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ABSTRACT For more practical applications, a simple decentralized H∞ proportional-integral-derivative
(PID) team formation tracking strategy is proposed in this study for large-scale stochastic quadrotor
unmanned aerial vehicles (UAVs) under external disturbance, intrinsic stochastic fluctuation and trailing
vortex coupling. By adopting the virtual leader concept, the reference trajectory of each UAV is generated
by the combination of virtual leader trajectory with a specific time-varying formation offset to form a desired
flight formation shape. Then, by using the proposed optimal H∞ decentralized PID controller, each UAV
can efficiently attenuate the effect of external disturbance and trailing vortex coupling from the neighboring
quadrotor UAVs on the team formation reference tracking performance simultaneously. To avoid solving
a complex nonlinear Hamiltion Jacobi inequality (HJI) for PID control of each UAV, the Takagi-Sugeno
(T-S) fuzzy method is employed to interpolate several local linearized UAVs to approximate the nonlinear
stochastic quadrotor UAV system so that the HJI can be transformed to a set of bilinear matrix inequalities
(BMIs). By using novel variable transformation method, the optimal decentralized H∞ PID team formation
tracking control problem of large-scale UAVs can be independently designed in terms of a set of independent
LMIs-constrained optimization problems for each quadrotor UAV. Further, to simplify the design procedure
in a single run, the large amount of decentralized H∞ PID controller parameters for each quadrotor UAV in
the team formation can be efficiently obtained via the current convex optimization technique without any
conventional parameter tuning procedure for PID design. Finally, a simulation example of team formation
reference tracking control for 25 quadrotor UAVs with external disturbance and vortex coupling is given to
validate the team formation tracking performance of the proposed decentralized H∞ PID tracking control
method in comparison with conventional decentralized H∞ T-S fuzzy tracking control scheme.

INDEX TERMS Decentralized team formation tracking control, PID control, large-scale team formation of
quadrotor UAVs, H∞ tracking control, linear matrix inequalities(LMIs), Hamilton Jacobi inequality(HJI),
T-S fuzzy interpolation technique.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs) have attracted a
growing interest in academic and industrial field due to wide
and highmaneuverability [1], [2]. Since the quadrotor UAV is
a highly nonlinear dynamic systemwith 6 degrees of freedom
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and 4 actuators (i.e., the underactuated characteristics), it is
not easy to control quadrotor UAV for a desired trajectory
expecially by a conventional PID control. Nonlinear adaptive
control [3], [4] and nonlinear robust control [5], [6], [7], [8]
have been developed for UAV. However, a single quadrotor
UAV has many limitations on applications, for example, bat-
tery power and loading capacity. Unlike a single quadrotor
UAV, a team formation of multiple UAVs can achieve more
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challenging and complex tasks [9]. Consequently, a team
formation of multiple quadrotor UAVs is becoming practical
and popular in many application areas, i.e., environmen-
tal monitoring, exploration of unsecured regions, detection,
and interception, target searching and rescuing, battlefield
surveillance, etc [9].

Since the missions of quadrotor UAV are more challeng-
ing and complex, several formation control strategies have
been developed, i.e., leader-follower method [10], virtual
leader method [11], etc. Leader-follower method is that one
of quadrotor UAVs in the team plays the role of leader to
represent the behavior trajectory of the team and is con-
trolled to track a desired reference path, while other quadrotor
UAVs are asked to track the trajectory of quadrotor UAV
with a formation shape [10]. Even leader-follower method
was developed more earlier and commonly used in the team
formation of UAVs, there exist some drawbacks. One is that
the team formation is always dependent on the leader UAV.
Thus, if the leader UAV is failed or disintegrated, the whole
team formation can not be maintained or will collapse. When
compared with leader-follower method, the virtual leader
method is more robust and can avoid the above problems,
i.e., virtual leader is a reference model at the central of the
desired shape to generate a reference trajectory with a desired
formation shape [11], [12].

Since the virtual leader is a reference model and will
not suffer from perturbation, it can efficiently reduce the
probability of team formation failure in reality. Recently, the
formation control strategy design of UAV has been widely
investigated. The robust H∞ team formation network control
is designed in [11] in consideration of internal fluctuation
in UAV system. Also, to save the communication resource
in UAV network, the robust event-triggered team formation
tracking is developed in [12]. Further, to reduce the intercon-
nected effect in UAV network, the decentralized H∞ track-
ing control of a large-scale team formation UAV network
system is proposed to passively attenuate the interconnceted
effect [13]. Therein, to relieve the design difficulty of solving
a set of nonlinear Hamilton Jacobi inequalities (HJIs), the
Takagi-sugeno (T-S) fuzzy system is employed to interpolate
several local linearized systems to approximate nonlinear
quadrotor UAV. In this case, the nonlinear HJIs for the H∞
tracking control design can be reformulated as a set of cou-
pled linear matrix inequalities (LMIs), which can be easily
solved by the current convex optimization techniques [11],
[12], [13]. On the other hand, based on a specified potential
function associated with network topology of UAV network,
a decentralized multi–subgroup formation algorithm is devel-
oped to achieve the desired formation control and collision
avoidance [14].

In the aforementioned articles, it is worth to point out
that the computational complexity of proposed strategies
in [11], [12], [13], and [14] is still large. More specif-
ically, a large computational time is needed to calculate

the fuzzy control law u(t) =
∑L

j=1
hj(z(t))Kj(x(t) − r(t))

for the centralized fuzzy control in [11], [12] and ui(t) =∑L

j=1
hi,j(zi,j(t))Ki,j(xi(t) − ri(t)), for i = 1, . . . ,N for the

decentralized tracking control of team formation tracking
of N UAVs [13], [15], respectively. More efforts are still
needed for these fuzzy team formation tracking controls of
large-scale UAVs for practical applications. On the other
hand, to achieve an accurate formation control, the potential
function in [14] for the controller synthesis is with high
nonlinearity. As a result, to remedy the complex T-S fuzzy
team formation tracking control design or other nonlinear
control strategy design for large-scale UAVs, the PID tracking
control is probably the most simple method to overcome the
complex and highly nonlinear teamformation tracking control
design problem.

In this study, a robust decentralized H∞ PID team forma-
tion tracking control design is proposed for large-scale UAVs
with a desired time-varying formation shape under wind
disturbance and coupling of trailing vortex from neighboring
UAVs. The proposed decentralized H∞ PID team formation
tracking control design for eachUAV can efficiently attenuate
the external disturbance and decouple the coupling effect of
trailing vortex from the neighboring UAVs. Therefore, it can
significantly reduce the control design complexity and reduce
the computational complexity of practical team formation
tracking of large-scale quadrotor UAVs. At the beginning,
the proposed robust decentralized H∞ PID team formation
tracking control design of large-scale UAVs can be trans-
formed to a set of independent nonlinear partial differen-
tial HJIs for each UAV in the team formation. Then, PID
controller in each quadrotor UAV needs to be specified to
satisfy the corresponding HJI. Further, the optimal decen-
tralized H∞ PID team formation tracking control design
needs to solve an HJI-constrained optimization problem for
PID control parameters of each quadrotor UAV in the team
formation. However, at present, it is not easy to specify
PID controller parameters to solve the corresponding HJI-
constrained optimization problem for each quadrotor UAV to
achieve the optimal decentralized H∞ PID team formation
tracking control design of large-scale UAVs. To overcome
the difficulty of solving nonlinear partial differential HJI, the
T-S Fuzzy interpolation scheme is employed to interpolate
multiple local linearized stochastic systems to approximate
the nonlinear stochastic system of UAV. Therefore, each HJI-
constrained optimization problem of the optimal decentral-
ized H∞ PID team formation tracking control design of each
quadrotor UAV in the team formation can be transformed to
a corresponding Riccati-like inequalities (RLIs)-constrained
optimization problem. Therefore, the HJI-constrained opti-
mization problem of the optimal decentralized H∞ robust
PID team formation tracking control design of large-scale
quadrotor UAVs can be transformed to an independent
LMIs-constrained optimization problem for each quadrotor
UAV in the team formation. Since the decentralized H∞
robust PID team formation control can be independently
designed, the number of UAVs in the teamformation can

108170 VOLUME 10, 2022



B.-S. Chen et al.: Decentralized H∞ PID Team Formation Tracking Control of Large-Scale Quadrotor UAVs

be increased to a very large scale. A simulation example of
time-varying team formation task for 25 UAV system is pro-
vided to validate the performance of proposed decentralized
H∞ PID control strategy in comparison with the conventional
decentralized H∞ T-S fuzzy team formation tracking control
strategy in [15].

The main contributions of this work are describe as
follows:

1. The previous PID control designs of UAV are always
dependent on the linearized model of UAV and there are little
PID control designs for the team formation tracking control
of UAVs. In this study, we consider the robust decentralized
H∞ PID team formation tracking control design problem
of large-scale nonlinear stochastic UAVs with external dis-
turbance and coupling of trailing vortex from neighboring
UAVs. The proposed robust decentralized H∞ PID team for-
mation tracking control of large-scale UAVs can significantly
simplify the design complexity and save much computation
time of PID controller than the conventional H∞ fuzzy team
formation control of large-scale UAVs in [13], [14], [15],
and [16]. Therefore, the proposed control scheme has great
potential to practical application for large-scale time-varying
team formation control of UAVs.

2. Based on T-S fuzzy interpolation scheme to interpolate
multiple local linear stochastic systems to approximate non-
linear stochastic UAV, the proposed optimal decentralized
H∞ PID team formation tracking control design problem
of UAVs can be transformed to an independent LMIs-
constrained optimization problem for each UAV in the team
formation. Therefore, the number of UAVs in the team for-
mation can be easily extended to a very large scale without
increasing the design difficulty.

3. When compared with other conventional PID control
designs for the linearized quadrotor UAV system, the uncer-
tain wind disturbance, intrinsic random Wiener fluctuation,
and wind coupling of trailing vortex from neighborhood
UAVs can be efficiently attenuated by the proposed optimal
decentralized H∞ PID team formation tracking control strat-
egy of large-scale nonlinear stochastic UAVs. Further, unlike
the conventional complex tuning process of PID control
parameters, the proposed optimal H∞ decentralized control
parameters can be found in a single round of convex opti-
mization algorithm with help of LMI toolbox in MATLAB.

The remainder of the study is organized as follows.
In Section II, the large-scale quadrotor UAV systems are
introduced and the problem formulation of the decentralized
robust stochastic H∞ PID control for the team formation
quadrotor UAVs is presented. In Section III, the design con-
dition is transformed into an equivalent HJI problem for each
UAV. In Section IV, with the help of T-S fuzzy method, the
HJI problem of each UAV is transformed into a set of bilinear
matrix inequalities (BMIs). Furthermore, with the help of the
novel variable transformation method, a set of independent
BMIs are transformed into a set of independent LMIs for each
UAV and are solved by using the LMI toolbox in MATLAB.
In Section V, the decentralized robust stochastic H∞ PID

FIGURE 1. Free body diagram of the quadrotor UAV.

team formation tracking control method for 25 quadrotor
UAVs in comparison with the traditional decentralized H∞
T-S fuzzy team formation tracking control method is given to
illustrate the effectiveness of the proposed method. Finally,
the conclusion is made in Section VI.

Notation: AT denotes the transpose of matrix A; A ≥ 0
(A > 0) denotes symmetric semi-positive definite matrix
(symmetric positive definite matrix); In denotes the n-
dimensional identity matrix; E{·} is the expectation operator;
‖ x ‖2 denotes the Euclidean norm for the given vector

x ∈ Rn; x(t) ∈ L2
z[0,∞) if E{

∫
∞

0
xT (t)x(t)dt} < ∞, i.e.

x(t) is the finite mean energy;C2 denotes the class of function
f (x) which is twice continuously differentiable with respect to
x; ∂f (x)

∂x denotes the gradient column vector of differentiable

function f (x) ∈ R; ∂
2f (x)
∂x2

is the Hessian matrix of twice-
differentiable function f (x) ∈ R.

II. PRELIMINARY AND PROBLEM FORMULATION
A. PHYSICAL PLANT OF QUADROTOR UAVs
In this study, we simultaneously consider the three posi-
tion variables with the corresponding three velocities of the
quadrotor UAV and three attitude states with the correspond-
ing three angular velocities of the quadrotor UAV as the state
variables in the state space dynamic model of the quadrotor
UAV. To model the quadrotor UAV dynamic, two reference
frames including inertial frame and body frame are intro-
duced, and the free body diagram of the quadrotror UAV is
shown in Fig. 1. The position of themass center of the quadro-
tor UAV is represented as coordinates (x, y, z) w.r.t. an inertial
frame associated with the unit vector basis (ex , ey, ez). On the
other hand, the attitude of the quadrotor UAV is denoted by
the three Euler angles (φ, θ, ψ) which define the orientation
vector of the quadrotor UAV w.r.t. a body frame associated
with the unit vector basis (ebx , eby, ebz). Besides, φ is a roll
angle (−π2 < φ < π

2 ), θ is a pitch angle (−π2 < θ < π
2 ),

and ψ is a yaw angle (−π < ψ < π ). With the Newton
Euler method, the ith quadrotor UAV dynamic model of the
large-scale UAVs networked system can be described as the
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following state space model [12]:

ẋi,1(t)
ẏi,1(t)
żi,1(t)
φ̇i,1(t)
θ̇i,1(t)
ψ̇i,1(t)
ẋi,2(t)

ẏi,2(t)

żi,2(t)

φ̇i,2(t)

θ̇i,2(t)

ψ̇i,2(t)



=



xi,2(t)
yi,2(t)
zi,2(t)
φi,2(t)
θi,2(t)
ψi,2(t)

f (xi,2(t), φi,1(t), θi,1(t)
, ψi,1(t),Fi(t), vi,x(t))
f (yi,2(t), φi,1(t), θi,1(t)
, ψi,1(t),Fi(t), vi,y(t))
−
di,z
mi
zi,2 − g

+ cosφi,1(t) cos θi,1(t)
Fi(t)
mi
+ vi,z(t)

Ji,θ−Ji,ψ
Ji,φ

θi,2(t)ψi,2(t)

−
di,φ
Ji,φ
φi,2(t)+ 1

Ji,φ
τi,φ(t)+ vi,φ(t)

Ji,ψ−Ji,φ
Ji,θ

ψi,2(t)φi,2(t)

−
di,θ
Ji,θ
θi,2(t)+ 1

Ji,θ
τi,θ (t)+ vi,θ (t)

Ji,φ−Ji,θ
Ji,ψ

φi,2(t)θi,2(t)

−
di,ψ
Ji,ψ
ψi,2(t)+ 1

Ji,ψ
τi,ψ (t)+ vi,ψ (t)


(1)

with

f (xi,2(t), φi,1(t), θi,1(t), ψi,1(t),Fi(t), vi,x(t))

= −
di,x
mi

xi,2(t)+ (cosφi,1(t) sin θi,1(t) cosψi,1(t)

+ sinφi,1(t) sinψi,1(t))
Fi(t)
mi
+ vi,x(t)

f (yi,2(t), φi,1(t), θi,1(t), ψi,1(t),Fi(t), vi,y(t))

= −
di,y
mi

yi,2(t)+ (cosφi,1(t) sin θi,1(t) sinψi,1(t)

− sinφi,1(t) cosψi,1(t))
Fi(t)
mi
+ vi,y(t)

for i = 1, 2, . . . ,N

where xi,1(t), yi,1(t), zi,1(t) ∈ R denote the three position
states of the ith quadrotor UAV in the inertial frame, xi,2(t),
yi,2(t), zi,2(t) ∈ R denote the three velocity states of the ith
quadrotor UAV in the inertial frame, φi,1(t), θi,1(t), ψi,1(t) ∈
R denote the three attitude states of the ith quadrotor UAV
in the body frame, φi,2(t), θi,2(t), ψi,2(t) ∈ R denote the
angular velocity states of the ith quadrotor UAV in the body
frame, Fi(t) ∈ R denotes the total thrust of the ith quadrotor
UAV, τi,φ(t), τi,θ (t), τi,ψ (t) ∈ R denote the rotation torques of
the ith quadortor UAV, vi,x(t), vi,y(t), vi,z(t), vi,φ(t), vi,θ (t),
vi,ψ (t) represent the external disturbances of the quadrotor
UAV, mi ∈ R+ denotes the total mass of the quadrotor UAV,
g ∈ R+ denotes the gravitational acceleration, Ji,φ, Ji,θ ,
Ji,ψ ∈ R+ denote the moments of the inertia of φi(t), θi(t),
andψi(t), respectively, and di,x , di,y, di,z, di,φ, di,θ , di,ψ ∈R+
represent aerodynamic damping coefficients of the quadrotor
UAV.

After introducing a single dynamic system of quadrotor
UAV, the large-scale team formation for the dynamic system

of quadrotor UAVs is denoted as a set S = {S1, S2, . . . , SN },
which is composed by N quadrotor UAVs. From the practical
point of view, each quadrotor UAV is affected by the external
disturbances, coupling effects, internal continuous random
fluctuations, and internal discontinuous random fluctuations.
To make the dynamic system of quadrotor UAVs more prac-
tical, the Wiener process and Poisson counting process are
considered to formulate the internal continuous and discon-
tinuous random fluctuations due to parameters fluctuations
in each quadrotor UAV system. Therefore, the ith nonlinear
stochastic quadrotor UAV dynamic system Si in (1) can be
reformulated as follows:

Si : dXi(t) = (fi(Xi(t))+ gi(Xi(t))ui(t)

+

∑
j∈Ni

fi,j(Xi(t))Xj(t − τi,j(t))

+ vi(t))dt + σi(Xi(t))dwi(t)+ Ei(Xi(t))dpi(t)

for i = 1, . . . ,N (2)

with

Xi(t) =
[
XTi,P(t),X

T
i,V (t)

]T
Xi,P(t) = [xi,1(t), yi,1(t), zi,1(t), φi,1(t),

θi,1(t), ψi,1(t)]T

Xi,V (t) = [xi,2(t), yi,2(t), zi,2(t), φi,2(t),

θi,2(t), ψi,2(t)]T

ui(t) =
[
Fi(t), τi,φ(t), τi,θ (t), τi,ψ (t)

]T
vi(t) = [01×6, vi,x(t), vi,y(t), vi,z(t),

vi,φ(t), vi,θ (t), vi,ψ (t)]T

gi(Xi(t)) = [0T6×4, g
T
i,1(XP(t))]

T

gi,1(Xi,P(t)) =



(cosφi,1(t) sin θi,1(t)
× cosψi,1(t)
+ sinφi,1(t)
× sinψi,1(t)) 1

mi

0 0 0

(cosφi,1(t) sin θi,1(t)
× sinψi.1(t)
− sinφi,1(t)
cosψi,1(t)) 1

mi

0 0 0

cosφi,1(t) cos θi,1(t) 1
mi

0 0 0
0 1

Ji,φ
0 0

0 0 1
Ji,θ

0

0 0 0 1
Ji,ψ


where Xi(t) =

[
XTi,P(t),X

T
i,V (t)

]T
∈ R12 represents the

ith dynamic system state of the quadrotor UAV, ui(t) ∈
R4 represents the control input of the ith quadrotor UAV,
Xj(t − τi,j(t)) ∈ R12 represents the trailing vortex coupling
term from the jth UAV to the ith UAV with a time-varying
delay τi,j(t) ∈ R+,

∑
j∈Ni

fi,j(Xi(t))Xj(t − τi,j(t)) ∈ R12

represent the interconnected couplings as the trailing vortex
effect caused by the neighborhood UAVs of the ith UAV, Ni
represents a neighborhood set of quadrotor UAVs nearing the
ith UAV, vi(t) ∈ L2

z[0;∞) denotes the external disturbance
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of the ith UAV,wi(t) ∈ R denotes theWiener process of the ith
quadrotor UAV which is continuous but non-differentiable,
σi(X (t))dwi(t) ∈ R12 denotes the effect of the continuous
stochastic intrinsic fluctuation caused in the ith quadrotor
UAV, pi(t) ∈ R denotes the Poisson counting process with
jump intensity λi, and Ei(Xi(t))dpi(t) ∈ R12 is the discontin-
uous intrinsic fluctuation caused in the ith quadrotor UAV.
Remark 1: The Wiener processes {wi(t)} and Poisson

counting processes {pi(t)} have the following properties [8],
[11], [17], [18]:
(I) E{dwi(t)} = 0 (II) E{dwi(t)dwi(t)} = dt (III)

E{dpi(t)} = λidt (IV)E{dwi(t)dpi(t)} = 0

B. PROBLEM FORMULATION
In order to let N UAVs maintain a specific time-varying for-
mation shape during the flighting, the virtual leader method
is used in this study. The team formation shape of N UAVs
is constructed by one virtual leader and N UAVs and then
each quadrotor UAV will track the virtual leader’s trajectory
with a specific time-varying formation shape to achieve the
formation task. The reference model of the desired trajectory
for N quadrotor UAVs of the team formation can be defined
as follows:

dXi,r (t) = [Ai,rXi,r (t)+ Ci,r (r(t)+ di(t))]dt

for i = 1, . . . ,N (3)

where Xi,r (t) = [XTi,r1(t) X
T
i,r2(t)]

T
∈ R12 denotes the desired

trajectory of the ith quadrotor UAV to be tracked. Xi,r1(t) ∈
R6 denotes the three positions and attitudes of the ith quadro-
tor UAV and Xi,r2(t) ∈ R6 denotes the three velocities and
angular velocities of the ith quadrotor UAV. r(t) ∈ R12 is the
trajectory of the virtual leader to be generated as the desired
flight trajectory of the team formation of N quadrotor UAVs
and di(t) ∈ R12 denotes the time-varying offset from the
virtual leader to the ith quadrotor UAV. Ai,r ∈ R12×12 is the
asymptotically stable matrix and nonsingular. Ci,r ∈ R12×12

is the reference input matrix.
Remark 2: (i) The ith reference model in (3) is to generate

the reference flight trajectory Xi,r (t) of the ith quadrotror
UAV. The systemmatrix Ai,r is to be specified as an asymptoti-
cally matrix. If we set Ci,r = −Ai,r . Then, at the steady state,
the trajectory of the ith reference model in (3) is Xi,r (t) =
(r(t) + di(t)). Therefore, if we can control N UAVs to track
the corresponding N trajectories of reference models Xi,r (t)
i = 1, . . . ,N in (3), then the N UAVs will form a time-
varying formation shape (d1(t), . . . , di(t), . . . , dN (t)) around
the trajectory of the virtual leader r(t) at the steady state. This
phenomenon will be confirmed by the simulation example
in the sequel. (ii) In the conventional formation control for
UAVs in [11] and [12], the formation control is achieved
by specifying (Xi(t)− r(t)− di)T (Xi(t)− r(t)− di) in the
numerotor of the H∞ team formation tracking strategy
in (5) to simplify the team formation control design. How-
ever, it is difficult to apply to a time-varying formation
case (Xi(t)− r(t)− di (t))T (Xi(t)− r(t)− di (t)) to design

a team formation of UAVs with a time-varying formation
shape (d1(t), . . . , di(t), . . . , dN (t)).
Because the Proportional-Integral-Derivative (PID) con-

trollers have been used in the most automatic process control
applications in industry, the PID controller is employed to
control each quadrotor UAV for the team formation in this
study. The conventional PID control for the ith UAV is shown
as follows:

ui(t) = Ki,P ei(t)+ Ki,I

∫ t

0
ei(τ )dτ + Ki,D

dei(t)
dt

for i = 1, . . . ,N (4)

where Ki,P ∈ R4×6, Ki,I ∈ R4×6, Ki,D ∈ R4×6

are the controller gains w.r.t. the PID controller, ei(t) =
(Xi,P(t) − Xi,r1(t)) ∈ R6 denotes the tracking error of the
three positions and three attitudes of the ith quadrotor UAV,
dei(t)
dt = Xi,V (t) − Xi,r2(t) denotes the tracking error of

the three velocities and three angular velocities of the ith
quadrotor UAV, and

∫ t
0 ei(τ )dτ denotes the integral of the

tracking error of the three positions and three attitudes of the
ith quadrotor UAV.
In the realistic situation, the effect of external disturbances

vi(t) and trailing vortex
∑

j∈Ni
fi,j(Xi(t))Xj(t − τi,j(t)) is

inevitable during the team formation tracking process of
quadrotor UAVs and it may deteriorate the team formation
tracking performance. Besides, the reference input r(t) and
the team formation offset di(t) in (3) of the ith quadrotor UAV
are unpredictable for the stochastic quadrotor UAV system
in (2). Thus, the decentralizedH∞ PID team formation track-
ing strategy is proposed for each UAV in the team formation
to efficiently attenuate the effect of the external disturbances,
trailing vortex and reference input on the team formation
tracking performance. Then, the decentralized robust stochas-
ticH∞ PID team formation tracking control strategy of the ith
quadrotor UAV is proposed as follows:

Ji,∞(ui(t))

=

E{
∫ tf
0 [(Xi(t)− Xi,r (t))TQi(Xi(t)− Xi,r (t))]dt

−Vi(Xi(0),Xi,r (0))}

E{
∫ tf
0 [vTi (t)vi(t)+ (r(t)+ di(t))T (r(t)+ di(t))
+

∑
j∈Ni

XTj (t − τi,j(t))Xj(t − τij(t))]dt}

≤ ρi

for i = 1, . . . ,N

∀vi(t), (r(t)+ di(t)),Xj(t − τi,j(t)) ∈ L2
z[0;∞) (5)

whereQi = diag{Qi,P Qi,V } ≥ 0 with the weighting matrices
Qi,P ≥ 0 and Qi,V ≥ 0 which denote the weighting matrix
on the tracking error of the (Xi,P(t)− Xi,r1(t)) and (Xi,V (t)−
Xi,r2(t)), respectively, andVi(Xi(0),Xi,r (0)) denotes the effect
of the initial condition, which is to be deducted in the design
procedure. By using the decentralized robust stochastic H∞
PID team formation tracking control strategy to boost the
team formation performance of in the ith quadrotor UAV, the
aim is to design the specific PID tracking controller ui(t)
to attenuate the worst-case effect of external disturbance,
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reference input, and trailing vortex on the team formation
tracking performance below a prescribed level ρi in (5) for
each quadrotor UAV in the team.

However, the conventional PID controlmethods are limited
to the linear dynamic systems or simple nonlinear dynamic
systems so the methods should be improved to solve the
complex decentralized H∞ team formation control problem
of highly nonlinear dynamic UAV system. In this study,
we employ the method of coordinate transformation so that
the conventional PID control problems can be systematically
analyzed and conveniently designed for the decentralizedH∞
team formation tracking control of large-scale UAVs. The
PID controller ui(t) in (4) is reformulated as follows:

ui(t) = Ki,P ei(t)+ Ki,I

∫ t

0
ei(τ )dτ + Ki,D

dei(t)
dt

= [Ki,P Ki,D Ki,I ]

 ei(t)
dei(t)
dt
ζi(t)


= [Ki,P Ki,D Ki,I ]

 T1[Xi(t)− Xi,r (t)]T2[Xi(t)− Xi,r (t)]
ζi(t)


= KiT X̄i(t) for i = 1, . . . ,N (6)

with

Ki = [Ki,P Ki,D Ki,I ]

T1 = [I6 06×6],T2 = [06×6 I6]

T =

 T1 06×12 06×6
T2 06×12 06×6

06×12 06×12 I6


X̄ (t) =

Xi(t)− Xi,r (t)Xi,r (t)
ζi(t)


where ζi(t) =

∫ t
0 ei(τ )dτ

III. DECENTRALIZED ROBUST STOCHASTIC H∞ PID
TRACKING CONTROL FOR THE NONLINEAR LARGE-SCALE
TEAM FORMATION QUADROTOR UAVs
In this section, the decentralized robust stochastic H∞ track-
ing control design for the team formation of the ith quadrotor
UAV is addressed. Let us augment the ith stochastic quadrotor
UAV system in (2), the reference system in (3) and the PID
controller in (6), then we get the augmented system of ith
quadrotor UAV as follows:

dX̄i(t) = [F̄i(X̄i(t))+ Ḡ(X̄i(t),Ki)+ D̄i(X̄i(t))v̄i(t)]dt

+ σ̄i(X̄i(t))dwi(t)+ Ēi(X̄i(t))dpi(t)

for i = 1, . . . ,N (7)

where X̄i(t) = [XTi (t)− X
T
i,r (t), X

T
i,r (t), ζ

T
i (t)]

T .
The system matrices are given as:

F̄i(X̄i(t)) =

 fi(Xi(t))− Ai,rXi,r (t)
Ai,rXi,r (t)

[I6 06×6][Xi(t)− Xi,r (t)]



Ḡ(X̄i(t),Ki) =
[
gi(Xi(t))KiT X̄i(t)

018×1

]
D̄i(X̄i(t))

=

 I12×12 −Ci,r fi,1(Xi(t)) . . . fi,N (Xi(t))
012×12 Ci,r 012×12 . . . 012×12
06×12 06×12 06×12 . . . 06×12


v̄i(t) = [ vTi (t) (ri(t)+ di(t))

T

XT1 (t − τi,1) . . .X
T
N (t − τi,N )]

T

σ̄i(X̄i(t)) = [σ Ti (Xi(t)) 0
T
18×1]

T

Ēi(X̄i(t)) = [ETi (Xi(t)) 0
T
18×1]

T

Based on the augmented system in (7), The decentralized
robust stochastic H∞ PID team formation tracking control
strategy of the ith quadrotor UAV can be reformulated as:

Ji,∞(Ki,P,Ki,D,Ki,I )

=

E
{∫ tf

0 [(X̄Ti (t)Q̄iX̄i(t)]dt − V̄i(X̄i(0))
}

E{
∫ tf
0 [v̄Ti (t)v̄i(t)]dt}

≤ ρi

∀v̄i(t) ∈ L2
z[0,∞)

for i = 1, . . . ,N (8)

where Q̄i = diag{Qi, 018×18} and V̄i(X̄i(0)) =

Vi(Xi(0),Xi,r (0), ζi(0)). Clearly, with the help of the aug-
mented system of the ith UAV in (7), the robust decen-
tralized H∞ PID team formation tracking control design
problem in (5) is reformulated as the decentralized H∞ PID
stabilization control problem of the augmented system for
each quadrotor UAV in (8) to simplify the design procedure.
However, the conventional method can not be directly used
in the stochastic nonlinear augmented system in (7) because
the property of the Wiener process and Poisson counting pro-
cess in the nonlinear ith quadrotor system is indifferentiable
at every time. Fortunately, by using the Itô-Lévy formula
in [22], the decentralized robust stochastic H∞ PID control
problem for the team formation of quadrotor UAVs can be
transformed into a set of independent HJIs. Before we deduce
the HJIs for the decentralized H∞ PID control in Theorem 1,
the Itô-Lévy formula and technical inequality are described
as follows:
Lemma 1: Define the Lyapunov function V̄i(X̄i(t)) ∈ C2

with V̄i(0) = 0 and V̄i(X̄i(t)) > 0, then the Itô-Lévy formula
of V̄i(X̄i(t)) for the stochastic nonlinear augmented system of
the ith UAV in (7) is given as follows [22]:

dV̄i(X̄i(t)) = [V̄ T
i,X̄ (X̄i(t))(F̄i(X̄i(t))

+ Ḡ(X̄i(t),Ki))+ V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))v̄i(t)

+
1
2
σ̄ Ti (X̄i(t))V̄i,X̄ X̄ (X̄i(t))σ̄i(X̄i(t))]dt

+ V̄ T
i,X̄ (X̄i(t))σ̄i(X̄i(t))dwi(t)

+ [V̄i(X̄i(t)+ Ēi(X̄i(t)))− V̄i(X̄i(t))]dpi(t)

for i = 1, . . . ,N (9)

where V̄i,X̄ (X̄i(t)) = [∂V̄i(X̄i(t))]/[∂X̄i(t)] and V̄i,X̄ X̄ (X̄i(t)) =
[∂2V̄i(X̄i(t))]/[∂X̄2

i (t)].
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Lemma 2: For any twomatrices G andH with appropriate
dimensions, the following matrix inequality holds [23]:

GTH + HTG ≤ GTZ−1G+ HTZH (10)

where Z is any positive definite symmetric matrix.
With the help of above lemmas, the decentralized robust

stochasticH∞ PID reference tracking control design problem
for the team formation of quadrotor UAVs is transformed
to an equivalent set of indenpendent HJIs in the following
theorem.
Theorem 1: In the decentralized stochastic nonlinear H∞

PID team formation tracking control of the ith quadrotor UAV
in (7), if there exists a PID control gain Ki = [Ki,P,Ki,D,Ki,I ]
in (6) such that the following independent HJIi has a positive
solution V̄i(X̄i(t)) > 0 with V̄i(0) = 0 for each UAV

HJIi
= E{X̄Ti (t)Q̄iX̄i(t)+ V̄

T
i,X̄ (X̄i(t))(F̄i(X̄i(t))

+ Ḡ(X̄i(t),Ki))+
1
4ρi

V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))

× D̄Ti (X̄i(t))V̄i,X̄ (X̄i(t))

+
1
2
σ̄ Ti (X̄i(t))V̄i,X̄ X̄ (X̄i(t))σ̄i(X̄i(t))

+ λi(V̄i(X̄i(t)+ Ēi(X̄i(t)))− V̄i(X̄i(t)))} ≤ 0

for i = 1, . . . ,N (11)

then (i) the decentralized robust stochastic H∞ PID team
formation tracking performance of quadrotor UAVs in (8)
is guaranteed with a prescribed disturbance level ρi for all
possible v̄i(t) ∈ L2

z[0;∞) from the perspective of the energy.
(ii) the mean square asymptotical team formation tracking
ability is also achieved i.e., Xi(t) → Xi,r (t) as tf → ∞ if
v̄i(t) ∈ L2

z[0;∞).
Proof: Please refer to Appendix A. �

Since the HJIi in (11) for the decentralized H∞ PID team
formation tracking control of the each quadrotor UAV does
not contain the information of the other quadrotor UAVs in
the formation team, the {HJIi}Ni=1 in (11 ) can be solved inde-
pendently to obtain PID control parameters of each quadrotor
UAV and therefore, the number N of UAVs in the team
formation can be increased to a very large scale. Furthermore,
the optimal decentralized H∞ PID team formation reference
tracking control design of N quadrotor UAVs can also be
formulated as the following N independent HJIi constrained
optimization problems.

ρ∗i = min
V̄i(X̄i(t)),Ki,P,Ki,D,Ki,I

ρi

s.t. HJIi in (11)

for i = 1, . . . ,N (12)

Due to nonlinear terms F̄i(X̄i(t), Ḡ(X̄i(t),Ki), D̄i(X̄i(t)),
at present, there exists no analytical or numerical method
to efficiently solve N HJIi in (11) or N HJIi-constrained
optimization problems in (12) for the optimal decentralized
H∞ PID team formation tracking control of N UAVs.

IV. DECENTRALIZED H∞ ROBUST PID CONTROL DESIGN
FOR THE TEAM FORMATION OF LAREGE-SCALE
QUADROTOR UAVs VIA T-S FUZZY APPROACH
In the previous section, the decentralized H∞ PID team for-
mation tracking control strategy of N stochastic nonlinear
quadrotor UAVs in (8) is transformed into the N equivalent
HJIi problems in (11). However, it is still very difficult to
find an analytical or numerical method to solve N nonlinear
partial differential HJIs in (11) or N HJIi-constrained opti-
mization problems in (12) for the decentralizedH∞ PID team
formation tracking control design of N stochastic nonlinear
quadrotor UAVs. Hence, the T-S fuzzy interpolation method
is employed to interpolate several local linear stochastic sys-
tems to approximate the ith nonlinear stochastic quadrotor
UAV system in (2). First, the kth rule of the T-S fuzzy model
for the ith stochastic nonlinear quadrotor UAV dynamic sys-
tem in (2) can be described as follows [19], [20]:

Plant rule k:
If p̂i,1(t) is F̂k,1, . . . , and p̂i,g(t) is F̂k,g
Then

dXi,k (t) = [Ai,kXi(t)+ Bi,kui(t)+ vi(t)

+

∑
j∈Ni

Fi,j,kXj(t − τi,j(t))]dt

+Hi,kXi(t)dwi(t)+Mi,kXi(t)dpi(t)

for i = 1, . . . ,N , k = 1, . . . ,L (13)

where L is the number of the fuzzy rules, Ai,k ∈

R12×12,Bi,k ∈ R12×4,Hi,k ,Mi,k ∈ R12×12 are the local
matrices of fi(Xi(t)), gi(Xi(t)), σi(Xi(t)), and E(Xi(t)) respec-
tively. (Fi,1,k , . . . , Fi,i−1,k , Fi,i+1,k , . . . , Fi,N ,k ) are the local
matrices of the effectively trailing vortex from other UAVs.
p̂i,l(t) for l = 1, . . . , g are the premise variables about the
ith UAV state, and F̂k,1, . . . , F̂k,g are the fuzzy sets and g
is the number of the premise variables of each UAV. The kth
membership function νk (p̂i(t)) is defined as follows:

νk (p̂i(t)) = 5
g
l=1F̂k,l(p̂i,l(t)) ≥ 0

for i = 1, . . . ,N , k = 1, . . . ,L (14)

where F̂k,l(p̂i,l(t)) is the membership grade of p̂i,l(t) in F̂k,l .
p̂i(t) = [p̂i,1(t), . . . , p̂i,g(t)]T , and

∑L
k=1 νk (p̂i(t)) > 0. The

interpolation functions of the ith quadrotor UAV system can
be inferred as follows:

hk (p̂i(t)) =
νk (p̂i(t))∑L
k=1 νk (p̂i(t))

≥ 0

for k = 1, 2, . . . ,L, and it is clear that∑L
k=1 hk (p̂i(t)) = 1 (15)

By the defuzzification process in [20], the nonlinear system

of the ith UAV can be represented:

dXi(t) =
∑L

k=1
hk (p̂i(t))[(Ai,kXi(t)+ Bi,kui(t)+ vi(t)

+

∑
j∈Ni

Fi,j,kXj(t − τi,j(t)))dt

+Hi,kXi(t)dwi(t)+Mi,kXi(t)dpi(t)] (16)
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i.e., the nonlinear stochastic system of the ith UAV
in (2) can be represented by interpolating L local linearized
stochastic systems through L fuzzy interpolation functions
{hk (p̂i(t))}Lk=1.
By substituting the T-S fuzzy model (16) of the ith UAV in

(2) into the augmented system in (7), we have:

dX̄i(t) =
∑L

k=1
hk (p̂i(t))[((Āi,k + B̄i,kKiT )X̄i(t)

+ D̄i,k v̄i(t))dt

+ H̄i,k X̄i(t)dwi(t)+ M̄i,k X̄i(t)dpi(t)] (17)

with

Āi,k =

 Ai,k Ai,k − Ai,r 012×6
012×12 Ai,r 012×6
[I6 06×6] 06×12 06×6


B̄i,k =

 Bi,k
012×4
06×4


D̄i,k =

 I12 −Ci,r Fi,1,k . . . Fi,N ,k
012×12 Ci,r 012×12 . . . 012×12
06×12 06×12 06×12 . . . 06×12


H̄i,k =

 Hi,k Hi,k 012×6
012×12 012×12 012×6
06×12 06×12 06×6


M̄i,k =

 Mi,k Mi,k 012×6
012×12 012×12 012×6
06×12 06×12 06×6


With the help of the T-S fuzzy interpolation, the

complex HJIi-constrained optimization in (12) for the
decentralized robust H∞ PID control of N quadrotor
UAV systems will be transformed into an equivalent
LMIs-constraint optimization problem for each quadrotor
UAV, which can be easily solved by using the LMI tool-
box in MATLAB. Before the discussion of the main the-
orem, a quadratic Lyapunov function is selected for HJIi
in (11) to simplify the design procedure of the decen-
tralized H∞ PID control of team formation of N UAVs.

To begin with, the Lyapunov function of the ith augmented
quadrotor UAV system in (17) is defined as follows:

V̄i(X̄i(t)) = X̄Ti (t)P̄iX̄i(t) for i = 1, . . . ,N (18)

where P̄i ∈ R30×30 is a symmetric positive-definite matrix.
Theorem 2: For the decentralized H∞ PID team forma-

tion tracking control of the ith quadrotor UAV stochastic
system in (17), if we can specify the PID control gains Ki =
[Ki,P,Ki,D,Ki,I ] in (6) and symmetric positive-definite matrix
P̄i such that the following independent RLIs hold:

Q̄i + (Āi,k + B̄i,kKiT )T P̄i + P̄(Āi,k + B̄i,kKiT )

+
1
ρi
P̄iD̄i,k D̄Ti,k P̄i + H̄

T
i,k P̄iH̄i,k

+ λi(M̄T
i,k P̄iM̄i,k + M̄T

i,k P̄i + P̄iM̄i,k ) ≤ 0

for i = 1, . . . ,N , k = 1, 2, . . . ,L (19)

then (i) the decentralized robust H∞ PID team formation
tracking control strategy of N UAVs in (8) is achieved with
a prescribed disturbance level ρi > 0 for all possible v̄i(t) ∈
L2
z[0;∞) from the perspective of the energy. (ii) the mean

square asymptotical team formation tracking ability is also
achieved i.e., Xi(t) → Xi,r (t) as tf → ∞ if v̄i(t) ∈
L2
z[0;∞).

Proof: Please refer to Appendix B. �
Remark 3: If PID controller of the ith UAV in (6) can

satisfy with RLIs, i = 1, . . . ,N , k = 1, . . . ,L, in (19 ), i,e.,
N local fuzy linearized systems are took care by robust H∞
PID controller, then the PID controller in (6) can guarantee
the H∞ team formation tracking performance in (5) for L
local fuzzy linearized systems of ith nonlinear stochastic UAV.
Further, N RLIS are decoupled for N UAVs, i,e., they can
be solved independently without the information of other
UAVs.

If the sufficient condition in (19) is satisfied, then the
decentralized robust stochastic H∞ PID tracking control
performance for the team formation of N quadrotor UAVs
in (8) is guaranteed with a prescribed disturbance level ρi.
However, the design parameters P̄i and Ki are coupled and
bilinear matrix inequalities in (19) can not be solved by
the current convex optimization method. To deal with the
problem in (19), the following transformation method is
adopted.

By premultiplying and postmultiplying P̄−1i = W̄i, the
RLIs in (19) are equivalent to

W̄iQ̄iW̄i + W̄i(Āi,k + B̄i,kKiT )T

+ (Āi,k + B̄i,kKiT )W̄i +
1
ρi
D̄i,k D̄Ti,k

+ W̄iH̄T
i,kW̄

−1
i H̄i,kW̄i

+ λi(W̄iM̄T
i,kW̄

−1
i M̄i,kW̄i + W̄iM̄T

i,k + M̄i,kW̄i)

≤ 0for i = 1, . . . ,N , k = 1, . . . ,L (20)

Furthermore, set W̄i = diag{Wi,1,Wi,2,Wi,3} with Wi,1 =

diag{Wi,1,1,Wi,1,2} ∈ R12×12, Wi,2 ∈ R12×12 and Wi,3 ∈

R6×6, then we have

KiTW̄i

= [Ki,P Ki,D Ki,I ]

 T1 06×12 06×6
T2 06×12 06×6

06×12 06×12 I6


×

 Wi,1 012×12 012×6
012×12 Wi,2 012×6
06×12 06×12 Wi,3


= [Ki,PT1Wi,1 + Ki,DT2Wi,1 04×12 Ki,IWi,3] (21)

wherw

Ki,PT1Wi,1 = Ki,P[Wi,1,1 06×6] = [Ki,PWi,1,1 06×6]

Ki,DT2Wi,1 = Ki,D[06×6 Wi,1,2]

= [06×6 Ki,DWi,1,2] (22)
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By using the variable transformation technique

KiTW̄i = [[Yi,1 Yi,2] 04×12 Yi,3]

= Ȳi ∈ R4×30 (23)

where

Yi,1 = Ki,PWi,1,1,Yi,2 = Ki,D
×Wi,1,2,Yi,3 = Ki,IWi,3

Therefore, the RLI in (20) can be formulated as follows:

W̄iQ̄iW̄i + W̄iĀTi,k + Ȳ
T
i B̄

T
i,k

+ Āi,kW̄i + B̄i,k Ȳi +
1
ρi
D̄i,k D̄Ti,k

+ W̄iH̄T
i,kW̄

−1
i H̄i,kW̄i

+ λi(W̄ M̄T
i,kW̄

−1
i M̄i,kW̄i + W̄iM̄T

i,k + M̄i,kW̄i)

≤ 0 for i = 1, . . . ,N , k = 1, . . . ,L (24)

By using Schur complement [21] to (24), we have the
following LMIs:

8i,k D̄i,k W̄iQ̄
1
2
i W̄iH̄T

i,k W̄iM̄T
i,k

∗ −ρiI 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −W̄i 0
∗ ∗ ∗ ∗ −λ−1i W̄i

 ≤ 0 (25)

for i = 1, . . . ,N , and k = 1, . . . ,L, where 8i,k =

W̄iĀTi,k + Ȳ
T
i B̄

T
i,k + Āi,kW̄i + B̄i,k Ȳi+ λi(W̄iM̄T

i,k + M̄i,kW̄i).
Then, the above analyses can be concluded as the following

main result.
Theorem 3: If we can solve W̄i > 0 and Ȳi > 0 from

LMIs in (25) for a prescribed ρi, i = 1, . . . ,N, and k =
1, . . . ,L, then the decentralized H∞ PID team formation
tracking controllers of N UAVs in (6) are designed as follows:

Ki,P = Yi,1W
−1
i,1,1,Ki,D = Yi,2W

−1
i,1,2,

Ki,I = Yi,3W
−1
i,3 for i = 1, . . . ,N (26)

By solving LMIs in (25) with the help of the LMI toolbox
in Matlab and based on Theorem 3, the PID controllers for
the decentralized H∞ PID team formation tracking control
of N stochastic quadrotor UAVs are independently designed
as (26). However, in practical applications, the control input
is always restricted by physical mechanism and bounded by
the saturation of actuator. To meet the real situation, the
saturation control method in [24] will be used as follows:

Suppose that X̄i(t) is restricted to stay in an invariant ellip-
soid εr = {X̄i(t) ∈ R30

|X̄Ti (t)W̄
−1
i X̄i(t) ≤ 1} for t ≥ 0, and

ν2i W̄
−1
i ≥ (KiT )TKiT for νi ∈ R+. We have [24]

max
t≥0
‖ ui(t) ‖2

= max
t≥0
‖ KiT X̄i(t) ‖2

≤ max
X̄i(t)∈εr

‖ KiT X̄i(t) ‖2

≤ max
X̄i(t)∈εr

‖ νiW̄
−

1
2

i X̄i(t) ‖2

= max
X̄i(t)∈εr

√
ν2i X̄

T
i (t)W̄

−1
i X̄i(t)

≤ νi

i.e. if ν2i W̄
−1
i ≥ (KiT )TKiT holds or ν2i W̄i ≥

(KiTW̄i)TKiTW̄i = Ȳ Ti Ȳi holds, then ‖ ui(t) ‖2≤ νi for all t.
Therefore, by using Schur complement [21], if the follow-

ing LMIs hold,[
ν2i W̄i Ȳ Ti
∗ I

]
≥ 0, for i = 1, . . . ,N (27)

then we have the result,

‖ ui(t) ‖2≤ νi, for i = 1, . . . ,N (28)

Thus, the design condition of the decentralized H∞ PID
control for the team formation of stochastic quadrotor UAVs
is also satisfied with the saturation property of actuator if the
conditions in (25), (27) are achieved simultaneously. There-
fore, the optimal decentralized H∞ saturation PID control
design for the team formation of stochastic quadrotor UAVs
can be designed by the following LMIs-constrained optimiza-
tion problem for each UAV

ρ∗i = min ρi
W̄i > 0, Ȳi
s.t. (25), (27) (29)

The LMIs-constrained optimization problem in (29 ) can be
solved by decreasing ρi until there exists no feasible solution
W̄i > 0 in LMIs.
Remark 4: The design complexity of proposed H∞ PID

team formation tracking controller lies mainly in solving
LMIs in (25), which are solved based on Newton’s method.
Therefore, based on [21], the computational complexity is
about O(NLn(n+ 1)/2), where N is the number of quadrotor
UAVs in the team formation, L is the number of fuzzy rules,
and n is the dimension of P̄i or W̄i, n = 3 × 12 = 36 in the
quadrotor UAV case.
Remark 5: Since quadrotor UAV is a highly nonlinear

system as shown in (2), the H∞ stabilization or tracking
control design problem of quadrotor UAV needs to solve a
corresponding HJI. In general, there still exists no analytic
or numerical method to efficiently solve the HJI for PID
control, except a very special system. To avoid this difficulty
in solving HJI, the conventional PID control design only
considers a local linearized system of quadrotor UAV of some
operation point, so that the HJI in (11) becomes a Riccati-
like inequality (RLI) in (19), which can be transformed to an
equivalent LMI in (25). However, the quadrotor UAV havdto
shift to many operation points during flying, for example,
in taking off, landing and hovering. Therefore, the conven-
tional PID control designs need to switch to an adequate
PID controller as the operation point of quadrotor UAV
shifts during flying. In the proposed design method, the T-S
fuzzy interpolates L local linearized systems at L operation
points by fuzzy interpolation method in (17) (in the simulation
example L = 72). Therefore, the proposed PID controller
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can achieve the decentralized robust H∞ tracking control
performance at L local linearized systems (i.e., L operation
points) of UAVs and has the ability to reject the worst-case
effect of external disturbance, vortex coupling and saturation
of actuator. However, the proposed decentralized H∞ PID
team formation control design needs to solve L LMIs in (25)
or the LMIs-constrained optimization problem in (29) for
each UAV in the team formation tracking control design.

V. SIMULATION
To illustrate the design procedure and validate the effec-
tiveness of the proposed decentralized H∞ PID team for-
mation stochastic tracking control problem of N stochastic
nonlinear quadrotor UAVs, a team formation tracking control
of 25 UAVs is given as a design example in this section.
To illustrate the implementation simplicity and validate the
effectiveness of the decentralized H∞ PID team formation
tracking control, the comparison with conventional decen-
tralized H∞ T-S fuzzy control for team formation tracking
of 25 UAVs in [15] will be showed. Since the decentralized
controller is equipped with the individual information of each
UAV and does not need the information of other UAVs, the
number of the UAVs for the team formation can be easily
increased to very large scale.

A. PARAMETERS SETTING OF LARGE-SCALE UAVs FOR
TEAM FORMATION
The parameters of each stochastic dynamic of the UAV sys-
tem in (2) for the 25 UAVs are identical and can be given
as follows. mi = 1kg is the mass of each UAV. Ji,X =
Ji,Y = 1.25Ns2/rad and Ji,Z = 2.2Ns2/rad are the moments
of the inertia of φi, θi, and ψi, respectively. di,x = di,y =
di,z = 0.01Ns/m and di,φ = di,θ = di,ψ = 0.013Ns/m
are the aerodynamic coefficients of each quadrotor UAV.
g = 9.8m/s2 is the acceleration of gravity. fi,j(Xi(t))Xj(t −
τi,j(t)) = [0, 0, 0, 0, 0, 0, xi,2(t)×0.01xj,2(t−0.1), 0, zi,2(t)×
0.01zi,2(t − 0.1), 0, 0, 0]T , j ∈ Ni denote that each UAV
is suffered the trailing vortex coupling from neighboring
UAVs in Ni. External disturbance vi(t) for each UAV is set as
zero-mean Gaussian noise with unit variance. 25 independent
Wiener processes {wi(t)}25i=1 in Fig.14 and Poisson counting
process{pi(t)}25i=1 in Fig.13 with Poisson counting intensity
λi = 1 are set in 25 UAVs of the team formation.

To construct the T-S fuzzy model of each UAV in (17 ), the
premise variables are the state variables in (1). The operation
point of zi,2 is at 0.499 and 9.81. The operation point of φi,1
is at−0.1 and 0.1. The operation point of φi,2 is at−0.05 and
0.05. The operation point of θi,1 is at −0.1 and 0.1. The
operation point of θi,2 is at −0.05 and 0.05. The operation
point of ψi,1 is at 0. The operation point of φi,2 is at 0. The
membership function is selected as a trapezoidal function.

Based on the above setting, each UAV in the 25 UAVs has
32 fuzzy rules, respectively. The kth T-S fuzzy model of the
ith UAV dynamic system in (16) is described as follows.

dXi(t) = [(Ai,kXi(t)+ Bi,kui(t)+ vi(t)

+

∑
j∈Ni

Fi,j,kXj(t − τi,j(t)))dt

+Hi,kXi(t)dwi(t)+ Ei,kXi(t)dpi(t)] (30)

For the team formation tracking control problem of
25 quadrotor UAVs, in the design, the position and atti-
tude tracking performance as well as velocity and angular
velocity tracking performance are supposed to be the same
importance. Further, in order to achieve a small optimal H∞
PID team formation tracking performance ρ∗i in (29), conse-
quently, the weighting matrices are specified for each UAV
subsystem as follows:

Qi = 0.01I12 for i = 1, . . . , 25

In order to make 25 UAVs maintain a diamond
time-varying formation shape, the trajectory of the ith UAV
is constructed by a virtual leader r(t) with a specific time-
varying distance di(t) in (3) for i = 1, . . . , 25 and Ai,r =
−4I12, Ci,r = 4I12 in (3). However, the diamond formation
shape is difficult to directly design so an indirect method
is proposed. First, we design the square formation with
time-varying distance d ′i (t) and then use the coordinate trans-
formation to rotate d ′i (t) counterclockwise

π
4 from the virtual

r(t) in the y-z plane to obtain the diamond formation shape
with time-varying distance di(t). Each single UAV is first
set with a specific time-varying distance d ′i (t) to represent
a square formation shape and then varies the square shape
with 0.5 sin(t) as follows:

d ′1(t) = [0,−2− 0.5 sin(t),−2− 0.5 sin(t)]

d ′2(t) = [0,−2− 0.5 sin(t),−1− 0.5 sin(t)]

d ′3(t) = [0,−2− 0.5 sin(t), 0]

d ′4(t) = [0,−2− 0.5 sin(t), 1+ 0.5 sin(t)]

d ′5(t) = [0,−2− 0.5 sin(t), 2+ 0.5 sin(t)]

d ′6(t) = [0,−1− 0.5 sin(t),−2− 0.5 sin(t)]

d ′7(t) = [0,−1− 0.5 sin(t),−1− 0.5 sin(t)]

d ′8(t) = [0,−1− 0.5 sin(t), 0]

d ′9(t) = [0,−1− 0.5 sin(t), 1+ 0.5 sin(t)]

d ′10(t) = [0,−1− 0.5 sin(t), 2+ 0.5 sin(t)]

d ′11(t) = [0, 0,−2− 0.5 sin(t)]

d ′12(t) = [0, 0,−1− 0.5 sin(t)]

d ′13(t) = [0, 0, 0]

d ′14(t) = [0, 0, 1+ 0.5 sin(t)]

d ′15(t) = [0, 0, 2+ 0.5 sin(t)]

d ′16(t) = [0, 1+ 0.5 sin(t),−2− 0.5 sin(t)]

d ′17(t) = [0, 1+ 0.5 sin(t),−1− 0.5 sin(t)]

d ′18(t) = [0, 1+ 0.5 sin(t), 0]

d ′19(t) = [0, 1+ 0.5 sin(t), 1+ 0.5 sin(t)]

d ′20(t) = [0, 1+ 0.5 sin(t), 2+ 0.5 sin(t)]

d ′21(t) = [0, 2+ 0.5 sin(t),−2− 0.5 sin(t)]

d ′22(t) = [0, 2+ 0.5 sin(t),−1− 0.5 sin(t)]

d ′23(t) = [0, 2+ 0.5 sin(t), 0]
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FIGURE 2. Diamond formation shape of 25 UAVs for the team formation
at the initial condition t = 0 from the y-z plane. In the figure, each point
of 25 points represents one UAV.

d ′24(t) = [0, 2+ 0.5 sin(t), 1+ 0.5 sin(t)]

d ′25(t) = [0, 2+ 0.5 sin(t), 2+ 0.5 sin(t)]

The di(t) is obtained by rotating d ′i (t) counterclockwise
π
4

from the virtual leader r(t) in the y-z plane and the diamond
formation shape is shown in Fig. 2 at t = 0. In the example,
the trajectory of the virtual leader is specified with a radius
6m in the x-y plane and is rising at a constant velocity at 2m/s
on the z-axis as shown in Fig. 3. The reference input r(t) in (3)
with three positions [xr1(t), yr1(t), zr1 (t)]

T and three attitudes
[φr1(t), θr1(t), ψr1(t)]T is given as follows [3]:

r(t) = [xr1(t), yr1(t), zr1 (t), φr1(t), θr1(t), ψr1(t),

xr2(t), yr2(t), zr2(t), φr2(t), θr2(t), ψr2(t)]T

where

xr1(t) = 6 sin(0.1π t), yr1(t) = 6 cos(0.1π t)

zr1(t) = 15+ 2t, ψr1(t) = 0

φr1(t) = arcsin(
xr2(t) sin(ψr1(t))− yr2(t) cos(ψr1(t))

(x2r2(t)+ y
2
r2(t)+ (zr2(t)+ g)2)

1
2

)

θr1(t) = arcsin(
xr2(t) cos(ψr1(t))+ yr2(t) sin(ψr1(t))

zr2(t)+ g
)

On the other hand, the velocities of three positions and three
attitudes are the differentiations of their three positions and
three attitudes with time.

B. SIMULATION RESULTS
Based on the above parameters setting, the simulation results
for the proposed robust decentralized H∞ PID team forma-
tion tracking of 25 UAVs are shown in this section. Further-
more, the saturation constant νi in (28) for each UAV is set as
100 (i.e., νi = 100, i = 1, . . . , 25) [25]. By solving 25 LMIs
constrained optimization problems in (29), the decentralized
PID tracking controllers for the 25 UAVs in the team forma-
tion can be designed to achieve the optimalH∞ decentralized
PID team formation tracking performance under the external

FIGURE 3. Flight trajectories of 25 UAVs in 3D graph during 50 seconds.
In this figure, each line represents the trajectory of one UAV.

disturbance and interconnected coupling in the 25 UAVs.
The average optimal attenuation level ρ∗i of 25 UAVs is
0.92 when the ρi is iteratively decreased from 1.5 until there
exists no solution W̄ ∗i > 0 for the ith UAV in the LMIs-
constrained optimization problem in (29). The corresponding
optimal PID control parameters K∗i,P = Y ∗i,1W

∗−1
i,1,1,K

∗
i,I =

Y ∗i,3W
∗−1
i,3 ,K∗i,D = Y ∗i,2W

∗−1
i,1,2 are obtained by solving the

LMIs-constrained optimization problem in (29).
The 3D flight trajectories of 25 UAVs in the team for-

mation are shown in Fig. 3 with the time-varying formation
shape within 50 seconds. It can be seen that each UAV can
track the desired formation trajectory r(t) + di(t) where
the virtual trajectory r(t) is with radius 6m circle in the
x-y plane and 2m/s ascent rate in the z-axis. To highlight
the time-varying formation shape, the snapshot of 3D flight
trajectories of 25 UAVs during 20-30 seconds is shown in
Fig. 4. In Fig. 4, the formation shape for 25 UAVs team
formation is a diamond shape and becomes bigger during 20-
25 seconds and smaller during 25-30 seconds.

The three positions and the three velocities of 25 UAVs
are shown in Figs. 5–7, respectively. Due to the time–varying
formation shape, it can be seen that the trajectories of y-axis
and z-axis of any two UAVs are derivated with a time-varying
distance in Figs. 6–7. For example, for 20s–25s in Fig. 6, the
distance between any two UAVs in y-axis at 20s is larger than
the distance between any twoUAVs at 25s. On the other hand,
since the time-varying formation of 25 UAVs only affects the
trajectories of y-position and z-position, 25 UAVs track the
identical trajectory of x-position as shown in Fig. 5. From
the Figs. 5–7, by the proposed robust PID formation tracking
controller, the position tracking and the velocity tracking
can be effectively achieved for 25 UAVs only with some
fluctuation mainly caused by the stochastic effect due to the
intrinsic Poisson counting process Pi(t) in Fig.13 andWiener
process in Fig.14. Since the scales of velocities is x-axis,
y-axis and z-axis are large than the scales of positions, the
fluctuations are also amplified too. It is worth to point out
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FIGURE 4. Flight trajectories of 25 UAVs during 20-30 seconds. In the
figure, the left diamond denotes the formation shape of 25 UAVs at
20 second, the center diamond denotes the formation shape of 25 UAVs
at 25 second, and the right diamond denotes the formation shape of
25 UAVs at 30 second.

FIGURE 5. Position and velocity of the 25 UAVs in the x-axis.

that the stochastic effects on UAV system are also efficiently
reduced during the robust H∞ PID tracking control process.
For example, the velocity on y–axis can be controlled to
reference velocity when the discontinuous Poisson counting
jump occurs in Fig. 6.

The three attitude variables of 25 UAVs with the corre-
sponding angular velocities are shown in Figs. 8–10, respec-
tively. Caused by the different time-varying formation shapes
for 25 UAVs, the desired attitudes to be tracked for each
UAV are also different. Especially, due to the time-varying
offset di(t) of each UAV, it makes the desired attitudes
{θi,1(t), φi,1(t)} have some ripples during the tracking pro-
cess. From Figs. 8–10, there exist some large fluctuation
caused by the transient response for three attitudes. After
that, the attitudes with the corresponding angular velocities
for each UAV can efficiently track the desired reference
trajectories via the proposed decentralized H∞ robust PID
formation tracking controller.

FIGURE 6. Position and velocity of the 25 UAVs in the y-axis.

FIGURE 7. Position and velocity of the 25 UAVs in the z-axis.

The control input u1(t) = [F1(t), τ1,φ(t), τ1,θ (t), τ1,ψ (t)]T

of the 1st UAV is shown in Fig. 11. Under the effect of
intrinsic continuous Wiener fluctuation, and discontinuous
Poisson fluctuation on UAV system, it can be seen that the
control input has continuous fluctuation and some suddenly
jumps. Indeed, once a Poisson jump occurs, the controller will
use a relatively large control effort to reduce its effect. On the
other hand, since the saturation effect is considered during the
design, it is clear that the control input of 1st UAV is below the
saturation constant, i.e., ‖u1(t)‖ ≤ ν1 = 100, ∀t ∈ [0, 50].
In Fig. 12, in comparison with the 3D flight trajectory

for 25 UAVs based on the proposed decentralized H∞ PID
team formation tracking control strategy, the team formation
tracking performance of the decentralized robust H∞ T-S
fuzzy tracking control design [15] is almost equal. Based
on the above simulation result in Fig.5-11, the average
decentralized H∞ PID team formation tracking performance
in (5) is calculated as 0.118 and the average decentralized
H∞ fuzzy team formation tracking performance of 25 UAVs
is calculated as 0.107. However, the design and computa-
tion complexity of PID control and T-S fuzzy control [15]
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FIGURE 8. Angle φi,1(t) and angular velocity φi,2(t) of 25 UAVs.

FIGURE 9. Angle θi,1(t) and angular velocity θi,2(t) of 25 UAVs.

FIGURE 10. Angle ψi,1(t) and angular velocity ψi,2(t) of 25 UAVs.

for 25 UAVs are very different. The PID control for 25UAVs
needs 72 fuzzy rules and the T-S fuzzy control [15] for
25UAVs needs 1944 fuzzy rules, i.e., we need to solve
72 LMIs in (25) for PID control parameters of each UAV
but 1944 LMIs for fuzzy control parameters of each UAV
in [15]. Furthermore, we only need to compute ui(t) =
KiT X̄i(t) in (6) at every instant time for PID control signal

FIGURE 11. Control input for the 1st UAV.

FIGURE 12. 3D trajectories of 25 UAVs in comparison with the proposed
PID control and fuzzy control in [15].

FIGURE 13. Poisson counting processes of 25 UAVs with intensity λi = 1.

of each UAV but ui(t) =
∑1944

k=1
hk (p̂i(t))Ki,kXi(t) needs to

be computed at every instant time for fuzzy control, where
hk (p̂i(t)) is the complex ith Fuzzy interpolation function.
Based on the above discussion, the decentralized H∞ PID
team formation tracking control for 25 UAVs can have less
design and computation complexity than the decentralized

VOLUME 10, 2022 108181



B.-S. Chen et al.: Decentralized H∞ PID Team Formation Tracking Control of Large-Scale Quadrotor UAVs

FIGURE 14. Wiener processes wi (t), i = 1, . . . ,25 in (30) denote the
continuous intrinsic random fluctuation resources of 25 UAVs.

H∞ T-S fuzzy team formation tracking control for 25 UAVs
but with almost the same team formation tracking
performance.
Remark 6: The biggest barrier to apply the proposed algo-

rithm to a real plant is the control input transformation.
In the manuscript, we considered four control inputs, i.e.,
total thrust force of ith UAV,and three rotation torques of UAV.
However, the UAV is controlled by the four rotors of UAV in
the real situation. Therefore, the transformation between the
theoretical control inputs and real control inputs should be
tested by some practical experiments.

VI. CONCLUSION
In this study, the decentralizedH∞ PID team formation track-
ing strategy is proposed for large-scale stochastic quadrotor
UAVs under external disturbance, intrinsic stochastic fluctu-
ation and trailing vortex coupling. By using the virtual leader
concept, the reference trajectory of each UAV is generated
by the combination of the virtual leader trajectory with an
adequate time-varying offset for each UAV to form a desired
flight formation shape. Then, by the proposed optimal H∞
decentralized PID team formation controller for each UAV,
it can efficiently reject the effect of external disturbance
and trailing vortex coupling from the neighboring quadrotor
UAVs on the team formation reference tracking performance
simultaneously. In order to avoid solving a complex nonlinear
HJI for PID control of each UAV, the T-S fuzzy interpolation
method is employed to approximate the stochastic quadrotor
UAV so that the HJI can be transformed to a set of BMIs.
Furthermore, by using a novel variable transform method,
the optimal decentralized H∞ PID team formation tracking
control design problem of large-scale UAVs can be derived in
terms of a set of independent LMIs-constrained optimization
problems for each quadrotor UAV in the team formation,
which can be efficiently solved in a single run via the current
convex optimization technique of LMI toolbox in MATLAB
without any tuning procedure of conventional PID design
to significantly simplify the design procedure. A simulation

example of 25 team formation quadrotor UAVs is given to
validate the reference tracking performance of the proposed
method in comparison with the conventional decentralized
H∞ fuzzy tracking control scheme. From the simulation
results, the decentralized H∞ PID team formation control
for 25 UAVs in this study has a less design and compu-
tation complexity than the fuzzy control for 25 UAVs but
with almost the same team formation tracking performance.
Future works will focus on the decentralized H∞ adaptive or
attack-tolerant PID team formation tracking control of large-
scale quadrotor UAVs under event truggered control mecha-
nism and Fos attacks [25], [26], [27] or Dos attacks [27].

APPENDIX A
PROOF OF THEOREM 1

Proof: (i) Considering the numerator of the decentral-
ized robust H∞ PID team formation tracking strategy of the
ith quadrotor UAV system in (8) with the Lyapunov function
V̄i(X̄i) ∈ C2, V̄i(X̄i) > 0, and V̄i(0) = 0, we have the
following inequality:

E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt}

= E{V̄i(X̄i(0))} − E{V̄i(X̄i(tf ))}

+E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt +

∫ tf

0
dV̄i(X̄i(t))}

≤ E{V̄i(X̄i(0))} + E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt (31)

+

∫ tf

0
dV̄i(X̄i(t))}

By using the Itô-Lévy formula in (9) with the fact
E{dwi(t)} = 0, and E{dpi(t)} = λidt, the (31) can be
rewritten as follows:

E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt}

≤ E{V̄i(X̄i(0))} + E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)

+ V̄ T
i,X̄ (X̄i(t))(F̄i(Xi(t))

+ Ḡ(X̄i(t),Ki))+ V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))v̄i(t)

+
1
2
σ̄ Ti (X̄i(t))V̄i,X̄ X̄ σ̄i(X̄i(t))

+ λi(V̄i(X̄i(t)+ Ēi(X̄i(t))− V̄i(X̄i(t)))]dt} (32)

By applying Lemma 2 with G = 1
2 D̄

T
i (X̄i(t))V̄i,X̄ (X̄i(t)),

H = v̄i(t) and Z = ρiI for ρi ∈ R+, the term
V̄ T
i,X̄

(X̄i(t))D̄i(X̄i(t))v̄i(t) from (32) could be bounded above
as follows:

V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))v̄i(t)

≤
1
4ρi

V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))

× D̄Ti (X̄i(t))V̄i,X̄ (X̄i(t))

+ ρiv̄Ti (t)v̄i(t) (33)
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With the inequality in (33), we can rewrite (32) as follows:

E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt}

≤ E{V̄ (X̄i(0))} + E{
∫ tf

0
[(X̄Ti (t)Q̄iX̄i(t)

+ V̄ T
i,X̄ (F̄i(Xi(t))

+ Ḡ(X̄i(t),Ki))+
1
4ρi

V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))

× D̄Ti (X̄i(t))V̄i,X̄ (X̄i(t))

+ ρiv̄Ti (t)v̄i(t)+
1
2
σ̄ Ti (X̄ (t))V̄i,X̄ X̄ (X̄i(t))σ̄i(X̄i(t))

+ λi(V̄i(X̄i(t)+ Ēi(X̄i(t))− V̄i(X̄i(t)))]dt} (34)

Then, if the following HJI is satisfied:

E{X̄Ti (t)Q̄iX̄i(t)+ V̄
T
i,X̄ (F̄i(X̄i(t))+ Ḡ(X̄i(t),Ki))

+
1
4ρi

V̄ T
i,X̄ (X̄i(t))D̄i(X̄i(t))D̄

T
i (X̄i(t))V̄i,X̄ (X̄i(t))

+
1
2
σ̄ Ti (X̄i(t))V̄i,X̄ X̄ (X̄i(t))σ̄i(X̄i(t))

+ λi(V̄i(X̄i(t)+ Ēi(X̄i(t)))− V̄i(X̄i(t)))} ≤ 0 (35)

we obtain the following result:

E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt}

≤ E{V̄i(X̄i(0))} + E{
∫ tf

0
ρiv̄Ti (t)v̄i(t)dt} (36)

that is, Ji,∞(Ki,P, Ki,D, Ki,I ) ≤ ρi in (8) is satisfied. (ii)
Since X̄i(0) is finite and E{V̄i(Xi(0))} is finite and we assume

E{ρi

∫
∞

0
v̄Ti (t)v̄i(t)dt} < ∞, the right hand side of (36) is

finite. Therefore, X̄i(t) → 0 as t → ∞ in the mean-square
sence. Accordingly, Xi(t) → Xi,r (t), i.e., the asympotical
team formation tracking ability is achieved in themean square
level. �

APPENDIX B
PROOF OF THEOREM 2

Proof: (i) By using the Itô-Lévy formula in (9), the
stochastic fuzzy UAV system in (17), and the Lyapunov
function in (18), we have:

E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt}

= E{V̄ (X̄i(0))} − E{V̄ (X̄i(tf ))}

+E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt +

∫ tf

0
dV̄i(X̄i(t))}

≤ E{V̄i(X̄i(0))} + E{
∫ tf

0
[
L∑
k=1

hk (pi(t))(X̄Ti (t)

× (Q̄i + (Āi,k + B̄i,kKiT )T P̄i
+ P̄i(Āi,k + B̄i,kKiT )+ H̄T

i,k P̄iH̄i,k

+ λi(M̄T
i,k P̄iM̄i,k + M̄T

i,k P̄i + P̄iM̄i,k ))X̄i(t)

+ X̄Ti (t)P̄iD̄i,k v̄i(t)+ v̄
T
i D̄

T
i,k P̄iX̄i(t))]dt}]

for i = 1, . . . ,N , k = 1, . . . ,L (37)

By applying Lemma 2 with G = D̄Ti,k P̄iX̄i(t), H = v̄i(t)
and Z = ρiI for ρi ∈ R+, the term X̄Ti (t)P̄iD̄i,k v̄i(t) +
v̄Ti D̄

T
i,k P̄iX̄i(t) from (37) could be bounded above as follows:

E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt}

= E{V̄ (X̄i(0))} − E{V̄ (X̄i(tf ))}

+E{
∫ tf

0
[X̄Ti (t)Q̄iX̄i(t)]dt +

∫ tf

0
dV̄i(X̄i(t))}

≤ E{V̄i(X̄i(0))} + E{
∫ tf

0
[
L∑
k=1

hk (pi(t))X̄Ti (t)

× (Q̄i + (Āi,k + B̄i,kKiT )T P̄i

+ P̄i(Āi,k + B̄i,kKiT )+
1
ρi
P̄iD̄i,k D̄Ti,k P̄i + H̄

T
i,k P̄iH̄i,k

+ λi(M̄T
i,k P̄iM̄i,k + M̄T

i,k P̄i + P̄iM̄i,k )X̄i(t)

+ ρiv̄Ti (t)v̄i(t))]dt}]

for i = 1, . . . ,N , k = 1, . . . ,L (38)

If the following algebraic RLIs are satisfied:

E{Q̄i + (Āi,k + B̄i,kKiT )T P̄+ P̄(Āi,k + B̄i,kKiT )

+
1
ρi
P̄iD̄i,k D̄Ti,k P̄i + H̄

T
i,k P̄iH̄i,k

+ λi(M̄T
i,k P̄iM̄i,k + M̄T

i,k P̄i + P̄iM̄i,k )} ≤ 0

for i = 1, . . . ,N , k = 1, . . . ,L (39)

then we immediately have the result

E{
∫ tf

0
X̄Ti (t)Q̄iX̄i(t)}

≤ E{V̄i(X̄i(0))} + E{
∫ tf

0
ρiv̄Ti (t)v̄i(t)dt, (40)

i.e., Ji,∞(ki,P,Ki,D,Ki,I ) ≤ ρi is satisfied. (ii) Since X̄i(0)
is finite in (8), E{V̄i(X̄i(0)} is finite. Since we assume vi(t) ∈

L2
z[0;∞), E{ρi

∫
∞

0
v̄Ti (t)v̄i(t)dt} < ∞. Therefore, the right

hand side of (40) is finite because ρi is finite. According to the
definition of X̄i(t) in (7), it implies Xi(t)→ Xi,r (t) as t →∞
in the mean square level. �
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