ωb/Lπ2 )(vπ2Q − Rπ2 iπ2Q − ω̂0Lπ2 iπ2D − eπ2Q )

(2ωb/Cπ2 )(iπ2D − igD + ω̂0(Cπ2/2)eπ2Q )
(2ωb/Cπ2 )(iπ2Q − igQ − ω̂0(Cπ2/2)eπ2D )

(ωb/Lg2 )(eπ2D − Rg2 igD + ω̂0Lg2 igQ − eπ1D )
(ωb/Lg2 )(eπ2Q − Rg2 igQ − ω̂0Lg2 igD − eπ1Q )
(ωb/Lth)(eπ1D − RthithD + ω̂0LthigQ − vthD )
(ωb/Lth)(eπ1Q − RthithQ − ω̂0LthigD − vthQ )


[
md2
mq2

]
=

1
Vdc2

[
kp2d (I

∗
d2
− ic2d )+ xd2 − ω̂0Lc2 ic2q

kp2q (I
∗
q2 − ic2q )+ xq2 + ω̂0Lc2 ic2d

]
[
1Yd2 (s)
1Yq2 (s)

]
= e−Td2s

[
1Md2 (s)
1Mq2 (s)

]
(14)
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FIGURE 9. Response of if1D
to a step change in I∗q2

for several delays.

FIGURE 10. Small-signal equivalent electric circuit of the test case.

Zs(s) and Zl(s) instead of resorting to software such as
PSCAD, EMTP-RV or SIMULINK, among others. The con-
version from frequency domain to time domain can be con-
ducted through the numerical Laplace transform (NLT) [44],
[45], [46], which is a useful tool in the electromagnetic
transient (EMT) community, that allows benefits such as
accuracy, simplicity and numerical efficiency.

From a small-signal perspective, the test system is rep-
resented as Figure 10 indicates, using Thévenin equivalents
from both subsystems. The voltage sources represent small
perturbations (such as small changes in control references)
that can occur in each subsystem. Then, the current or the
voltage in the PCC can be computed using basic electric
circuit laws. Applying the Kirchhoff’s second law to the
circuit in Figure 10, leads to the following equation:

−K s1U1(s)+ [Zs(s)+ Zl(s)]1I(s)+ K l1U2(s) = 0

(15)

and the current is easily obtained as follows:

1I(s) = [Zs(s)+ Zl(s)]−1 [K s1U1(s)− K l1U2(s)]

(16)

To demonstrate the effectiveness of the NLT, the small-signal
model (16) is solved considering just an occurrence of a slight
change of reference in Q∗ from 0.1 to 0.11 p.u. This is rep-
resented with 1U1(s) =

[
0 0.01/s

]T and setting 1U2(s) =
0. The NLT is compared against SIMULINK in Figure 11,
where the variable if1D = 1if1D + i

0
f1D

is simulated for several
bandwidths. Initially, the system is operating in an stable

FIGURE 11. Current if1D
using NLT – and SIMULINK · · · . Bandwidths:

(a) 1.667 krad/s, (b) 1.818 krad/s, (c) 2.0 krad/s, (d) 2.222 krad/s,
(e) 2.5 krad/s.

condition; eventually, when the bandwidth is 2.5 krad/s the
system presents growing oscillations that are well replicated
by the generalized Nyquist stability criterion. The NLT in this
case is a useful tool for visualizing the dynamic behavior of
the system along with its steady state and also to evaluate
the stability as an alternative and complement to Nyquist
and Bode diagrams; providing truly waveforms of variables,
but with less computational burden in comparison to EMT-
software. Moreover, using the NLT to assess the stability does
not need to count the encirclements around the point (−1,0)
by the Nyquist diagrams. This task can be very difficult,
especially when the Nyquist diagrams are complicated draws.
This is more notorious in cases where the impedance of
any subsystem has several resonance peaks, such as those
systems where the long lines models are incorporated into
the analysis to take into account the high frequency effects of
these elements [44].

IV. CONCLUSION
This paper has presented an improvement to the finite-
difference-impedance method, which permits incorporating
the pure delay effect into the impedance model without
rational approximations. The method is entirely numerical
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TABLE 1. Parameters of the test case.

oriented, and the only analytic term is related to the exponen-
tial term; therefore, the proposal helps to reduce the tedious
task of deriving small-signal impedance models of power
electronics, especially when larger systems are of interest.
The correctness of the method was verified using the tradi-
tional analytic and perturbation approaches. Moreover, the
NLT was also used to obtain the time-domain response and
corroborate the results. The stability assessment showed that
the proposal can provide precise and fast information related
to oscillatory issues in power electronics-dominated power
systems.

APPENDIX
A. SYMBOLS DEFINITION
The meaning of each symbol shown in Table 1 is provided
here.Where the x stands, it relates to parameters of the VSC-1
(x = 1) or VSC-2 (x = 2).
• Rcx : Resistance of the passive filter in the VSC-side.
• Lcx : Inductance of the passive filter in the VSC-side.
• Cf1 : Capacitance of the passive filter in VSC-1.
• Rfax : Resistance of the passive filter in the grid-side.
• Lfax : Inductance of the passive filter in the grid-side.
• Rgx : Resistance of the feeder.
• Lgx : Inductance of the feeder.
• Cπx : Capacitance of the PI equivalent line.
• Rπx : Resistance of the PI equivalent line.
• Lπx : Inductance of the PI equivalent line.
• kpxpll : Proportional gain of the PLL.
• kixpll : Integral gain of the PLL.
• kpxd : Proportional gain of the inner loop control for the
d-current.

• kixd : Integral gain of the inner loop control for the
d-current.

• kpxq : Proportional gain of the inner loop control for the
q-current.

• kixq : Integral gain of the inner loop control for the
q-current.

• Tdx : Time delay representing the digital implementation
of control and PWM effect.

• kpv : Proportional gain of the outer inner control for the
DC-voltage in VSC-1.

• kiv : Integral gain of the outer inner control for the
DC-voltage in VSC-1.

• kpQ : Proportional gain of the outer inner control for the
reactive power in VSC-1.

• kiQ : Integral gain of the outer inner control for the reac-
tive power in VSC-1.

• v∗dc: Control reference of the DC-voltage in VSC-1.
• Q∗: Control reference of the reactive power in VSC-1.
• I∗d2 : Control reference of the d-current in VSC-2.
• I∗q2 : Control reference of the q-current in VSC-2.
• Rth: Resistance of the grid equivalent.
• Lth: Inductance of the grid equivalent.

B. ANALYTIC IMPEDANCE MODELS
The models are given here, the steady-state value of variables
is denoted with uppercase fonts and superindex 0.

• The impedance Zs of the source subsystem is computed
as follows:

Gpll =
ωb

s

[
0

kp1pll s+ki1pll
s

]
Gb =

(
1− Gpll

∂C
∂δ1

∣∣∣∣
δ01

V0
pcc1

)−1
GpllC(δ01)

K i =

[
−I0f1Q

I0f1D

]
Kv =

[
V 0
pcc1Q

−V 0
pcc1D

]
Cvdc = −

[
kpv s+kiv

s 0
]T

Cq = −

[
0

kpQ s+kiQ
s

]T
C i =

[
kp1d s+ki1d

s 0

0
kp1q s+ki1q

s

]

Gdec =
[

0 −ω̂0Leq1
ω̂0Leq1 0

]
A1 = C iCqK i + (Gdec − C i)

∂C
∂δ1

∣∣∣∣
δ01

I0c1Gb

+C(δ01)+
∂C
∂δ1

∣∣∣∣
δ01

V0
pcc1Gb

Gvpcc =
e−Td1 s

V 0
dc1

C−1(δ01)A1 +
∂C−1

∂δ1

∣∣∣∣
δ01

Y0
1Gb

Gsdq = I2 +
ωbe−Td1 s

V 0
dc1
Cdc1s

C−1(δ01)
(
C iCvdc −M0

1

)
(I0c1 )

T

A2 = (Gdec − C i)C(δ01)
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−
ωb

Cdc1s
(C iCvdc −M0

1)(Y
0
DQ1

)T

Gic1 =
e−Td1 s

V 0
dc1

C−1(δ01)A2

Gif 1 =
e−Td1 s

V 0
dc1

C−1(δ01)C iCqKv

Hsdq = V 0
dc1I2×2 −

ωb

Cdc1s
Y0
DQ1

(I0c1 )
T

Zc1 =

[Lc1
ωb
s+ Rc1 −ω̂0Lc1
ω̂0Lc1

Lc1
ωb
s+ Rc1

]

Y c =

[ Cf1
ωb
s −ω̂0Cf1

ω̂0Cf1
Cf1
ωb
s

]

Zf1 =

[Lfa1
ωb
s+ Rfa1 −ω̂0Lfa1
ω̂0Lfa1

Lfa1
ωb
s+ Rfa1

]
H ic1 =

ωb

Cdc1s
Y0
DQ1

(Y0
DQ1

)T + Zc1

A3 = Hsdq − (Y c +H−1ic1)
−1H−1ic1Hsdq

T1 =

[
Gsdq − Gic1H−1ic1A3

]−1
×

[
Gif 1 + Gic1H−1ic1(Y c +H

−1
ic1)
−1
]

T2 =

[
Gsdq − Gic1H−1ic1A3

]−1
Gvpcc

A4 = Zf1 + (Y c +H−1ic1)
−1(I2 −H−1ic1HsdqT1)

Zs =
[
I2 − (Y c +H−1ic1)

−1H−1ic1HsdqT2

]−1
A4

V0
pcc1 =

[
V 0
pcc1D

V 0
pcc1Q

]T
I0c1 =

[
I0c1D I0c1Q

]T
Y0
1 =

[
Y 0
d1
Y 0
q1

]T
M0

1 =

[
M0
d1
M0
q1

]T
Y0
DQ1
=

[
Y 0
D1

Y 0
Q1

]T
I2 =

[
1 0
0 1

]

• The impedance Zl is computed as follows:

C i =

[
kp2d s+ki2d

s 0

0
kp2q s+ki2q

s

]

Gdec =
[

0 −ω̂0Lc2
ω̂0Lc2 0

]
Gpll =

ωb

s

[
0

kp2pll s+ki2pll
s

]
Ga =

(
1− Gpll

∂C
∂δ1

∣∣∣∣
δ02

V0
pcc2

)−1
GpllC(δ02)

B1 = C−1(δ02)(−C i + Gdec)
∂C
∂δ1

∣∣∣∣
δ02

I0c2Ga

Gb =
e−Td2 s

Vdc2
B1 +

∂C−1

∂δ1

∣∣∣∣
δ02

Y0
2Ga

Zc2 =

[Lc2
ωb
s+ Rc2 −ω̂0Lc2
ω̂0Lc2

Lc2
ωb
s+ Rc2

]

B2 = e−Td2 sC−1(δ02)(−C i + Gdec)C(δ02)

Zconv2 = (I2 − Vdc2Gb)
−1 [Zc2 −B2

]
Zf2 =

[Lfa2
ωb
s+ Rfa2 −ω̂0Lfa2
ω̂0Lfa2

Lfa2
ωb
s+ Rfa2

]

Y2a =
1
2

[ Cπ2
ωb
s −ω̂0Cπ2

ω̂0Cπ2
Cπ2
ωb
s

]

Zπ2 =

[Lπ2
ωb
s+ Rπ2 −ω̂0Lπ2
ω̂0Lπ2

Lπ2
ωb
s+ Rπ2

]

Y2b =
1
2

[Cπ2
ωb
s− ω̂0Cπ2
ω̂0Cπ2

Cπ2
ωb
s

]

Zg2 =

[Lg2
ωb
s+ Rg2 −ω̂0Lg2
ω̂0Lg2

Lg2
ωb
s+ Rg2

]

Zth =

[
Lth
ωb
s+ Rth −ω̂0Lth
ω̂0Lth

Lth
ωb
s+ Rth

]
B3 =

[
Y2a + (Zf2 + Zconv2 )

−1
]−1

Z = Zg2 +
(
Y2b +

{
Zπ2 +B3

}−1)−1
Zeq =

(
Z−1 + Z−1th

)−1
Zg1 =

[Lg1
ωb
s+ Rg1 −ω̂0Lg1
ω̂0Lg1

Lg1
ωb
s+ Rg1

]

Y1a =
1
2

[ Cπ1
ωb
s −ω̂0Cπ1

ω̂0Cπ1
Cπ1
ωb
s

]

Zπ1 =

[Lπ1
ωb
s+ Rπ1 −ω̂0Lπ1
ω̂0Lπ1

Lπ1
ωb
s+ Rπ1

]

Y1b =
1
2

[ Cπ1
ωb
s −ω̂0Cπ1

ω̂0Cπ1
Cπ1
ωb
s

]

Zl = Zg1 +
{
Y1b +

[
Zπ1 + (Y1b + Z

−1
eq )
−1
]−1}−1

V0
pcc2 =

[
V 0
pcc2D

V 0
pcc2Q

]T
I0c2 =

[
I0c2D I0c2Q

]T
Y0
2 =

[
Y 0
d2
Y 0
q2

]T
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