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ABSTRACT A sequence of recent papers, including in this journal, has considered the role of measurement
scales in information retrieval (IR) experimentation, and presented the argument that (only) uniform-step
interval scales should be used. Hence, it has been argued, well-known metrics such as reciprocal rank,
expected reciprocal rank, normalized discounted cumulative gain, and average precision, should be either
discarded as measurement tools, or adapted so that their metric values lie at uniformly-spaced points on the
number line. These papers paint a rather bleak picture of past decades of IR evaluation, at odds with the IR
community’s overall emphasis on practical experimentation and measurable improvement. Our purpose in
this work is to challenge that pessimistic assessment. In particular, we argue that mappings from categorical
and ordinal data to sets of points on the number line are valid provided there is an external reason for
each target point to have been selected. We first consider the general role of measurement scales, and
of categorical, ordinal, interval, ratio, and absolute data collections. In connection with the first two of
those categories we also provide examples of the knowledge that is captured and represented by numeric
mappings to the real number line. Focusing then on information retrieval, we argue that document rankings
are categorical data, and that the role of an effectiveness metric is to provide a single value that summarizes
the usefulness to a user or population of users of any given ranking, with usefulness able to be represented as
a continuous variable on a ratio scale. That is, we argue that most current IR metrics are well-founded, and,
moreover, that those metrics are more meaningful in their current form than in the proposed ‘‘intervalized’’
versions.

INDEX TERMS Information retrieval.

I. INTRODUCTION
Measurement is used to capture data about some attribute or
observation of a real-world phenomenon. For example, a ther-
mometer measures temperature so that we have guidance as
to how hot or cold it is now; andweather forecasts and climate
summaries predict temperatures based on datasets of past
measurements so that we can make informed choices about
our future activities. All other things being equal, a beach-side
holiday at a location with an average daytime temperature
of 25◦C is likely to be preferable to one at a location with
an average daytime temperature of 10◦C.

If a measurement is to be useful, it should be connected to
the attribute it refers to – that is, be externally valid – and
allow inferences to be derived from sets of measurements
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that are both predictive of, and informative about, the reality
that is being measured. The extent to which inferences can
be derived from measurements is, in part, determined by
the scale that is employed, defined as the way in which
observed attributes are represented by measured surrogates.
For example, patients in a hospital may be asked to rate
their pain on a scale of one to ten, with ‘‘perceived patient
pain’’ the attribute, and a set of ten ordered categories as
the corresponding measurement. Analgesics might then in
part be prescribed in accordance with the measurement a
patient reports, even though patients are not calibrated ‘‘pain-
o-meters’’.

Stevens [40] described four scales of measurement , and
enumerated their permissible operations in terms of what can
be legitimately concluded about the behavior of the under-
lying attribute, given knowledge of the measurement, or of
a set of measurements. In the case of a ‘‘ten point’’ pain
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assessment, for example, if yesterday a patient said ‘‘eight’’
and today they say ‘‘four’’, we can be confident that their
perceived pain has decreased, but should not say that it has
halved – the conclusion ‘‘has decreased’’ is permissible, but
the conclusion ‘‘has halved’’ is not, and nor is the conclusion
‘‘has gone down by four’’. In the case of ordinal measures
(which is what the ten point pain scale is), comparison of
measurements is permitted as a valid reflection of the relative
values of the corresponding underlying attributes, but the tak-
ing of ratios and differences is not (at least, not necessarily).
Indeed, a patient’s subjective pain scale might be highly non-
linear. Section II provides more detail of Stevens’ hierarchy
of scales of measurement.

A sequence of recent papers [14], [15], [16] has explored
the way in which experimental measurement is carried out in
information retrieval (IR), with particular emphasis on the use
of interval scales, one of Stevens’ four scale categories. The
somewhat bleak assessment of these papers is that IR has,
by and large, employed risky measurement techniques for
the last several decades. In the most recent contribution,
work that was published in this journal [16], it is argued
that the IR community has the opportunity to ‘‘strengthen the
foundations of our field’’ by ‘‘intervalizing’’ existing metrics
in order to render them sound. The key proposal is that raw
metric values should be mapped to evenly distributed points
on the number line, deriving a corresponding adjusted metric
on an equi-interval measurement scale.

Our goal here is to express a more optimistic view of
IR evaluation and IR measurement. In particular, we argue
that the majority of existing IR metrics are in fact
well-founded in terms of measurement and, for the most part,
achieve that which they were designed to capture. Central to
that argument is the belief that any given metric corresponds
to a certain type of user search behavior, and hence may be
used (and should only be used) whenever the search task
and user cohort can be argued as being a match for the
properties of the metric. We also differ in regard to the worth
of intervalization as a corrective mechanism.

In Section II Stevens’ measurement scale typology is
explained, and examples of categorical, ordinal, and interval
scales are provided. Section III then focuses on IR evalu-
ation, explains how IR measures are defined, and assesses
them against Stevens’ hierarchy. The final part of Section III
examines and responds to the suggestion [16] that met-
rics be intervalized. Section IV then considers other related
work, and other aspects of IR experimental methodology that
researchers and practitioners alike should bear in mind.

II. BACKGROUND
The distinction between categorical, ordinal, interval, and
ratio measures was introduced by Stevens [40] and is now
widely summarized in textbooks and online resources.1 This
section provides an overview of those four classes, starting
with categorical and ordinal measures, and examples thereof;
then taking a diversion into a parable in which professors’

1See, for example, https://en.wikipedia.org/wiki/Level_of_measurement.

TABLE 1. Two sets of categorical (or nominal) labels: (a) the standard set
of country codes, used perhaps to record country of birth in personnel
data; and (b) a set of academic work categories at a university.

salaries are tabulated; and finishing with a description of
interval and ratio measures. Section III then considers the
ways in which measures are applied to evaluation in infor-
mation retrieval.

A. CATEGORICAL DATA
In a categorical (or nominal) measure each object in the
data collection of interest (a dataset) is assigned to a single
class, with the classes identified via a set of class labels.
Table 1 provides two examples. In Table 1(a) the classes
are countries, perhaps reflecting birth locations of university
employees, and the class labels are two-letter abbreviations;
and in Table 1(b) the classes are academic work categories
in a university, and the labels are again two-letter surrogates.
For example, the birth countries of a group of ten professors
at a university might be represented by the dataset:

{AU,CN,AU, IT,CL,CL,CN,AU, IT, JP}.

The cardinality of each class across the dataset can be tab-
ulated and used to summarize fractions; and the mode (most
frequent class) can be reported, as can other class ranks based
on frequency of occurrence. For example, in the example
dataset, the most common birth country is AU, accounting for
3/10 of the professors; similarly (in the context of Table 1(b)),
a universitymight report that ‘‘research focused’’RO staff are
its second largest category.

In categorical data there is nomeaningful ordering between
the classes, and the only operations that can be applied to
data items are equality and inequality testing (= and 6=). The
classes themselves can be ordered by considering their labels
to be strings, as has been done in the two table sections,
but that is purely for presentational convenience, and not
an intrinsic feature of the data. If the class labels changed
(or even if they didn’t) the table rows could be reordered,
without affecting the validity or accuracy of any conclusions
drawn from the dataset being discussed.

This absence of ordering between the classes means
that the median (and other percentiles), and arithmetic
and geometric averages, are meaningless concepts – a
fact immediately grasped when considering the questions
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TABLE 2. Four sets of ordinal labels, and for each set, one possible
mapping between the set’s categories and the real number line: (a) the
set of available options (radio buttons) in a survey about frequency of
alcohol consumption, with N(·) in ‘‘risk points’’; (b) the set of professorial
ranks at some university, with N(·) in ‘‘salary, dollars per week’’; (c) the
set of recommendations (radio buttons) available to referees during a
peer review process, with N(·) a numeric mapping; and (d) the set of
relevance labels employed in a document judging process as part of
an IR evaluation, with N(·) a gain expressed in units of ‘‘utility’’.

‘‘average country of birth’’ and ‘‘median work category’’ of
the ten professors mentioned above. Moreover, the inappro-
priateness of computing medians and means remains even if
the class labels ‘‘look’’ like numbers. For example, suppose
that the international phone dialing prefixes were used as the
class labels, rather than the two letter acronyms: +61 for
Australia, +56 for Chile, and so on (ignoring the fact that
+1 actually covers several countries). The same dataset of
ten professors would now be described as:

{+61,+86,+61,+39,+56,+56,+86,+61,+39,+81},

but it is still not permissible to compute the median or mean.
When categorical data is combined into ordered tuples – for

example, the pairing ‘‘〈country of birth, work category〉’’ –
the set of tuples is also categorical data.

B. ORDINAL DATA
Ordinal data classes result if strict inequality as well as equal-
ity are permissible operators for comparing data items, that
is, if all of =, 6=, <, and > are operational. Table 2 gives

four instances of ordinal class labels and class descriptions;
the final column headed N (·) will be discussed shortly. The
first section of Table 2 is taken from an online ‘‘alcohol risk
screening’’ assessment, and is one of a suite of questions that
collectively ask about frequency (the one shown), intensity
(the amount of alcohol consumed at each session), and impact
(physical or emotional damage to self or to relationships with
family/friends). There is a clear ordering, with category A0
involving less frequent alcohol consumption than categories
A1, A2, and so on.

The fact that the classes are ordered means that cumulative
statistics are permissible. For example, a university might
report (in reference to Table 2(b)) that 70% of its professors
are at level P2 or higher. The same university might also ask
students to rate courses via a five-point Likert scale, using
the class labels ‘‘strongly disagree’’, ‘‘disagree’’, ‘‘neutral’’,
‘‘agree’’, and ‘‘strongly agree’’ in response to a statement
‘‘this course was well taught’’. It would then be permissible
to compute a dissatisfaction score for each course by sum-
ming the percentage of ‘‘strongly disagree’’ and ‘‘disagree’’
responses.

The ordered classes mean that it is valid to identify
the smallest (min) and largest (max) item in any dataset,
and also permissible to sort a dataset into ‘‘order’’. Medi-
ans of ordinal-scale datasets may also be calculated, albeit
with a degree of caution. For example, in the dataset
{P1,P2,P3,P4} it is unclear what median value should be
reported, but inferring it to be ‘‘P2.5’’ via the ‘‘arithmetic’’
(P2+P3)/2 over the twomiddle points in the sorted arrange-
ment is clearly absurd. The best that can be said in this
example is that the median lies in the interval [P2,P3].2

In the absence of specific additional information, tuples
based on ordinal data must be regarded as being categorical
data. Suppose, for example, that a university asked an alcohol
screening question of its professors, to create a set of tuples
‘‘〈alcohol consumption, professorial rank〉’’. We might feel
justified in concluding that 〈A1,P2〉 comes ‘‘before’’ the
pair 〈A2,P4〉, since both dimensions agree on that ordering.
But we would have no ability to put 〈A3,P3〉 and 〈A2,P4〉
into ‘‘order’’; therefore, the pairs must be categories. This
important point will be returned to in Section III when we
consider IR evaluation.

C. NUMERICAL TRANSFORMATIONS
When the number of ordinal classes is small (for example,
radio-button surveys and Likert scales), the median is a rel-
atively blunt and non-discriminating tool; and an ordinal
to numeric mapping is often used to transform the class
labels into numbers that can be processed arithmetically

2In detail: a class labelm is a median of a dataset X if half (or more) of the
members of X are ≤ m and half (or more) of the members of X are ≥ m. For
the dataset {P1,P2,P3,P4} that means that both P2 and P3 are medians;
and in the dataset X = {P1,P1,P4,P4} all four class labels P1, P2, P3,
andP4 are medians. It alsomeans that in the numeric datasetX = {1, 1, 4, 4}
every value 1 ≤ m ≤ 4 is a median. The use of 2.5 in this numeric case is
then a convention that isolates a single value amongst the infinite number of
possibilities.
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(and perhaps statistically). For example, the five Likert
dis/agreement class labels from ‘‘strongly disagree’’ to
‘‘strongly agree’’ might be converted to the numeric values
‘‘1’’ to ‘‘5’’ so that ‘‘average agreement’’ can be computed.

Each section in Table 2 shows one such possible map-
ping, denoted N (·). For example, in Table 2(a) each answer
(to this and each other question in the survey instrument) is
assigned a ‘‘risk points’’ value, and a sum is computed over
the answers across the set of screening questions, to indicate
the extent to which the survey respondent is likely to be
affected by alcohol-induced health and social problems. Sim-
ilarly, in Table 2(c), the sum of theN (·) values over the pool of
referees assigned to each paper might be computed, and used
as an overall assessment, with negative sums reflecting net
‘‘rejection’’, and positive sums indicating net ‘‘acceptance’’.
Despite the apparent ease with which such mappings can be
constructed, care is required, and each of those four example
mappings is just one instance of an infinite variety of possi-
bilities that could be devised and then argued for.

D. PROCESSING THE PROFESSORIAL PAYROLL
We now turn to a more detailed example involving an ordi-
nal to numeric mapping. Suppose that, in the context of
Table 2(b), some university has a total of ten professors, with
academic positions given by the dataset:

{P3,P2,P4,P2,P2,P2,P1,P3,P4,P2} ;

and that the university wants to include that information into
its annual report via a small table:

Class P1 P2 P3 P4
Count 1 5 2 2

This is legitimate, since it is permitted to tabulate occurrence
frequencies in both categorical and ordinal datasets. There
is no sense of there being an ‘‘average’’ professor (although
many of our students would regard us as being ‘‘mean’’!); but
themedian is a permissible statistic, and in this dataset there is
no ambiguity, the median is P2. Suppose further that the next
table of the annual report lists the current weekly salaries for
those four professorial ranks:

Class P1 P2 P3 P4
Salary $700 $750 $850 $1000

This table is thus an ordinal to numeric mapping that allows
professorial ranks to be converted to numbers, and hence for
the dataset of ten professorial ranks to be mapped to a dataset
of ten weekly salaries (all in units of dollars):

{850, 750, 1000, 750, 750, 750, 700, 850, 1000, 750} .

Calculation of the median salary over the professors is a
legitimate and correct operation; it is clearly $750 per week.
The university could add that statistic to its annual report with
a clear conscience.

Now suppose that one of the P2 professors is promoted to
level P3 before the annual report is finalized. What becomes

of the median salary? For a even-sized set of numbers the
usual convention is to take the mid-point between the two
middle values (see, for example, Hays [18, Section 4.2]);
after the promotion, that computation yields a median of
($750 + $850)/2 = $800 per week, or $50 per week higher
than it was previously.

Finally, the university also decides to include the total
salary being paid across the set of professors. In a sepa-
rate work area the annual report’s editor prepares this table,
to reflect the situation after the successful promotion:

Class P1 P2 P3 P4
Count 1 4 3 2
Salary $700 $750 $850 $1000
Payment $700 $3000 $2550 $2000

The editor then sums the bottom row to get a total weekly
salary cost of $8250, finalizes the annual report, and sends it
to the printer.

The very first copy arrives on the Provost’s desk just a
few days later. Worried about the budget, the Provost looks
at these various statistics, including the fact that there are
ten professors and a total salary cost of $8250 per week, and
concludes that the average weekly salary (since even Provosts
can divide by ten in their heads) per professor is $825. It never
crosses the Provost’s mind to ponder the fact that the original
data was ordinal, and that it was converted to numeric data
via a mapping. To the Provost the current professorial salary
scale is simply a set of facts that have, at this instant in
time, certain fixed values amongst a vast sea of possibilities.
In other words, the Provost sees the amounts being paid as an
accurate measurement in regard to the attribute ‘‘professorial
salary payments’’.

Nor is the Provost concerned by the fact that the average
salary value cannot be mapped back to a professorial rank
(indeed, perhaps the Provost is a demographer, and hence
equally comfortable with the fact that the average couple
have 1.93 offspring). If the Provost did want to compute
the inverse mapping, the best that can be said is that the
average salary-weighted professorial rank lies in the interval
[P2,P3]; that is, exactly the same as can be said for the
median professorial rank once the promotion has taken place.

It is also perfectly appropriate to apply a categorical
to numeric mapping to categorical datasets. The university
might have an agreed mapping that, for each of the class
labels listed in Table 1(b), specifies the workload fraction
available for teaching duties:

Class AM RO TO TR
Teaching fraction 0.20 0.10 0.80 0.35

The dataset of ten ‘‘academic work type’’ categories associ-
ated with the same ten professors could thus be mapped to a
dataset of ten numeric ‘‘teaching fractions’’; and then those
ten fractions could be summed and averaged to determine,
respectively, the total teaching capacity of the university, and
the average teaching fraction per employed professor.
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E. INTERVAL SCALES
The third level in Stevens’ hierarchy corresponds to numeric
data for which the difference between any pair of values
has meaning, but the values themselves do not necessarily
have direct interpretation (or may, but it is somewhat arbi-
trary). As an example, consider the timestamps employed in
the Unix operating system, which are measured in seconds
since 1 January 1970, UTC. At the time this sentence was
being planned, the ‘‘time’’ was indicated by 1636099886;
now that the sentence has been (nearly) typed, the measure-
ment is 1636100081.3 Each of those two large numbers
is, in isolation, somewhat meaningless; but the difference
between them has a clear interpretation – the two time mea-
surements were 195 seconds apart. Planning and then com-
posing that one sentence took over three minutes.

Another example is given by the Celsius and Fahrenheit
temperature scales. According to one, water freezes at 0◦;
according to the other, at 32◦. Nevertheless, the two scales
measure the same underlying attribute: each one degree rise in
temperature corresponds to the addition of a fixed amount of
thermal energy to a specified volume of water. That fact holds
regardless of whether the one degree increase is between 40◦

and 41◦, or between 73◦ and 74◦, provided that either Celsius
or Fahrenheit is used for both components of the comparison.

On the other hand when time is measured in ‘‘years’’, it is
not an interval scale measurement relative to the underlying
attribute of ‘‘orbits of the sun’’. It is a good approximation,
and most of us would be willing to say that 2021 is ‘‘ten
years after’’ 2011 in the same manner as 2011 is ‘‘ten years
after’’ 2001; and are also willing to accept that the cultural
basis for selecting the reference year – the beginning of the
current monarch’s rule; or the birth or death of some historical
religious figure – is arbitrary. But the span from 2001 to
2010 inclusive contains 3652 days and 315,532,800 seconds,
whereas the span from 2011 to 2020 contains 3653 days
and 315,619,200 seconds. More importantly, the span from
2001 to 2010 inclusive contains 9.9988 solar orbits, whereas
the period from 2011 to 2020 contains 10.0016 solar orbits.
That is, the interpretation attached to intervals measured in
years as a surrogate for ‘‘solar orbits’’ differs according to
whereabouts in the scale those intervals are taken. Nor are
days or seconds linearly translatable into years.4

The measurement points of an interval scale that are used
in any particular set of measurements or observations are
not required to be equi-distant on the number line. With
the exception already noted, Unix ‘‘seconds’’ are always
one second apart, and ‘‘days’’ are normally one ‘‘rotation
of the earth’’ apart. But ‘‘first day of the month’’ dates

3Both obtained from https://www.unixtimestamp.com/index.php.
4Strictly speaking, nor is Unix time an interval scale, because international

time-keepers insert the occasional ‘‘leap second’’ too, most recently mak-
ing 31 December 2016 one second longer than the 86,400 = 24 × 60 × 60
seconds of a standard day, see https://en.wikipedia.org/wiki/Leap_second.
Unix timestamps assume that there are always exactly 86,400 seconds every
day; and at any leap-second boundaries, that extra second is achieved by
subtracting one from the operating system’s internal time variable, and
observing the same second a second time.

when expressed as Unix timestamps are not at fixed intervals
(at least, not in the current Gregorian calendar); similarly,
‘‘business days’’ is a valid interval-based measurement that
bypasses two days every seven. In general, measurement
points andmeasured values can be as close to or far apart from
each other as is consistent with accurate representation of the
underlying attribute that is being recorded and in accordance
with the purpose for which it is being measured.

The same flexibility extends to categoric to numeric map-
pings, and to ordinal to numeric mappings. It is perfectly
acceptable for the salary increments between professorial
ranks to be of different sizes in Table 2(b); and for the ordinal
to numeric mapping N (·) shown in Table 2(c) to make the
interval between WA and WR twice as large as the interval
between WR and R. In the first case the decision on target
values would have been made by the university as a reflection
of the cost of attracting and retaining staff of the required
caliber; in the second, the decision on those relative intervals
would have been made by the PC Chairs for the conference
in question, based on their experience of referee behavior and
the outcomes they sought via the paper review process. Once
established, any such mapping allows the class labels to be
converted to numbers, and for differences to be computed and
compared. The fact that in Table 2(c) the target value 0 is not
generated by any of the six label options is of no concern;
−0.5 and +5 are not amongst the mapped targets either. Nor
is $925 a salary level that is available in Table 2(b).

Datasets based on interval scales allow translation oper-
ators (mx + c, where m > 0 and c are constants) to be
applied without affecting relativities, and, as noted, for dif-
ferences between measurements, and ratios of differences
between measurements, to be compared; but not ratios of
measurements themselves. Consider the ordinal to numeric
payroll mapping shown in Table 2(b). That mapping means
that it is valid to both compute differences and also to attribute
meaning to the ratios between differences. For example,
N (P4) − N (P3) = 1.5 × (N (P3) − N (P2)), and it is
evident that promotion toP4 fromP3 results in a pay-rise that
is 1.5 times larger than the pay-rise that our friend received
earlier when they were awarded their promotion to P3.

Ratios between intervals defined by one scale might not
correspond to comparable intervals on a different scale that
represents a different underlying attribute. For example, the
P1 professor who gets promoted to P2 might gain the same
added utility from their modest $50 pay-rise as aP2 professor
gains when promoted to P3 and receives a $100 increase
in their weekly pay. If we wish to map professorial classes
to perceived utility of income we are measuring a different
underlying attribute, and should use a different ordinal to
numeric mapping. On the other hand, Celsius and Fahrenheit
do measure the same underlying attribute, and one scale is
thus a translation of the other.

When the measurements are made on a continuous scale
the values in the dataset might have varying degrees of pre-
cision. We can count weekly salaries down to the cent or
even sub-cent level if we wish to, or stick to whole dollars,
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or have amixture. Similarly, temperatures might be expressed
as integers sometimes, or to three decimal places at others;
and a landscape gardener planning a paling fence measures
their 50 meters to less precision than does the builder of the
swimming pool for an upcoming Olympics. This is not an
issue. The requirement for an interval scale is solely that tak-
ing differencesmust always yield values that can be compared
to each other as ratios and hence be assigned meaning relative
to the underlying attribute; and that those interpretations must
be invariant with respect to where in the scale the differences
arise.

Monetary amounts, distances, weights, and so on, all result
in datasets that have interval scale properties. A 40 kilogram
weight is heavier than a 30 kilogram weight by exactly the
same 10 kilogram difference as a 25 kilogram weight is
heavier than a 15 kilogram weight. And the last kilometer of
a cycling race is exactly the same length as the first kilome-
ter, regardless of how long the race is. That final kilometer
might require more mental resilience than the first, and it
might require more muscle energy production too – both of
which are underlying attributes that are not ‘‘distance’’, and
hence cannot be measured in units of kilometers – but it will
certainly be one kilometer long.

When a dataset is presented on an interval scale (or follow-
ing the process of mapping a categorical or ordinal dataset
to obtain a derived interval-scale dataset), all of the oper-
ations permissible on ordinal-scale measurements are again
permissible. In addition it is also permissible to compute the
arithmetic mean (average). As a geometric interpretation, the
arithmetic mean is the point p̄ at which the sum of the signed
differences pi − p̄ for the elements pi in the dataset is zero,
confirming that the relationship between the arithmetic mean
and the elements in the dataset is invariant to the possible
arbitrariness of the origin point and multiplicative scale of
the measurements.

F. RATIO SCALES
When data is measured using a ratio scale, the data elements
themselves havemeaning, as well as their differences; and the
ratio between data elements is a permissible computation that
has the same interpretation across the measurement scale. For
example, weight measured in kilograms is a ratio scale, with
20 kilograms twice as heavy as 10 kilograms in the same way
that 50 kilograms is twice as heavy as 25 kilograms, and in the
same way that 44.092 pounds (that is, 20 kilograms) is twice
as heavy as 22.046 pounds. Consistency of ratios means that
the zero point of the scale is no longer arbitrary, and that it
must be in a single unique location for all ways of measuring
that underlying attribute.

All of weight (in kilograms), distance (in kilometers),
money paid as salary (in dollars), and temperature (in degrees
Kelvin, but not in degrees Celsius or Fahrenheit) are ratio
scales. Plus, if for some reason we are specifically interested
in time since 1 January 1970, then Unix timestamps are a ratio
scale, with 50000000 being twice as distant from 1 January
1970 as is 25000000. On the other hand, if we have no

reason to attach significance to 1 January 1970, then Unix
timestamps are (only) an interval scale. Similarly, the referee
score mapping shown in Table 2(c) is not a ratio scale.

G. ABSOLUTE MEASUREMENTS
If the attribute that is being measured is one that can
be directly quantified, then that value can be used as the
measurement without further transformation. For example,
‘‘number of children’’ is an absolute attribute (taking on
values zero, one, two, and so on) that does not require that
‘‘units’’ be specified – compare with length measured in
centimeters or inches or yards or meters (or light-years or
parsecs). This category is not included in Stevens’ taxonomy,
but for completeness it makes sense to note it here.

H. INTERPRETABLE OUTCOMES
If the observer has complete freedom to choose an ordinal
to numeric mapping, then little interpretation can be placed
on any computed attributes, such as the mean. We could get a
different outcome by choosing a different mapping. But if the
ordinal to numeric mapping is defined by the context in which
the dataset was created, and is bound to a set of target values
by some external reality – as was the case, for example, with
the professors’ salaries – then that factual relationship makes
the mapping’s values meaningful, and hence interpretable
in terms of the attribute from which the measurement was
derived. In the main example of this section, the Provost knew
the total cost of the ten professors because their salaries were
defined via an agreed and published mapping that could be
summed, a real-world consequence of the professorial ranks.

Values that are derived via some mapping can only be
interpreted in the context of that mapping, and if the mapping
changes, so too will the derived values, and perhaps even the
relativities. If the ten professors decamp and move en masse
to another university (while retaining their current ranks),
they are likely to be subject to a different set of salaries. If so,
a different ordinal to numerical mapping will apply, and after
calculating their average salary relative to that university’s
pay scales, their new Provost might reach a different conclu-
sion about the average salary-weighted professorial rank.

Similarly, if the conference PC chairs used a different
mapping from referee acceptance grades to numbers then
the submitted papers might get sorted into a different overall
‘‘average paper score’’ ordering, and a different set of papers
might be accepted. But provided the mapping is defined by
the PC chairs in advance, and is based on principles that they
believe can be successfully argued, then calculating average
referee scores is defensible, even though the relationship
between the mean of a mapping-derived dataset and the
mapping’s set of target values is not required to be invariant
to mapping changes. This cause-and-effect nexus between
mapping and conclusions is both normal and acceptable, and
provided the mapping has its basis in the real world attribute
that is the focus of the measurement, should not be regarded
as being proscribed in any way.
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I. NUMBERS DON’T REMEMBER
In a parable involving ‘‘football numbers’’, Lord [21]
observes (giving an opinion via the voice of the ‘‘statisti-
cian’’ in the story) that: ‘‘Since the numbers don’t remember
where they came from, they always behave just the same way,
regardless’’. This statement has provoked extensive commen-
tary, both in support and in opposition; with Scholten and
Borsboom [37] giving one of the more recent – and also more
insightful – analyses.

The complementary argument made in this section is that
if you do know where the numbers came from and why they
have the values that they do, and are confident that those
values can be justified in reference to the real world attribute
that the mapping is designed to represent, then those numbers
may be used in your analysis and interpretation of that real
world equivalence. The next section applies that principle to
effectiveness measurement in information retrieval.

III. MEASUREMENT IN INFORMATION RETRIEVAL
A. SEARCH ENGINE RESULT PAGES
Evaluation in batch information retrieval (also sometimes
referred to as offline evaluation) centers on search engine
result pages, or SERPs, see Sanderson [35] for an overview.
In simplest (and highly stylized) form a SERP is an ordered
permutation of the n documents in the collection managed
by the search service, or a k-element prefix of such a per-
mutation; and is the visible output that is presented to a user
in response to a query. Each item in the SERP is either a
document, or a surrogate summary of a document referred to
as a snippet . In most IR batch evaluation methodologies (but
not all) users who examine a snippet in a SERP are regarded
as having also examined the document behind the snippet,
and we will continue with that assumption here.

The interfaces provided by commercial search systems
present much richer interfaces, containing a complex amal-
gam of elements including query suggestions, images, knowl-
edge panels, extracted answers, and so on; and require equally
sophisticated assessment techniques. But stylized SERPs of
the form we consider here continue to be the mainstay of IR
evaluation when retrieval similarity formulations and ranking
models are being developed, and are the focus of both the
arguments put by Ferrante et al. [14], [15], [16] and our
response to those arguments.

The primary underlying attribute in IR evaluation is the
usefulness of a SERP in terms of how well it addresses the
information need that provoked the user’s query. To that end,
‘‘usefulness’’ can be defined either as a combination of cor-
rectness, coverage, comprehensiveness and cost of consump-
tion of the information conveyed by the SERP’s documents,
or in terms of the user’s satisfaction after they have consumed
the SERP. Comparative evaluations based on usefulness are
then used to determine which search service, or parameter
settings within a single service, give rise to the SERPs with
the greatest usefulness.

Search result pages are categorical data, because they are
ordered n-tuples (or ordered k-tuples) of documents, which

are themselves categorical. A further standard assumption
is that the individual documents making up the SERP can
each be assigned a per-document value known as relevance,
corresponding to their in-isolation usefulness in response
to the query. In most experimental contexts document rel-
evance is represented on an ordinal scale, based on rele-
vance grades. The simplest possible measurement scale is
a binary one, with labels ‘‘G0’’ meaning ‘‘non-relevant’’
and ‘‘G1’’ meaning ‘‘relevant’’. Graded relevance scales
make use of more classes, see the example already shown in
Table 2(d). Relevance scales based on arbitrary numeric val-
ues are also possible, and do not alter the arguments presented
here.

Given that each document in a SERP can be assigned
a relevance grade, SERPs can be assigned to categorical
classes based on their ordered sequences of n (or k < n)
relevance grades. For example, a five item SERP provided
in response to a query might be a member of the class
〈G1,G3,G0,G0,G2〉, with the five ordinal document rele-
vance classes as defined in Table 2(d).

B. COUNTING AND ORDERING SERPs
Even in the simplest case, with binary document relevance
classes, the number of SERP classes is huge. If n0 is the
number of G0 non-relevant labels across the n documents,
and n1 is the number of G1 relevant labels, then there are
a total of n!/(n0!n1!) different SERP classes. Even when
a k-element prefix of the SERP is taken, with k ≤

min{n0, n1}, there are still 2k different SERPs.
It was noted above that SERPs are categorical data; nev-

ertheless, some SERP relativities can be derived from the
ordering embedded in the document relevance scale. For
example, when the five-element SERP

〈G1,G3,G0,G0,G2〉 ,

is compared with the SERP

〈G1,G2,G0,G0,G1〉 ,

it is apparent that the second one cannot possess more use-
fulness than the first one, as it is less relevant in two doc-
ument positions, and equal in the other three dimensions.
More generally, we can be confident that SERP S1 is non-
inferior to SERP S2 (denoted S1 � S2) by considering two
monotonicity relationships:
• Rule 1: SERP S1 is non-inferior to SERP S2 if every
element of S1 is greater than or equal to the correspond-
ing element of S2 in terms of their ordinal document
relevance labels;

• Rule 2: SERP S1 is non-inferior to SERP S2 if S2 can
be formed as a transformation of S1 in which one or
more elements are swapped rightwards and exchanged
with elements of strictly lower document relevance that
move leftward.

Rule 1 is an absolute relationship that does not rely on
the documents in the SERP being examined in a top-
down manner (corresponding to left-to-right in the examples
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FIGURE 1. Hasse diagrams showing: (a) all SERPs of n = 5 documents in
which there are n0 = 3 non-relevant and n1 = 2 relevant documents; and
(b) the set of k = 4 prefixes of those SERPs. The solid arrows indicate
‘‘Rule 1’’ � relationships, and the dotted arrows show ‘‘Rule 2’’ �
relationships. Two relevance grades are assumed, with 1 > 0.

employed here). Rule 2 arises from adding the assumption
that the SERP is examined sequentially from left-to-right, but
is still not equivalent to lexicographic ordering.

Figure 1(a) shows the set of � relationships when SERPs
of n = 5 binary document relevance grades with n0 = 3 and
n1 = 2 are considered, with ‘‘0’’ and ‘‘1’’ used as shorthand
for the document relevance labels G0 and G1 respectively.
No Rule 1 relationships are possible when all n documents
are included, because the SERPs must be permutations of
each other. Figure 1(b) then shows the non-inferiorities that
arise when binary SERPs over n = 5 documents (still with
n0 = 3 and n1 = 2) are truncated at k = 4 for
the purposes of evaluation. Now Rule 1 relativities also
occur.

All of the relationships shown in Figure 1 are transitive,
meaning that SERP pairs that are not linked by a directed
path of arrows are incomparable. In both the n = 5 case and
the k = 4 version the two axiomatic rules are insufficient
to impose a preference ordering between 〈1,0,0,1,0〉 and
〈0,1,1,0,0〉. That is, in the absence of any further informa-
tion in regard to what it is that users find to be useful, either
of these two SERPs might be preferred.

C. IR EFFECTIVENESS METRICS
Given that context, an effectiveness metric is a categorical
to numeric mapping that assigns a real-valued number to
each possible class of SERP. Those derived values are often,
but not always, in the range 0 . . . 1. For example, assuming
binary document relevance categories with class labels G0
and G1, the simple metric ‘‘precision at k’’ (Prec@k) is
computed as the number of relevant (G1) documents among
the first k in the SERP, divided by k . Both 〈1,0,0,1,0〉
and 〈0,1,1,0,0〉 have Prec@5 scores of 0.4, and both have
Prec@4 scores of 0.5. But 〈0,1,1,0,0〉 is deemed to be bet-
ter than 〈1,0,0,1,0〉 according to Prec@3. Moreover, there

is a real-world interpretation of Prec@k that can justify its use
as a metric: if we suppose that each user of the search system
examines exactly the first k documents in each SERP they
receive, then Prec@k measures the fraction of documents
viewed by the user that are relevant. That is, there is a clear
connection between Prec@k and an aspect of the real-world
situation that can be argued as being a way of assessing SERP
usefulness, at least for some category of users.

A wide range of other effectiveness metrics have been pro-
posed to augment Prec@k , including top-weighted ones that
allocate decreasing importance to documents the further they
are from the head of the SERP. For example, the metric RR is
defined (again, for binary relevance grades) as the reciprocal
of the index of the first position in the SERP that contains
a G1 document. The same two SERPs 〈1,0,0,1,0〉 and
〈0,1,1,0,0〉 thus have RR values of 1.0 and 0.5 respectively.

With these definitions, an RR value of 0.25 is possible,
but an RR value of 0.75 is not. Similarly, a Prec@3 value
of 0.5 not possible, nor a Prec@5 value of 0.35. Should we
be concerned by these absences? Fuhr [17] and the sequence
of papers noted earlier [14], [15], [16] argue that in the case
of RR we most definitely should. In particular, the first of
Fuhr’s list of ten ‘‘common mistakes’’ is ‘‘Thou shalt not
compute MRR’’ (with MRR being ‘‘mean reciprocal rank’’),
a directive justified by ‘‘. . . the difference [in score] between
ranks 1 and 2 is the same as that between ranks 2 and∞. This
means that RR is not an interval scale, it is only an ordinal
scale.’’ We disagree with that conclusion.

D. SALARIES FOR SERPs
To develop the professorial salary levels listed in Table 2(b)
the university in question may have engaged remuneration
consultants and asked them to undertake a comparative study
of current real-world salary expectations for professors of
certain specified abilities. The university knows it has to
offer competitive salaries if it is to retain staff, but under the
ever-watchful eye of the Provost, doesn’t want to pay too
much. That is, we can assume that the correspondences listed
in Table 2(b) have been determined to be ‘‘market rates’’ in
some way, and have been drawn from a larger set of initial
possibilities that were considered as options. The intervals
between the salary points are meaningful; they represent
salary differentials that must be paid in a competitive market,
measured in dollars.

Suppose that a search engine company – ‘‘AmaBaiBin-
Goo’’, perhaps – undertakes a similar market rates study.
They run surveys, host focus groups, meet with psycholo-
gists, and sponsor IR-related conferences; and conclude from
their investigations that the great majority of AmaBaiBinGoo
users fall into a ‘‘shallow-hasty-youthful’’ demographic that
is highly focused on getting a single correct result for each
of their queries. The study participants were also asked to
estimate the monetary value of example SERPs, and out of
an immense amount of data a set of correspondences between
SERP classes (that is, SERP categories constructed using
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binary document relevance grades G0 and G1, as shown in
Figure 1) and perceived values emerges:

SERP group T1 T2 T3 T4 · · ·

Value 1.00c 0.50c 0.33c 0.25c · · ·

where the group T1 contains all SERPs that commence
with a relevant document, 〈G1, . . .〉; group T2 contains all
SERPs that have their first relevant document in the sec-
ond position and commence with 〈G0,G1, . . .〉; group T3
contains all SERPs that commence with two non-relevant
documents and then have a G1-grade document in third
position, 〈G0,G0,G1, . . .〉; and so on. These grouped SERP
categories – from T1 onward – form an ordinal arrangement,
because of the positional references to ‘‘first’’ and ‘‘second’’,
but the groups can also still be thought of as categorical
labels.

The company’s chief financial officer (CFO) takes great
interest in this data. To estimate the possible income should
AmaBaiBinGoo move to a user-pays income model, the CFO
assembles a sample of ten recent queries and the SERPs that
were returned for them, and constructs this dataset of SERP
groups:

{T1,T3,T1,T4,T3,T1,T1,T1,T2,T3}.

The mode of this dataset is T1; in an ordinal sense the median
is either T1 or T2; and it is meaningless to ask about the
‘‘average SERP category’’. But the AmaBaiBinGoo CFO
continues, joining the per-SERP revenue estimates from the
market research to the sample SERP distribution:

SERP group T1 T2 T3 T4
Count 5 1 3 1
Revenue each 1.00c 0.50c 0.33c 0.25c
Income 5.00c 0.50c 1.00c 0.25c

Summing the bottom row tells them that their current rev-
enue expectation from a user-pays model would be 6.75c
for this sample of ten queries, or 0.675c per query on
average.

Now the critical question arises: is the computation of
the average payment per query using this framework a valid
computation? We argue that it is, and that it is meaningful
in exactly the same way that the average professorial salary
is a meaningful value. Both the professorial salaries and the
per-SERP payments are on the interval scale of ‘‘money’’,
and by design (and expenditure on consultant fees) reflect
their respective real-world situations. Hence, ‘‘mean value
per SERP’’ is a valid measurement of search according to
its underlying attribute – the usefulness of SERPs to users
– provided only that we are willing to equate the attribute
of usefulness and the attribute of value. But that equivalence
is one of the underpinning assumptions of economics: that
the price that someone is willing to pay for a service reflects
the utility (that is, usefulness) that they expect to derive
from it.

E. DIFFERENT USER BEHAVIORS
The reader will doubtless have noted that the SERP ‘‘pric-
ing’’ mechanism used in that previous example corresponds
to Reciprocal Rank, RR. What if AmaBaiBinGoo’s market
research also noted other factors that influence the amount
that a user is willing to pay, in addition to the position of
the first relevant result in the SERP? For example, suppose
that an even more detailed user evaluation (and, who knows,
perhaps a deep convoluted neural model as well) reveals
that customers are willing to pay 0.50c if the first document
in each SERP is relevant; plus (independently) 0.25c if the
second is relevant; plus another 0.125c if the third is relevant;
and so on; adding up the payments right through the length
of the SERP. The ‘‘RBP0.5’’ column in Table 3 shows the ten
different per-SERP values that can arise when this computa-
tion is applied to the set of ten n = 5, n1 = 2 SERPs shown
earlier in Figure 1, and places those derived scores beside the
corresponding RR values. This new mapping function yields
the effectiveness metric rank-biased precision (RBP) with
parameter φ = 0.5 [25].
Both RR and RBP can be applied to the CFO’s dataset of

ten SERPs, with different average scores emerging. Those
two averages must not be compared to each other, because
they were computed using different mappings and hence
different assumptions about value. That is, the two met-
rics are incompatible. So, while they will be correlated for
certain SERP subsets – because of the axiomatic chains
depicted in Figure 1 – they are not convertible, and repre-
sent different measurements. Nevertheless, both the RR and
RBP0.5 averages over a dataset of categorical SERPs are
valid computations in the context of the numeric mappings
that were employed when computing them. What the CFO
must do is decide which mapping best captures the value of
each SERP class to the members of their user base, that is,
which context they believe is the most realistic assessment
of value as a surrogate for the underlying attribute of SERP
usefulness.

F. USERS, MODELS, AND METRICS
There are many other possible effectiveness metrics, and
more are proposed each year. Table 3 adds two further options
to the three that have already been mentioned: average pre-
cision, AP [5], [28]; and normalized discounted cumulative
gain, NDCG [19]. Each of the five metrics shown is a distinct
categorical to numeric mapping, with the numeric targets
representing perceived utility, expressed in units of ‘‘willing
to pay this many cents for a SERP in this category’’, and in
which ‘‘cents’’ is an imaginary currency that nevertheless has
a fixed multiplicative exchange rate that allows conversion to
Euros, to USD, to JPY, to RMB, and so on, just as inches can
be converted to parsecs.

As a separate comment, AP and NDCG are computed
somewhat differently to the three already described. They
involve a ‘‘normalization’’ step that adjusts the score (pay-
ment) associated with each SERP according the maximum
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TABLE 3. All possible SERPs composed of n = 5 binary document relevance grades containing n1 = 2 relevant and n0 = 3 non-relevant documents. The
metric Prec@5 is 0.4 for all ten SERPs. There are no violations of the � relationships captured by the arrows in Figure 1.

amount of relevance available across the collection (in the
binary examples used here, expressed by the value n1), adding
an implication that users are willing to pay increased amounts
if relevant documents are relatively scarce, but equally imply-
ing that users are somehow aware of the scarcity or not of
relevant documents in regard to each query they issue. Note
also that all of RR, RBP, AP, and NDCG are top-weighted,
meaning that if they are evaluated across the whole collection
(that is, on full-length SERPs of length n rather than at-k
truncated ones), Rule 2, noted above, results in strict supe-
riority (�), rather than non-inferiority (�).

More generally, most IRmetrics have a corresponding user
browsing model, which hypothesizes the way in which users
interact with each SERP, and the subconscious process they
follow as they consume SERPs and assess usefulness – the
attribute that we are trying to measure. Thus, one way in
which IR effectiveness metrics have been studied is via the
development of user browsing models of increasing sophisti-
cation [2], [7], [9], [26], [27], [48], [50]. Each such model
maps a categorical SERP to a numeric assessment of that
SERP’s value on the real number line, usually between 0.0
and 1.0 inclusive, often in units of ‘‘expected utility gained
per document inspected’’, using the corresponding browsing
model as a guide to the manner in which the user consumes,
and ends their consumption of, the SERP.

This is why there have been so many IR metrics pro-
posed – each corresponds to a different interpretation of
‘‘SERP usefulness’’, and hence corresponds to a different
category of user, or a different type of search even when being
carried out by the same type of user. The AmaBaiBinGoo
‘‘shallow-hasty-youthful’’ demographic was mentioned ear-
lier; similarly, another company’s users might belong to a
‘‘thoughtful-patient-older’’ demographic. An IR metric that
accurately assesses usefulness for one of these cohorts may
not match the other community’s interpretation of useful-
ness, and vice versa. Conversely, if a user model describes
the behavior of some demographic group when carrying
out some type of information-based search task, then the
corresponding dual metric will be well-suited to measuring
perceived usefulness in that same specific context of cohort
and search task.

FIGURE 2. Four example SERPs and their RR@5 scores, shown against the
real number line. The requirement for an interval scale is that ratios of
differences have meaning. In this example that is achieved if users
perceive SERP A as improving upon SERP B by 1.5 times as much as they
perceive SERP C as improving upon SERP D.

To make this argument concrete, consider again the funda-
mental basis on which Fuhr [17] and Ferrante et al. [14], [15],
[16] criticize RR, headlined by this pattern of scores:

first relevant document at rank one, RR = 1.0

→

−0.5
first relevant document at rank two, RR = 0.5

→

−0.5
no relevant document in top k , RR = 0.0.

In criticizing RR for this behavior, those authors overlook the
possibility that there may be a community of users wanting
those two intervals to be of equal importance. If some cohort
of users share a perception of usefulness that concurs with
the relationship between those three classes of SERP, then the
non-uniformity of the other available measurement points is
of no concern whatsoever, and RR is indeed measuring SERP
usefulness.

Figure 2 further explores this relationship between user-
perceived SERP usefulness and measured SERP score. In the
example four different SERPs are being assessed, and have
RR scores (left-to-right, D to A) of 0, 1/3, 1/2, and 1. If we
can agree that it is conceivable that a category of users might
view SERP A as improving upon SERP B by 1.5 times as
much as SERP C improves upon SERP D (and similar for
the other ratios of differences that might arise, for example,
with A regarded as improving upon D by six times as much
as B improves upon C) then there can be no ambiguity: RR is
an interval scale measurement for those users.

This then makes clear our fundamental concern, and brings
us to the key point of this work: any argument that RR – or
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any other metric – is an unsuitable categorical to numeric
mapping for measuring IR system effectiveness for some
cohort of users or some type of search task must be justified
based on rhetoric about user perceptions of SERP usefulness,
or on observational data that measures SERP usefulness via
some agreed surrogate. Arguments against IR effectiveness
metrics cannot be based solely upon statements about the
non-uniformity of the intervals between the available mea-
surement points.

G. INTERVALIZATION OF METRICS
Ferrante et al. [16, page 136193, in connection with their
Figure 3] write that ‘‘the real problem with IR evaluation
measures is that their scores are not equi-spaced and thus
they cannot be interval scales’’. This assertion leads to
their proposal that existing metrics be intervalized , by enu-
merating all possible metric values over truncated SERPs
of some defined length (k = 10, or k = 20 say, but
certainly not k = 100, because of combinatorial growth
issues) and then mapping the ordering implied by those val-
ues to a uniform-interval scale to get new versions of those
metrics.

To understand the process of intervalization, consider the
metric NDCG, already illustrated in Table 3. If we assume
that n0, n1 ≥ 3 then there are 2k = 8 different binary-grade
SERPs possible of length k = 3, with NDCG@3 scores
(sorted by score, to three decimal places) of

{0.000, 0.235, 0.296, 0.469, 0.531, 0.704, 0.765, 1.000} .

That set of eight irregularly-spaced NDCG@3 scores would
be intervalized to the range [0, 1] via the corresponding
uniformly-spaced set of eight target values (all multiples
of 1/7, again represented to three decimal places)

{0.000, 0.142, 0.285, 0.428, 0.571, 0.714, 0.857, 1.000} .

The mapped uniform-interval values would then be used to
compute means and as a basis for comparing systems, and to
undertake statistical tests, as a derived variant of NDCG@3.
Similarly, for the metric NDCG@10, a set of 1024 mapped
NDCG values would be generated, at uniform intervals
of 1/1023.5

We believe that intervalization should regarded with scep-
ticism. There is no requirement in Steven’s typology that
interval scales be restricted to uniform distances between the
available measurement points; the requirement is simply that
the ratio between pairs of intervals be indicative of the cor-
responding difference in the underlying attribute. Moreover,
altering the categorical to numeric mapping used to assign

5Note that here we make use of the ‘‘Microsoft’’ version of NDCG,
in which the discount at rank d is log2(1 + d) for all d ≥ 1, whereas
the examples provided by Ferrante et al. [16] use the original Kekäläi-
nen [19] parameterized discount in which ranks d ≤ b have a discount of
1.0, and ranks d ≥ b have a discount of logb d . In the Kekäläinen [19]
implementation, there are 768 distinct NDCG@10 values possible, and
hence the intervalized version of this metric would use a uniform interval
of 1/767.

score to SERPs changes the relativities being measured, and
thus affects the outcome of any subsequent arithmetic. This
effect is especially notable for the metric RR. If truncated
rankings of length k are used, mapping to an equi-spaced
scale yields:

first relevant at rank one

→

−1/k
first relevant document at rank two

→

−1/k
first relevant at rank three

· · ·

first relevant document at rank k − 1

→

−1/k
first relevant document at rank k

→

−1/k
no relevant document in the first k

which is logically equivalent to using the rank of the first
relevant document as the assessment of SERP usefulness –
let’s call it the metric R1, sometimes referred to as ‘‘expected
search length’’ [10]. While that is a perfectly valid measure,
it probably isn’t a plausible way of measuring the underlying
attribute of SERP usefulness. Would a user of an IR system
really perceive having the first relevant document at rank 100
rather than at rank 99 as being the same amount less useful as
is having the first relevant document at rank 2 rather than at
rank 1? Indeed, R1 is sufficiently obvious as a possible metric
that if it were reflective of user perceptions of usefulness, then
it would have been in common use in IR evaluation for the
last several decades. There has been a reason why R1 has had
almost no use as a measure of SERP quality – because there
are no compelling combinations of user cohort and search
task for which it reflects SERP usefulness.

Finally, note that even RBP0.5 does not guarantee a
uniform-interval scale, adding further confusion to the situ-
ation. Fuhr [17] and Ferrante et al. [14], [15], [16] suggest
that RBP0.5 is an example of a valid (by their requirements)
interval scale IR metric, because if the SERPs being eval-
uated are of length k , then all multiples of 2−k between 0
and 1 − 2−k can be generated as metric scores, and hence
the measurement points are at uniform intervals. But that
conclusion is only correct when k ≤ min{n0, n1}. When
complete SERPs to depth n are scored via RBP0.5, or when
truncated SERPs are scored and n1 < k (a situation that is by
no means improbable), the available set of RBP0.5 values is
not uniform-interval – as is illustrated in Table 3, comparing
the sequence 0.565, 0.531, and 0.375, for example. Indeed,
when there is a single relevant document for some query
(a navigational query [4], with n1 = 1), RBP0.5 evaluated
to depth k gives this pattern of scores:

relevant at rank one, RBP0.5 = 0.5

→

−0.25
first relevant document at rank two, RBP0.5 = 0.25

→

−0.25
no relevant document in the first k , RBP0.5 = 0,
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exactly matching (with multiplication by two a permissible
operation) the RR intervals over the same three k-truncated
SERP classes objected to by Fuhr [17].

IV. OTHER CONSIDERATIONS
A. RELATED WORK
Fuhr’s exposition [17] addressing experimental protocols in
IR has also been commented on by Sakai [32] who, amongst
other concerns, writes (with acknowledgment to input from
Stephen Robertson): ‘‘it is also not clear to me whether
RR really cannot be considered as an interval-scale mea-
sure’’, and specifically questions the RR example given by
Fuhr (first relevant document at rank one versus first rele-
vant document at rank two versus no relevant document at
all) and asks why this cannot ever be congruent with the
user’s perception of SERP usefulness, thereby anticipating
our own concerns. Sakai [32] goes on to present agreement
rates between human assessors and effectiveness metrics in
regard to SERP quality that summarize the results of an
experiment by Sakai and Zeng [33] that compared SERPs in
a side by side manner and elicited preferences as to overall
usefulness (in this case, via the question ‘‘Overall, which
SERP is more relevant to the query?’’). It is experiments
such as these that will establish which effectiveness metrics
best correlate with user perceptions of SERP usefulness for
various search applications and different user cohorts [34].
Similarly, consideration of perceived user experience is what
has driven much of the recent development of effective-
ness metrics – see Moffat et al. [26], Zhang et al. [50],
Azzopardi et al. [2], Thomas et al. [41], andMoffat et al. [27],
for example.

There has also been followup commentary in regard to
Stevens’ original paper [40] about scales of measurement.
The contribution by Lord [21] has already been noted;
amongst many others the evaluations by Townsend and
Ashby [42] and Velleman andWilkinson [47] also help delin-
eate some of the issues that have emerged when considering
scales of measurement and their implications. Scholten and
Borsboom [37] provide a careful assessment of the role of
Lord’s claimed ‘‘counter example’’ in regard to Stevens’
taxonomy of measurement scales.

In addition to the studies already discussed in Section III, a
range ofwork has considered the underpinningmeasurements
involved in IR. For example, Busin and Mizzaro [6] con-
sider measurement scales and SERP orderings, developing
and extending axiomatic relationships akin to the ‘‘Rule 1’’
and ‘‘Rule 2’’ given above; and Ferrante et al. [13] under-
take a similar exploration. In a related study, Moffat [24]
considers effectiveness metrics in terms of a suite of seven
numeric properties that they might possess. Other work–for
example, Turpin and Hersh [43], Turpin and Scholer [44],
Sanderson et al. [36], Bailey et al. [3], Liu et al. [20], and
Zhang et al. [51] - has considered the extent to which
whole-of-SERP usefulness is adequately captured by current
effectiveness metrics.

B. USE OF RECALL BASE
Fuhr [17] and Ferrante et al. [14], [15], [16] note the diffi-
culties created by the use in some metrics of what they term
the ‘‘recall base’’, the number RB of relevant (assuming only
binary relevance grades) documents in the collection for the
topic in question, denoted in Section III as the quantity n1.
From the point of view of Fuhr and Ferrante et al., those
difficulties arise because normalization by RB means that
the set of generable measurement points for any query in a
set of topics might not numerically align with the available
measurement points for other topics that have different values
for RB. But it is worth noting that the recall base affects the
available measurements even when RB is not a visible com-
ponent of the effectiveness metric. To observe this, consider
Table 3 again. It lists the ten possible SERP classes for a
collection of n = 5 documents and for queries with n1 = 2
relevant documents in the collection, together with metric
score according to five metrics. If another topic for the same
test collection has n1 = 1, the RBP0.5 scores are limited to the
set {0.500, 0.250, 0.125, 0.063, 0.031}, none of which align
with the set of available RBP0.5 scores listed in Table 3 for
the case n1 = 2.
Moreover, even when truncated rankings are considered,

with (say) k = 2 used to calculate the scores, a topic for which
n1 = 1 is unable to deliver a RBP0.5 score of 0.75. If RBP0.5 is
to be used across a collection of topics, and if exactly the same
set of measurement points must be available for every topic,
then the SERP truncation length k must satisfy k ≤ mini n1,i,
where n1,i is the n1 recall base associated with the i th topic.
This places a severe limitation on any experiments making
use of that collection. (The same restriction also applies to n0,
but in most retrieval environments n1 is smaller than n0 by
several orders of magnitude.)

Our contention in this work is that the measurement scale
is always the positive real number line, and hence that no
question of alignment (or not) of measurement points across
sets of topics arises. On the other hand, there are other reasons
to eschew metrics that make use of the recall base, based
on the desire for effectiveness metrics to reflect plausible
user behaviors, and the user’s inability to actually know the
value n1 as they consider the SERP [22], [25], [52].

C. GRADED RELEVANCE AND GAIN MAPPINGS
The discussion above focused on binary-level document rel-
evance labels, but the same points apply to multi-level labels
of the kind suggested in Table 2(d). Multi-level evaluations
normally make use of two mapping stages. The first converts
ordinal document relevance classes to numeric gains via a
gain mapping function N (·) that converts ordinal document
relevance grades to gain values in 0 . . . 1, as shown, for
example, in Table 2(d). The second mapping then takes an
n- or k-vector of numeric gain values, combines them in a
way that discounts gains as ranks increase, and generates
a single numeric score. The metrics discounted cumulative
gain (DCG) and normalized discounted cumulative gain
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(NDCG) [19] make quite deliberate use of real-valued doc-
ument gains, as do RBP [25] and expected reciprocal rank
(ERR) [9], with the goal of providing more nuanced effec-
tiveness measurements, and hence the ability to respond with
more sensitivity to perceived differences in SERP useful-
ness [39]. Average precision can also be broadened to make
use of graded document relevance categories [12], [29].

The complex inter-relationships between the range of gain
mappings that might be employed, and then the metric map-
ping itself, further mean that metric scores will not (and as is
our firm contention here, need not) result in uniform-interval
measurements.

Gain mappings are also measurements, of course, pertain-
ing to the usefulness of individual documents. For example,
the ordinal class labels listed in Table 2(d) might be included
in a handbook provided to assessors as part of their training,
along with detailed descriptions and examples. Document
gain labels – the ri values used to compute effectiveness
metrics – can also be more directly measured. For exam-
ple, magnitude estimation techniques [23], [45], side-by-side
preference elicitation [1], [8], [36], [49], and ordinal scales
in which the class labels are numbers [30] can all be used to
develop numeric document gain labels.

D. STATISTICAL TESTS
Statistical tests are another important component of IR eval-
uation; see, for example, Smucker et al. [38], Sakai [31], and
Urbano et al. [46]. The appropriateness of any particular test
depends in part on the distributional conditions required by
that test, and it should be noted that our argument here in
regard to metric values being numbers that can be averaged
is most definitely not an argument that all metrics can be
tested with any particular statistical test. Thoughtful selection
of a statistical test, and, if necessary, verification of any
required distributional conditions governing its applicability,
must always be a part of IR experimental design. On the other
hand, choosing an effectiveness metric because it is amenable
to a particular statistical test represents ‘‘the tail wagging the
dog’’ (pun intended), and is not a course of action that should
be considered. The metric must be chosen first, and only then
can the statistical test be selected.

Similarly, we have no concerns with Fuhr’s seventh
rule [17], covering the need for multiple hypothesis adjust-
ments, but note that in the case of test collection reuse it
cannot always be properly achieved. Craswell et al. [11]
provide an overview of some of these issues, and Sakai [32]
has also voiced opinions in support of Fuhr’s comments in
regard to statistical testing.

V. CONCLUSION
We have discussed the role of interval scale measures in
information retrieval evaluation. Via a sequence of examples
we have presented our view that all IR effectiveness met-
rics can be considered to be interval scale measurements,
provided only that the mapping from SERP categories to
numeric scores has a real-world basis (an external validity)

and can be motivated as corresponding to the underlying
usefulness of each SERP, as experienced by an identified
cohort of users as they carry out some identified search task.
That is, while care needs to be exercised when choosing the
metric that best fits the user experience for any particular IR
application (for example, the ‘‘shallow-hasty-youthful’’ users
that form the AmaBaiBinGoo demographic), once that match
has been decided, the values calculated by the effectiveness
metric may be used as simple numbers ‘‘that don’t remember
where they came from’’ [21]; that is, without regard to their
origins in a categorical-scale SERP dataset.

Metric choice is a critically important design decision in
any IR experiment, and different metrics might lead to dif-
ferent outcomes from a planned experiment. But the choice
between metrics – and hence between possible experimental
outcomes – should determined by the projected user cohort
and their implicit evaluation of usefulness relative to their
search task, and not because of the regularity or otherwise
of the gaps between adjacent numeric values generated over
the universe of categorical SERP classes, and nor as a conse-
quence of amenability or system separability associated with
any particular statistical test.

In addition, we have argued that the proposed intervaliza-
tion of current IR effectiveness metrics is neither required
nor helpful. If the raw metric value is indeed a defensible
measurement of SERP usefulness and corresponds to the
user’s experience when they are presented with a member of
that SERP category, then equi-intervalizing those measure-
ments via a different categorical to numeric mapping must
of necessity distort and alter any findings that arise, and thus
riskmaskingwhat would otherwise be valid conclusions. And
if the raw metric is not a defensible measurement of SERP
usefulness for the search task at hand, then equi-intervalizing
its scores is unlikely to improve the situation.

ACKNOWLEDGMENT
Joel Mackenzie, Tetsuya Sakai, Falk Scholer, Paul Thomas,
and Justin Zobel provided useful input. Science proceeds via
debate and the author is grateful to be part of a community in
which debate is not only possible, but actively welcomed.

REFERENCES
[1] N. Arabzadeh, A. Vtyurina, X. Yan, and C. L. A. Clarke, ‘‘Shallow pooling

for sparse labels,’’ 2021, arXiv:2109.00062.
[2] L. Azzopardi, P. Thomas, andN. Craswell, ‘‘Measuring the utility of search

engine result pages: An information foraging basedmeasure,’’ inProc. 41st
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Jun. 2018, pp. 605–614.

[3] P. Bailey, N. Craswell, R. W. White, L. Chen, A. Satyanarayana, and
S. M. M. Tahaghoghi, ‘‘Evaluating whole-page relevance,’’ in Proc. 33rd
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2010, pp. 767–768.

[4] A. Broder, ‘‘A taxonomy of web search,’’ACMSIGIR Forum, vol. 36, no. 2,
pp. 3–10, 2002.

[5] C. Buckley and E. M. Voorhees, ‘‘Retrieval system evaluation,’’ in TREC:
Experiment and Evaluation in Information Retrieval, E. M. Voorhees and
D. K. Harman, Eds. Cambridge, MA, USA: MIT Press, 2005, ch. 3.

[6] L. Busin and S. Mizzaro, ‘‘Axiometrics: An axiomatic approach to infor-
mation retrieval effectiveness metrics,’’ in Proc. Int. Conf. Theory Inf. Retr.
(ICTIR), 2013, pp. 1–8.

[7] B. Carterette, ‘‘System effectiveness, user models, and user utility: A con-
ceptual framework for investigation,’’ in Proc. 34th Int. ACM SIGIR Conf.
Res. Develop. Inf., 2011, pp. 903–912.

105576 VOLUME 10, 2022



A. Moffat: Batch Evaluation Metrics in Information Retrieval: Measures, Scales, and Meaning

[8] B. Carterette, P. N. Bennett, D. M. Chickering, and S. T. Dumais, ‘‘Here or
there: Preference judgments for relevance,’’ in Proc. Eur. Conf. Inf. Retr.
(ECIR), 2008, pp. 16–27.

[9] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, ‘‘Expected reciprocal
rank for graded relevance,’’ in Proc. 18th ACM Conf. Inf. Knowl. Manage.,
2009, pp. 621–630.

[10] W. S. Cooper, ‘‘Expected search length: A single measure of retrieval
effectiveness based on the weak ordering action of retrieval systems,’’
Amer. Documentation, vol. 19, no. 1, pp. 30–41, Jan. 1968.

[11] N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and J. Lin, ‘‘MS MARCO:
Benchmarking ranking models in the large-data regime,’’ in Proc. 44th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2021, pp. 1566–1576.

[12] G. Dupret and B. Piwowarski, ‘‘A user behavior model for average preci-
sion and its generalization to graded judgments,’’ in Proc. 33rd Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., 2010, pp. 531–538.

[13] M. Ferrante, N. Ferro, and M. Maistro, ‘‘Towards a formal framework
for utility-oriented measurements of retrieval effectiveness,’’ in Proc. Int.
Conf. Theory Inf. Retr., Sep. 2015, pp. 21–30.

[14] M. Ferrante, N. Ferro, and S. Pontarollo, ‘‘A general theory of IR evaluation
measures,’’ IEEE Trans. Knowl. Data Eng., vol. 31, no. 3, pp. 409–422,
Mar. 2019.

[15] M. Ferrante, N. Ferro, and E. Losiouk, ‘‘How do interval scales help us
with better understanding IR evaluation measures?’’ Inf. Retr. J., vol. 23,
no. 3, pp. 289–317, Jun. 2020.

[16] M. Ferrante, N. Ferro, and N. Fuhr, ‘‘Towards meaningful statements in IR
evaluation: Mapping evaluation measures to interval scales,’’ IEEE Access,
vol. 9, pp. 136182–136216, 2021.

[17] N. Fuhr, ‘‘Some common mistakes in IR evaluation, and how they can be
avoided,’’ ACM SIGIR Forum, vol. 51, no. 3, pp. 32–41, Feb. 2018.

[18] W. Hays, Statistics, 5th ed. New York, NY, USA: Harcourt Brace, 1994.
[19] K. Järvelin and J. Kekäläinen, ‘‘Cumulated gain-based evaluation of IR

techniques,’’ ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, Oct. 2002.
[20] M. Liu, Y. Liu, J. Mao, C. Luo, M. Zhang, and S. Ma, ‘‘‘Satisfaction with

failure’ or ‘unsatisfied success’: Investigating the relationship between
search success and user satisfaction,’’ inProc.WorldWideWebConf.World
Wide Web, 2018, pp. 1533–1542.

[21] F. M. Lord, ‘‘On the statistical treatment of football numbers,’’ Amer.
Psychol., vol. 8, no. 12, pp. 750–751, Dec. 1953.

[22] X. Lu, A. Moffat, and J. S. Culpepper, ‘‘The effect of pooling and eval-
uation depth on IR metrics,’’ Inf. Retr. J., vol. 19, no. 4, pp. 416–445,
Aug. 2016.

[23] E. Maddalena, S. Mizzaro, F. Scholer, and A. Turpin, ‘‘On crowdsourcing
relevance magnitudes for information retrieval evaluation,’’ ACM Trans.
Inf. Syst., vol. 35, no. 3, pp. 19:1–19:32, 2017.

[24] A. Moffat, ‘‘Seven numeric properties of effectiveness metrics,’’ in Proc.
Asia Inf. Retr. Societies Conf. (AIRS), 2013, pp. 1–12.

[25] A. Moffat and J. Zobel, ‘‘Rank-biased precision for measurement of
retrieval effectiveness,’’ ACM Trans. Inf. Syst., vol. 27, no. 1, pp. 1–27,
Dec. 2008.

[26] A. Moffat, P. Bailey, F. Scholer, and P. Thomas, ‘‘Incorporating user
expectations and behavior into the measurement of search effectiveness,’’
ACM Trans. Inf. Syst., vol. 35, no. 3, pp. 24:1–24:38, 2017.

[27] A. Moffat, J. Mackenzie, P. Thomas, and L. Azzopardi, ‘‘A flexible frame-
work for offline effectivenessmetrics,’’ inProc. 45th Int. ACMSIGIRConf.
Res. Develop. Inf. Retr., Jul. 2022, pp. 578–587.

[28] S. Robertson, ‘‘A new interpretation of average precision,’’ in Proc. 31st
Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2008, pp. 689–690.

[29] S. E. Robertson, E. Kanoulas, and E.Yilmaz, ‘‘Extending average precision
to graded relevance judgments,’’ in Proc. 33rd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., 2010, pp. 603–610.

[30] K. Roitero, E. Maddalena, G. Demartini, and S. Mizzaro, ‘‘On fine-grained
relevance scales,’’ in Proc. 41st Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr., Jun. 2018, pp. 675–684.

[31] T. Sakai, ‘‘Statistical significance, power, and sample sizes: A systematic
review of SIGIR and TOIS, 2006–2015,’’ in Proc. 39th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retr., Jul. 2016, pp. 5–14.

[32] T. Sakai, ‘‘On Fuhr’s guideline for IR evaluation,’’ SIGIR Forum, vol. 54,
no. 1, pp. 12:1–12:8, 2020.

[33] T. Sakai and Z. Zeng, ‘‘Which diversity evaluation measures are ‘good?’’’
in Proc. 42nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2019,
pp. 595–604.

[34] T. Sakai and Z. Zeng, ‘‘Retrieval evaluationmeasures that agree with users’
SERP preferences: Traditional, preference-based, and diversity measures,’’
ACM Trans. Inf. Syst., vol. 39, no. 2, pp. 14:1–14:35, 2021.

[35] M. Sanderson, ‘‘Test collection based evaluation of information retrieval
systems,’’ Found. Trends Inf. Retr., vol. 4, no. 4, pp. 247–375, 2010.

[36] M. Sanderson, M. L. Paramita, P. Clough, and E. Kanoulas, ‘‘Do user
preferences and evaluation measures line up?’’ in Proc. 33rd Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., 2010, pp. 555–562.

[37] A. Z. Scholten and D. Borsboom, ‘‘A reanalysis of Lord’s statistical
treatment of football numbers,’’ J.Math. Psychol., vol. 53, no. 2, pp. 69–75,
Apr. 2009.

[38] M. D. Smucker, J. Allan, and B. Carterette, ‘‘A comparison of statistical
significance tests for information retrieval evaluation,’’ in Proc. 16th ACM
Conf. Conf. Inf. Knowl. Manage. (CIKM), 2007, pp. 623–632.

[39] E. Sormunen, ‘‘Liberal relevance criteria of TREC—Counting on negligi-
ble documents?’’ in Proc. 25th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr. (SIGIR), 2002, pp. 324–330.

[40] S. Stevens, ‘‘On the theory of scales of measurement,’’ Science, vol. 103,
no. 2684, pp. 677–680, 1946.

[41] P. Thomas, A. Moffat, P. Bailey, F. Scholer, and N. Craswell, ‘‘Better effec-
tiveness metrics for SERPs, cards, and rankings,’’ in Proc. 23rd Australas.
Document Comput. Symp., Dec. 2018, pp. 1–8.

[42] J. T. Townsend and F. G. Ashby, ‘‘Measurement scales and statis-
tics: The misconception misconceived,’’ Psychol. Bull., vol. 96, no. 2,
pp. 394–401, Sep. 1984.

[43] A. H. Turpin and W. Hersh, ‘‘Why batch and user evaluations do not give
the same results,’’ in Proc. 24th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr. (SIGIR), 2001, pp. 225–231.

[44] A. Turpin and F. Scholer, ‘‘User performance versus precision measures
for simple search tasks,’’ in Proc. 29th Annu. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr. (SIGIR), 2006, pp. 11–18.

[45] A. Turpin, F. Scholer, S. Mizzaro, and E. Maddalena, ‘‘The benefits
of magnitude estimation relevance assessments for information retrieval
evaluation,’’ in Proc. 38th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
Aug. 2015, pp. 565–574.

[46] J. Urbano, H. Lima, and A. Hanjalic, ‘‘Statistical significance testing in
information retrieval: An empirical analysis of type I, type II and type
III errors,’’ in Proc. 42nd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
Jul. 2019, pp. 505–514.

[47] P. F. Velleman and L. Wilkinson, ‘‘Nominal, ordinal, interval, and ratio
typologies are misleading,’’ Amer. Statistician, vol. 47, no. 1, pp. 65–72,
Feb. 1993.

[48] A. F. Wicaksono and A. Moffat, ‘‘Metrics, user models, and satisfaction,’’
in Proc. 13th Int. Conf. Web Search Data Mining, Jan. 2020, pp. 654–662.

[49] Z. Yang, A. Moffat, and A. Turpin, ‘‘Pairwise crowd judgments: Prefer-
ence, absolute, and ratio,’’ in Proc. 23rd Australas. Document Comput.
Symp., Dec. 2018, pp. 1–8.

[50] F. Zhang, Y. Liu, X. Li, M. Zhang, Y. Xu, and S. Ma, ‘‘Evaluating web
searchwith a bejeweled playermodel,’’ inProc. 40th Int. ACMSIGIRConf.
Res. Develop. Inf. Retr., Aug. 2017, pp. 425–434.

[51] F. Zhang, J. Mao, Y. Liu, X. Xie, W. Ma, M. Zhang, and S. Ma, ‘‘Models
versus satisfaction: Towards a better understanding of evaluation metrics,’’
in Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2020,
pp. 379–388.

[52] J. Zobel, A. Moffat, and L. A. F. Park, ‘‘Against recall: Is it persistence,
cardinality, density, coverage, or totality?’’ SIGIR Forum, vol. 43, no. 1,
pp. 3–15, 2009.

ALISTAIR MOFFAT received the Ph.D. degree
in computer science from the University of
Canterbury, New Zealand, in 1986. Since then,
he has been a FacultyMember of TheUniversity of
Melbourne, Australia, with interests in text and
index compression and algorithms for string
search and information retrieval, including infor-
mation retrieval evaluation. He was inducted as a
member of the SIGIR Academy, in 2021.

VOLUME 10, 2022 105577


