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ABSTRACT Prognostics and health management (PHM) of systems usually depends on appropriate prior
knowledge and sufficient condition monitoring (CM) data on critical components’ degradation process
to appropriately estimate the remaining useful life (RUL). A failure of complex or critical systems such
as heating, ventilation, and air conditioning (HVAC) systems installed in a passenger train carriage may
adversely affect people or the environment. Critical systems must meet restrictive regulations and standards,
and this usually results in an early replacement of components. Therefore, the CM datasets lack data on
advanced stages of degradation, and this has a significant impact on developing robust diagnostics and
prognostics processes; therefore, it is difficult to find PHM implemented in HVAC systems. This paper
proposes a methodology for implementing a hybrid model-based approach (HyMA) to overcome the limited
representativeness of the training dataset for developing a prognostic model. The proposed methodology
is evaluated building an HyMA which fuses information from a physics-based model with a deep learning
algorithm to implement a prognostics process for a complex and critical system. The physics-based model of
the HVAC system is used to generate run-to-failure data. This model is built and validated using information
and data on the real asset; the failures are modelled according to expert knowledge and an experimental
test to evaluate the behaviour of the HVAC system while working, with the air filter at different levels of
degradation. In addition to using the sensors located in the real system, we model virtual sensors to observe
parameters related to system components’ health. The run-to-failure datasets generated are normalized and
directly used as inputs to a deep convolutional neural network (CNN) for RUL estimation. The effectiveness
of the proposed methodology and approach is evaluated on datasets containing the air filter’s run-to-failure
data. The experimental results show remarkable accuracy in the RUL estimation, thereby suggesting the
proposed HyMA and methodology offer a promising approach for PHM.

INDEX TERMS Prognostics and health management, hybrid modelling, deep learning, HVAC system,
railway.

I. INTRODUCTION
The maintenance domain has evolved through a series of
industrial revolutions. The 4th Industrial Revolution is based
on data collection and analysis, not only for specific main-
tenance practices but also for more general objectives, such
as zero-defect manufacturing and services, key drivers of
performance. Companies are increasingly trying to control
the global process from the supplier to the final customer.
The goal is to use performance evaluation, production and
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process deviation prediction, and decision support to identify
defects and their causes and react before failure. When com-
panies understand their processes, they will be able to reduce
downtime and maximize production [1].

Wang argued [2] that key factors in reaching zero-
defect product quality include monitoring the health state
of facilities and equipment and optimizing decision-making
with huge datasets. This is especially important in transport,
energy, and chemistry sectors where safety is more impor-
tant than reliability or efficiency; such industries monitor
the health state of critical components to optimize decision-
making under required conditions. The monitoring data are
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used to continuously improve maintenance planning. The
maintenance strategy that relies on monitoring the condition
of an asset in real-time to determine a maintenance action
is condition-based maintenance (CBM). The standard EN
13306:2017 describes this as a maintenance strategy that
allows companies to extend the life cycle of assets while
ensuring assets’ behaviour and function under required con-
ditions of safety, reliability, and effectiveness [3].

CBM predicts latent faults in advance and dynamically
changes maintenance plans based on prognostics. How-
ever, faults or abnormal equipment behaviours can sud-
denly appear; these are detected in diagnostics processes,
which together with prognostics, show the current state of
a system [4], [5]. Thus, CBM includes both diagnostics and
prognostics.

Diagnostics is used when a failure or an unusual behaviour
is detected. Failure modes and effect analysis (FMEA) is
used to trace the relationship between a failure and the data
acquired from the system [6]. Diagnostics detects, isolates,
and localizes a faulty component based on a failure model
(FM) [7], [8]. Diagnostics for heating, ventilation, and air
conditioning (HVAC) systems, the system of interest in this
paper, is developed in [8], [9], [10], [11], and [12].

Prognostics is performed by assessing changes in the
behaviour of components or systems over time to predict their
remaining useful life (RUL) and end of life (EoL). The infor-
mation obtained in diagnostics is considered in prognostics,
as the accumulated degradation is evaluated to estimate the
RUL and predict the future health state. Researchers have
developed algorithms to predict RUL for different applica-
tions [13], [14], [15], [16], [17].

CBM is used in prognostics and health management
(PHM), an engineering discipline which studies the health
state of equipment and predicts its future evolution with the
integration of aspects such as logistics, security, reliability,
mission criticality and cost-effectiveness; thus, PHM goes
beyond CBM [18], [19].

There are three main methods for implementing CBM
[20]: physical model-based approaches [21], data-driven
approaches or surrogatemodels [22], and hybridmodel-based
approaches (HyMA) [23].

Physical model-based approaches are based on mathemat-
ical models of the physical system; if the system degradation
is accurately modelled, these approaches tend to be more
effective than other approaches [20]. The models incorpo-
rate such characteristics as material properties, thermody-
namics, and mechanical responses, thus requiring extensive
prior knowledge of physical systems. Yet a detailed model
is usually difficult to develop because some key parameters
are unavailable in practice, especially in complex systems or
processes [24], [25].Model-based solutions have been devel-
oped by several researchers [26], [27], [28], [29]. Neverthe-
less, detailed physics-based models on deploying diagnostics
for HVAC system are not being used, however they are being
used for covering fault modeling in prognostics of HVAC
systems [63].

Data-driven approaches do not require expertise to model
system degradation; they are built using mathematical mod-
els and weight parameters and trained using historical data
collected by sensors installed in the physical system. There-
fore, data-driven approaches are more practical and agile
thanmodel-based approaches for deploying CBM in complex
systems or processes. However, because they only depend on
historical or online data and do not consider system complex-
ity, they miss the relations between the data and the physical
world [30], [31]. Data-driven approaches can be divided into
two categories [20]. The first includes artificial intelligence
(AI) approaches: neural networks (NNs) and fuzzy logic. The
second includes statistical approaches; common techniques
are support vector machines (SVMs), linear regression, hid-
den Markov model, and Gaussian process regression. Data-
driven approaches for CBM in HVAC systems are discussed
by [10], [32], [33], and [34]. These researchers obtained a
remarkable results in their approaches and it is well known
the that data-driven models are easy to be developed on
a cost-effective way; nevertheless, the robustness of these
approaches for HVAC systems is sometimes questionable due
to lack of data available while operating in faulty state.

Hybrid model-based approaches combine data-driven
and physical model-based approaches. This combination
improves diagnostics and prognostics by overcoming the
lack of historical data, thus improving the ability to detect
failure modes (FMs) and reducing the appearance of hidden
FMs, metaphorically known as ‘‘black swans’’ [35]. It can
be expensive, difficult, or even impossible to install sensors
in parts of a system that could be of interest for CBM.
In these cases, soft sensors, also known as virtual sensors,
can be defined in physics-based models. Soft sensors are
modelled to generate additional information to improve fault
detection and RUL estimation of monitored systems [36].
As a consequence, physics-based models can be used to
generate synthetic data related to those situations or parts
for which it is difficult to obtain data and system degrada-
tion in the required timeframe; this results in complete and
large datasets that allow predictivemaintenance through data-
drivenmodels.Moreover, emerging deep learning approaches
have been successfully applied in the field of big data;
these include convolutional neural networks (CNNs) [37],
deep belief networks (DBNs) [38], recurrent neural networks
(RNNs) [39], and long short term memory (LSTM) networks
[40]. Zhang et al. proposed a novel bidirectional gated recur-
rent unit with a temporal self-attention mechanism to predict
RUL; specifically, each considered time instance is assigned
a self-learned weight according to the degree of signifi-
cance [41]. Liu et al. presented a prediction model called an
improved multi-stage long short term memory network with
clustering; it combines the advantages of clustering analysis
and the LSTM model [42]. Caceres et al. proposed a prob-
abilistic Bayesian recurrent neural network (RNN) for RUL
prognostics considering epistemic and aleatory uncertainties
[43]. Deep learning has been used for different subsystem
of HVAC system in PHM. Guo et al. [64] performed a deep
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learning-based fault diagnostics of variable refrigerant flow
system. Sun et al. [65] used deep learning techniques for
developing a gradual fault diagnostics approach for air source
heat pump system.

This paper proposes a hybrid-model approach which com-
bines a physics-based model and a data-driven model. The
physics-based model is used to generate run-to-failure data;
these synthetic data are combined with real data and used to
train, validate, and test a deep convolution neural network.
The architecture used in the hybrid-model approach was first
presented in an excellent article [37] and obtained higher
prognostic accuracy than other traditional machine learning
methods. We validate the proposed HyMA using run-to-
failure data generated by the physics-based model; therefore,
intrusive experiments are not performed in this study.

Some of the most remarkable recent CBM advancements
have been for HVAC systems. Yet it is difficult to find
research where RUL estimation models are developed for
HVAC systems installed in high-speed passenger train car-
riages, even though a failure in this system affects people’s
safety and could affect the environment. This paper begins to
fill the gap in the research.

The remainder of the paper proceeds as follows.
Section 2 describes the methodology proposed for fus-
ing physics-based and data-driven models. It explains the
HVAC system, the physics-based model, the modelled
failure, and the architecture of the deep learning model.
Section 3 describes the experimental study, including the
generation of data, the preparation of the dataset to be input
for deep CNN, and the parameters for implementing the
CNN model. Section 4 discusses the results. Section 5 closes
the paper with conclusions and suggestions for future
research.

II. PROPOSED HYBRID MODEL APPROACH
Railway engineering systems have strict regulations for relia-
bility, availability, maintainability, and safety (RAMS) during
their life cycle, as specified in the standard EN 50126-1, 2017
[44]. Consequently, the lifetime of critical components is not
maximized because maintainers usually replace them in early
degradation stages for safety, environmental, and economic
reasons. Only those with a low criticality are allowed to
operate until failure. Data cannot be acquired by sensors in
faulty stages of most components, and this complicates the
acquisition of run-to-failure data. Thus, a combination of
physical model-based and data-driven approaches is required.
The hybrid model can overcome the lack of data to improve
the detectability of failure modes, reduce the hidden failure
modes, i.e., ‘‘black swan losses’’, and assess their effects
within the timeframe.

We propose combining a physics-based model with a
deep learning architecture to obtain an accurate HyMA. The
HyMA is developed and simulated using MATLAB R2021b.
An overview of the methodology used to combine data
obtained by a physics-based model and sensors installed in
the real system is presented in Figure 1.

The physics-based model is used to generate run-to-failure
data. The model contains sensors installed in the real system
and virtual sensors, which depend on the data gathered in the
real system. The responses of the sensors defined in themodel
are recorded in a dataset which contains the output of these
simulations. The model is simulated using real data acquired
from the sensors and synthetic data acquired from the virtual
sensors. The parameter of interest is the degradation of the
air filter in terms of mass of dust. Every simulation contains
run-to-failure data and generates timeseries data on every
selected signal labelled with the RUL values. Therefore, the
data related to a simulation contain timeseries data from every
sensor selected. The raw signals are normalized to accelerate
the training process in deep learning tasks [45]. Then, the
datasets for training and testing are prepared to be inputs of
the proposed network.

A. PHYSICS-BASED MODEL OF THE HVAC SYSTEM
The general mission of an HVAC system is to maintain
acceptable indoor air quality and thermal comfort through
suitable ventilation with filtration while remaining within
reasonable operation and maintenance costs. The HVAC sys-
tem of interest (an HVAC in a passenger train carriage) was

FIGURE 1. Methodology used to build the proposed HyMA.
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FIGURE 2. Main components considered in the studied HVAC system.

designed to satisfy the comfort conditions established in the
standard EN 14750-1, 2006 [46]. Accordingly, the standard
was used as an information resource to develop the physics-
based model.

The HVAC installed in a passenger train carriage is sep-
arated into cooling subsystems, heating subsystems, ventila-
tion subsystems, and vehicle thermal networking system.

Therefore, the HVAC system modelled is a system-of-
systems (SoS), as systems interact with their surrounding
systems to perform the required functions [47], [48].

The standard ISO 14224-2016 is widely used to define the
SoS taxonomy. This research considers the HVAC system
to include from taxonomy level 5, known as section/system,
to taxonomy level 8, defined as component/maintenance
item.

Figure 2 illustrates the taxonomy of the studied HVAC
system and the most relevant elements considered in this
research. The passenger train car studied is a passenger saloon
with an HVAC system composed of two HVAC units. This
means that almost all components are duplicated.

Level 7 contains the subsystems of the HVAC system con-
sidered here. Some components, such as contactors, circuit
breakers, electronic control board and control panel, are not
represented in Figure 2 because their FMs are not analyzed in
the research. Level 8 includes components whose interactions
are modeled based on the principles of thermodynamics, fluid
mechanics and heat transfer. The physics-based model also
includes the thermal network of the vehicle, in this case,
and the physics of the interactions between the high-speed
passenger train and the environment.

The physics-based model used to generate run-to-failure
data was developed and validated in previous research [49].
It was also previously used to generate synthetic data to build
a data-driven model for multiple fault detection; the model
was trained, validated, and tested using real data and synthetic
data. The methodology proposed to combine the two types

TABLE 1. Condition monitoring sensors.

TABLE 2. Virtual sensors.

of models and fuse the data sources obtained a remarkable
accuracy [50].

In the train’s HVAC system, the temperature and the con-
centration of CO2 are managed by two ventilation subsys-
tems, two cooling subsystems, and two heating subsystems.
Figure 3 contains a simple scheme of the modelled HVAC
system; Table 1 contains the set of sensors used in the real
system, and Table 2 shows the set of virtual sensors. Sensors
that measure the control variables of various components,
such as damper positions, operational state of compressors
or heaters, and so on, are not mentioned.

1) FAULT MODELLING AND MODEL SYNCHRONIZATION
The real system uses the sensors listed in Table 1 to detect
failures. The model presented in this research includes air
filter degradation over the timeframe of interest.
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FIGURE 3. Scheme of the modelled HVAC system.

A component can be in a faulty state for a number of
different reasons; thus, an FM is related to a cause. The
FMAof complex systems commonly contains FMs that result
from different causes but have similar effects in the same
sensors.

The physics-basedmodel includes the virtual sensors listed
in Table 2. Soft sensing is important when there is an insuffi-
cient number of real sensors or there are relevant parameters
to monitor (i.e., those for which there are insufficient data);
the main requirement is that these sensors provide a response
from sensor measurements.

Although the studied railway company does not have run-
to-failure data for the HVAC system installed in the passenger
train carriage, the CBM department previously performed
experiments to assess the response of the HVAC systemwhile
increasing the mass of dust fed into the air filter. This makes
it possible to model the degradation of the air filter. The
timeframe used here is selected because the maintenance
department had recorded the weight of the filter after its
replacement and the number of working hours. By consid-
ering the air filter’s weight in healthy state, we can determine
the relations between degradation and time. Thus, the life
cycle has an exponential degradation.

The experiments assessing filter degradation (mentioned
above) also evaluated the signals obtained by the sensors
listed in Table 1, the pressure of the air before and after
the filter, and the mass flow rate. The responses of these
parameters and the mass of dust fed into the filter were
recorded in a dataset. These data provide key information for
the present work. The input of the fault modelling is the mass
of dust; these data are generated in the timeframe based on
the information provided by maintainers.

Since the physics-based model used in this research and
its capability to generate data in a faulty state were already
developed and validated [49], [50], we validate the parame-
ters monitored with virtual sensors, including pressure after
air filter, pressure before air filter, and mass flow rate, using
the previously generated data.

The parametrization of the physics-based model is a key
step in first synchronizing the model with the real system
and then validating it. The uncertainty of the parameters and

observations makes synchronization a stochastic problem.
As the ideal validation of a physics-based model implies
obtaining the whole posterior distribution of the parameters
and suggests a high computing burden, in most cases, the
parameters that enable physics-based models to fit the system
behaviour are estimated, and the values that obtain the best
results are selected [51].

B. DEEP CONVOLUTIONAL NEURAL NETWORK AS
DATA-DRIVEN MODEL
Convolutional neural networks (CNNs) have commonly
been used for spatial pattern analysis to learn spatial fea-
tures, but CNNs are showing remarkable success in many
other research and industrial applications, such as vegeta-
tion remote sensing [52], seismo-acoustic event classification
[53], computer vision [54], RUL estimation [55], among
others. Like all typical neural network-type models, CNNs
are neuron-based. The neurons are distributed in layers and
can learn hierarchical representations. CNN’s unique network
architecture reduces the complexity and overfitting of a neu-
ral network. The structure comprises a number of layers; the
initial layer is the input layer, i.e., raw data, and the last layer
is the output, e.g., RUL prediction. At least one convolutional
layer is included as a hidden layer; the convolutional layer
involves multiple filters with raw input data it generates
features and exploits patterns. Convolutional layers include
optimizable filters that modify the input or preceding hidden
layers. The number and size of filters define the depth of a
convolutional layer. The resulting transformations are pro-
cessed by the following pooling layers which extract the most
significant local features in a way that matches the output.

As mentioned, CNNs are commonly used to learn
abstract spatial features. Input data are usually prepared
in a two-dimensional (2-D) format, but one-dimensional
(1-D) and three-dimensional (3-D) formats can be also
employed to learn spectral features and spatial features,
respectively [56], [57].

1) INPUT SEQUENCE DATA AND CONVOLUTION LAYER
The raw data are processed and used to generate synthetic
data. Processing includes data normalization and sliding
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window operations. The input data sample is then generated.
This study’s input data are prepared in a 2-D sequence format.
The data are processed and sorted, with the first dimension
representing the number of selected signals and the second
dimension representing the length of the time sequence of
each signal. The signals used to build this prognostic model
were collected by sensors located in different parts and
subsystems of the HVAC system; this means the relations
between the spatially neighbouring signals in the data sample
are not notable. Therefore, the input and the signal maps are
put in 2-D format and the convolution layers in 1-D. The
network architecture selected for the study only applies 1-D
convolution along the time sequence direction; thus, only the
trends in one signal at a particular time are considered. This,
in turn, means the order of signals and features does not affect
the training process. The 1-D sequential data are assumed to
be x = [x1, x2, x3, . . . , xN] where N denotes the length of the
sequence.

Multiple filters of different lengths can be applied in con-
volution layers. Bigger numbers and larger sizes of filters
lead to the ability to detect more complex patterns, generally
resulting in both higher accuracy and a heavier computational
burden [37], [58]. A balance must be reached in real cases;
therefore, in this prognostics study, five convolutional lay-
ers are stacked successively for feature extraction with an
increasing number and size of filters in subsequent layers.

2) ACTIVATION FUNCTIONS
The most commonly used activation functions in CNN are
the rectified linear unit (ReLU) and the hyperbolic tangent
function (Tanh). They are used to solve difficult problems.
ReLU is an activation function that preserves the positive
values and removes the negative values from the output of
neurons, i.e., feature maps; this reduces the interdependence
among parameters and speeds up the calculation [59]. The
Tanh function ensures the output of neurons is within a value
range of −1 to 1. The CNN in this study uses the ReLU
activation function.

3) DROPOUT
Dropout is a regularized technique used when training NNs.
This simple method helps minimize overfitting during train-
ing. Overfitting a model results in remarkable performance
on the training dataset and poor performance on the testing
dataset. Dropout is applied to avoid the extraction of the same
features repeatedly and to reduce co-adaptation of units with
the training data. In practice, randomly selected neurons (i.e.,
hidden neurons) are ignored during the training phase; thus,
these neurons are not included in the forward propagation
training process. Dropout is turned off during the testing
phase; this implies that all the hidden neurons are activated
in the testing process [60].

4) REGRESSION OUTPUT
Regression is a predictive layer that involves predicting a
numerical output given some input. Although some methods

require predicting more than one numeric value, these are
known as multiple-output regressions. This study applies the
most typical use of regression layers, the prediction of a single
numeric value, i.e., the RUL.

III. EXPERIMENTAL STUDY
A. DEEP CONVOLUTIONAL NEURAL NETWORK AS
DATA-DRIVEN MODEL
In this section, the proposed HyMA is demonstrated and
evaluated on a synthetic dataset with run-to-failure data of
an air filter installed in a train’s HVAC system. Real working
conditions recorded on-board the railway are used as input to
the physics-based model. Data contain various scenarios of
the real working conditions; we choose real data containing
services longer than one hour and services for not just the
ventilation mode but also the heating or cooling operation
mode. These are chosen because of their relevance for prac-
tical applications.

FIGURE 4. Traces of mass of solid particles for the run-to-failure
trajectories of the air filter used in the studied HVAC system.

These situations are subjected to the same failure mode.
As mentioned, the run-to-failure data of the failure mode
are modelled based on the previous experiment to assess the
response of the HVAC system while increasing the mass of
dust fed into the air filter and also on expert knowledge,
where experts explained the initial degradation state of each
filter can vary from 5-10% of the health index. Therefore, the
failure mode modelled to generate the response of the system
has a variability of the initial degradation state equivalent
to 8% of the health index. Figure 4 contains an overview
of the traces of the degradation imposed on the air filter.
The traces define a growing abnormal (exponential) condition
until filter failure, or, in terms of time, the end-of-life time
(tEOL). The test developed to assess the behaviour of the
HVAC system while working with the air filter at different
levels of degradation provides the following information:
(1) The more dust in the air filter, the less the air filter works
as it should; this results in a growing exponential condition
until filter failure. (2) The maximum level of mass of dust
is in the range of 180-200 grams usually reached in a period
of around 500-700 working hours or 21-29 days. Thus, the
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FIGURE 5. Deep CNN architecture for RUL estimation.

dataset generated for filter degradation contains 26 traces;
the initial mass of dust at t0 is in the range of 0-16 grams,
and it reaches the level of 200 grams of dust in the range of
497.9011-704.9124 working hours.

The dataset contains multivariate timeseries data of sensor
readings and their corresponding RUL. In the dataset, the
rows are the numbers of the sensors (see Tables 1 and 2). The
length of each row is given by the length of the vector that
contains the mass of dust over the timeframe; this differs from
one observation to another. The operating conditions can also
differ from observation to observation. Thus, each observa-
tion contains data generated under different conditions and
degradation processes.

An overview of the traces generated as filter degradation
is represented in Figure 4. This gives an overview of the
initial and final mass of dust in the air filter at t0 and tEO,
respectively.

B. DATA PRE-PROCESSING AND TIME SEQUENCE
PROCESSING
Once the condition monitoring (CM) data are generated and
given RUL labels, the next step is to create a data-driven
model. The proposed data-drivenmodel is a deep CNNwhich
is expected to approximate the system dynamics based on
previous observations, control variables, and model param-
eters [61].

The multi-variate temporal data generated by the physics-
based model contain measurements from 15 sensors,
as shown in Tables 1 and 2. Although the control variables
are not included in the sensor list, some sensors measure
constant output in the air filter’s lifetime; hence, they do not
provide the surrogate model valuable information for RUL
estimation. Sensor measurements identified in Tables 1 and 2
as S5, S6, S7, S5v, S6v, S7v, and S8v are used as the raw input
features.

The data from each sensor are normalized using the
Z-score normalization method to have zero mean and unit
variance:

xi,jnorm = (xi,j − µj)/σ j (1)

where xi,j is the original value of the i-th data point of the
j-th sensor, and xi,jnorm denotes the normalized value of xi,j.

µj and σ j denote the means and standard deviations of the
original measurement data from the j-th sensor, respectively.
µj is used for centering, and σ j is used for scaling the data;
therefore, this standardization method does not produce nor-
malized data with the exact same scale for every sensor.

In general, industrial applications cannot validate the pre-
cision of RUL estimation of a system at each time step
without an accurate physics-based model [38]. Therefore, the
suitability of the deep CNN is tested using a set of data from
the generated CM datasets.

1) TIME SEQUENCE PROCESSING
Time sequence processing has huge potential for prediction
performance. Generally, more information can be obtained
from temporal sequence data than from a single time step
in multi-variate data. Therefore, the data are prepared to
use multi-variate temporal information by defining a time
window.

The size of the time window is 19 single time-steps, and
the timestamp is 1.01 seconds. The size is defined based on
the method the HVAC system uses to operate cooling and
heating subsystems. As shown in Figure 3, the HVAC system
has two cooling and heating subsystems. When the cooling
operational mode must work, the HVAC system switches
the compressors off and on; every compressor is individ-
ually working for fewer than 20 seconds until reaching a
comfortable temperature. The same occurs with the heating
operational mode.

Once the time window is defined, all the sensor data within
the window are collected to form a feature vector used as
input for the CNN.

C. PROPOSED NETWORK ARCHITECTURE
Deep NN models have shown an excellent ability to capture
hidden complex information from raw input signals and to
trace complex relations between inputs and target labels.
As mentioned, a deep CNN is chosen in this study to find
a mapping that relates the input to a target label. The main
reasons for this choice are the remarkable accuracy obtained
in other applications (mentioned above) and the simplicity
of using multivariate timeseries data taken from sensor mea-
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surements. Figure 5 shows the architecture of the deep CNN
model built for RUL estimation.

First, the input data are prepared in 2-D format, but the
convolutional operation is actually performed in 1-D, as men-
tioned previously. The dimension of the input is defined by
the time sequence dimension and the number of selected
features.

Second, five convolutional layers are used for feature
extraction. The filter sizes are 3, 7, 9, 13, and 15, and the
number of filters is 28, 56, 112, 224, and 448, respectively.
The obtained output is the number of filters of feature maps,
and the dimension of each feature map is the same as the
original input sample.

Third, the output goes to a fully connected layer with 100
neurons; this step multiplies the input by the weight matrix
and adds a bias vector. The output goes to a dropout layer that
randomly sets input elements to zero, with the probability set
to 0.5, before going to the last fully connected layer with one
output. This last output is the input of the regression layer.

Fourth, the output of each convolutional layer is the input
of a batch normalization layer. This technique allows the
model to be trained with mini-batches instead of the full
dataset, thus speeding up training and using higher learning
rates.

All the layers up to the dropout layer use ReLU as the acti-
vation function. To improve the prognostic performance and
the training process, we use the Adam optimizer. A reduction
of the learning rate of 0.003 every 5 epochs and an initial
learning rate of 0.2 are defined; the maximum number of
epochs is set to 30, and the training process uses mini-batches
with 5 observations at each iteration because fewer mini-
batches implies lower computational resources.

TABLE 3. Parameters of the DCNN alorithm.

1) DEEP CNN PROCEDURE
Figure 1 gives an overview of the methodology presented in
this paper for combining data obtained from a physics-based
model and with data obtained from sensors installed in the
real system. The details of the deep CNN working process
and how it estimates RUL are explained in this section.

The measurements of the sensors selected for RUL esti-
mation of the air filter are indexed in Tables 1 and 2 as

FIGURE 6. RUL estimations for testing dataset 1. Plot on left contains the
RUL estimated every 1.01 seconds. Plot on right contains the mean value
of 30 minutes of RUL estimations.

FIGURE 7. RUL estimations for testing dataset 2. Plot on left contains the
RUL estimated every 1.01 seconds. Plot on right contains the mean value
of 30 minutes of RUL estimations.

FIGURE 8. RUL estimations for testing dataset 3. Plot on left contains the
RUL estimated every 1.01 seconds. Plot on right contains the mean value
of 30 minutes of RUL estimations.

S5, S6, S7, S5v, S6v, S7v, and S8v. The corresponding data
are normalized using the Z-score normalization method to
have zero mean and unit variance. Next, datasets for training
and testing processes are prepared. The datasets are in 2-D
format and contain the time sequence information within
the defined time window length for each sample. Therefore,
signal processing experience or expertise on prognostics is
not needed in the proposed data-driven model.

The normalized datasets are labelled with the RUL values.
The deep CNN uses the normalized training data as input and
the RUL values as the target output of the network.

As mentioned, the Adam optimizer is used with predefined
mini-batches and epochs. The maximum number of training
epochs is 30, and for each epoch, the training dataset is ran-
domly divided into five mini-batches to speed up the training
process. The batch size affects the training performance [37].
It is usual to see mini-batches comprising hundreds of units in
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the literature, but it is recommended to use smaller sizes when
the datasets are extremely large. The number of mini-batches
is set to five in this study based on iterative calculations
achieving a balance between computational cost and training
performance. Moreover, the learning rate is reduced over
the training process: the initial learning rate is 0.2 for fast
optimization, and the final learning rate is 0.002 for stable
convergence. The weights in each layer of the CNN are
optimized according to the mean loss function of each mini
batch using the root mean square error (RMSE) values; see
equation 2.

RMSE =
√
((

∑
_(i = 1)^N(z_fi-z_oi)^2)/N) (2)

where zfi is the predicted value, zoi is the actual value, and N
is the number of samples.

The testing data samples are loaded into the trained
model for RUL estimation; then, the prognostic accuracy is
obtained. The main parameters set in the DCNN algorithm
are listed in Table 3.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS
This section describes the prognostic performance of the
proposedHyMA for RUL estimation.We use a computational
system with Intel(R) Xeon(R) Gold 5120 CPUwith 4 sockets
and 14 cores per socket, and 1 TB RAM.

As mentioned, the synthetic data are generated by the
physics-based model to obtain the air filter’s run-to-failure
data. The data are generated by using historical data taken
from the real system as input in the physics-based model.
The failure mode is modelled based on expert knowledge
and data collected by sensors in a previous experiment
studying the behaviour of the HVAC system when work-
ing, with different air filters being fed dust. Hence, the
synthetic data contain information on the HVAC system’s
air filter at different levels of degradation in the selected
timeframe.

The RUL prediction results of three testing datasets are
represented in Figures 6, 7, and 8. Every figure contains
two plots; the plot on the left contains the RUL predicted
using all data collected by the sensor with the actual sam-
pling time, and the plot on the right contains the RUL
predicted by the HyMA, but in this case, every sample con-
tains the mean value of 30 minutes of data, thus giving
a smoother result. The figures show the RUL values esti-
mated by the proposed HyMA are generally close to the
labelled values. Prediction accuracy tends to increase in the
regions where the HVAC systemworks close to failure.When
the system is working close to failure, it can be identified
by the proposed HyMA, thus providing better prognostics
results.

The proposed HyMA is carefully designed to overcome
the drawbacks of each model. The physics-based model is
developed to infer information about system degradation,
as data are lacking on advanced stages of degradation of
some failures. Once the lack of data is overcome, a deep

learning model is used to estimate the RUL from both
the CM data and the data generated by the physics-based
model.

V. CONCLUSION AND FUTURE RESEARCH
This paper proposes an HyMA for the prognostics of an
HVAC system installed in a passenger train carriage. The
proposed HyMA is the combination of a physics-basedmodel
and a deep learning algorithm based on CNN for predicting
the RUL of complex systems. The physics-based model and
the informative features of the failure are modelled and cal-
ibrated using information and CM data from the real system
and expert knowledge. The ability to generate supplementary
operation conditions for different contexts allows us to com-
pensate for the lack of monitoring data. The methodology
presented in this paper uses the data generated as input to a
deep CNN to develop the HyMA for RUL prediction.

We evaluate the performance of the HyMA on synthetic
datasets which contain run-to-failure data of the air filter
installed in an HVAC system. The synthetic data were gen-
erated by a previously developed and validated physics-
based model, and the deep CNN obtained good experimental
results.

The proposed HyMA enables the possibility of implement-
ing prognostics models for critical components of complex
and critical systems – those components for which it is
usually difficult or impossible to obtain data when they are
working in advanced stages of degradation. The CM data
are not recorded in these situations, but these data are key
for developing a robust prognostics model. A lack of data
related to a critical component has been overcome in this
paper, and a remarkable prognostics performance has been
demonstrated by our HyMA. Thus, the proposed HyMA
offers a promising direction for future research in PHM
applications.

Future research should develop and evaluate the use of the
proposed methodology for other critical components of the
same system. Future work should also evaluate the HyMA
for RUL estimation while the system works with various
components close to failure; this would result in a robust
HyMA that can be deployed in a real system to support
decision-making.
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