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ABSTRACT CTR prediction is an important task in recommender systems, which is used to estimate the
likelihood of a user clicking on an advertisement.In the past, the CTR prediction model based on the deep
neural network mainly obtains the implicit feature combination of the model at the bit-wise level, and the
interpretability and generalization of the model are poor. At the same time, the prediction accuracy of the
model is poor. For the above problems,We propose a click-through rate predictionmodel (DTM)with double
matrix-level cross-features. The model integrates various components such as multi-head self-attention,
residual network and interaction network into an end-to-end model, and automatically obtains explicit
feature combinations at the vector-wise level and bit-wise level, which not only has better interpretability,
generalization and memory, and reduce the inherent flaws and engineering complexity of multi-modules.
The experimental results show that on the datasets Criteo and Avazu, compared with other state-of-the-art
CTR prediction models, the AUC values of the DTM model are increased by 4% and 3% on average, and
the loss values are decreased by 3.5% and 2.8% on average, respectively.

INDEX TERMS Click-through rate prediction, recommender systems, feature interaction, multi-head
self-attention, cross network.

I. INTRODUCTION
Accurately representing features is very important for CTR
prediction. Features play a central role in the success of many
CTR prediction systems [1], [2]. Since using raw features
rarely yields the best results, data scientists often transform
raw features heavily in order to obtain the best combination
of features. A major type of feature transformation is the
cross-product transformation of categorical features [3], [4].
These features are called cross-features, and they measure the
interaction between multiple original features. For example,
if a user works at Alibaba and presents a technical article on
deep learning on Monday. Then a third-order cross-feature
(user_organization = Alibaba, item_category = deep learn-
ing, time =Monday) has a value of 1 [5], [6], [7].

Traditional cross-feature engineering suffers from three
main drawbacks. First, there is a high cost to obtain high-
quality features. Because correct features are usually based
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on specific tasks, data scientists need to spend a lot of
time exploring the potential information in the data before
becoming domain experts and extracting meaningful cross
features [8], [9]. Second, in a large-scale recommendation
system, a large number of original featuresmake it impossible
to extract all the cross-features manually [10], [11]. Third,
handcrafted cross-features do not generalize to interactions
not seen in the training data [12]. Therefore, learning inter-
action features without human engineering is a meaningful
task.

Factorization Machine(FM) [12] is often used to obtain
explicit low-order features. FM embeds each feature i into
a latent factor vector vi, and paired features are modeled
as the inner product of latent vectors. Classical FM can be
extended to arbitrary high-order feature interactions, but in
practice, because of combinatorial expansion, it has high
complexity. In recent years, deep neural networks (DNNs)
have achieved success in computer vision [13], speech recog-
nition [14], and natural language processing [15] due to
their powerful feature representation learning capabilities.
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Leveraging deep neural networks to learn complex and selec-
tive feature interactions is promising. FNN [16] proposed
a factorization machine-supported neural network to learn
implicit high-order feature interactions, which used pre-
trained factorization machines for domain embedding before
DNNs. PNN [17] further proposes a product-based neu-
ral network, which introduces a product layer between the
embedding layer and the DNN layer without relying on a pre-
trained FM. Themain disadvantage of FNNs and PNNs is that
they mainly acquire implicit high-order feature interactions,
while ignoring the effect of low-order feature combinations.
The Wide&Deep [18] and DeepFM [19] models achieve the
simultaneous acquisition of low-order and high-order feature
combinations by introducing a hybrid architecture that con-
tains shallow and deep components for learning memory and
generalization. However, this hybrid structure adopts implicit
bit-wise feature interaction for high-order features, and the
model’s memory and generalization are not strong. All of the
above models utilize DNNs to learn high-order feature inter-
actions. However, deep neural networks model high-order
feature interactions in an implicit way, and the model is less
interpretable. The DNNsmodel models feature interactions at
the bit level. Although it can be learned in more detail, it will
increase the risk of overfitting and lose certain generalization
ability.

To sum up, the current CTR prediction model often
obtains implicit bit-level high-order feature combinations
when acquiring feature combinations, which leads to poor
interpretability and generalization of the model, and the
model is very easy to overfit. In addition, the performance
of the model is also degraded due to the loss of low-order
features. Therefore, we combine both bit-wise and vector-
wise aspects, and propose a click-through rate prediction
model (DTM) with double matrix-level cross-features. The
main purpose of this model is to explicitly and automati-
cally capture high-order and low-level interaction features.
In terms of vector feature interaction, we use multi-head
self-attention mechanism and residual network to achieve the
acquisition of vector cross features of the model. This mod-
ule can explicitly learn feature interaction, and the degree of
interaction increases with the depth of the network. In terms
of bit interaction features, we use a cross network to achieve
it, which can adaptively learn cross features of any order
and their weights from the data. In terms of low-order cross-
features, we adopt the form of factorization machine to obtain
the low-order feature combination of vector-wise level. The
DTM model not only can explicitly obtain low-order and
high-order feature matrices, but also has excellent inter-
pretability, memory and generalization.

In summary, the contributions of this paper are as follows:
• Anovel click-through rate predictionmodel (DTM)with
double matrix-level cross-features is proposed, which
can effectively combine high-order feature combina-
tions with explicit vector-level and bit-level features and
explicit vector-level low-order feature combinations.

• Amulti-head self-attention mechanism and residual net-
work are designed in DTM, which can learn feature

interactions explicitly. Experiments show that the model
can explicitly obtain high-order feature combinations,
which makes the model have good interpretability and
improves the accuracy of the model.

• A cross network is also designed in DTM, which can
adaptively and explicitly learn arbitrary order crossover
features and their weights from the data, and the acquisi-
tion of these crossover features is at the bit level, which
makes the model have good memory ability.

• Extensive experiments on two datasets, Criteo and
Avazu, show that our DTM model significantly outper-
forms several other state-of-the-art models.

The rest of this paper is organized as follows. In Section 2,
we review related works which are relevant to our pro-
posed model, followed by introducing our proposed model in
Section 3. In addition, we give an experimental comparison
and analysis with other models in Section 4. Finally, we sum-
marize this work in Section 5.

II. RELATED WORK
Traditional CTR prediction models mainly have the fol-
lowing two ways: Logistic regression (LR) only models
the linear combination of the original features predicted by
CTR [21], [22]. In 2010, Factorization Machines (FM) used
factorization techniques to model second-order feature inter-
actions and achieved good performance on large sparse data.
Due to the dramatic increase in the size and dimensionality of
datasets, these methods have not been able to meet people’s
needs well [18], [23], [24].

With the success of deep learning in computer vision,
speech recognition, and natural language processing, more
and more deep learning-based CTR prediction models have
been proposed [20], [25], and [26]. In 2016, the University
of London proposed the Factorization-supported Neural Net-
work (FNN) model, which is a fully connected neural net-
work that uses FM to pre-train the embedding layer, which
can speed up the convergence of the model [16]. In 2016,
Shanghai Jiao Tong University proposed the Product-based
Neural Network (PNN) model, which introduced a product
layer between the embedding layer and the DNN layer to
explore the interaction of high-order features. The model can
more specifically emphasize the interaction between different
features, making it easier for the model to capture the inter-
action information between features [17]. However, both the
FNN model and the PNN model only focus on high-order
features, ignoring the effect of low-order feature combina-
tions, resulting in less information available to the model
and a decrease in recommendation accuracy. In 2016, Google
proposed the Wide&Deep model, which includes wide part
and deep part. The wide part models linear low-order feature
interaction, while the deep part models nonlinear high-order
feature interaction. The model achieves the simultaneous
acquisition of low-order and high-order feature matrices [18].
In 2017, Tsinghua University proposed a DeepFMmodel that
uses FM to replace the wide part of Wide&Deep on the basis
of Wide&Deep. This model mainly solves the problem that
the wide part of the Wide&Deep model cannot automatically
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FIGURE 1. The structure diagram of DTM.

obtain feature combinations [19]. Although the Wide&Deep
model and DeepFM model realize the simultaneous acquisi-
tion of high-order and low-order feature combinations, they
both acquire high-order feature combinations in an implicit
bit-level way, which leads to poor interpretability and gener-
alization of the model. In 2018, the university of science and
technology of China proposed the xDeepFM model, which
designed a compressed cross network to acquire high-order
feature combination by vector-wise, realizing the simultane-
ous acquisition of implicit feature combination and explicit
feature combination, but the model did not acquire explicit
low-order feature combination [28]. In 2018, Peking Uni-
versity proposed the AutoInt [29] model, which combined
multi-head self-attention and residual networks to acquire
high-order feature combinations with weight information,
with strong interpretability. In 2019, Sina Weibo proposed
the FiBiNET [30] model, which combined inner product and
Hadamard product and introduced an additional parameter
matrix W to learn feature crossover, ensuring that the model
could still effectively combine features on sparse models.
Although the AutoInt and FibiNET models acquire explicit
features in vector-wise fashion, the memory of the model will
decline without the combination of features at the bit-wise
level. In 2020, Shanghai Jiao Tong University proposed the
Adaptive Factorization Network (AFN) [31] model, which
utilizes logarithmic change layer to learn high-order cross
features with weighted information, and can learn arbitrary
combination of features from data. However, the model does
not acquire explicit low-order features.

In the above model, the combination of bit-level implicit
high-order features is simply acquired and the role of
low-order features is not taken into account, which leads to
the invisibility of the calculation process of the model and
the lack of interpretability, which increases the risk of model
overfitting and reduces the accuracy and generalization of
the model. In view of the above problems, this paper explic-
itly obtains feature combinations from the perspective of

vector-wise, which makes the model have excellent inter-
pretability and generalization. In order to ensure better mem-
orability of the model, explicit bit-wise module is added to
obtain high-order feature combinations.

III. THE PROPOSED METHOD
In this section, the DTM model will be shown in detail,
as shown in Figure 1. The model mainly includes input
layer, embedding layer, explicit interaction layer and output
layer. In the explicit interaction layer, the multi-head attention
mechanism, residual network and cross network are used to
obtain feature combinations. Our goal is to obtain explicit
vector-wise low-order feature combinations and high-order
feature combinations as well as explicit bit-wise high-order
feature combinations.

A. INPUT AND EMBEDDING LAYER
The main purpose of the input layer and the embedding layer
is to transform the input features into embedding vectors that
meet the requirements of the model. The input layer uses a
sparse representation of the original input features, and the
embedding layer can embed the sparse features into a low-
dimensional, dense real-valued vector. For example, an exam-
ple input [user_id= 02, gender=male, age= 26, hobbies=
comedy and rock] can be converted to high-dimensional
sparse features by one-hot encoding:

Sparse high-dimensional data will reduce the recommen-
dation accuracy of the model, so it is necessary to use the
embedding layer to map it to the same low-dimensional
space. Assuming that there are h feature domains in the input
sample, only one bit in each domain takes a value of 1, and the
rest take a value of 0, then after the embedding layer, a total
of h embedding vectors of length k are obtained. Transpose
these vectors and stitch them horizontally to get Ex :

Ex =
[
V T
1 ,V

T
2 , . . . ,V

T
h

]
(1)
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FIGURE 2. One-hot encoded feature vectors.

where h represents the number of feature domains, Vi ∈ Rk

represents the embedding vector of the i-th feature domain,
and k represents the embedding dimension.

B. EXPLICIT INTERACTION LAYER
The explicit interaction layer realizes the acquisition of low-
level and high-level feature combinations of vector-wise and
bit-wise, and is mainly divided into three modules: acquiring
explicit vector-wise low-order feature combination modules,
acquiring explicit vector-wise high-order feature combina-
tionmodule and acquiring explicit bit-wise high-order feature
combination module. We will introduce these three modules
in detail below.

1) VECTOR-WISE LOW-ORDER FEATURE COMBINATION
In this paper, a classical Factorization Machine (FM) is
adopted to efficiently obtain explicit low-order cross-feature.
In addition to obtaining the linear (first-order feature) inter-
actions between features, the FM algorithm can also learn
second-order feature interactions by means of vector inner
products.

Compared with other low-order feature acquisition meth-
ods, the FM algorithm can still capture the second-order fea-
ture interactions very effectively when the dataset is sparse.
In traditional recommendation algorithms, if you want to
obtain the interaction between feature i and feature j, you
need to satisfy feature i and feature j in the same sample.
The factorization machine solves the problem of needing to
exist in the same sample by using the inner product of latent
vectors. Therefore, the factorization machine can better and
more fully learn the feature interaction information in the
data samples. The calculation formula of the factorization
machine is shown in Equation 2:

ylow = w0 +

M∑
i=1

wiEi +
M∑
i=1

∑M

j=i+1
< Vi,Vj > Ei · Ej

(2)

whereM represents the number of samples, Vi represents the
hidden vector corresponding to feature i, Vj represents the
hidden vector corresponding to feature j, and w0 represents
the algorithm bias.

2) VECTOR-WISE HIGH-ORDER FEATURE COMBINATION
The vector-vise part adopts the block structure of the encoder
in the transformer. The core idea of this module is to use the
multi-head self-attention mechanism to explicitly learn high-
order feature combinations at the vector level. The structure
is shown in figure 3:

In order to calculate the vector-wise feature weight, it is
necessary to transform the k × h-dimensional embedding
matrix Ex into the h × k-dimensional matrix Uvec, as shown

FIGURE 3. The vector-wise part of the DTM model.

in Equation 3. Then the matrix is input to the multi-head self-
attention layer to calculate the attention weight of the feature.

Uvec = reshape (Ex) (3)

The multi-head attention layer includes four parts: atten-
tion space mapping, self-attention calculation, multi-head
attention and residual network fusion, and weight calculation.
These four parts are described in detail below.

a: ATTENTION SPACE MAPPING
As shown in formulas (4) to (6), this step is to map the matrix
Uvec to the Q (query), K (key), V (value) spaces through the
matrices WQi ,WKi ∈ Rk×dk ,WVi ∈ Rk×dv respectively to
obtain a new matrix representation Qi, Ki, Vi. Among them,
i represents the ith attention space, and dk represents the size
of the attention factor, usually dk = dv.

Qi = UvecWQi (4)

Ki = UvecWKi (5)

Vi = UvecWVi (6)

b: SELF-ATTENTION CALCULATION
The correlation of matrices Qi and Ki is calculated by the
inner product and normalized to obtain the attention score,
and then the matrix Vi is weighted to obtain the representa-
tion head i of the matrix Uvec in a single attention space. Its
calculation process is shown in formula (7). It is worth noting
that the normalization operation is also a method to capture
global information, which can obtain the importance weight
of a feature in all features.

head i = Attention (Qi,Ki,Vi)

= softmax

(
QiKT

i
√
dk

)
Vi
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=

exp
(
QiKT

i√
dk

)
∑n

j=1 exp
(
QjKT

j
√
dk

) (7)

where head i ∈ Rh×dv denotes the output of the i-th single
head.

c: MULTI-HEAD ATTENTION AND RESIDUAL NETWORK
FUSION
As shown in formula (8), by splicing n heads, the represen-
tation of the matrix Uvec under the weighting of multi-head
attention is obtained.

MultiHead (Uvec) = Concat (head1, . . . , headn) (8)

where n is the number of heads and MultiHead (Uvec) ∈
Rh×(dv×n) denotes the output of Multi-Head Self-Attention.
In order to retain the original input information, the vector
Uvec is passed through the residual matrix WRi to obtain the
matrix Ri

Resdual (Uvec) = Concat (R1, . . . . . . ,Rn) (9)

Where Ri = UvecWRi (10)

where n is the number of heads and MultiHead (Uvec) ∈
Rh×(dv×n) denotes the output of Multi-Head Self-Attention.
In order to retain the original input information, the vector
Uvec is passed through the residual matrix WRi ∈ Rk×dr to
obtain the matrix Ri ∈ Rh×dr . Note that, to keep dimensions
consistent, we set dr = dk = dv.

d: WEIGHT CALCULATION
Add the two parts in pairs and activate them with the activa-
tion function to get the output of the vector-wise part, denoted
as Ovec.

Ovec = max (0,MultiHead (Uvec)+ Residual (Uvec))

(11)

where Ovec ∈ Rh×(dv×n).

3) BIT-WISE COMBINATION OF HIGH-ORDER FEATURES
Bit-wise part adopts a new type of cross network, and its
key idea is to effectively apply explicit feature crossover. The
cross network is composed of cross layers, and the formula
of each layer is as follows:

xl+1 = x0xTl wl + bl + xl = f (xl,wl, bl)+ xl (12)

where xl and xl+1 are the outputs of the cross layer at l and
l+1 respectively, andwl and bl are the connection parameters
between these two layers. Notice that all the variables in the
above equation are column vectors, and wl is also a column
vector, not a matrix. xl+1 = f (xl,wl, bl)+ xl means that the
output of each layer is the output of the previous layer plus
the function f , and f is the residual in fitting the output of this
layer and the output of the previous layer. Figure 4 shows a
visualization of a simple cross network.

FIGURE 4. Cross network computing process.

The special structure of cross network makes the order of
feature crossover increase with the increase of the number of
networks. With respect to the input x0, the order of feature
crossover of an l-layer crossover network is l + 1.

Assuming that there are Lc layer cross networks in total,
the initial input of x0 dimension is d , then the number of
parameters of the entire cross network is:

d × Lc × 2 (13)

Since the w and b of each layer are d-dimensional, it can be
seen from the above equation that complexity is a linear func-
tion of the input dimension d . Therefore, compared with the
fully connected neural network, the complexity introduced
by the cross network is negligible, which ensures that the
complexity of the high-order bit-wise feature cross module
is at the same level as that of the fully connected network.
The reason why the cross network can efficiently learn the
combined features is because the rank of x0 ∗ xT is 1, so that
the model can get all the feature combination items without
calculating and storing the entire matrix.

However, it is precisely because of the few parameters of
cross network that its expression ability is limited. In order
to learn highly nonlinear combination features, modules are
introduced into the fully connected network in parallel.

Fully connected network is a fully connected feedfor-
ward neural network, and each deep layer has the following
formula:

hl+1 = f (Wlhl + bl) (14)

where hl and hl+1 are the l layer and l + 1 hidden layer
respectively, Wl , bl is the parameter of the deep layer l, f (·)
is ReLU function.

Next, the complexity can be estimated by calculating the
number of parameters. For simplicity, assume that all layers
are of equal size, the input x0 dimension is d , there are Ld
layers of neural network, and the number of neurons in each
layer is m. Then the total parameters or complexity is:

d × m+ m+
(
m2
+ m

)
× (Ld − 1) (15)

Then, concatenate the output of the interaction layer and
the output of the deep network.

Obit = xTL1 ⊕ h
T
L2 (16)

where xTL1 ∈ R
d , hTL2 ∈ R

m represent the output of the inter-
action layer and the deep network.

Finally, vector level feature combination and bit level fea-
ture combination are added in bitwise.
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C. OUTPUT LAYER
The core idea of the output layer is to combine the results of
the above modules and output the final prediction results. The
output layer adopts the way of fully connected neural network
to output, and the calculation formula is as follows:

ŷ = σ
(
wTlowylow + w

T
highyhigh + b

)
=

1

1+ e−(w
T
lowylow+w

T
highyhigh+b)

(17)

where σ is the sigmoid function, ylow, yhigh represents the
output of the low-order feature combination module and the
high-order feature combination module, wTlow, w

T
high repre-

sents the parameter matrix.
The loss function adopts the cross entropy loss function in

CTR, and the calculation formula is as follows:

loss = −
1
N

N∑
j=1

(
yj log

(
ŷj
)
+
(
1− yj

)
log

(
1− ŷj

))
(18)

where N is the number of total samples, and yj is the true
value of the jth sample, and ŷj is the predicted value of the jth
sample by the model.

IV. EXPERIMENT
In this section, we conduct sufficient experiments to verify
the following three questions:

(Q1) Does the DTM model proposed in this paper have
better performance compared with other latest models?

(Q2) For recommendation models, is it necessary to com-
bine vector-wise and bit-wise?

(Q3)How does DTMmodel performance vary with hyper-
parameter settings?

We first introduce some basic experimental settings in
detail, and then answer the above questions.

A. EXPERIMENTAL SETUP
1) DATASET
Criteo and Avazu datasets are used in this paper. The statis-
tical data of these datasets are summarized in table 1. Criteo
dataset is a benchmark dataset for CTR prediction. It has a
record of 45 million users clicking on displayed ads. It con-
tains 26 classification feature fields and 13 numerical feature
fields. The Avazu dataset contains the user’s mobile behav-
ior, including whether the displayed mobile advertisement is
clicked by the user. It has 23 feature fields, including user /
device features and advertising attribute features.

TABLE 1. Dataset statistics.

2) EVALUATION METRICS
We uses two popular metrics to evaluate the performance of
all models.

a: AUC
The area under ROC curve is usually used to judge the perfor-
mance of binary prediction model. The lower limit of AUC is
0 and the upper limit is 1. The higher the value, the better the
performance of the model.

b: LogLoss
LogLoss is a widely used measurement method in binary
classification problems. It is used to measure the distance
between two distributions, that is, the gap between the true
value and the predicted value. The lower bound of logarith-
mic loss is 0, which means that the two distributions match
exactly. The smaller the value, the better the performance.

It is worth noting that a slightly higher AUC or lower
LogLoss at the 0.001 level is significant for the CTR predic-
tion task, which has also been pointed out in existing work.

3) BASELINE METHODS
a: FM [12]
FM utilizes factorization techniques to model second-order
feature interactions.

b: Wide&Deep [18]
Wide&Deep model uses wide part to realize the memoriza-
tion of model, and deep part to realize the generalization of
model.

c: DeepFM [19]
DeepFM uses deep layer to obtain high order crossover fea-
tures, FM obtains low order crossover features, and achieves
high and low order crossover features at the same time.

d: AFM [27]
AFM is one of the most advanced models for capturing
second-order feature interactions. It extends FM using the
attentional mechanism to distinguish the different importance
of second-order combinatorial features.

e: AutoInt [29]
AutoInt combines high-order features through the attention
mechanism, evaluates different combinations using themulti-
head mechanism, and maps features to different subspaces.
By superimposing multiple interaction layers, the combina-
tion characteristics of different orders can be simulated.

f: xDeepFM [28]
xDeepFM is an improved version of Wide & Deep, on which
CIN layer is added to explicitly construct finite order feature
combinations.

g: FiBiNET [30]
FiBiNET model is a CTR prediction model combining fea-
ture importance and bilinear feature interaction.

h: AFN [31]
AFN is a new method of adaptive eigennorm without param-
eters is proposed, and it is proved that the significant

VOLUME 10, 2022 104919



W. Zhang et al.: CTR Prediction Model With Double Matrix-Level Cross-Features

migration performance can be achieved by gradually adapting
the eigennorm of two domains to a wide range of values.

B. PERFORMANCE COMPARISON (Q1)
DTM integrates multi-head self-attention mechanism and
cross network and DNN into an end-to-end model. Although
self-attention mechanism, cross network and DNN cover two
different attributes in learning feature interaction, it is neces-
sary to verify whether combining vector crossover feature and
bit crossover feature is indeed necessary and effective. Here,
we compare several comparison models that are not limited
to a single model, and the results are shown in Table 2. It was
observed that FM was much worse than all other models,
which indicated that although FM alone could deal with vec-
tor crossover feature, the results of the model were relatively
poor due to its simple structure and lack of bit crossover
feature. The performance of Wide&Deep, AFM, AutoInt,
FiBiNET, AFN, DeepFM and xDeepFM is obviously better
than FM, which directly reflects that the high-order cross
feature combination can improve the model performance in
the recommender system. Compared with the contrast model,
the AUC value of DTM model increased by 4% and 3% on
average, and the LOSS value decreased by 3.5% and 2.8% on
average, respectively.

TABLE 2. Performance comparison of different models.

Compared with the latest models such as AFN, FibiNET
and AutoInt, DTM still has better AUC and LOSS perfor-
mance, which verifies the superiority of our model. Com-
paredwith othermodels, DTMmodel has better performance,
indicating that the combination of explicit vector-wise feature
matrix and explicit bit-wise feature matrix can improve the
performance of the recommended model, and the model has
better interpretability, generalization and memorability.

C. ABLATION STUDY (Q2)
The DTM model innovatively obtains feature combinations
by crossing vector-wise features and complementing themain
bit-wise feature combinations, which increases the general-
ization and memorability of the model and realizes an end-to-
end model. So is it really necessary and effective to combine
them for joint forecasting? In our DTM model, which is the
most important component? In order to verify and understand
the DTMmodel, validity analysis experiments are carried out
on DTM. Table 3 shows the performance of DTM model
under different components, and verifies the effectiveness

of combining vector-wise feature combination and bit-wise
feature combination.

TABLE 3. Comparison of performance between different variants of DTM.

(1) First, by comparing the performance of DeepFMmodel
and FM model on the two datasets, it can be seen
that the DeepFMmodel with high-order feature combi-
nation has better performance. Therefore, introducing
high-order cross feature combination into the recom-
mendation model is effective and can improve the per-
formance of the model.

(2) Second, by comparing the performance of various vari-
ants of DTMmodel, it can be seen that the performance
of the model considering bit-wise feature combination
and vector-wise feature combination at the same time
has better performance than that of any model alone.
Therefore, it is necessary and effective to jointly predict
bit-wise and vector-wise, so that the model can have
better memory and generalization.

(3) Finally, among the three variants of the DTM model,
the vector-wise features have better performance
than the other two variants, which proves that the
vector-wise feature vectors play a more important
role, mainly because the vector module not only can
arbitrary-order feature combinations be obtained, but
also weight information can be assigned to these com-
binations, which further improves the generalization of
the model.

D. PARAMETER STUDY (Q3)
In this subsection, we will perform some hyperparameter
studies on our model. Specifically, we study the following
hyperparameters: (1) the Dropout value; (2) the number of
hidden layers; (3) the activation function. During the experi-
ment, only one hyperparameter is changed at a time, and the
other hyperparameters remain unchanged.

1) DROPOUT
The main function of dropout is to prevent parameters from
relying too much on training data and increase the general-
ization ability of parameters to datasets. Some neurons are
ignored at random to reduce overfitting. The size of the
dropout value determines how many neurons need to sleep.
If the Dropout value is too small, the effect of reducing
overfitting and increasing generalization cannot be achieved.
If the dropout value is too high, important information will
be lost, making the recommendation inaccurate. As shown
in figure 5, on the Criteo and Avazu datasets, the AUC and
Loss of the DTM model increase first and then decrease.
At dropout 0.4, themaximumAUCandminimumLoss values
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FIGURE 5. Performance of DTM models at different dropout values.

FIGURE 6. Performance of DTM model under different network layers.

are achieved, and the model has the best performance at this
moment.

2) NUMBER OF HIDDEN LAYERS
Figure 6 shows the effect of the number of hidden layers in the
DTMmodel. For Criteo and Avazu datasets, the performance
of the DTM increased with the increase of the depth of the
network. However, when the network depth is set to greater
than 4, the performance of the model begins to degrade. This
is because with the increase of the number of model lay-
ers, the following problems will occur: the model structure
becomes more complex, which will lead to the phenomenon
of overfitting; extremely high feature combinations cannot
effectively improve the model performance.

3) ACTIVATION FUNCTION
The relationship between the features of the recommen-
dation model is often nonlinear, and the activation func-
tion can increase the nonlinear expression ability of the
recommendation model and improve the accuracy of the
recommendation results. The DTMmodel was compared and
analyzed on three main activation functions: sigmoid, tanh

FIGURE 7. Performance of DTM model under different activation
functions.

and ReLU functions. By comparing the performance of DTM
under different activation functions, the following conclu-
sions are drawn: ReLU function is more suitable for DTM
model and has better model recommendation accuracy. Con-
sidering the different performance of AUC and LOSS under
the three activation functions of DTMmodel, ReLU function
is the best, followed by tanh activation function, and sigmoid
activation function is the worst. Therefore, ReLU function
is selected as the activation function of DTM model in this
paper. ReLU activation function has a good performance,
possible reasons include: (1) Sparse activation. Nodes with
negative outputs are not activated; (2) Gradient propagates
efficiently. No gradient disappearance problem or explosion
effect; (3) High computational efficiency. Only comparisons,
additions and multiplications are done. The performance of
DTM model under different activation functions is shown in
Figure 7.

V. CONCLUSION
We propose a novel click-through rate prediction model
(DTM) with dual matrix-level feature combinations. Its pur-
pose is to automatically obtain high-order and low-order fea-
ture combinations in a matrix-level manner according to the
input features. The main advantage of DTM is that it can real-
ize not only explicit feature combination acquisition at the bit
level, but also explicit feature acquisition at the matrix level,
which increases the interpretability, generalization, andmem-
ory of the model. Extensive experiments are carried out on
two real CTR datasets to verify that DTM has a good model
representation and prediction ability. The two most important
evaluation indicators for CTR estimation, AUC and LOSS,
are analyzed and compared with other latest deep learning
recommendation models, which proves that the DTM model
has better recommendation accuracy and is better than other
latest recommendation models.
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