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ABSTRACT In the past few years, convolutional neural networks (CNNs), particularly U-Net, have been
the prevailing technique in the medical image processing era. Specifically, the U-Net model, as well as its
alternatives, have successfully managed to address a wide variety of medical image segmentation tasks.
However, these architectures are intrinsically imperfect as they fail to exhibit long-range interactions and
spatial dependencies leading to a severe performance drop in the segmentation of medical images with
variable shapes and structures. Transformers, preliminary proposed for sequence-to-sequence prediction,
have arisen as surrogate architectures to precisely model global information assisted by the self-attention
mechanism. Despite being feasibly designed, utilizing a pure Transformer for image segmentation purposes
can result in limited localization capacity stemming from inadequate low-level features. Thus, a line of
research strives to design robust variants of Transformer-based U-Net. In this paper, we propose Trans-Norm,
a novel deep segmentation framework which concomitantly consolidates a Transformer module into both
encoder and skip-connections of the standard U-Net. We argue that the expedient design of skip-connections
can be crucial for accurate segmentation as it can assist feature fusion between the expanding and contracting
paths. In this respect, we derive a Spatial Normalization mechanism from the Transformer module to
adaptively recalibrate the skip connection path. Extensive experiments across three typical tasks for medical
image segmentation demonstrate the effectiveness of TransNorm. The codes and trained models are publicly
available at github.

INDEX TERMS Transformer, semantic segmentation, attention, medical image analysis.

I. INTRODUCTION
In the healthcare field, early diagnosis of diseases is a crucial
step as it can aid in detecting the severity and spread of
disorders in early stages. Medical image segmentation plays
an integral role in computer-aided disease diagnosis (CAD),
treatment planning and surgical pre-assessment. It mainly
consists of partitioning the shapes and volumes of target
organs and tissues by pixel-wise classification [1]. Manual
annotation in clinical applications is labour-intensive and
time-consuming [2] and may be prone to human error. Thus,
to preclude the burden of manual annotation, automated
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medical image segmentation has become a direction of
research for many years. The recent growth of deep learning
in computer vision has prompted researchers to reconsider
its potential in CAD. Based on this line of research, deep
learning has attained immense success in a wide range of
medical domains ranging from abdominal organ segmenta-
tion from CT images [3], [4], and skin lesion segmentation
from dermoscopy [5] to multiple Mylomia segmentation [6]
from microscopic images, and etc. Figure 1 shows samples
of the Synapse multi-organ segmentation dataset [7] which
exhibits a diverse set of challenging samples for a medical
image segmentation task.

Convolutional neural networks (CNNs), and more specif-
ically fully convolutional networks (FCNs) [8] have been
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FIGURE 1. Sample 2D slices of the Synapse multi-organ segmentation
dataset and the multi-organ annotation mask.

the de facto standard in medical image segmentation for
many years. However, these architectures face a major issue,
namely that essential details are lost at deeper layers of the
network. To solve this problem, and inspired by the U-Net
structure [9], a family of U-shaped networks were devised.
The U-shaped structure, designated as U-Net, and consist-
ing of symmetric encoder-decoder with skip connections
has rendered remarkable performances in recent years. The
contracting path (encoder) follows the typical structure of a
convolutional neural network which encodes the input image
into feature representations at multiple levels. The CNN-
based models, despite being able to improve context mod-
elling to some degree, have an unavoidable confined receptive
field following from the nature of the convolution opera-
tion. In natural language processing (NLP), the Transformer
architecture has been seen as capable of learning long-term
features [10], [11]. Transformers, unlike CNNs, are not only
significant at modelling global contexts but are also a promis-
ing tool for localizing local details. Inspired by their success
in the NLP domain, researchers have inspected leveraging
the Transformer network in computer vision. The pioneer-
ing architecture, based purely on the self-attention mecha-
nism, was the Vision Transformer (ViT) [12] which attained
high performance compared to SOTA in image recognition
tasks. Since then, Transformers have proven their prodi-
gious power in diverse computer vision tasks [5], [13], [14].
To concurrently benefit from the global context modelling
of Transformers as well as the capability of CNNs in learn-
ing the rich detailed information, many cohort studies have
investigated the amalgamation of U-Net and Transformer
[4], [15]. Inspired by this line of research, in this paper,
we propose TransNorm, a novel architecture that provides a
strong Spatial Normalization mechanism for a deep segmen-
tation model and applies it to medical image segmentation.
Our TransNorm model initially applies the convolution block
to encode the input image into a latent space. Next, on top of
the generated features, we incorporate the vision Transformer
module to capture global contextual dependency from the
latent space. The combination of local features attained from
the CNN module and the global dependency from the Trans-
former module provides a complementary representation to
enrich the encoder representation. This design is similar to
the recently proposed TransUnet approach [4]. However,
we assert that a feasible design of skip-connections can be

crucial for accurate segmentation. Thus, to further enhance
the aforementioned design and increase the benefit from the
Transformer module we extend this strategy to normalize
the skip connection sections of the decoding path. To this
end, we define a two-level attention mechanism to adaptively
recalibrate the feature combination on the skip connection
path. First, by applying the channel attention mechanism,
we normalize the feature representation to emphasize the
more informative channels. Next, by utilizing the spatial
coefficient stemming from the Transformermodule, we apply
a second level attention mechanism to strengthen the contri-
bution of important regions to the segmentation process. The
experimental results on the multi-organ segmentation task
show that incorporating a spatial attention module enhances
model strength in recovering object boundaries from an over-
lapped background. Our contributions are as follows:
• Incorporting an attention module on the skip connection
• Spatial attention module derived from a Transformer

model
• Improved results on the public datasets as well as publicly

available implementation source code.

II. LITERATURE REVIEW
A. CNN-BASED SEGMENTATION NETWORKS
Convolutional neural networks have been themost commonly
used approach for image segmentation tasks in recent years.
Following the advent of U-Net [9], this elegant design has
been incorporated for diverse medical image segmentation
tasks. The main contribution of U-Net in this sense is that
while upsampling in the network it also concatenates the
higher resolution feature maps from the encoder network
with the upsampled features in order to more accurately
learn representations. Meanwhile, persuaded by the success
of U-Net, a line of research attempted to extend this archi-
tecture for the purpose of even more accurate segmentation
such as Res-UNet [16], Dense-UNet [17], U-Net++ [18] and
UNet3+ [19]. To this end, 3D U-net [20] was proposed as
an augmentation of U-Net which deals with 3D volumetric
segmentation. Oktay et al. [21] proposed to use attention
gates in the basic U-Net architecture for pancreas segmen-
tation to enable the network to focus on specific objects of
greater importance while ignoring superfluous areas. Further-
more, U-Net++ [18] proposed to bridge the semantic gap
between the feature maps of the encoder and decoder using
nested and dense skip connections instead of directly fetch-
ing high-resolution feature maps from the encoder into the
decoder. The common point of these CNN-based methods is
that they inevitably have limitations in capturing long-range
dependencies due to the inherited property of the confined
receptive field. In fact, the locality and weight-sharing prop-
erty of convolution operations make them incapable of appre-
hending global contexts. To date, various methods have been
developed to solve this problem of CNN’s restricted receptive
field. As such, Yu et al. [22] proposed to use atrous con-
volution with a dilation rate that expands the receptive field
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without loss of resolution. Zhao et al. [23] exploited pyramid
pooling at different feature scales so as to agglomerate global
information. Wang et al. [24] proposed a non-local neural
network for capturing long-range dependencies by computing
the response at a position as a weighted sum of the features
at all positions in the input feature maps. Incorporating self-
attentionmodules into convolutional layers is another attempt
to restrain the deficiency of CNNs in non-local modelling
capability. To achieve this, Fu et al. [25] proposed a dual
attention network that models the semantic interdependencies
in spatial and channel dimensions using the self-attention
mechanism respectively. Despite the efforts made to mitigate
the aforementioned problem of CNNs, they still cannot fully
meet the clinical application requirements and exacerbate a
notorious problem in the segmentation of medical images
with various shapes and scales. Specifically, although these
methods have been able to boost the performance of segmen-
tation to some extent, the potential of capturing long-range
semantic dependencies still needs to be addressed.

B. TRANSFORMERS
Following the consensus of exploiting Transformer as
a de facto operator in the NLP era, more and more
Transformer-based methods appear in CV tasks. Specifically,
ViT [12] was the primary medium of the Transformer-based
methods to surpass the traditional CNN-based architectures
in image recognition tasks. Intuitively, ViT divides the input
image into multiple partitions (patches), which are then fed
into a Transformer encoder followed by an MLP layer to
perform the classification. Subsequently, different alterna-
tives of ViT were proposed in the literature such as Swin
Transformer [26], LeViT [27], and Twins [28]. To solve the
drawback of model complexity in regular Transformers, Swin
Transformer [26] proposes to split image patches into win-
dows, and apply Transformer only within patches inside each
window. Additionally, inspired by the basic idea of CNNs,
the authors suggest shifting the window and then applying
the Transformer module again allowing adjacent windows to
interact with each other.

C. COMBINING CNNs WITH TRANSFORMER
ARCHITECTURE
The pioneering Transformer-based medical image segmen-
tation approaches involve exploiting Transformer layers in
the encoder of the architecture. The first work to do this
was the TransUNet paper [4]. As opposed to other ViT-based
methods, the authors propose to first convert the input image
to a set of low-resolution feature maps by initially inputting
the image to a series of convolution layers (using a Res-
Net50 backbone) which they then encode with a ViT. The
resulting encoded features are then upsampled via so-called
Cascaded Upsampler layers in the decoder to output the final
segmentation map. To restrain the quadratic complexity of
using a purely Transformer-based model which can hinder
the performance in segmentation of high-resolution medi-
cal images, Cao et al. [29] propose Swin-UNet. Inspired

by Swin-Transformer they compute the attention within a
fixed window. Furthermore, Swin-UNet contains a patch
expanding layer for upsampling the decoder’s feature maps
thereby reshaping the feature maps of adjacent dimensions
into a higher resolution feature map. In another attempt
to incorporate the Transformer module into encoding lay-
ers, Wu et al. [30] replace the long-established single branch
encoder architecture with a dual encoder containing CNNs
and a Transformer branch. Moreover, to attain an adap-
tive feature fusion from these branches to the decoding
part, they devise a feature adaptation module (FAM) and a
memory-efficient decoder to circumvent the burden of com-
putational inefficiency.

The CNN-based segmentationmethods usually suffer from
poor global contextual encoding and render a poor predic-
tion of the object boundary. However, the Transformer-based
methods are highly capable of encoding the long-range
connectively and exhibit a strong feature learning strategy.
However, this strategy usually lacks the learning of local
information and suffers from poor generalization perfor-
mance. Thus, combining these two descriptors might provide
an efficient feature representation, which is at the heart of our
research in this paper. Following the aforementioned Tran-
sUnet method (combining CNN and Transformer modules),
we argue that this method mainly suffers from a weak con-
struction on the skip connection section, hence, we propose
an attention module to boost the performance of this pipeline.
To this end, we design a two-level attention mechanism based
on the Transformer module to adaptively recalibrate the fea-
ture combination on the skip connection path. In the next
section, we will present our method comprehensively.

III. PROPOSED METHOD
A conceptual overview of the proposed TransNorm is
depicted in Figure 2. Given an image I ∈ RH×W×C with
a spatial resolution of H × W and C number of channels,
we aim to predict the corresponding segmentationmap of size
H×W . As shown in Figure 2, TransNorm consists of several
components processing information differently: 1) encoder,
which is mainly a CNN that encodes semantic and high-level
features; 2) Transformer branch, whose goal is to learn the
long-range contextual dependency in the bottom stream of
our network, within which we propose a so-called Spatial
Normalizer shown in Figure 3; 3) decoder, to gradually out-
put the final labelmap. We will elaborate each part in more
detail in the next subsections.

A. ENCODER
The first module that is incorporated into our design is the
encoder module. Generally, the design choice for the encoder
module can follow any well-known network, whereas a
deeper network may increase the feature representation
power and, consequently, offer a better generalization per-
formance. However, the main objective of this study is to
investigate the effectiveness and importance of the skip con-
nection in the Transformer-based model. Thus, to squeeze the
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FIGURE 2. The structure of the proposed method for medical image segmentation. Our approach utilizes a Transformer module on the network
bottleneck to learn long-range contextual dependency and produces a spatial normalization coefficient for the attention module which allows the fusion
of low-level and high level details. It should be noted that our Transformer model follows the regular Vision transformer model. The orange cubes in the
decoder part indicate the feature vector transmitted from the encoder part by the skip connections.

CNN representation, we exploit the semi U-Net [9] structure
to obtain the semantic and global context of features. Given
an input image I ∈ RH×W×C , the feature maps produced by
the encoder x ∈ RH

′
×W ′×C ′ can be formally expressed as

x = Eθ (I), (1)

where E denotes the encoder with parameters θ .

B. LONG-RANGE CONTEXTUAL REPRESENTATION
To exploit the supremacy of learning long-range correlation
and contextual dependency, we integrate the Transformer
module following the encoding part of our design. To this
end, we perform sequentialization by reshaping the input
x ∈ RH

′
×W ′×C ′ into a sequence of flattened non-overlapping

patches xp ∈ RN×
(
p2·C ′

)
, where each patch is of size P × P

and N = H ′W ′

P2
denotes the input sequence length. Subse-

quently, we map the patches into aD-dimensional embedding
space using a linear projection. To retain the spatial informa-
tion of each patch, as the attention mechanism is intrinsically
permutation-invariant, we learn a position embedding which
is later added to the patch embedding as follows:

z0 =
[
x1pE; x

2
pE; · · · ; x

N
p E
]
+ Epos, (2)

whereE ∈ R
(
P2·C ′

)
×D is the patch embedding projection, and

Epos ∈ RN×D intends to learn the positional encoding. Ulti-
mately, the Transformer encoder is comprised of K stages,
each consisting of a Multihead Self-Attention (MSA) and a
Multi-Layer Perceptron (MLP) block. Therefore, the output
of the k-th layer is modeled as:

z′k = MSA (LN (zk−1))+ zk−1 (3)

zk = MLP
(
LN

(
z′k
))
+ z′k (4)

where LN() denotes the layer normalization operator [31].
We concatenate the generated features with the CNN-based
features derived from the encoder to form a complementary
(semantic and long-range contextual) feature set. To further

benefit from the Transformer module we propose an attention
module to provide a Spatial Normalizationmechanism for the
skip connections in the decoding path.

C. ATTENTION GATE
The adaptation of attention mechanisms with the aim of
diverting focus to salient regions of an image while dis-
regarding irrelevant parts has long been established in the
computer vision era. Inspired by its success, we devise a
two-level attention mechanism into the skip connection of
the decoding path as shown in Figure 2. Given an encoded
CNN feature x ∈ RH

′
×W ′×C ′ and the transformer feature z ∈

RH
′
×W ′×C ′ , our two-level attention module first calculates

the 1D channel attention map Wc ∈ RC×1×1 to adaptively
recalibrate the object recognition features and then utilizes a
2D Spatial Normalization mapWs ∈ R1×H ′×W ′ generated by
the Transformermodule to perform the Spatial Normalization
process. The overall attention process can be written as:

fcn = Wc(f)⊗ f,

fsn = Ws ⊗ fcn, (5)

where ⊗ shows the element-wise multiplication and f repre-
sents the concatenation of the CNN and Transformer features.
More specifically, we formulate the channel normalization
fcn by adaptively recalibrating the weight of each channel,
to feasibly exploit the inter-channel correspondence of fea-
ture maps. To this end, we first calculate the global average
pooling of each layer. Then, by utilizing a fully-connected
layer, we scale each channel accordingly

fcn = σ (MLP(Avg Pool(F)))

= σ
(
W2

(
W1

(
Fc
avg

)))
, (6)

where σ represents the sigmoid activation function, and
W1 and W2 show the MLP weights. Next, for the purpose
of an adaptive spatial region selection mechanism, we devise
a spatial attention map to focus on informative parts of a
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FIGURE 3. Our proposed two-level attention gate to normalize both channel and spatial information on each decoding path.

single feature map. We assert that utilizing the spatial coef-
ficients derived from the Transformer module will lead to
a better conclusion for the segmentation model as to where
to emphasize or suppress while generating the segmentation
map. In this respect, we use the attention probability map
Ws ∈ R1×H ′×W ′ derived from the Transformer moduleWs =

softmax
(
qk>/

√
d
)
to perform an attention mechanism:

fsn =Ws ⊗ fcn, (7)

where q, k , and d represent the query, key and normalization
values, respectively. To impose an expedient feature fusion
scheme into the decoding part of our proposal, we recon-
sider the feature recalibration on the skip-connection path.
Intuitively, in order to guarantee the aggregation scheme to
exploit both the high-level and the with low-level feature
maps, we make use of generated attention maps into the skip-
connection configuration.

D. DECODER
The decoder, a pure CNN architecture, progressively
upsamples the feature maps to the original image space
(i.e.,RH×W×C ). The cascaded upsampling strategy is used to
recover the resolution from the previous layer using transpose
convolution to perform pixel-level segmentation. Moreover,
to effectively promote global information from the Spatial
Normalizer module, we utilize the feature maps obtained
from the Spatial Normalizer which contain high-level seman-
tic information in the upsample layers using attention gates
as shown in Figure 2. We claim that the idea of prominently
designing skip-connections leads to finer feature fusion with-
out the severe cost of computational burden. To support our
claim, we performed an ablation study on the effect of the
afrementioned idea in the following sections.

IV. EXPERIMENTAL RESULTS
To validate ourmethod for different medical image segmenta-
tion tasks, extensive experiments on three different tasks were
designed. In this section, first, we briefly present the dataset
utilized to evaluate the effectiveness of the designed network.
Next, the training hyperparameters and the training process
are described in more detail. To validate the performance

of the proposed approach compared to the baseline and the
counterpart methods, we first describe the metrics and the
experimental setting. Then, for each dataset quantitative and
visualization results are provided to discuss the obtained
results in a comprehensive manner. Furthermore, the ablation
study is included to evaluate the contribution and effects of
each proposed module separately. In the next subsections,
we will discuss each section in more detail.

A. DATASET
1) SYNAPSE MULTI-ORGAN SEGMENTATION
The Beyond the Cranial Vault (BTCV) abdomen challenge
dataset [7] comprises 30 abdominal CT scans with, in total,
3779 axial contrast-enhanced abdominal clinical CT images.
In each instance, 13 organs were annotated by interpreters
including the spleen, the right kidney, the left kidney, the
gallbladder, the esophagus, the liver, the stomach, the aorta,
the inferior vena cava (IVC), the portal vein, the splenic vein,
the pancreas, the left adrenal gland, and the right adrenal
gland. Each CT scan is acquired with contrast enhancement
leading to volumes in the range of 85 ∼ 198 slices of 512×
512 pixels, with a voxel spatial resolution of ([0.54 ∼ 0.54]×
[0.98 ∼ 0.98] × [2.5 ∼ 5.0])mm3. Following the splitting
strategy of [4], 18 samples were divided into the training
set and 12 samples into the testing set. Moreover, as for
the pre-processing pipeline, each scan value was normalized
to values between 0 an 1 followed by random sampling of
96× 96× 96 voxels [32].

2) SKIN LESION SEGMENTATION
a: ISIC 2017 DATASET
The ISIC 2017 dataset [33] was published by the International
Skin Imaging Collaboration (ISIC) as a large-scale dataset of
dermoscopy images which was primarily rendered for three
tasks including lesion segmentation (considered in this work),
dermoscopic feature detection, and disease classification.
The ISIC 2017 dataset contains a training set of 2000 images
with corresponding ground truth images. The size of each
sample is 576 × 767 pixels. Following the settings of [34],
we use 1250 samples for training, 150 samples for validation
data, and 600 samples as a test set. As for the pre-processing
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stage, we resize images to 256 × 256 pixels following the
lead of [35].

b: ISIC 2018 DATASET
In 2018 the ISIC foundation developed this dataset [36] as
a large-scale dataset of dermoscopy images with the aim of
further supporting clinical research which yields automated
algorithmic analysis. The database comprises 2594 images
with their corresponding ground truth annotations. Following
other approaches [35], [37], we used 1815 images for train-
ing, 259 for validation and 520 for testing. Moreover, we alter
the size of each sample i.e., 2016 × 3024, to a fixed size of
256 × 256 pixels.

c: PH2 DATASET
The PH2 dataset [38] comprises 200 dermatoscopic images
of melanocytic skin lesions including 80 common nevi,
80 atypical nevi, and 40 melanomas. The resolution of each
input image is 768 × 560 pixels. Following the same strat-
egy as [39], we divide the dataset into train and test sets
(100 samples per each set) and resize the images into
256 × 256 pixels. Furthermore, similar to [39] we pre-train
the model on ISIC 2017 to later tune it for this dataset.

3) MULTIPLE MYLOMIA SEGMENTATION
The Multiple Myeloma (MM) challenge was held by
the SegPC grand challenge in conjunction with the ISBI
2021 symposium to evaluate the effectiveness of machine
learning methods for multiple myeloma cell segmenta-
tion [40]. This challenge contains several images captured
from the bone marrow slides of patients diagnosed with
Multiple Myeloma (MM) cancer, which cancer arises from
a white blood cell. The annotated train dataset provided by
this challenge contains 290 images with an MM instance in
each image. To evaluate our method on this dataset, we follow
the same strategy presented in [40] and divide the original
train set into train and validation sets. Our inference is on the
original validation set provided by this challenge.

B. EVALUATION METRICS
We evaluated the performance of Synapse multi-organ seg-
mentation with the average Dice Similarity Coefficient
(DSC) and the average Hausdorff Distance (HD). To validate
the results obtained on skin lesion segmentation and MM we
used several well-known metrics including accuracy (AC),
sensitivity (SE), specificity (SP), F1-Score, and mean Inter-
section over Union (mIoU). The equation of each metric and
the brief description is provided as follows: TP indicates a
sample that is correctly predicted as a true sample; TN shows
a sample with a negative label that is correctly predicted as
a negative sample; FP indicates that the model predicted a
negative sample as a true class while the correct label was the
negative class; FN similarly shows a wrong classification for
a true positive sample.

Accuracy represents the ratio of the correct classification,

ACC =
TP+ TN

TP+ TN+ FP+ FN
(8)

Specificity calculates the percentage of the FP that are
identified by the model,

Specificity =
TN

TN+ FP
(9)

Sensitivity calculates the percentage of the TP that are
identified by the model,

Sensitivity/ Recall =
TP

TP+ FN
(10)

F1 score calculates the weighted average of the precision
vs recall,

F1 score =
2 ∗ TP

2 ∗ TP+ FP+ FN
(11)

mIoUmeasures the overlapped area of the predicted mask
with the grand truth divided by the union of the grand truth
and predicted mask.

mIOU =
TP

TP+ FP+ FN
(12)

DSCmeasures the similarity of the predicted mask and the
grand truth.

DSC =
2TP

2TP+ FP+ FN
(13)

C. IMPLEMENTATION DETAILS
To implement the proposed method we used the Pytorch
library and carried out the results on a single GPU RTX
3090 equipped System. Both the baseline model and the
proposed one are trained with a batch size 16 with an initial
learning rate 1e−3 and the decay rate 1e−4 for 100 epochs.
All layers are initialized using the normal distribution and
data augmentation is not used during the training process.
To facilitate the training convergence we included the batch
normalization layer in each block of the encoding and decod-
ing paths. During the training the validation loss is monitored
to stop the training process if the validation loss did not
decrease in ten successive epochs. For the baseline model,
we followed the common implementation of the U-Net net-
work and incorporated the proposed modules to present our
network. It is worthwhile to mention that the training process
for all datasets converged smoothly without any instability.

D. COMPARISON RESULTS
In this section, the experimental results of each dataset are
presented. To provide a fair evaluation we followed the recent
work and only included the approaches which use the same
settings for their performance evaluation.
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TABLE 1. Comparision results of the proposed method on Synaps multi-organ segmentation dataset.

1) SYNAPSE MULTI-ORGAN SEGMENTATION
Table 1 presents the comparison results of the proposed
method against the SOTA approaches. First, it is clear that
our TransNorm achieves the best results, with DSC and HD
of 78.40% and 30.25%, respectively. Compared to the recent
TransU-Net variants, our method improves the average DSC
and Hausdorff distance by 0.98% and 1.44 mm respectively.
This may explain the importance of the attention mechanism
we incorporated on the skip connections of the decoding
path.

Second, the results presented demonstrate that the
TransNormmodel improves both CNN and pure Transformer
models by a large margin. The CNN models are less capable
of capturing the global contextual information and, conse-
quently, less precise in the boundary area. However, the pure
Transformer model renders a pool representation of the local
information and yields a weak segmentation mask. Com-
bining both these networks and incorporating an attention
mechanism, our proposed method results in learning both
semantic and global contextual information with an addi-
tional adaptation (due to the attention mechanism) which is
crucial for the segmentation task.

Furthermore, for visual assessment, we have provided
Figure 4 in which the proposed method’s performance is
closer to the ground truth, and in line with the real situation.
This visualization reveals the importance of the attention
mechanism we added to the skip connection module to effec-
tively reconstruct the object boundary on a highly overlapped
background.

FIGURE 4. Segmentation result of the proposed method on Synaps
dataset. From Left to right, the images indicate the input image, grand
truth and the predicted mask.

In Figure 5 we illustrate visual output for the method to
further deliver a clear view of the smooth segmentation results
provided by our approach.

TABLE 2. Quantitative analysis of the proposed method against the SOTA
approaches for skin lesion segmentation on ISIC 2017.

FIGURE 5. Segmentation results of the proposed method on ISIC 2017.
We can observe that the proposed method produces a precise
segmentation map and a smooth boundary for the skin lesion area.

2) SKIN LESION SEGMENTATION
In this section, we present the experimental results for
skin lesion segmentation. First, in Table 2 we present the
comparison results for ISIC 2017. It can be seen that the pro-
posed method outperforms the SOTA approaches in almost
all metrics. Compared to the U-Net model (the best CNN
model for this dataset), our method produces a better gen-
eralization performance and improves the F1 score by 8%.
Furthermore, in comparison with the TransU-Net model, our
method exhibits a better performance which further proves
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the effectiveness of the attention module we incorporated on
the skip connection parts.

In Table 3 we present the quantitative results of the pro-
posed method against the SOTA approaches. Similar to the
ISIC 2018 dataset, our method outperforms both CNN and
Transformer-based approaches. To further investigate the
qualitative results we depict some segmentation results of the
method in Figure 6. The method produces precise segmen-
tation results even when the background has a high overlap
with the skin lesion class.

TABLE 3. Performance comparison of the suggested network against the
SOTA counterparts for skin lesion segmentation on the ISIC 2018 dataset.

FIGURE 6. Segmentation samples of the proposed method on ISIC 2018.
The method separates the skin lesion from the overlapped background
with high precision.

Finally, Table 4 shows the quantitative results for the PH2
dataset. The table shows that, except for the sensitivitymetric,
the method exhibits a better performance compared to the
SOTA models.

Figure 7 shows segmentation results of the proposed
method where the skin lesion area is predicted precisely.
Notably, the method does not produce isolated FP pixels and,
remarkably, it separates the background from the skin lesion
area.

TABLE 4. Performance comparison on PH2 dataset.

FIGURE 7. Segmentation samples of the proposed method on PH2.
Segmentation results shows that the model is highly capable in
separating skin lesion area.

3) MULTIPLE MYLOMIA SEGMENTATION
We present the visual segmentation results in Figure 8.One
can see in Figure 8 that TransNorm can describe mylomia
precisely and generate more fitting segmentation masks. This
stems from its ability in modeling long-range spacial cor-
relations between each volume. Furthermore, we conduct
quantitative comparisons in terms of the mIOU of the pro-
posed network with the winners of the SegPC 2021 Challenge
that utilized the mylomia dataset. As shown in Table 5, the
proposed method obtained the best overall performance. It is
worth mentioning that the leading team (XLAB Insights [6])
propose to use a combination of three instance segmen-
tation networks (SCNet [44], ResNeSt [45], and Mask-
RCNN [46]). The second team (DSC-IITISM [6]) employs
the Mask-RCNN model with substantial data augmentation
techniques while the third team, (bmdeep [6]) uses an atten-
tion deeplabv3+method [39] with a multi-scale region-based
training procedure. All these approaches require a large num-
ber of parameters compared to our model. However, even
with such merit those methods render a poorer performance
compared to our novel approach.
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TABLE 5. Performance evaluation on the SegPC challenge (best result is
highlighted).

FIGURE 8. Segmentation results of the proposed method on the SegPC
challenge dataset. The method performs well on the highly overlapped
background.

E. ABLATION STUDY
In this section, we discuss the influence of different design
choices on the model’s overall performance. To this end,
we conducted a comprehensive ablation study on the effect of
the attention mechanism, skip connections, input resolution,
and model scaling. To validate the performance under differ-
ent settings, we ablate across multiple datasets, namely ISIC
2017, ISIC 2018 and PH2. In the next subsections, we will
elaborate on each factor in detail.

1) ATTENTION MECHANISM
We conducted ablation experiments to demonstrate the values
of each contribution and justify the rationale of its design
choices towards overall performance. The results, recorded
on two metrics across three diverse datasets are presented in
Table 6. Our results reveal the significance of the proposed
two-level attention mechanism. The best average DSC and
accuracy are achieved upon exploiting all proposed modules
across all the datasets. This finding reveals the independence

of the proposed framework contributions to specific circum-
stances. In particular, we noticed that integrating both channel
and spatial information on the decoding paths would leverage
the Transformer to model the global relationships, while
exploiting each of them solely lead to less performance boost.

TABLE 6. Effect of eliminating each of the proposed module on the
overall performance of the suggested network. We perform the
evaluation on all three Skin Lesion segmentation datasets.

2) SKIP CONNECTION INFLUENCE
The objective of the skip connection in our model is
to enhance the segmentation performance by providing a
low-level spatial information for the decoding path. Contrary
to some studies [47], the influence of skip-connections for
local-global semantic feature learning is proven in the litera-
ture [4], [29]. Inspired by this, we argue that the number of
skip connections incorporated in our design can remarkably
effect the model performance. To analyze such influence,
we have conducted several experiments using a varying num-
ber of skip connections in the model structure. Table 7 shows
the experimental results. It can be seen that the model with
three skip connections in 1/4, 1/8, and 1/16 resolution scales
provides a better performance compared to the other settings.

3) INPUT RESOLUTION INFLUENCE
The input resolutions utilized in our experiments for the skin
lesion segmentation follows the literature work [34], [42]
and uses the input resolution 256*256 pixels. However, the
high-resolution input (512 × 512) samples can effectively
influence the segmentation results as they provide a finer
details of the object of interest. In Table 8 we conducted an
experiment using higher image resolution to demonstrate the
impact of this factor on the model performance. Although the
higher resolution provides a better DSC score and justifies
the model capability in learning a finer segmentation map,
it largely increases the computation complexity. Hence, the
performance of our model could be further increased, but this
would demand extra computational cost.

TABLE 7. The influence of the number of skip connections on the model
performance. Experiments on the ISIC 2018 dataset.
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TABLE 8. The influence of the input resolution on the model
performance. Experiments on ISIC 2018 dataset.

4) MODEL SCALING INFLUENCE
In another setting, we evaluated the effect of network deepe-
ing on the overall performance. To this end, a larger version
of the model with a higher number of parameters is created
to gain a better performance. However, the experimental
results (Table 9) demonstrated that increasing the number of
parameters only provides a better performance gain for the
training set (overfitting) and, consequently, little improve-
ment is achieved at inference time. Thus, model scaling is not
efficient in terms of the computational burden for our design.

TABLE 9. The influence of the input resolution on the model
performance. Experiments on the ISIC 2018 dataset.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, we presented our Transnorm model for the
medical image segmentation task. Our design uses the benefit
of combining Transformer and CNN features to encode both
semantic and long-range contextual features. It further uti-
lizes an attention mechanism on the skip connection sections
to adaptively recalibrate the feature representation power and,
thus, boost the generalization performance. Experimental
results on several datasets demonstrate the effectiveness of
our approach for smooth and precise segmentation results
which is crucial for a clinical application. In the future,
this work can be extended by exploiting multi-scale feature
representations that have lately demonstrated powerful per-
formance in Vision Transformers. Moreover, with the aim
of making improvements around computational and memory
efficiency, one can exploit more efficient Transformer vari-
ants.
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