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ABSTRACT Interpretation of chest radiographs (CXR) is a difficult but essential task for detecting thoracic
abnormalities. Recent artificial intelligence (AI) algorithms have achieved radiologist-level performance on
various medical classification tasks. However, only a few studies addressed the localization of abnormal
findings from CXR scans, which is essential in explaining the image-level classification to radiologists.
Additionally, the actual impact of AI algorithms on the diagnostic performance of radiologists in clinical
practice remains relatively unclear. To bridge these gaps, we developed an explainable deep learning system
called VinDr-CXR that can classify a CXR scan into multiple thoracic diseases and, at the same time,
localize most types of critical findings on the image. VinDr-CXR was trained on 51,485 CXR scans with
radiologist-provided bounding box annotations. It demonstrated a comparable performance to experienced
radiologists in classifying 6 common thoracic diseases on a retrospective validation set of 3,000 CXR scans,
with a mean area under the receiver operating characteristic curve (AUROC) of 0.967 (95% confidence
interval [CI]: 0.958–0.975). TheVinDr-CXRwas also externally validated in independent patient cohorts and
showed its robustness. For the localization task with 14 types of lesions, our free-response receiver operating
characteristic (FROC) analysis showed that the VinDr-CXR achieved a sensitivity of 80.2% at the rate of
1.0 false-positive lesion identified per scan. A prospective study was also conducted to measure the clinical
impact of the VinDr-CXR in assisting six experienced radiologists. The results indicated that the proposed
system, when used as a diagnosis supporting tool, significantly improved the agreement between radiologists
themselves with an increase of 1.5% in mean Fleiss’ Kappa. We also observed that, after the radiologists
consulted VinDr-CXR’s suggestions, the agreement between each of them and the system was remarkably
increased by 3.3% in mean Cohen’s Kappa. Altogether, our results highlight the potentials of the proposed
deep learning system as an effective assistant to radiologists in clinical practice. Part of the dataset used for
developing the VinDr-CXR system has been made publicly available at https://physionet.org/content/vindr-
cxr/1.0.0/.

INDEX TERMS Chest X-ray interpretation, deep learning, image classification, object detection.

I. INTRODUCTION
Common chest pathologies affect several hundred mil-
lion people worldwide and kill several million cases every

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristian A. Linte.

year [1], [2]. They are the leading cause of death and
impose an immense worldwide health burden. Diagnosis of
thoracic diseases is a crucial clinical task for physicians.
Currently, chest X-ray (CXR) radiography is the primary
imaging modality used for screening, triaging, and diagnos-
ing varieties of lung conditions [3] such as pneumothorax,
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pneumonia, tuberculosis (TB), pleural effusion, atelectasis,
emphysema, and cancers, etc. However, the CXR interpreta-
tion is a complicated task, which requires an in-depth under-
standing of radiologic signs in thoracic imaging [4], [5], [6],
[7]. A previous study [8] reported that 22% of all errors in
diagnostic radiology were made in the CXR interpretation.
A recent work [9] showed that 19%–26% of lung cancers
visible on CXR images were missed at the first reading.
Furthermore, interpreting CXR scans usually is highly depen-
dent on the observer and has a poor interagreement between
physicians [10]. The interobserver agreement was considered
poor to moderate depending on the type of findings [11]; this
rate can be lower in local hospitals, leading to unfavorable
consequences.

Advanced machine learning algorithms have recently
shown their significant potential in medical image analy-
sis [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28] due to the availability
of large-scale datasets [16], [29], [30], [31], [32], [33], [34],
[35], [36]. In particular, previous studies [31], [37], [38], [39],
[40], [41], [42], [43], [44], [45] have indicated that a deep
learning (DL) system trained on a large-scale, annotatedmed-
ical imaging dataset can reach a level of performance compa-
rable to practicing radiologists in detecting common thoracic
diseases [31], [37], [38], [39], [40], [41], analyzing retinal
images [42], [43], or diagnosing skin cancers [44], [45].

However, the actual impact of DL systems in clinical
practice remains unclear, and large-scale clinical evaluations
of these such systems are limited. Hence, despite many
promising results and increasing performances that have been
published, very few DL algorithms have reached clinical
implementation. We observe that multiple factors slow or
impede artificial intelligence (AI) transfer into clinical prac-
tice. First, the development of an accurate and robust DL
system requires a large number of annotated CXR scans
from diverse sources. The creation of large-scale, high-
quality datasets of annotated images is costly and challeng-
ing. Meanwhile, public datasets are limited, and their labels
are unreliable since they are produced by automated rule-
based labelers [29], [31], [46]. Previous evidences [39], [47],
[48] showed that training DL systems on small datasets and
low-quality annotations raises concerns about the robustness
of those systems in real clinical contexts. Second, few clinical
evaluations of DL-assisted diagnostic algorithms have been
performed, and most of them are not even prospective and
at high risk of bias [49]. Third, although DL systems can
outperform physicians in specific clinical tasks [38], [50], the
lack of explanatory power [51], [52] became a key obstacle to
convincemedical experts, whomust understand how andwhy
DL models have made a prediction. We believe that an accu-
rate assessment of CXRs requires both detection of abnormal
findings and a correct decision at the disease level. Hence, the
provision of accurate and interpretable visualizations of lung
abnormalities is a crucial step towards the clinical translation
of DL systems.

To address these gaps, we introduce in this study a fully
automated DL system, namely VinDr-CXR, for chest radio-
graph interpretation. The VinDr-CXR is designed to simul-
taneously classify six common lung diseases and localize
14 important findings fromCXR scans. The development and
evaluation of VinDr-CXR are based on large-scale medical
imaging analysis and state-of-the-art DL algorithms. Specif-
ically, we use a patient dataset from multiple hospitals in
Vietnam, containing 51,485 manually annotated CXR stud-
ies, to train the DL system. To evaluate the performance of the
proposed system, we compare the model’s performance with
that of human experts in a benchmark study using the con-
sensus annotations provided by 5 experienced radiologists on
a retrospective dataset as the reference standard. To validate
the generalization capability of VinDr-CXR, we compute its
performance on various external datasets. The results confirm
that our framework is accurate and robust across multiple
populations and settings. To demonstrate the clinical value
of VinDr-CXR as an assistant to radiologists, we conduct
a prospective study at two hospitals in Vietnam and inves-
tigate the inter-rater agreement on CXR interpretation with
and without VinDr-CXR’s assistance. We further calculate
the change in the agreement rate between VinDr-CXR itself
and each radiologist before and after he/she consults the
system’s suggestions. Experiments indicate that the proposed
DL system provides meaningful supports for radiologists in
detecting thoracic diseases in a real-world clinical setting.

II. MATERIALS AND METHODS
Our study was approved by the Institutional Review Boards
(IRB) of the Hanoi Medical University Hospital (HMUH)
and Hospital 108 (H108). In addition, the requirement for
obtaining informed patient consent was waived due to the
observational nature of this study. Under these approvals, raw
CXR images in the Digital Imaging and Communications in
Medicine (DICOM) format were collected retrospectively.
Protected health information (PHI) has been de-identified
to comply with the regulations of the U.S. HIPAA [53],
European GDPR [54], and the local privacy laws [55]. In this
section, we describe the methodology for developing and val-
idating the VinDr-CXR system. First, we provide an overview
of the proposed approach. Next, we describe details of
datasets used in this study. Then, the development of DL
algorithms is introduced. Last, we describe the experimental
design for our reader study and statistical analysis methods
used for model evaluation.

A. OVERVIEW OF APPROACH
We present in this section VinDr-CXR, a DL-based frame-
work for the per-radiograph classification of common lung
diseases and the detection of abnormal findings on CXRs.
This framework includes two major components. First,
an image-level classification network accepts a CXR scan
as input and predicts whether it could be normal or abnor-
mal. Second, a lesion-level detection network receives an
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abnormal CXR scan as input from the classifier and pro-
vides the location of abnormal findings via bounding box
predictions. An overview of the proposed approach is illus-
trated in Figure 1A. The core of the VinDr-CXR system is
based on state-of-the-art DL networks for image classifica-
tion and object detection tasks, named EfficientNet [56] and
EfficientDet [57], respectively. The classification network
is trained with image-level labels to distinguish six com-
mon lung diseases, including Pneumonia, Tuberculosis, Lung
Tumor, Pleural Effusion, Other Diseases, and No Finding.
Meanwhile, the detection network is trained with lesion-level
annotations to localize 14 critical findings from the CXR
images, i.e., Cardiomegaly, Opacity, Consolidation, Atelec-
tasis, Pneumothorax, Pleural Effusion, Aortic Enlargement,
Interstitial Lung Disease (ILD), Infiltration, Nodule/Mass,
Pulmonary Fibrosis, Pleural Thickening, Calcification, and
Other Lesions. To develop DL algorithms, a total of 51,485
anteroposterior (AP) and posteroanterior (PA) CXR scans
have been retrospectively collected from the HMUH and
H108, which then manually annotated by expert radiolo-
gists. To evaluate the diagnostic accuracy of the VinDr-CXR,
we compare its prediction with ground truth on an internal
validation set of 3,000 studies, which was separate from
the training set. Additionally, external datasets including
CheXpert (N= 200) CheXphoto (N= 200) are used to verify
the robustness of the VinDr-CXR for cross-site validation.
Finally, we investigate the actual impact of theVinDr-CXRon
clinical practice through a large reader study (N = 400). The
inter-rater agreement among radiologists as well as the rate of
agreement between VinDr-CXR and radiologists are then be
assessed. Figure 1B shows an overview of the development
and evaluation of the VinDr-CXR framework.

1) DATASETS FOR VinDr-CXR DEVELOPMENT AND
VALIDATION
a: VinDr-CXR DATASET
To develop and validate the VinDr-CXR, we retrospectively
collected a total of more than 100,000 anterior–posterior
(AP) and posterior–anterior (PA) CXR scans of adult patients
(aged > 10 years). The imaging data were in the DICOM
format and performed at two major hospitals (i.e., the HMUH
and H108) between January 1, 2018 and December 31,
2020. In addition, CXR studies were acquired from a wide
diversity of scanners and manufacturers such as Phillips,
GE, Fujifilm, Siemens, Toshiba, Canon, and Samsung. Out-
of-distribution samples (e.g., images with poor quality or
invalid) were excluded via a manual inspection process.
A group of 17 expert radiologists has labeled a portion of
the raw dataset, and each has at least ten years of experience.
Overall, the dataset contains 54,485 CXR studies (mean age
43.77 years; 47.79% female patients) that meet the study
criteria. A development set consists of 51,485 studies used
to optimize DL algorithms and an internal validation set of
3,000 studies to evaluate models’ performance. All CXRs
were performed in independent patients for the validation

set and did not overlap with the development set to avoid
bias. Each CXR scan in the development set was labeled by
three independent radiologists, while a panel of five board-
certified radiologists labeled each case in the internal val-
idation set, and their consensus established the reference
standard. Ground truth was established at the image-level
for the classification task and pixel-level for the localization
task. Our dataset was labeled for the presence of 28 labels.
We defined for the first time two different types of labels
in CXRs: (1) global labels that are image-level labels repre-
senting diseases or impressions and (2) local labels (lesion-
level annotations) that are critical findings or lesions that
occur in CXRs. The participating radiologists provide pre-
cisely the location of lesions or abnormalities via bounding
box annotations for local labels. The data collection and
annotation process is summarized in Figure 1B. The cohort
demographic information and statistics of development and
internal validation data sets are summarized in Table 1. Full
details of the dataset collection and labeling process can be
found in our previous study [33].

b: EXTERNAL DATASETS
We used two public CXR datasets to assess the accuracy
and efficiency of the VinDr-CXR system across populations.
Our external validation tests used data from patients in the
CheXpert [31] (N = 200) and CheXphoto [58] (N = 200)
datasets. These datasets shared several disease labels with
theVinDr-CXRdataset, such as Pleural Effusion, Pneumonia,
and No Finding. The CheXpert [31] is a large public dataset
for the CXR interpretation performed between 2002 and
2017 at Stanford Hospital, USA. The CheXpert validation set
contains 200 studies, for which the ground-truth label of each
study is obtained by taking the majority vote of three board-
certified radiologists. The CheXphoto [58] is a recently pub-
lished CXR dataset for the automated interpretation of photos
of CXR through cell phone photography. The CheXphoto
validation set comprises natural photos of all 200 studies in
the CheXpert validation set. It can be used as a resource
for testing the robustness of DL algorithms on smartphone
photos of CXRs. Additional details of the external datasets
are provided in Irvin et al. [31] and Phillips et al. [58].

2) MODEL DEVELOPMENT AND TRAINING
To develop the VinDr-CXR system, we used a total of 51,485
annotated CXR scans from the development set. The sys-
tem takes a CXR as input, and outputs are both disease
classification and lesion localization. The whole VinDr-CXR
architecture consists of two subnetworks, including a clas-
sification network and a detection network (see Figure 1A).
We trained the EfficientNet-B6 [56] model on the CXR
images with a size of 1024 × 1024 pixels to classify com-
mon chest diseases. The EfficientNet [56] was well-known
as a state-of-the-art DL architecture for image recognition
tasks. It can achieve a high level of accuracy while requir-
ing less computational cost for model training. We used
mean binary cross-entropy loss to optimize the network in a
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FIGURE 1. Overview of the proposed approach. (A) The pipeline of the VinDr-CXR framework for lung disease classification and localization using
CXR images. A classifier takes as input one CXR scan and predicts its probability of abnormality. A detector takes an abnormal scan as input and
provides bounding boxes with probabilities of abnormal findings at the lesion-level. The final prediction of the whole framework comes up with a
complete description consisting of a disease conclusion, and abnormal findings. (B) Summary of the VinDr-CXR development and evaluation. The
raw images in the DICOM standard were collected retrospectively from the picture archiving and communication system (PACS) of the HMUH and
H108 hospitals. The raw images were then de-identified and all out-of-distribution samples were removed. An in-house web-based labeling tool
called VinDr Lab was designed to annotate imaging data. In the labeling process, each CXR scan from the development set was labeled by a group
of three experienced radiologists for the presence of 22 preliminary findings and six disease impressions. Meanwhile, CXR scans from the internal
validation set were annotated by a consensus of five experienced radiologists. Finally, 51,485 CXR images were used to develop DL algorithms, and
3,000 studies were used for validation. External evaluations were also performed on CheXpert [31] (N = 200) and CheXphoto [58] (N = 200)
datasets to evaluate the robustness of the VinDr-CXR across multiple hospitals. A reader study was designed and performed at the HMUH and H108
(N = 400) to investigate the impact of the VinDr-CXR in clinical practice.

supervised manner using image-level annotations. To local-
ize abnormal findings, we deployed EfficientDet-D6 [57],
a recent advance of DL-based detector for the object detection
tasks. The per-lesion annotations provided by radiologists
were used to optimize the EfficientDet-D6 [57] network.
To reduce the impact of class imbalance, we adopted the
focal loss [59] to optimize the detection network’s weights.
Several data augmentation strategies have been applied to
minimize the risk of over-fitting in both networks. Both
the classification and detection networks were implemented

using Python 3.7 (https://www.python.org/), PyTorch 1.6
(https://pytorch.org/), and trained on an NVIDIAV100 32GB
GPU. A detailed description of the model development and
training is provided in the Appendices.

3) READER STUDY
To validate the effectiveness of the proposed DL approach,
we conducted a reader study to assess the actual impact of the
VinDr-CXR on the agreement of participating radiologists.
We describe the reader study as bellows.
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TABLE 1. Characteristics of the datasets used for VinDr-CXR development and internal validation.

a: DATA COLLECTION
For clinical evaluation, 400 CXR examinations were col-
lected retrospectively from the HMUH and H108 under
IRB approvals. These examinations were acquired between
March 2021 and June 2021 after the training process of the
VinDr-CXR has been completed. Among 400 CXR studies,
half (N = 200) was obtained from the HMUH, and the rest
(N= 200) was from the H108. Data sampling was conducted
based on the actual distributions at the hospitals. This ensures
that the imaging data are representative of the real-world
conditions in which the DL algorithms will be deployed.
In addition, the CXR scans will be used to evaluate the
agreement among participating readers. Hence, we did not
establish a reference standard for the collected data.

b: READER SELECTION
We recruited a group of six board-certified radiologists
from the radiology departments of the HMUH and H108 to
participate in our observer performance test. All participating

radiologists were trained in CXR interpretation and had
an average of 15.5 years of clinical experience inter-
preting thoracic diseases (range 10–22 years). In addi-
tion, the readers read an average of 25,000 CXR scans
each year (range 15,000–40,000). Table 2 shows the char-
acteristics of radiologists who participated in our reader
study.

c: READER STUDY DESIGN
The reader study was conducted in two sessions. In the first
session, participating readers read the CXR scans indepen-
dently without the VinDr-CXR assistance. During the second
session, the readers re-evaluated all CXR scans with the
assistance of the VinDr-CXR. Specifically, the radiologists
were provided the VinDr-CXR predictions in the form of
bounding boxes, which locate abnormalities (see Figure 10;
Appendices). They considered the model’s prediction and
modified the diagnostics. During this process, the readers
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TABLE 2. Characteristics of the participating radiologists. Mean annual
diagnostic volumes were estimated based on the number of CXR scans
interpreting.

were blinded to the relevant clinical information such as the
original reports and previous medical histories of the patients
or other patient records. To maximize human performance,
the readers can perform the task on our browser-based viewer
with zoom in or out, panning, and many other support tools.
The reader study was set up to ensure that all radiologists
can view and interpret the CXR studies in an environment
similar to their routine workflow in clinical practice. Changes
in radiologists’ agreement were then assessed to investigate
the impact of the VinDr-CXR assistance.

B. STATISTICAL ANALYSIS
Diagnostic performance metrics, including area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity, F1-score, false-positive rate (FPR), and false-
negative rate (FNR), were used to assess the accuracy of
the VinDr-CXR for the classification task. For each indica-
tor, 95% confidence interval (CI) was estimated with boot-
strapping (10,000 replications). To evaluate the VinDr-CXR’s
ability to detect and localize lung lesions, we used the
FROC (the sensitivities of models under different false
positive rates as 0.25, 0.5, 1, 2, and 4). Cohen’s Kappa
statistics [60] and percentage agreement rate were used to
evaluate the level of agreement between the VinDr-CXR
system and participating radiologists, as well as to assess
the agreement between pairs of radiologists. To assess
inter-rater agreement among a group of radiologists, the
Fleiss’ Kappa [61] score was used. The Kappa values were
interpreted as following guidelines [62]: (< 0.00): poor;
(0.00–0.20): none to slight; (0.21–0.40): fair; (0.41–0.60):
moderate; (0.61–0.80): substantial; and (0.81–1.00): almost
perfect agreement. All statistical analyses were performed
using Python (version 3.9.2 – https://www.python.org/) and
scikit-learn (version 0.24.2 – https://scikit-learn.org/).

III. EXPERIMENTAL RESULTS
This section summarizes our main findings in this study.
We first report the performance of the VinDr-CXR on the
per-radiograph classification of common lung disease tasks
on the internal and external test cohorts. We then provide
experimental results for the lesion-level localization task.
Finally, we show quantitative assessments on the impact of
the VinDr-CXR in clinical practice.

A. EVALUATION OF VinDr-CXR PERFORMANCE
The following subsections detail the quantitative results of
the VinDr-CXR system for the classification of diseases and

detection of critical lesions on internal and external validation
datasets.

1) VinDr-CXR PROVIDES ACCURATE PER-RADIOGRAPH
CLASSIFICATION OF COMMON LUNG DISEASE
The performance of the VinDr-CXR for the classification of
common lung diseases was assessed on the internal validation
set of 3,000 CXR studies, in which there were 948 patients
with abnormal findings or diseases and 2052 patients with-
out any pathologies (Table 1). The system achieved a mean
AUROC of 0.967 (95% CI: 0.958, 0.975) over six global
disease labels: 0.989 (0.983, 0.994) for Pleural Effusion,
0.978 (0.965, 0.988) for Lung Tumor, 0.969 (0.959, 0.978) for
Pneumonia, 0.975 (0.964, 0.983) for Tuberculosis, and 0.920
(0.909, 0.931) for Other Diseases. The sensitivity, specificity,
and F1-score of the VinDr-CXR were 0.933 (0.898, 0.964),
0.900 (0.887, 0.911), and 0.631 (0.589, 0.672), respectively.
The system showed a FPR of 0.101 (0.089, 0.114) and a
FNR of 0.067 (0.057, 0.102) over all target diseases. The
overall accuracies of the system in differentiating between
normal and abnormal CXRs were 0.972 (0.966, 0.978) in
AUROC and 0.939 (0.931, 0.947) in F1-score. Our exper-
imental results on CXR data from the internal validation
set showed high sensitivity and specificity in classifying six
disease labels. Detailed performances for individual diseases
over all evaluation metrics on the internal validation cohort
are reported in Table 3. Figure 2 shows six ROC curves
of the system on the internal validation set for six global
diseases.

2) VinDr-CXR SHOWS ROBUST CLASSIFICATION
PERFORMANCE ON EXTERNAL TEST COHORTS
To investigate the consistency of the VinDr-CXR perfor-
mance across multiple populations, we performed external
validation tests using two independent datasets, including
CheXpert [31] and CheXphoto [58]. The AUROC score,
sensitivity, specificity, F1-score, FPR, and FNR of the
VinDr-CXR with no additional training cost on 200 studies
[normal: 27 cases, abnormal: 173 cases] of the CheXpert [31]
validation set were 0.892 (0.839, 0.939), 0.866 (0.792,
0.932), 0.614 (0.556, 0.672), 0.453 (0.3650, 0.536), 0.386
(0.328, 0.444), and 0.134 (0.067, 0.208), respectively. On the
CheXphoto [58] validation set [N = 200, normal: 27 cases,
abnormal: 173 cases], the VinDr-CXR achieved an AUC of
0.888 (0.832, 0.936), a sensitivity of 0.871 (0.800, 0.936),
a specificity of 0.614 (0.557, 0.670), a F1-score of 0.460
(0.372, 0.542), a FPR of 0.386 ( 0.330, 0.444), and a FNR
of 0.129 (0.065, 0.200). The performance of the VinDr-CXR
over all disease labels is reported in Table 4. Although a slight
drop has been observed, the performance of the VinDr-CXR
on external test sets remained at a high level, showing its
robustness across different patient cohorts. These experimen-
tal results show evidence that training a DL system with a
large-scale, high-quality dataset could reach a high diagnos-
tic accuracy across populations without additional training
cost.
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TABLE 3. Per-radiograph classification performance of the VinDr-CXR on the internal validation set (N = 3,000). AUC = Area under the receiver operating
characteristic curve, FPR = False-positive rate or false alarm rate, FNR = False-negative rate.

FIGURE 2. Receiver operating curves (ROC) of the VinDr-CXR system on the internal validation cohort. The solid blue lines show the ROC curves of the
system and the dashed red lines show the 95 percentile intervals of the curves based on 10,000 bootstrap samples. We determined the optimal threshold
for the VinDr-CXR system by maximizing Youden’s index [63] for each disease label. We observe that the DL system achieved consistently high
classification performances across all the target diseases (range AUROC: 0.920 – 0.989).

TABLE 4. Per-radiograph classification performance of the VinDr-CXR on Pleural Effusion, Pneumonia and No Finding from the external validation sets
CheXpert [31] (N = 200) and CheXphoto [58] (N = 200) datasets.

3) VinDr-CXR PROVIDES ACCURATE LESION-LEVEL
LOCALIZATION
For the per-lesion localization task, the VinDr-CXR’s ability
to detect and localize abnormal findings was evaluated on

3,000 CXR scans from the internal validation set using FROC
analysis [64]. In this experiment, a detection is considered
a true positive if the detected bounding box overlaps with
the corresponding ground-truth bounding boxmore than 40%
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FIGURE 3. Some accurate and erroneous predictions of the VinDr-CXR on several representative CXR
images from the internal validation set. (A) The VinDr-CXR correctly identified four lesions, including
Pleural Thickening, Calcification, Aortic Enlargement, and Cardiomegaly on the scan. (B) The system
correctly identified a normal scan or true negative case. (C) The VinDr-CXR correctly identified a
Nodule/Mass. However, it missed another Nodule/Mass on the left lung. (D) The VinDr-CXR correctly
identified Nodule/Mass, but it seemed wrong to detect Calcification.

using the intersection over union (IoU)metric. Otherwise, it is
considered to be a false positive. As shown in Table 5, the
proposed system achieved a sensitivity of 80.2% (81.4, 84.9)
at 1.0 false-positive marks per image. The FROC (average
recall rate at the false positives as 0.25, 0.5, 1.00, 2.00, and
4.00) of the VinDr-CXR system was 78.36% (76.46, 80.16).
FROC curves, which show the sensitivity of the system as a
function of the number of false positives marks per image,
of some representative findings are shown in Figure 4.

4) ANOMALY DETECTION VISUALIZATION
The per-lesion detection performance of the VinDr-CXR
system can be inspected visually through Figure 3. We inves-
tigated the characteristics and errors of the VinDr-CXR detec-
tor by visualizing several representative cases containing both

correctly detected lesions and lesions that the DL system
missed. In this experiment, we used the VinDr-CXR at a
sensitivity of 0.802 and 1.0 false-positive marks per image
to generate predictions. We found that the system was able
to correctly identified almost all critical lesions. Meanwhile,
most false-positive detections were small and non-dangerous
lung lesions such as calcifications.

B. ASSESSMENT OF VinDr-CXR PERFORMANCE IN
CLINICAL PRACTICE
1) INTER-AGREEMENT AMONG RADIOLOGISTS WITH AND
WITHOUT VinDr-CXR ASSISTANCE
We conducted a multi-reader study at the HMUH and H108
to investigate the impact of the proposed DL system on
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TABLE 5. Abnormality detection performance of the VinDr-CXR on the internal validation dataset.

FIGURE 4. Free-response receiver operating characteristic (FROC) of the VinDr-CXR detector for several findings on the internal validation set. Sensitivity
is calculated on a per lesion basis. The blue curve shows the results using all validation images, while the red dashed lines show the 95 percentile
intervals from 10,000 bootstrap samples.

radiologists’ performance in the regular clinical workflow.
At each hospital, three experienced radiologists assessed a
total of 200 CXR images without VinDr-CXR assistance
at the first read. The images were read with the assistance
of VinDr-CXR in the second read. The agreement between

the VinDr-CXR and radiologists, as well as inter-observer
agreement among radiologists were assessed using the per-
centage agreement rate and Kappa statistics. The details
of the proposed reader study design are provided in the
Methods section. In the first read, concordance among three
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radiologists on data from the H108 showed percentage agree-
ment rates between 89.9%–90.7% and Cohen’s Kappa values
between 0.501 (0.349, 0.654)–0.540 (0.392, 0.688). Agree-
ment among three H108’s radiologists was moderate with a
Fleiss’ Kappa of 0.529 (0.453, 0.605). In the second read,
with the support of VinDr-CXR system, agreement among
three raters showed a slightly higher percentage agreement
rate. Specifically, percentage agreement rates ranged between
90.2%–90.7% and Cohen’s Kappa values between 0.519
(0.351, 0.678)–0.556 (0.412, 0.700) that indicated moderate
inter-individual agreement. Agreement among three H108’s
radiologists was moderate with a Fleiss’ Kappa of 0.545
(0.465, 0.625), corresponding to an 3.0% improvement in
Fleiss’ Kappa compared to the first read.

We observed the same results on the data from
the HMUH. Details of clinical evaluation results at
the HMUH are provided in Table 10 and Table 11
(Appendices). In the first read, the percentage agree-
ment rates between each pair of radiologists ranged from
90.2%–90.8%; Cohen’s Kappa values were between 0.367
(0.192, 0.543)–0.483 (0.304, 0.662), and a Fleiss’ Kappa of
0.404 (0.329–0.480). In the second read, percentage agree-
ment rates were between 90.2%–90.8%, and Cohen’s Kappa
values were between 0.367 (0.192, 0.543)–0.483 (0.304,
0.662). The agreement between three HMUH’s radiologists
was a Fleiss’ Kappa of 0.418 (0.342, 0.494), corresponding
to an improvement of 3.4% compared to the first read.

2) DIAGNOSTIC AGREEMENT BETWEEN VinDr-CXR AND
RADIOLOGISTS WITH AND WITHOUT ASSISTANCE
In this experiment, the rate of agreement between the
VinDr-CXR and radiologists in detecting abnormal lung
findings from CXRs were assessed. Table 8 and Table 9
show the agreement rate between the VinDr-CXR and
H108’s radiologists without and with assistance, respec-
tively. In the first read, the percentage agreement rates
were 88.8%–90.2%, and the Cohen’s Kappa values ranged
from 0.462 (0.283, 0.640)–0.506 (0.327, 0.685). With the
assistance of VinDr-CXR, the rates of agreement ranged
from 90.5%–91.1% in percentage agreement and from 0.524
(0.348, 0.699)–0.546 (0.370, 0.717) in Cohen’s Kappa val-
ues. At the HMUH, the percentage agreement rates were
88.8%–90.2%, and the Cohen’s Kappa values ranged from
0.462 (0.283, 0.640)–0.506 (0.327, 0.685) without the VinDr-
CXR assistance. Meanwhile, the rates of agreement ranged
from 90.5%–91.1% in percentage agreement and from
0.524 (0.348, 0.699)–0.546 (0.370, 0.717) in Kappa values
with the VinDr-CXR assistance (Detailed in Table 12 and
Table 13 in theAppendices). After consulting theVinDr-CXR
output, significant improvements in Kappa scores have
been observed across two hospitals. These results indi-
cated that the VinDr-CXR assistance resulted in a signifi-
cant increase in the agreement between the DL system and
radiologists.

3) IMPACT OF VinDr-CXR ON RADIOLOGIST DIAGNOSTIC
AGREEMENT
We show evidence that the VinDr-CXR helped improve the
degree of agreement among radiologists for the task of detec-
tion of lung lesions (see Figure 5A). Specifically, Fleiss’
Kappa values improved by 1.4% and 1.6% for HMUH and
H108 readers, respectively. The inter-rater reliability has
improved by 1.0%–2.9%, except for Reader 1 and Reader 2
from the HMUH (1 = −0.2%). Additionally, we found
that the rate of VinDr-CXR agreement with the participating
radiologists was slightly higher than the rate of agreement
among radiologists. With the support of VinDr-CXR, the
agreement between the proposed DL system and radiologists
significantly improved. As shown in Figure 5B, increments
of agreement degree ranged 1.8%–6.5% after consulting the
VinDr-CXR predictions. Figure 9 in the Appendices shows
several representative images from our reader study, which
indicates the change in diagnostic decision after viewing the
VinDr-CXR recommendation.

C. VISUAL INTERPRETABILITY OF VinDr-CXR
Explainability is an absolute necessity for the broad deploy-
ment of AI models in clinical practice. In a recent pub-
lication, the United States Food and Drug Administration
(FDA) mentioned that explainability is required [65] for any
AI-based computer-aided diagnosis (CAD) system. In sum-
mary, an interpretable AI/DL system can show the links
between the features extracted by the system and its pre-
dictions [66]. Particularly, those links can be understood
by a human expert. Explainable DL systems help human
experts understand the underlying reasoning of DL systems
and identify individual cases in which an AI model poten-
tially gives incorrect predictions. In this study, the proposed
VinDr-CXR is not only able to provide disease conclusions
(global labels), but a helpful explanation involves abnormal
findings (local labels) with their corresponding exact loca-
tions. Beyond the classification output, the VinDr-CXR can
provide localization information that locates abnormalities
accurately on CXR scans. The bounding boxes provided by
the DL system may be an essential consideration supporting
classification outputs. To illustrate the interpretability of the
system, we utilized the trained classification network to com-
pute and visualize the saliency maps for several examples
from the internal validation set. To this end, we extracted
feature maps produced by the last convolutional layer of
the VinDr-CXR classifier model. We then used principal
component analysis (PCA) [67] to reduce the channels of
the feature map into a single channel. Then, this single-
channel map is converted to a saliency map for visualiza-
tion. Figure 6 shows the original CXRs and lesion bounding
boxes annotated by our expert radiologists for Lung Tumor
and Tuberculosis (TB) patients. The corresponding saliency
maps obtained from the VinDr-CXR system are also pro-
vided. We observed the following insights that help better
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TABLE 6. Inter-rater agreement among radiologists at the H108 without the VinDr-CXR assistance.

TABLE 7. Inter-rater agreement among the H108’s radiologists with the VinDr-CXR assistance.

TABLE 8. Agreement between the VinDr-CXR and H108’s radiologists without assistance.

understand the decision-making process of the VinDr-CXR
system. First, the visualization of normal cases was irregular

with a symmetric high colormap, and there was no increased
signal over all parts of the lung (Figure 6A). Second, across
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TABLE 9. Agreement between the VinDr-CXR and H108’s radiologists with assistance.

FIGURE 5. Impact of the VinDr-CXR on radiologists’ performance. (A) Change in inter-radiologist agreement before and after consulting the VinDr-CXR
predictions. The VinDr-CXR assistance significantly improved agreement between radiologists with an increase of 1.5% in mean Fleiss’ Kappa. (B) Change
in individual radiologists’ agreement with the system before and after consulting the VinDr-CXR predictions. The VinDr-CXR assistance resulted in a
significant increase in the agreement between the AI system and radiologists with an improvement of 3.3% in mean Cohen’s Kappa. In particular, all
differences were statistically significant.

all abnormal scans, the saliency maps highlighted parts of the
CXRs that contain abnormal patterns such as Nodule/Mass,
Calcification, and Opacity, which are clinically correlated
with disease conclusions, including Lung Tumor and TB.
In other words, the attention regions in the visualization
maps were consistent with the annotated abnormal findings
provided by our radiologists, as well as predictions by the
VinDr-CXR detector model (Figure 6B–F).

IV. DISCUSSION
The VinDr-CXR may find helpful in several clinical sce-
narios. (1) The system was able to discriminate correctly
between normal and abnormal CXRs. It, therefore, could
be used as a tool to automate screening of common lung
diseases for primary diagnosis (e.g., Tuberculosis and Malig-
nancies) at scale. (2) Non-specialist clinicians could also
potentially use the VinDr-CXR at healthcare centers to

provide teleradiology primary CXR reading or to support
rapidly triage cases. (3) The VinDr can be used as a second-
reader or assistance tool for clinicians. In this setting, the
system can provide diagnosis assistance at different levels
including image-level diagnosis and lesion-level diagnosis.
This makes the proposed DL algorithms more transparent
and more explainable, allowing clinicians to understand and
explore the results to improve diagnosis outcomes.

On the technical aspect, this study strongly supports
the following statements. First, a DL network can learn
effectively and accurately predict common thoracic diseases
and findings if trained on large-scale, multi-institutional,
and expert-annotated imaging datasets. Second, although
the current study was conducted in Vietnam, the proposed
VinDr-CXR showed its robustness on external datasets
acquired from hospitals in the United States. This result
showed evidence that the model generalization of a DL
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FIGURE 6. Visual explainability of the VinDr-CXR system. Visualization of CXRs and saliency maps overlaid on the original CXR images for several
patients chosen from the internal validation set. The CXRs and affected areas were provided by our expert radiologist (top row). The corresponding
saliency maps for CXRs were found by the VinDr-CXR classification model (bottom row). The blue, red, and green boxes cover the regions of
Nodule/Mass, Calcification, and Opacity, respectively. Boxes with thick and thin lines denote ground-truth boxes and detected boxes, respectively.
This figure indicates that the saliency maps highlighted parts of the CXRs that contain abnormal patterns (local labels), which are clinically
correlated with disease conclusions (global labels). Best viewed in color.

system could consistent across geographical settings. Sev-
eral studies [68], [69] showed that DL models for the CXR
interpretation failed to generalize to image sources from new
institutions and hospitals. In contrast, our finding is similar to
Cohen et al. [70] who presented evidence that generalization
over difference distributions is not due to a shift in the images
but instead a shift in the labels. Third, our external validation
experiment showed evidence that a DL system trained on dig-
ital CXR could generalize well on CXR captured by smart-
phone cameras without additional training cost. This opens
the opportunity to integrate the DL system like VinDr-CXR
into the vast spectrum of clinical workflows across the world,
including developing regions that is still using films.

In terms of novelty, the VinDr-CXR system shows several
contributions. First, while most previous studies [31], [37],
[38], [39], [40], [41] usedmachine-generated annotations that
contain many CXR images with uncertainty labels to train
DL systems, our model was trained on radiologist-generated
annotations for both development and validation data sets.
Next, the proposed DL system evaluated both the detection
and classification tasks, while most previous studies have
only evaluated image-level classification performance with-
out specifying the location of abnormal findings. Last, this
study conducted a large-scale, clinical evaluation to inves-
tigate the actual impact of a DL system on the variability
in radiologist performance in the interpretation of CXRs.
We showed that the system significantly improved agreement
among radiologists. To the best of our knowledge, we are the
first to show that a DL system trained on a large-scale, anno-
tated dataset can offer clinical value by helping to improve the
rate of agreement among physicians. Furthermore, we also
observed that VinDr-CXR assistance resulted in a signifi-
cant increase in the agreement between the DL system and
radiologists. Note that most literature refers to comparisons
between human performing and AI models on the CXR inter-
pretation, usually in diagnostic accuracy on the same clinical
validation dataset. We suggest that these comparisons do not
offer valuable insights into these systems’ impact on clinical
practice.

This study is not without limitations. First, the develop-
ment and evaluation datasets only contain frontal CXR scans.
Meanwhile, several clinical findings require lateral views.
The next version of the dataset may consider adding the
lateral views to train the VinDr-CXR system. Second, in clin-
ical practice, physicians diagnose diseases based on both the
patient’s clinical history and visual information from CXRs.
The VinDr-CXR, however, used only image information for
providing diagnosis results without taking clinical and lab-
oratory information into account. Third, the current study’s
most significant limitation is that we did not directly measure
the actual impact of the VinDr-CXR on the sensitivity and
specificity of participating radiologists due to the lack of
gold reference ground truth. We showed in this study that the
DL system was able to reduce clinical disagreements among
radiologists. However, there is no clear evidence that the DLS
helps improve the sensitivity or specificity of the radiologist
in CXR interpretation.

V. CONCLUSION
We reported in this paper the development and validation
of an AI-based system called VinDr-CXR for identifying
14 abnormal findings and classifying six common lung dis-
eases from CXRs. To achieve this goal, we collected and
annotated a large-scale CXR dataset of 53,485 studies across
two major hospitals. Using radiologist-generated annotations
as the reference standard to train the VinDr-CXR, we showed
that it could achieve a performance level on par with a group
of experienced radiologists in classifying common thoracic
diseases. The system also achieved high diagnostic accu-
racy for most abnormal findings. Extensive validation exper-
iments confirmed that the VinDr-CXR system generalizes
well to datasets acquired from different patient cohorts. Most
importantly, our clinical evaluations determined the value of
the VinDr-CXR in clinical practice when it improved the
agreement among physicians. The proposed system could
be directly applied in different clinical settings, e.g., sup-
porting physicians in triaging cases or using as a second
reader. Although many DL–based models for predicting lung
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FIGURE 7. (A) EfficientNet architecture: scaling method that uniformly scales all three dimensions with a fixed ratio.
(B) EfficientDet architecture employs EfficientNet as the backbone network, BiFPN as the feature network, and
shared class/box prediction network. These figures were reproduced from the original papers.

TABLE 10. Inter-rater agreement among radiologists at the HMUH without the VinDr-CXR assistance.

diseases have improved diagnostic accuracy, in some cases
surpassing radiologists’ performance, there is little evidence
showing that deployment of these models has improved
patient outcomes. Therefore, further research is needed to
validate the model prospectively and determine its utility
in clinical settings. For example, the diagnostic and clinical
effects of the VinDr-CXR needs to be assessed in large-scale
test cohorts to determine the change in sensitivity and speci-
ficity of radiologists for the CXR interpretation in routine
clinical practice.

APPENDICES
A. DEVELOPMENT OF DEEP LEARNING ALGORITHMS
1) NETWORK ARCHITECTURES
Deep learning (DL) [71], a subfield of machine learning,
is a computational model that composes multiple processing
layers and uses data-driven rules to learn representations of
data with multiple levels of abstraction. DL networks showed
their breakthrough successes in a wide variety of diagnostic
tasks in medical imaging analysis [13], [37], [45], [72]. In this
study, we applied two well-known DL networks for clas-
sifying common thoracic diseases and detecting abnormal
findings in CXR images. We deployed EfficientNet-B6 [56]
for the task of disease classification and EfficientDet-D6 [57]
for the task of lesion detection. These network architectures

were well-known as the most commonly used and most
successful DL networks for image classification and object
detection. By balancing network depth, width, and resolu-
tion, the EfficientNet [56] can lead to much better accu-
racy and efficiency than other state-of-the-art CNN models.
Meanwhile, the EfficientDet-D6 [57] used a weighted bi-
directional feature pyramid network (BiFPN), allowing easy
and fast multiscale feature fusion and combined with the
feature learning capacity of EfficientNet-B6 [56]. This net-
work architecture design, which requires less computa-
tional resources for training, achieved much better efficiency
than prior state-of-the-art detectors. Therefore, we found
that EfficientNet-B6 [56] and EfficientDet-D6 [57] well-
suited for medical applications, including the CXR analysis.
Figure 7 illustrates the key ideas behind these two network
architectures.

2) IMPLEMENTATION DETAILS
We followed the original implementation of EfficientNet-
B6 [56] and EfficientDet-D6 [57] with some minor mod-
ifications. Specifically, the last fully-connected layer of
EfficientNet-B6 [56] has changed to output a vector of six
dimensions corresponding to six classes. Mean binary cross-
entropy loss was used to train these six classes simultane-
ously instead of a single multi-class cross-entropy loss in
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TABLE 11. Inter-rater agreement among radiologists at the HMUH with the VinDr-CXR assistance.

TABLE 12. Agreement between the VinDr-CXR system and HMUH’s radiologists without assistance.

TABLE 13. Agreement between the VinDr-CXR system and HMUH’s radiologists with assistance.

the original works. For the detector, we only changed the
classification head to return scores for 14 lesion types while
the loss functions and other parts of the architecture were
preserved.

3) DATA AUGMENTATION
Several pre-processing steps were performed on CXRs
before passing to the networks. Images in the DICOM
format were converted to 8-bit PNG, then padded and
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FIGURE 8. Examples of CXR scans from internal and external datasets. (A) An original CXR scan in the DICOM format from the
VinDr-CXR dataset. (B) An original CXR scan in Portable Graphics Format (.PNG) format from CheXpert [31] dataset. (C) A CXR image
produced by a Nokia phone from CheXphoto [58] dataset. (D) A CXR image produced by iPhone from CheXphoto [58] dataset.

FIGURE 9. Representative cases from our reader study. The first column shows CXRs and lesions
marked by participating radiologists for the first assessment. The middle column shows lesions
identified by the VinDr-CXR system. The last column shows the final decision of the radiologists
after consulting the VinDr-CXR’s result. In many cases, radiologists have changed their previous
decisions by adding or removing lesions.

resized to 1024 × 1024 pixels. Subsequently, 1-channel
images were transformed to 3-channel ones by repeat-
ing the channel three times. In the last step, images with
the pixels intensity in range [0, 255] were normalized
by subtracting (123.675, 116.28, 103.53) then dividing by
(58.395, 57.12, 57.375) in a channel-wise manner.

4) TRAINING PROCEDURES
Regarding the training procedure, the classifier’s weights
were initialized with weights trained on the ImageNet

dataset [73], a large-scale natural image dataset for the
classification task. Pre-processed training images were
randomly transformed using resize-cropping, shift-scale-
rotating, horizontal flipping, brightness-contrast adjustments,
then grouped into batches of 16. The classifier was trained for
multi-label binary classification tasks (presence or absence of
each disease) by optimizing the mean binary cross-entropy
loss of all diseases. A variant of the stochastic gradient
descent algorithm,Adamoptimizer [74], was usedwith a base
learning rate of 2×10e−4. The learning rate was then linearly
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FIGURE 10. VinDr-CXR interface. The clinical findings detected by the VinDr-CXR system are listed on the interface, and bounding box predictions
are displayed on the image.

increased in the first epoch then gradually annealed to 0 at
the end of the 50-th epoch, following the cosine function.
For the detector, a similar training method was employed.
Detector’s weights were initialized with parameters trained
on the COCO dataset [75], a large dataset with common
objects marked by bounding boxes. The optimization objec-
tive incorporates both regression loss for box categories by
weighted summation. A batch size of 8 was used due to larger
memory consumption compared to the classifier and the total
training schedule was 60 epochs.

B. CLINICAL EVALUATION RESULTS AT THE HMUH
We provide in this section experimental results of the clini-
cal evaluation at the HMUH. Table 10 shows the inter-rater
agreement among radiologists at the HMUH without the
VinDr-CXR assistance. Table 11 shows the inter-rater agree-
ment among radiologists at the HMUH with the VinDr-CXR
assistance. Table 12 and Table 13 report the agreement
between the VinDr-CXR system and HMUH’s radiologists
without and with assistance, respectively.

C. EXAMPLES OF CXR SCANS FROM INTERNAL AND
EXTERNAL DATASETS
Figure 8 shows several examples of CXR scans from inter-
nal (VinDr-CXR) and external datasets (CheXpert [31] and
CheXphoto [58]).

D. REPRESENTATIVE CASES FROM THE READER STUDY
Several representative cases from our reader study are pro-
vided in Figure 9. In many cases, radiologists have changed
their previous decisions by adding or removing lesions.

E. VinDr-CXR INTERFACE
Figure 10 shows VinDr-CXR interface that allows displayed
detected findings on the image via bounding box predictions.

F. DATA AVAILABILITY
To facilitate a wide range of research topics in computer
vision and medical imaging, we made the
VinDr-CXR dataset (18,000 studies) publicly available
through through PhysioNet at https://physionet.org/content/
vindr-cxr/1.0.0/. The image and annotation quality of the
dataset can be visually check via our project webpage at
https://vindr.ai/datasets/cxr. The CheXpert dataset is publicly
available at https://stanfordmlgroup.github.io/competitions/
chexpert/. The CheXphoto dataset is publicly available at
https://stanfordmlgroup.github.io/competitions/chexphoto/.

G. CODE AVAILABILITY
Implementation of our work is based on the following open
source repositories: Pytorch: https://pytorch.org; OpenCV
https://opencv.org/; Pydicom: https://pydicom.github.io/. The
source code used to train the VinDr-CXR system is a part of a
commercial software product and not available to the public.
The commercial version of VinDr-CXR can be freely tried
through an online demonstration at https://vindr.ai/. All per-
formance metrics were calculated with the support of scikit-
learn https://scikit-learn.org/. Our labeling framework called
VinDr Lab was made as open-source software and available
for downloading at https://vindr.ai/vindr-lab.
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