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ABSTRACT Deep learning has progressively been the spotlight of innovations that aim to leverage the clin-
ical time-series data that are longitudinally recorded in the Electronic Health Records(EHR) to forecast the
patient’s survival and vital signs deterioration. However, their recording velocity, as well as their noisiness,
hinder the proper adoption of the recently proposed benchmarks. The Recurrent Neural Networks (RNN)
especially the Long-short Term Memory (LSTMs) have achieved better results in recent studies but they are
hard to train and interpret and fail to properly capture the long-term dependencies.Moreover, the RNNs suffer
greatly with clinical time series due to their sequential processing which cripples the prospect of parallel
processing. Recently the Transformer approach was proposed for Natural Language Processing (NLP) tasks
and achieved state-of-the-art results. Hence to tackle the drawbacks that are suffered by the RNNswe propose
a clinical time series Multi-head Transformer (MHT), which is a transformer-based model that forecasts the
patient’s future time series variables using the vitals signs. To prove the generalization of the model we use
the same model for other critical tasks that describe the Intensive Care Unit (ICU) patient’s progression and
the associated risks like the remaining Length Of Stay(LoS), the In-hospital Mortality as well as the 24 hours
mortality. Our model achieves an Area Under The Curve-Receiver Operating Characteristics( AUC-ROC)
of 0.98 and an Area Under the Curve, Precision-Recall (AUC-PR) of 0.424 for vital time series prediction,
and an AUC-ROC of 0.875 in the mortality prediction. The model performs well for the frequently recorded
variables like the Heart Rate (HR) and performs barely like the LSTM counterparts for the intermittently
captured records such as the White Blood Count (WBC).

INDEX TERMS Multi head transformer, clinical time series, natural language processing, self-attention,
encoder-decoder attention, interpolation.

I. INTRODUCTION
Clinicians are challenged and overwhelmed with the problem
of inferring clinical outcomes from the longitudinal Elec-
tronic Health Records (EHR) data. The critical inputs include
the most structured ontologies in the form of International
Classification of Diseases(ICD) codes which can be lever-
aged to predict the future of patients including adverse events
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like mortality, decompensation, and Length of Stay(LoS).
With the increasing hospital machinery and the introduction
of pervasive medical IoT devices, the future is more depen-
dent on multivariate time series clinical data whose most
critical factor is velocity. The ever-dynamic changes of single
variables or multivariate variables in the course of admission
due to pathophysiological disturbances and therapeutic inter-
ventions provide an extensive opportunity for clinical time
series analysis. Various challenges like the curse of irreg-
ularly recorded data as well as different units and ranges
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of measurements for time series variables hinder the proper
application of learning algorithms to produce actionable clin-
ical insights. The EHR contains various longitudinal records
that are recorded at different frequencies and intervals like
vital signs which are recorded continuously as well as several
records that are measured intermittently. For instance, in var-
ious EHR datasets, the Heart Rate(HR) is measured using
the Electrocardiogram(ECG) as a continuous wave while the
Glucose level is measured occasionally hence the sampling
at uniform intervals will result in missing values in the EHR.
Various prediction approaches have been proposed includ-
ing classic systems such as the Simplified Acute Physiology
Score (SAPS-II) [1] which uses physiological records to pre-
dict mortality and the Acute Physiology and Chronic Health
Evaluation (APACHE) [2] which uses statistical equations to
predict the patient mortality within 24 hours of admission
using the time series physiological measurements. Various
studies improved the results by incorporating wearable Inter-
net of Things(IoT) devices [3], [4] and recently key studies
used deep learning methods to predict the future risks from
clinical time series [5], [6].

The Transformer network [7] is a deep learning method
that was proposed to counter the drawbacks suffered by
the recurrence-based deep learning models(RNNs) and is
built solely on a series of attention mechanisms arranged
in an encoder-decoder pattern. The transformer was created
for NLP applications and was recently applied in various
tasks including Machine Translation [8], Speech recogni-
tion [9], Question Answering [10], and Named Entity Recog-
nition [11]. Few recent studies applied only the transformer’s
components especially the self-attention process for time
series analysis [12], [13]. One particular study [14] used the
self-attention component of the transformer for clinical time
series-based prediction, and to our knowledge, None of the
related prior works have ever tried to incorporate the decoder
component of the transformer for clinical time series-based
predictions.

This study applies the transformer’s entire capabilities for
predicting the patient’s future values of the key clinical time
series variables(Vital signs variables). We develop a Multi-
Headed Transformer(MHT) model that leverages the Trans-
former’s main building blocks including the self-attention
process and the encoder-decoder attention mechanism.
By using the same model with little modification to predict
other clinical risk factors like the 24hrs mortality, the In-
hospital mortality, and the remaining Length-Of-stay(LoS)
we demonstrate that the model can generalize and be used
for other HER-based benchmark tasks. Our contributions are
summarized as follows:
• As depicted in Fig.1 we build a Multi-headed Trans-
former(MHT) model that uses the multi-variate vital
signs records to predict future values of the key time
series variables that characterize the Intensive Care Unit
(ICU) patient’s deterioration.

• We fully investigate the inclusion of the decoder com-
ponent and the associated encoder-decoder attention.

Furthermore, we compare the performance with the
other systems that use only the encoder’s self-attention
mechanism like the one proposed in [14].

• Also in contrast with [15] and [14], rather than model-
ing the clinical time-series monitoring as a multi-class
decompensation problem, we predict future values of the
time series variables in a regression mode.
The major advantage of the Multi-Headed Transformer
to the HER-based predictions is the capability for the
model to focus on the most important admission in the
patient’s history as well as the most critical diagnosis in
that admission.

To assess the generalization of our approach, we apply the
same model with little modification in the output layer to
predict the 24hrs mortality and the In-hospital mortality as
binary classification problems and the LoS as a regression
task. By doing so we draw the inference that our approach can
generalize and be used for other vital signs-based prediction
tasks like phenotyping and patient-based cohort selection.

In this study, we use the MIMICIII EHR [16] a publicly
available critical care database that integrates de-identified,
comprehensive clinical data of patients with a total of
53,423 admissions at the ICU of the Beth Israel Deaconess
Medical Center (BIDMC) in Boston, Massachusetts dur-
ing the period from 2001 to 2012. Our model achieves an
Area Under The Curve-Receiver Operating Characteristics
(AUC-ROC) of 0.98 and an Area Under the Curve, Precision-
Recall(AUC-PR) of 0.424 for vital time series prediction,
and an AUC-ROC of 0.875 in the mortality prediction out-
performing all the other approaches. Especially the MHT
model outperforms Simply Attend and Diagnose(SaND) [14]
which is uses self-attention and omits the decoder component.
TimeNet [17] which is the most powerful baseline achieves
satisfactory results due to the use of pre-trained features. Nev-
ertheless, the generalization of such transfer learning-based
models is questionable.

The remainder of this paper is arranged as follows: in
section II, we cover the key related works and background
knowledge, and in section III we discuss the structure of the
data used in the paper including the Preprocessing and inter-
polation processes and in IV we cover the method used in our
approach. In V we perform the experiments,in VI we present
our results as well as performance evaluation, and in VI we
conclude.

II. RELATED WORKS AND BACKGROUND KNOWLEDGE
In this section, we introduce the related works and we
introduce the key preliminary concepts including the Trans-
former and the 1D Convolutional Network (1D-CNN) used
for embedding and feature extraction.

A. RELATED WORKS
Forecasting the ICU-based adverse events using deep learn-
ing methods with temporal clinical data stored in large
EHR has recently received considerable research attention.
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FIGURE 1. The architecture of the proposed MHT model for clinical time series prediction. The model leverages the key components of the
transformer architecture. The Encoder’s self-attention encodes the time steps across the variables by capturing the latent relationship between
variables and between the time steps. The encoder-decoder attention uses these representations to predict future values within a specified lag
time. The fully connected layer is structured as per the prediction task.

Lipton et.al [18] is the first study to empirically apply
the LSTMs to extract clinical insights and hidden pat-
terns from multivariate temporal clinical measurements. The
study covered the prediction of ICD codes [19] grouped
under 128 Clinical Classifications Software(CCS) [20] cat-
egories from 10, 401 PICU (Pediatric Intensive Care Unit)
episodes. Each PICU episode comprised of a multivari-
ate time series of 13 variables including diastolic and sys-
tolic blood pressure, end-tidal CO2, etc. The LSTM-based

predictive model used sequential target replication and per-
formed well beating the compared approaches.

Razavian et al. [21] proposed a method that applied a Tem-
poral Convolutional Networks (TCN) [22] model to ICU lab
tests for the detection of multiple diseases from irregularly
measured sparse lab values. The TCN is popularly known to
mitigate the drawbacks caused by noisy sparse data, hence
the model achieved better results. Song et al. [14] proposed
SAnD a multi-task model for multiple clinical predictive
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tasks using the MIMIC-III EHR. The study improved the
temporality of the measurements and included temporal order
into the data representation using positional encoding [23]
and a dense interpolation approach. The novelty of the model
was to evade the use of the RNNs or CNNs for sequence
modelling as it is the case for all popular approaches. The
study achieved overall better performances but did not elab-
orate on how the issue of classification imbalance was dealt
with especially for mortality prediction. Moreover, the study
did not reveal many important hyper-parameters like the con-
volution kernel size used in a 1D convolution step to get the
multi-dimensional representation of each time step. Also, the
important concepts like the masking process used to keep
only temporary data of interest are not discussed enough.

Harutyunyan et al. [15] proposed a multitask learning
model that uses a Channel-wise LSTM followed by deep
supervision [24] using MIMICIII EHR for four benchmark
tasks; Phenotype classification, LoS prediction, decompen-
sation prediction, and In-hospital mortality prediction using
clinical time-series data. The model tries to train a single
network for multiple tasks simultaneously by capturing latent
features that are generic across these different tasks. However,
as in the previous task, some of the classification benchmarks
like mortality classification contain unbalanced classes but
the model did not tackle this important issue. In this study,
we perform a performance comparison to assess the supe-
riority of our proposed approach over this model. Shamout
et.al [25] proposed a Deep Early Warning System (DEWS),
a system that uses a Bidirectional LSTM(BiLSTM) with an
attention mechanism to classify whether an observation is
within 24 hours of an adverse outcome (cardiac arrest, mor-
tality or unplanned ICU admission).

Yu et al. [5] built a multi-task learning RNN model with
attention to predicting hospital mortality, using the recon-
struction of physiological time series as an auxiliary task.
The model was compared with the standard SAPS-II [1] and
achieved the best sensitivity. Gupta et al. [17] proposed a
novel approach that leverages TimeNet [26] a transformer [7]
based pre-trained deep learning model for phenotypes classi-
fication and in-hospital mortality tasks frommultivariate clin-
ical time series. The model uses generic features for clinical
time series using an RNN pre-trained on diverse time series
across different domains, hence making the model more
robust and more efficient than other previous approaches. Lin
et al. [27] proposed a Hierarchical Attention-based Temporal
Convolutional Networks for the prediction of Myotonic Dys-
trophyDiagnosis. The hierarchical model outperformed other
machine learning models and the more advanced Temporal
Convolutional networks. However, the study cannot general-
ize to other EHR predictive tasks.

B. BACKGROUND KNOWLEDGE
1) 1D CONVOLUTION FOR TIME SERIES
the 2D CNNs which are usually used in computer vision use
filters (kernel) of variable sizes to a 2D image for feature
learning. The features are extracted from the image’s pixels

and colour channels. Various applications of the 2D CNN for
NLP and sentiment classification have been proposed [28].
The 1D convolution is a CNN variant that uses a 1D convolu-
tion and has been used in various applications that involve
time series data as well as NLP tasks [29]. In this work,
we apply a 1D convolution across the time steps for all the
variables to obtain a distributed representation of the time
steps. The main advantage of 1D CNN is that it can allow
the use of a bigger kernel size to extract rich features.

2) THE TRANSFORMER
The transformer [7] is made of a series of attention-based
encoder-decoder networks. It has performed excellently for
NLP applications, especially for Neural Machine Translation
and Named Entity Recognition (NER). For such applications,
It has particularly scored the best results against the LSTMs
and other sequence-based recurrence models. Only a handful
of time series applications have been proposed with some of
them opting to use its components than using the whole trans-
former network. As in language translation, the transformer is
used to predict the next item given the previous items(words
in a sentence and time steps in a time series). The encoder
uses an attention layer that helps to encode a certain time
step in a form where its relationship with other time steps is
reflected. The decoder uses the same components but adds an
encoder-decoder attention layer that focuses on relevant past
time steps to predict the values in the future time-steps [30].

III. EXPLORATORY DATA ANALYSIS
In this section, we describe the dataset used, the prediction
scenarios, the data pre-processing as well as the interpolation
processes.

A. DATA DESCRIPTION
The patient’s admission is characterized by various constants
including demographic records (Age,Marital status,. . . ), clin-
ical structured ontologies (Ex: ICD codes for diagnosis) and
the time series charted events that are fetched from various
measuring equipment such as the Electrocardiogram, Pulse-
metric devices, other medical IoT wearable devices as well
as lab results (also recorded in a coded ontology). Table 1
describes the variables used in this study. We included the
variables that are used in SAPS II as well as additional vari-
ables and constants that are critical to the patient’s outcome.
The time series variables are recorded in a continuous pattern
(Ex: HR) or intermittent patterns such as White Blood Count
(WBC). From the table, we observe that many time series
variables are routine vital signs while others are indicators
that may be recorded less frequently. Non-time series vari-
ables comprise the usual demographic constants as well as
other physiological records that may determine how the time
series variables affect the prediction. For instance, the HIV
status during admission drives the effect of the WBC on the
mortality prediction. The MIMICIII ID is a local ID used
to identify various variables. We use a total of 30 variables
including 24 longitudinal variables, 4 static physiological
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FIGURE 2. The benchmark prediction tasks for the MHT model. As per (a) the model is built for the prediction of the forward values for the key clinical
time-series variables. In (b)(c)(d) the final layer of the model is tuned to perform the auxiliary tasks.

variables (Ex: HIV status), and 2 demographic variables (age
and type of admission). The recording time of several vari-
ables and the length of records are not synchronized, hence
creating a dataset that has many missing values.

B. PREDICTION SCENARIOS
The prediction scenarios are used to generalize on critical
clinical tasks as depicted in Fig.2. Furthermore, for an accu-
rate comparative evaluation of the model we use some of the
prediction scenarios described in [15] and in [14]as follows:

1) CLINICAL TIME SERIES FORECASTING
This is the main prediction task for the model and its is dis-
played in Fig. 2a. It involves a regression prediction problem
that predicts the time series variables at different time win-
dows. At each precise time step t in the admission period the
model forecasts the values for the same variables in the for-
ward time of h hours using the records of p past hours. In our
implementation, we use the records of the last 24 hours to
predict the values at the forward 6 hours. In contrast with [15],
we consider both the patients whose conditions are deterio-
rating as well as patients whose conditions are stable because
those cases can add more insights to the model. Since some
variables occur in a handful of admissions and at sporadic
intervals, the prediction dataset will contain missing values.

2) IN-HOSPITAL MORTALITY PREDICTION
As depicted in Fig.2b The in-hospital mortality prediction
task aims at predicting whether the patient will die during
the current admission. This is a key prediction task which
is the main task performed by the SAPS-II scoring mech-
anism. It is modelled as a binary classification problem.
The fraction of patients who die during admission is about
10% in MIMIC-III resulting in a class imbalance. To address
this problem we apply the Synthetic Minority Oversampling

Technique (SMOTE) balancing technique [31], [32]. Also for
this task, we use the records of the last 24 hours to predict
future mortality.

3) THE 24 HRS MORTALITY PREDICTION
This is another version of mortality prediction also modelled
as a binary classification as shown in Fig. 2c. At any particular
time step, we wish to predict if the mortality is within the
future 24 hours period. This prediction is important for fast
deteriorating patients and can help draw the necessary care
by the clinicians. For this task, we consider only the patients
whose outcome is mortality. Also for this task, we use the
records of the last 24 hours.

4) LoS PREDICTION
The remaining LoS shown in Fig.2d is different from the
overall LoS. At each time step, we aim to predict the remain-
ing number of days until discharge. This is a regression task
that tries to predict the exact number of days than grouping
the LoS under the bins of fixed intervals. Also for this task,
we use the records of the last 24 hours.

C. DATA PREPROCESSING
We extracted a total of 330,712,483 records associated with
12,487 charted time series variables (Charted events items)
from the Charted events table. We retained only the records
that are associated with the 24 time-series variables described
in Table 1. For the non-time series variables, we built a sep-
arate dataset from the admission and patient tables to extract
the ICD9 codes associated with these variables. For each
patient, we considered every admission independently and
obtained a total of 58976 admissions. For each benchmark
task, a separate dataset was built. For LoS we removed the
admissions that led to in-hospital mortality and we remained
with 43029 admissions. With 47796 admissions for the
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mortality dataset, only 10% resulted in mortality outcomes
hence the reason to use SMOTE for balancing the data.

1) RE-SAMPLING
The clinical time series are recorded in regular and irregu-
lar fashions. As mentioned earlier some variables are rou-
tine records while others are intermittently recorded. As we
wish to use the records observed in the last 24 hours, certain
variables will have over 1000 records (Ex: HR) while others
will not have any record observed during that period such as
WBC. The re-sampling process involves the transformation
of the original data into discrete intervals. The re-sampling
process reduces the sheer size of the frequently recorded
variables and increases the size of the rarely observed vari-
ables hence producing a training dataset with many miss-
ing instances. In this implementation, we use a time step of
30minutes partitioning an admission day into 48 observations
for all variables.

2) INTERPOLATION STRATEGY
From Fig.3a and Fig.3b we observe that the re-sampling
produces a dataset that has many missing values(56%). The
interpolation and gap-filling process helps in filling the miss-
ing values while avoiding bias and preserving the data.
We used Linear interpolation method [33] and with this
method, we filled the gaps by persisting the recently recorded
value for less frequently recorded values and use the median
of the values recorded in the current time-step (30 mins) for
high-frequency variables.

IV. METHOD
In this section, we describe the proposed transformer model
for clinical time-series data by basing our intuitions on the
original NLP-based transformer components described in
the original study [7]. We formulate the task of clinical
time series forecasting as a multivariate multi-step predic-
tion problem given that the target variables to be predicted
depend on one or maybe more input variables and other target
variables. The overall architecture of the proposed system is
depicted in Fig.1. Let there be V unique variables described
in Fig.1 and Table1 for each patient in the dataset. The
pre-processing stage outputs a 3D dataset with one dimension
comprised of input variables, another dimension comprising
of patients and the last dimension to keep track of the time
steps from the start of individual variable’s recording up to
discharge or the In-hospital mortality. Each patient p is asso-
ciated with a set of static demographics (i.e Age) and clini-
cal variables(static per a given admission) like the history of
metastatic cancer and the reason of current admission, as well
as time-dependent inputs Vpt ∈ Rmv with Rmv the size of the
vector of all valliables m for patient v. The prediction targets
variables include the input variables shifted for 6 hours as
well as scalar output targets yp,t ∈ R at each time-step t ∈
[0,Ti]. The output targets are formulated as per the prediction
needs as described earlier. The transformer uses the encoder
to build a representation of the input vector and the decoder

to construct the output values of the time-series. To achieve
this the encoder and the decoder use the following steps:

3) TIME SERIES EMBEDDING
We treat each time step in a patient’s admission as a word
in a sequence of text. At each time step t is characterized by
xt = v1t , v2t , v3t , v4t . . . , vnt with n representing the number
of time series variables. However, some of the clinical time
series values lack boundaries in their magnitude, hence rep-
resenting each time step with time series measurements with
varying scales will result in erroneous results. The biggest
issue in the interpolated data is that the admission lengths are
not uniform for all patients in the dataset. Also, not all patients
have data for all the 30 variables, and the imputation strategy
does not fully address these issues. Hence we apply a 1D
CNN to extract homogeneous features. The advantage of 1D
CNNs against other time series techniques is that it can learn
the proper internal representations from the raw time series
data directly without manually engineering the input features.
Given a time series recording y(t) (Ex: HR) for the course
of the patient’s admission we convolve several 1D filters to
the input. The convolution is followed by a pooling layer and
a tanh activation function. Finally, we extract the output of
the activation function as a dense representation of the time
series.

yconv = Convolve(y(t),Weights) (1)

ypool = pool(yconv) (2)

Eyt = tanh(ypool) (3)

Eyt is the resultant dense representation of a time series
variable.The final representation of a patient admission is
obtained by concatenating the individual Eyt for the 24 time
series variables represented in Table 1. The positive attribute
for the obtained dense vector representing a patient is that
the vectors have the same size S ∈ RE×n for all patients
irrespective of the admission size.

4) POSITIONAL ENCODING
After the embedding process, we obtain the dense vectors rep-
resenting each time step and apply the positional encoding to
represent the values of input variables at various time steps in
a way that their positional information in the patient’s admis-
sion journey is reflected. The original transformer study [7]
proposed a cos/sin based intuition to encode the time steps.
The intuition is to use sine and cosine waves at different
frequencies to encode the position of a time-step vector.
The position is translated from an integer position value and
expressed by a vector of the same size as the embedding size.
For a given time step at position p, of the patient’s admission
timeline, the position encoding vector Ext is given by:

Exp
(i)
= f (p)(i) :=

{
sin(ωk .p), if i = 2k
cos(ωk .p), if i = 2k + 1

(4)

withωk = 1
100002k/p

and k represents individual element in the
position vector. with Ext ∈ Rd and d is the positional encoding
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TABLE 1. Description of physiological variables(time series and non-time series) and key demographic variables used for prediction.

dimension. In other words f (p)(i) takes an integer position p
value and generate a vector position Ext . Finally the resulting
representation of a given time-step will be given by adding
the dense embedding vector and the positional vector;

EZt = Eyt + Exp (5)

5) MULTI-HEAD SELF ATTENTION
During the patient’s hospitalization, we want our encoding
to discover and associate certain related events. For example,
an HR event recorded at a certain time step may be associated
with a Transient Ischemic Attack (TIA) event recorded within
another time step. Luckily using the transformer language
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FIGURE 3. The wave forms that show the original,the re-sampled and the interpolated version for a typical patient’s HR and the Systolic
Arterial Blood Pressure.

model wemake use of the transformer’s self-attentionmodule
that can associate the TIA event with an HR event during
the encoding of the time step that contains the TIA record.
To learn long-term relationships across various time steps,
we use self-attention. At each time step t We train 3 matri-
ces and multiply each with the vector EZt of t time-step to
generate a Query vector Q ∈ RN×datt vector, a Key vector
K ∈ RN×datt , and a Value vector V ∈ RN×dv. The dimensions
of Q, K, and V are fixed (usually at 64). Given the keys
and input vector obtained from the positional encoding we
get:

Z = Attention(Q,K ,V ) = Softmax(
QKT
√
datt

).V (6)

where Z ∈ RN×datt and datt is the dimension of the key
vectors. The Softmax is a normalization function that will
express the importance of each of the preceding admission
time steps while we are encoding a given time step. Unlike
in the original transformer paper where the words can have
an arbitrary interdependence irrespective of their positions
in the sentence, for clinical time series we choose the pre-
ceding measurements because we believe that future records
cannot affect the records that preceded them. Again unlike
the NLP applications where the words appear together more
frequently and their hidden relationship can be inferred easily
using the described self-attention process, there is a little
latent relationship between various time steps in a patient
timeline. Hence to improve the representations we use 8 self-
attention heads in parallel and concatenate their results after-
ward. Hence,

MultiHeadAtt(Q,K ,V )= [Head1, . . . ,HeadH ]WH (7)

Headh=Attention(QW h
Q,KW

h
K ,VW

h
V ) (8)

With W h
Q,W

h
K ,W

h
V the weights matrix of head Hh for Q,K ,V

respectively. AlsoW h
Q,W

h
K ∈ Rdm×datt andW h

V ∈ Rdm×dv and
W h
H ∈ Rdatt×dm .

6) LAYER NORMALIZATION
In deep learning applications, the layer normalization tech-
nique [34] is adopted to overcome the limitations of the batch
normalization [35]which is a technique used to keep themean
and variance remain the same irrespective of the hidden layers
parameters update. This keeps the network stable in subse-
quent layers in a network because the technique ensures that
no activation is gone really high or too low. Unlike batch nor-
malization, layer normalization does not depend on a batch.
Also while batch normalization computes the mean and vari-
ance across the batch and these values remain unchanged
for each example in the batch, layer normalization computes
these values across each feature and is independent of other
examples. In our implementation, the layer normalization
operation is applied after the multi-head attention,encoder-
decoder attention, and feed-forward layers.

7) THE DECODER AND THE ENCODER-DECODER
ATTENTION
The decoder uses all the components used by the encoder and
mainly, the decoder’s self-attention process attends only to
previous positions by masking future positions. In the clinical
time series, we want to predict the values of the variables
in the future according to a time lag. Hence the decoder
takes the encoded time steps and uses them to generate val-
ues of the future time step. This process is done through
an encoder-decoder attention process. The encoder-decoder
attention process allows every position to focus on all of the
most influential past time steps to predict the future time
step.

8) LINEAR AND SOFTMAX LAYERS
before predicting the time steps of interest using the linear
layer, we introduce the static information and the patient’s
history, and depending on each benchmark task, the lin-
ear softmax layer is used to perform the final prediction.
Bothmortality prediction tasks are binary classification tasks,
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hence the loss function is obtained using the Sigmoid function
while Time-series future values prediction and the remaining
LoS prediction tasks are modelled in a multi-class regression
mode hence the final layer of this model uses a SoftMax
function [36].

9) MASKING OF FUTURE TIME-STEPS AND ANCIENT
TIME-STEPS
To predict the future time steps without using them in the
input, we perform a masking operation that blocks the model
from attending to future time steps during training. Unlike
the other approaches, we use a rolling mask to mask both the
ancient past values as well as future measurements to keep
only the values for the last 24 hours. This masking improves
the computational speed of the training process and does not
affect the results. The masking operation uses an attention
mask that allows themodel to only look at these previous time
steps.

V. EXPERIMENTS
In this section, we describe the experimental process.
We cover the related approaches, the training process, and
various implementation details.

A. THE RELATED APPROACHES
We compare the performance of our model against the most
recent methods. For each method due to limitations associ-
ated with the dataset’s access, we only use the main building
blocks while the pre-processing, embedding, and the dataset
remain the same for all of them and similar to our model.
hence the obtained results might not corroborate the ones
reported in respective studies.

• Temporal Convolutional Network(TCN) [37]: This is
a method that predicts the ICU adverse events using
TCN using the variables that are similar to these used
in SAPS II. For a fair evaluation, we implemented
this model and used the same dataset and similar eval-
uation metrics as our model. Hence only the learn-
ing algorithm is implemented, while the materials and
the pre-processing steps are similar to the current
study.

• SAnD [14]: This study uses the self attention compo-
nent of the transformer by omitting the encoder-decoder
attention process. Though this reasoning has achieved
good results for other benchmark tasks, it can fail to
perform well for predicting the time series variables as
a regression task.

• LSTM [15]: This approach used the LSTM for various
benchmarks.We use the multitask LSTMversions in our
comparisons.

• TimeNet for clinical time series [17]: This work
leverages an RNN based model named TimeNet [26]
using transfer learning. TimeNet was pre-trained on a
big number of various public time series from UCR
Repository [38]

B. TRAINING AND IMPLEMENTATION DETAILS
The splitting method used to generate the train/test sets in the
current study is based on the patient split. For each patient, the
first 70% of the records since admission was used for training
and the following 30%used for testing themodel.We adopted
a recursive prediction approach by generating time steps in an
auto-regressivemanner because the previously predicted time
steps are input in predicting the next. We used a mask that
takes into consideration only limited past values by taking
only the last 24 hours. This masking process makes it possible
that the predictions at time-step i will only depend on the
values at positions less than i with only 24 hrs backward
window. All layers in the encoder and the decoder, including
the embedding layer’s output were fixed at dm=512. For sim-
plicity and faster training, the encoder and the decoder sides
were made of 2 similar cascaded components. The models
were trained for 50 epochs and optimized using the Adam
optimizer [39] with a learning rate α=0.01

VI. RESULTS AND DISCUSSIONS
A. PERFORMANCE EVALUATION METRICS
To evaluate the performance of the model we use various
metrics as depicted in Table 2. For Time series prediction,
we use AUC-ROC as well as the AUC-PR [40]. These metrics
are appropriate for timeseries prediction. These metrics use
True Positives and True negatives. We used them because we
If we care about true negatives as much as we care about true
positives in our predictions.The remaining LoS is a regres-
sion task of predicting the remaining time in terms of hours
until the patient discharge. We used the MSE, Kappa, and
MAPE [41] as performancemetrics. TheMSE [42] represents
the average of the squared errors that resulted from the dif-
ference between the LoS values predicted by the model the
and true labels of each time-step. The MSE gives a perfect
measure of the spread of our results around the true values.

B. TIME-SERIES PREDICTION
Fig.4 depicts the AUC-ROC values obtained for the task
of time series forward prediction per each baseline and the
transformer-based proposed model. To allow a clear visual-
ization, the figure displays only a sample of 8 time-series
variables from the 30 variables considered in the current
study. A general observation is that the model achieves better
AUC-ROC scores for the frequently sampled variables while
achieving low performance for the intermittently sampled
variables. For instance, the HR variable contains an aver-
age of 80 records per hour of the ICU admission while the
WBC has an average of 0.2 records in an ICU admission
hour(Per a certain patient). Hence from the figure, MHT
achieves an AUC-ROC of 0.95 while for the WBC vari-
able prediction the model achieves an AUC-ROC of 0.64.
Hence we can deduct that though the interpolation process
can fill the missing records, the process results in the wrong
prediction, especially for intermittently recorded variables.
We note that for this main prediction task, our transformer
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FIGURE 4. AUC-ROC values obtained by the model per each variable for the time series prediction task.

TABLE 2. Performance of the MHT model against the related approaches.

model outperforms all the recent approaches followed by
TimeNet and SAnD. MHT improvement is owing to the use
of encoder-decoder attention which can use the most influ-
ential past time steps for prediction. On the other hand, the
improved performance achieved by TimeNet is due to its

features extraction step that leverages transfer learning using
pre-trained features. While other works and MHT handcraft
their features from the custom embedding layer, TimeNet
overcomes this step and leverages the off-the-shelf feature
extractor. In [37] TCN achieves better results for proposed
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prediction scenarios which are usually binary classification
problems like the prediction of intubation risk and the risk of
a fluid challenge. Using TCN for the forward time series vari-
ables prediction achieves worse results because CNN is not
able to capture the long-term dependencies as well as attend
properly to the ancient past. Table 2 reports the AUC-ROC
performance of each model for all the tasks and all variables.
For the time series prediction task our approach achieved an
AUC-ROC value of 0.908 and an AUC-PR of 0.903 followed
again by TimeNet with LSTM-Multi achieving the lowest
values.

C. REMAINING LoS
Table 2 depicts the overall results for all models.The overall
observation from the table is that our model outperforms the
other related approaches. The model with a smaller MSE
is said to be more efficient. MHT(MSE:34232) scored the
best values followed by TimeNet and TCN performed poorly
(MSE:45432). With the LoS, the regression approach is more
prone to errors than when the LoS is binned in the range of
days. However, it is clinically important to try to predict the
exact days than intervals.

D. IN-HOSPITAL MORTALITY PREDICTION
Weuse binary classification for prediction. For the In-hospital
mortality prediction task, our model outperforms other
approaches in AUC-ROC and AUC-PR values as well as
the minimum precision and sensitivity (Min(Se, P+)). The
precision measures the ratio of the True Positive observa-
tions(TP) over the total observationswhile the sensitivity(also
called Recall) measures the model’s capability to predict the
true negatives of each of the 2 categories. We calculated the
sensitivity and precision and retained the minimum of these
two metrics. TimeNet achieves considerable results due to its
capability of using the previous episode’s time series data.

E. THE 24-HOUR MORTALITY PREDICTION
For the 24 hours mortality auxiliary task, the same evaluation
metrics are used. though MHT scores the best AUC-ROC
values, TimeNet outperforms all models with a bigger
margin(+0.11 for Min(Se, P+)). The reason behind this
improved performance exhibited by TimeNet is again due to
pre-trained features that do not require handcrafted features.

VII. CONCLUSION
In this paper, we presented a method that leverages the
recent discovery in NLP for clinical time-series prediction.
We applied the transformer architecture to the longitudinal
clinical time series and demographic static data to predict the
patient’s future. For each admission time-step, we predict the
future events exactly at the subsequent 6 hours. Unlike the
other works that use the whole of records and mask only the
future records, we only use the past 24hr records by using a
rolling mask. The model is further used to predict other key
benchmark tasks that describe the patient’s survival includ-
ing the mortality and the remaining LoS. Our MHT model

outperforms other recent related approaches including the
LSTM, TCNN, and the Transformer based self-attention. The
time series variables that are recorded frequently like the HR
and the Respiratory Rate achieve better prediction results
than the variables that are recorded intermittently like the
WBC. The use of the transformer and its attention mecha-
nisms boosts the performance because the self-attention pro-
cess encodes the past time steps where the latent relationships
between various variables are reflected. The performance
is further boosted by the encoder-decoder attention process
which helps in identifying the most influential past time steps
for the prediction of the future time steps in the course of the
patient’s admission.
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