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ABSTRACT Resistive random-access memory (RRAM) has been explored to implement neuromorphic
systems to accelerate neural networks. In this study, an RRAM crossbar array using parylene C (PPXC)
as both a resistive switching layer and substrate was fabricated. PPXC is a flexible and transparent poly-
mer with excellent chemical stability and biocompatibility. We studied PPXC-based RRAM devices with
Ti/PPX-C/Cu and Cu/PPX-C/Ti structures. Devices with the Ti/PPX-C/Cu structure offer stable electrical
and mechanical characteristics, such as a low set voltage of<1 V, good retention time of>104 s, endurance
cycles of>300, conductance ON/OFF ratio>10, and can withstand>350 mechanical bending cycles. Addi-
tionally, the switching and conduction mechanisms of the devices were carefully investigated by analyzing
their electrical, structural, and chemical properties. Finally, we demonstrated the feasibility of the fabricated
RRAM array for neuromorphic applications through system-level simulations using the Modified National
Institute of Standards and Technology database. The simulation results reflecting the variations of realistic
devices demonstrated that the artificial neural network developed using the PPXC-based RRAM array works
satisfactorily in pattern recognition tasks. The findings of this study can aid in the development of future
wearable neuromorphic systems.

INDEX TERMS Neuromorphic, RRAM, parylene C, artificial neural network, memristor, flexible
neuromorphic electronics.

I. INTRODUCTION
The human brain processes data at approximately
100 petaflops while consuming less than 20 W of power.
Inspired by the human brain, the field of neuromorphic
computing and machine learning has received significant
attention as a key technology candidate that can overcome
the limitations of conventional digital computing systems [1],
[2], [3], [4]. Conventional von Neumann architecture-based
computing systems operate sequentially with physically sep-
arated central processing units (CPUs) and memory units.
However, neuromorphic systems operate in an extensively

The associate editor coordinating the review of this manuscript and

approving it for publication was Artur Antonyan .

parallel manner based on the arrangement of collocated
neurons and synapses. This collocation helps mitigate the
von Neumann bottleneck and avoid data access via buses,
which consume a considerable amount of energy compared
to the compute energy required. Neuromorphic systems can
perform vector-matrix multiplication (VMM), which is the
core computation method of machine learning algorithms,
in parallel inside an array of synapse devices. Several mem-
ory devices such as static random access memory (RAM),
phase-change memory, spin-transfer torque RAM, floating
gate memory, charge trap flash memory, and resistive RAM
(RRAM) have been proposed to emulate the functionalities
of synapses [5], [6], [7], [8], [9], [10]. Among these, RRAM-
based synapse devices have a simple structure comprising
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two terminals, low-power operation, and fast switching speed
[11], [12], [13], [14], [15], [16].

In this study, we demonstrate a flexible RRAM-based
synapse array developed using an organic material called
parylene C (PPXC). PPXC is a flexible, transparent, and Food
and Drug Administration approved polymer material that
enables the development of flexible neuromorphic electronics
for next-generation wearable computing, soft robotics, and
neuroprosthetics. Although several studies on RRAM with
PPXC switching layers have been conducted, most of them
were conducted at a single-device level [17], [18], [19], [20],
[21], [22], [23], [24]. However, the applications of neuromor-
phic computing andmachine learning require a crossbar array
topology for integration into neuromorphic systems. In some
studies [25], [26], [27], [28], [29], [30], PPXC-based RRAM
devices were implemented in a crossbar array architecture.
However, no research has been conducted on the detailed
applications of neuromorphic systems with crossbar arrays
on flexible substrates. In this study, a flexible and trans-
parent PPXC-based RRAM array suitable for neuromorphic
applications is demonstrated. The fabricated RRAM devices
exhibited stable memory characteristics such as low-power
operation, good retention time of >104 s, endurance cycles
of>300, conductance ON/OFF ratio of>10, and could with-
stand >350 mechanical bending cycles. Additionally, to fur-
ther explore the application potential of machine learning,
pattern recognition based on a binary neural network was
conducted using the Modified National Institute of Standards
and Technology (MNIST) database.

II. EXPERIMENTS
The two RRAM device structures, Ti/PPX-C/Cu and
Cu/PPX-C/Ti, were fabricated in a crossbar array structure
of 20× 20 devices, as shown in Fig. 1(a). Each device had an
area of 10 × 10 µm2. The fabrication process is as follows:
First, 10 µm thick PPXC (OBT-PC300) was deposited via
polymer chemical vapor deposition (CVD) onto an SiO2/Si
wafer for application in flexible devices. Note that PPXC can
be deposited as thin, conformal, and pinhole-free films using
this parylene CVD method [31]. Thereafter, oxygen plasma
treatment was applied to the surface of PPXC to enhance
the adhesion between PPXC and metal. The oxygen gas of
100 sccm, power of 100 W, and time of 5 sec were set as the
treatment condition.

Next, the bottom electrode (BE) was deposited via e-beam
evaporation (KVE-E2000 Series, Korea Vacuum Tech) fol-
lowed by a lift-off process. Thereafter, an approximately
30 nm thick PPXC layer was deposited via polymer CVD
at room temperature and 11 mTorr and treated with oxygen
plasma under the same conditions as above. Finally, the top
electrode (TE) was molded via e-beam evaporation followed
by a lift-off process. Additionally, the 30 nm PPXC layer on
the BE was removed through reactive ion etching (CUTE,
FEMTO SCIENCE) to open the pad. Fig. 1(b) shows the
delamination result of the RRAM array fabricated using the
SiO2/Si substrate via simple immersion in deionized (DI)
water.

FIGURE 1. (a) Scanning electron microscopy (SEM) image of a crossbar
array comprising RRAMs with the Ti/PPX-C/Cu structure. (b) Illustration of
flexible RRAM crossbar arrays with a Ti/PPX-C/Cu structure.
Cross-sectional transmission electron microscopy (TEM) images of
as-fabricated RRAM devices with (c) Ti/PPX-C/Cu and (d) Cu/PPX-C/Ti
structures.

Cross-sectional transmission electron microscopy (TEM)
images of the devices with Ti/PPX-C/Cu and Cu/PPX-C/Ti
structures are shown in Figs. 1(c) and (d), respectively.

The switching characteristics of the devices were mea-
sured using a Keithley 4200 semiconductor parameter
analyzer at room temperature. To analyze the device configu-
rations, a focused ion beam (FEI, Helios G5UC), TEM (Talos
F200X), and energy-dispersive X-ray spectroscopy (EDS)
were used.

III. RESULTS AND DISCUSSION
A. CHARACTERISTICS OF THE PPX-C RRAM ARRAY
The memory characteristics of the devices with Ti/PPX-C/Cu
and Cu/PPX-C/Ti structures are shown in Figs. 2(a) and (b),
respectively. In both the devices, a sweeping voltage was
applied to the Cu electrode and the Ti electrode was con-
nected to the ground. Initially, the molding process was
performed by applying a positive voltage to the Cu elec-
trode and consequently, typical bipolar RRAM switching
was observed. The SET process, wherein a device switches
from a high- resistance state (HRS) to a low-resistance state
(LRS), occurs at a positive bias, whereas the reset process,
wherein the device switches back to the HRS, occurs at a neg-
ative bias. During the SET operation, the conduction current
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FIGURE 2. Current-voltage characteristics (I–V ) of 10 consecutive
switching cycles for RRAM devices with (a) Ti/PPX-C/Cu and
(b) Cu/PPX-C/Ti structures.

was limited using a compliance current of 0.2 and 0.7 mA
for the devices with Ti/PPX-C/Cu and Cu/PPX-C/Ti struc-
tures, respectively, to protect them from a permanent break-
down. Additionally, the compliance current prevents reset
failure that occurs owing to the overgrowth of the conductive
filament.

The conduction mechanisms of the devices can be ana-
lyzed using the I -V curve on the logarithmic scale and the
fitting results of both devices are shown in Fig. 3. The LRS
curves are well fitted at slope 1, indicating an ohmic con-
duction mechanism. In contrast, in the HRS curves, four dis-
tinct regions are correlated to the sweeping voltages, which
can be described by the space-charge limited current (SCLC)
model [32], [33], [34], [35], [36]. In the low-voltage region
(i), the I -V characteristics follow Ohm’s law, which implies
that the injected carrier density is lower than that of the ther-
mally generated intrinsic carriers and the injected carriers
redistribute themselves. In region (ii), the injected carriers
dominate the thermally generated carriers because the transit
time of the injected carrier is insufficient for redistribution
(dielectric relaxation). The traps are filled and a space charge
emerges. In region (iii), the subsequently injected carriers

FIGURE 3. Fitting results (I–V n) of the current-voltage characteristics of
RRAM devices with (a) Ti/PPX-C/Cu and (b) Cu/PPX-C/Ti structures. The
Ohmic conduction in the low resistance state (LRS) and space-charge
limited current (SCLC) in the high resistance state (HRS) can be observed.

FIGURE 4. Cross-sectional TEM images of RRAM devices in LRS with
(a) Ti/PPX-C/Cu and (b) Cu/PPX-C/Ti structures.

are free to move after all traps are filled. Consequently, the
current rapidly jumps from a low trap-limited current to a high
trap-free SCLC. In the high-voltage region (iv), the current is
fully controlled by the space charge. The trap-free behavior
results in a square law dependence of the current (I ∼ V 2,
Child’s law).

Most previous studies [22], [23], [24], [25], [26], [27] on
RRAM devices with a PPX-based switching layer reported
that resistive switching occurs owing to the formation of
a conducting filament, which is a metal bridge comprising
atoms from the electrode. In the proposed devices, Cu atoms
formed conducting filaments because of electrochemical
metallization [37]. To confirm the switching mechanism,
TEM investigations on the LRS of the devices were per-
formed. The EDS image of the Cu filaments, shown in Fig. 4,
depicts the formation of a Cu conducting filament between
the BE and TE.

The forming voltage (VFORMING), set voltage (VSET), and
reset voltage (VRESET) distributions of 31 devices are depicted
in Fig. 5 through box plots. Their average values (µ) and
standard deviations (σ ) are listed in Table 1. The average
VFORMING, VSET, and |VRESET| values of RRAMdevices with
the Ti/PPX-C/Cu structure were lower than those with the
Cu/PPX-C/Ti structure. This is attributed to the native CuO
layer formed between the PPXC and Cu in the Ti/PPX-C/Cu
structure. We confirmed the existence of a native CuO layer
in the Ti/PPX-C/Cu structure by analyzing its selected area
diffraction pattern, as shown in Fig. 6. The fast Fourier
transform (FFT) result in Fig. 6(b) can be attributed to the
monoclinic phase of CuO with lattice spacing values of
0.251, 0.251, and 0.235 nm for the (1̄1̄1), (11̄1), and (200)
planes, respectively. Because the Cu-O bond energy in CuO
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FIGURE 5. Statistical results of VSet, VReset, and VForming in a box plot for
RRAM devices with Ti/PPX-C/Cu and Cu/PPX-C/Ti structures.

TABLE 1. Device-to-device Statistical values of switching voltage for two
RRAM types.

(∼1.5 eV) is lower than the Cu-Cu metallic bond energy
(∼2.0 eV), copper ions (Cu2+) can be more easily supplied
from CuO and diffused into the PPXC layer than the Cu
metal [38], [39], [40], [41]. Additionally, the CuO layers of
the devices with the Ti/PPX-C/Cu structure were rougher
than the Cu layers of those with the Cu/PPX-C/Ti structure,
as shown in Fig. 4. Consequently, the concentrated electric
field at the protruding region of the CuO layer could enhance
the field emission, promote the release of Cu ions, and limit
the formation of conducting filaments. Therefore, RRAM
devices with the Ti/PPX-C/Cu structure and a native CuO
layer exhibited lower VFORMING, VSET, and |VRESET| values
than those with the Cu/PPX-C/Ti structure.

Fig. 7 shows the cycling test results of the devices with the
Ti/PPX-C/Cu and Cu/PPX-C/Ti structures. The device with
the Ti/PPX-C/Cu structure could be operated successfully
for more than 270 cycles under a DC sweep, as depicted in
Fig. 7(a). In contrast, the one with the Cu/PPX-C/Ti struc-
ture achieved 18 cycles of resistive switching, as shown in
Fig. 7(b).

This is possibly because the reset current of the device
with the Cu/PPX-C/Ti structure (∼2 mA) was larger than that

FIGURE 6. (a) Cross-sectional TEM image of a pristine RRAM device with
the Ti/PPX-C/Cu structure. The red solid box denotes the region in which
we performed a fast Fourier transform (FFT). (b) FFT image of the solid
red box in (a).

TABLE 2. Device-to-device Statistical values of HRS and LRS conductance
for two RRAM types.

FIGURE 7. DC endurance characteristics of resistive switching in RRAM
devices with (a) Ti/PPX-C/Cu and (b) Cu/PPX-C/Ti structures.

of the device with the Ti/PPX-C/Cu structure (∼0.7 mA).
Such a large reset current can damage the PPXC switch-
ing layer and degrade the endurance performance of the
device [42], [43].

The LRS conductance (GLRS) and HRS conductance
(GHRS) distributions of the 73 devices with the Ti/PPX-C/Cu
structure and 31 devices with the Cu/PPX-C/Ti structure are
shown in Fig. 8. The average and standard deviation values
of GLRS and GHRS with a read voltage of 0.1 V are listed in
Table 2. The coefficient of variance (σ /µ) for theGLRS of the
device with the Ti/PPX-C/Cu structure was smaller than that
of the device with the Cu/PPX-C/Ti structure. The improved
uniformity of the devices with the Ti/PPX-C/Cu structure
can be attributed to their low-voltage switching operation and
geometric confinement of the conducting filaments.

The retention characteristics of the device with the
Ti/PPX-C/Cu structure are shown in Fig. 9(a). Retention time
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FIGURE 8. Cumulative probability distribution of HRS and LRS
conductance of RRAM devices with Ti/PPX-C/Cu and Cu/PPX-C/Ti
structures.

FIGURE 9. (a) Retention characteristics of the RRAM device with the
Ti/PPX-C/Cu structure at 85 ◦C. (b) Continuous mechanical bending
fatigue test results of the device with the Ti/PPX-C/Cu structure and a
radius of 2 cm for 350 cycles.

of over 104 s was obtained at 85◦C, with a GLRS/GHRS resis-
tive window value of approximately 103.
Evaluation of the electrical performance of RRAM devices

under mechanical deformation is another important quality
index for flexible electronics. The conductance of the device
with the Ti/PPX-C/Cu structure was measured at a bending
radius of 2 cm, as depicted in Fig. 9(b). The two conduc-
tance states were clearly differentiable even after 350 bending
cycles. The conductance of each device in the LRS and HRS
states was unvaried after 350 bending cycles. These results
demonstrate their suitability for reliable flexible electronics
applications.

IV. NEURAL NETWORK IMPLEMENTATION
The operation of a neuromorphic system can be categorized
into inference and learning tasks. The inference task calcu-
lates the output data for a given input data via VMM in an
artificial neural network (ANN). The learning task involves
adjusting the synaptic weights of the ANN to improve infer-
ence accuracy. There are two types of learning methods:
on-chip and off-chip. On-chip learning method in a neuro-
morphic system chip includes all the functions of neurons
and synapses for learning. In off-chip learning, the learn-
ing task is performed outside the neuromorphic chip using
software.

FIGURE 10. (a) Software-based artificial neural network (ANN) structure
for MNIST pattern recognition. (b) Crossbar RRAM array structure for
implementing ANN.

After ANN-to-synapse array weight mapping, neuromor-
phic systems support only the inference task. Specifically, a
backpropagation algorithm based on software was used for
ANN learning [44]. However, no general solution exists for
implementing on-chip learning in neuromorphic hardware
systems. Therefore, off-chip learning is considered to be a
promising solution for the commercialization of neuromor-
phic systems [45].

In this study, an off-chip learning simulation of pat-
tern recognition was conducted using the binary MNIST
dataset to demonstrate the feasibility of the fabricated PPXC-
based RRAM array. Fig. 10(a) shows the software-based
ANN structure used for the MNIST pattern recognition task.
The rectified linear unit and softmax activation functions
were used for the hidden and output neurons, respectively.
To obtain the optimized synaptic weights, we trained an ANN
on a software framework using a backpropagation algorithm
and stochastic gradient descent method. After 431 training
epochs, the trained ANN achieved a recognition accuracy
of 97.92%. The ANN can be realized in a crossbar synapse
array and neuron circuits, as illustrated in Fig. 10(b). The
synaptic weight of each synapse in the ANN is represented by
the difference between the two conductances of the RRAM
device pair, Wij = G+ij − G−ij , where i and j are indices
within the crossbar array. To perform a VMM within the
array, all horizontal lines are simultaneously activated, with
the input signals (V1–Vn) corresponding to the information
of each pixel in the input image. The neuron output (Ij)
is determined by the difference between the two currents
(I+j and I−j ), as follows:

Ij =
n∑
i=1

Vi ·Wij =

n∑
i=1

Vi ·
(
G+ij − G

−

ij

)
= I+j − I

−

j . (1)

As evident from Equation (1), the multiplications and sum-
mations are realized using Ohm’s and Kirchhoff’s current
laws, respectively. Because the input signals are parallelly
applied to all the horizontal lines and all outputs are cal-
culated in a single read operation, analog-based neuromor-
phic systems can significantly reduce the energy required and
latency associated with data movement.

When transferring the synaptic weight trained by a soft-
ware framework to the conductance of the synapse device
(ANN-to-synapse array weight mapping), it is necessary to
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FIGURE 11. Weight distributions of the (a) first and (c) second synapse
layers before quantization. Quantized weight distributions of the (b) first
and (d) second synapse layers.

quantize the synaptic weights. For this, we used a single-bit
synapse operation, wherein each RRAM device had two con-
ductance levels (GLRS andGHRS). Consequently, the synaptic
weight could be quantized at three levels, as follows:

W 0
= GHRS(Gij+ device)− GHRS(Gij− device) (2)

W+1 = GLRS(Gij+ device)− GHRS(Gij− device) (3)

W−1 = GHRS(Gij+ device)− GLRS(Gij− device) (4)

The synaptic weight distributions of the first and second
synapse layers after training on the software framework are
shown in Figs. 11(a) and (c), respectively. For quantization
at three levels, the weight interval values were assigned as
variables α and β for the first and second synapse layers,
respectively. Synaptic weights between −1 and −α (or −β)
were quantized as W−1, and those between α (or β) and +1
were quantized as W−1, as shown in Figs. 11(b) and (d),
respectively.

The MNIST pattern recognition results for various α and
β combinations are shown in Fig. 12. The best classifica-
tion accuracy of 93.65% was obtained when α = 0.13
and β = 0.24. Subsequently, we performed a weight trans-
fer operation based on the actual GHRS and GLRS val-
ues measured in the fabricated Ti/PPX-C/Cu RRAM array,
as depicted in Fig. 13. The ANN-to-synapse array weight
mapping, considering the realistic conductance distribution
of the fabricated devices, was evaluated via 1000 Monte
Carlo simulations. A classification accuracy of 93.65% was
obtained when weight variation was ignored and the ideal
quantization was adopted. However, as shown in Fig. 14(a),
the average accuracy decreased to 86.39%when the variation
in realistic RRAM devices was considered. To further ana-
lyze the effect of conductance variation in RRAM devices
on the accuracy, MNIST pattern recognition was simulated

FIGURE 12. Classification accuracy in a 3D plot obtained by varying α

and β.

FIGURE 13. Statistical results of weight values in a (a) histogram and
(b) box plot created using the measured LRS and HRS conductances of
the devices.

FIGURE 14. (a) Test accuracies of the designed ANN (A and B denote the
results of the full-precision training and ternary weight quantization,
respectively. C and D denote the maximum and average accuracies,
respectively, which are obtained via 1000 Monte Carlo simulations of
ANN-to-synapse array weight mapping based on realistic conductance
distribution.). (b) Effects of each weight variation on the classification
accuracy.

by varying σ from 0% to 100% in steps of 10%, as shown
in Fig. 14(b). In the figure, x% variation indicates that the
standard deviation is x% of the dynamic range of the device.
For generalization, the results were obtained by repeating
the simulation 100 times. Overall, it was observed that the
accuracy decreased as the variation increased. At the varia-
tion level of the fabricated RRAM array (W 0: 9.99%, W+1:
18.8%, W−1: 18.8%), an accuracy of 86.39% was obtained,
whereas when σ of W 0, W+1, and W−1 was increased to
15, 50, and 60, respectively, the accuracy decreased to less
than 80%. Therefore, a more precise conductance variation
control is required to achieve high operational accuracies in
neuromorphic systems. An iterative write-verify method can
be adopted to reduce the variation in synapse devices [46].
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V. CONCLUSION
In summary, we successfully demonstrated a flexible
PPXC-based RRAM crossbar array that can be used in wear-
able neuromorphic system applications. Devices with the
Ti/PPX-C/Cu structure exhibited the advantages of lower
operation voltage and more reliable cycling endurance than
those with the Cu/PPX-C/Ti structure. The electrical char-
acteristics of the devices were carefully investigated through
I -V measurements and TEM-EDS analyses. It was observed
that the set voltage and reset current decreased because of
the naturally formed CuO layer in the Ti/PPX-C/Cu structure
after Cu deposition. Additionally, the flexible RRAM array
was mechanically and electrically stable during the bending
test (bending cycles>350). Finally, we demonstrated the fea-
sibility of the PPXC-based RRAM array for neuromorphic
systems through a system-level MATLAB simulation. The
results of this study indicate that RRAM arrays developed
using biocompatible PPXC have potential for application in
next-generation wearable neuromorphic systems.
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