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ABSTRACT We introduce the theoretical foundations of the Tangle 2.0, a probabilistic leaderless consensus
protocol based on a directed acyclic graph (DAG) called the Tangle. The Tangle naturally succeeds the
blockchain as its next evolutionary step as it offers features suited to establish more efficient and scalable
distributed ledger solutions. Consensus is no longer found in the longest chain but on the heaviest DAG,
where PoW is replaced by a stake- or reputation-based weight function. The DAG structure and the
underlying Reality-based UTXO Ledger allow parallel validation of transactions without the need for total
ordering. Moreover, it enables the removal of the intermediary of miners and validators, allowing a pure
two-step process that follows the propose-vote paradigm at the node level and not at the validator level.
We propose a framework to analyse liveness and safety under different communication and adversarymodels.
This allows providing impossibility results in some edge cases and in the asynchronous communication
model. We provide formal proof of the security of the protocol assuming a common random coin.

INDEX TERMS Consensus protocol, leaderless, asynchronous, fault-tolerance, directed acyclic graph,
security.

I. INTRODUCTION
In distributed systems, different events may happen at the
same time, but participants may perceive them in different
orders. In contrast, distributed ledger technologies (DLTs)
such as Bitcoin [1] typically use a totally ordered data struc-
ture, a blockchain, to record the transactions that define the
state of the ledger. This design creates a bottleneck, e.g.
a miner or validator, through which each transaction must
pass. The creation of blocks can also happen concurrently
at different parts of the network, leading to bifurcations of
the chain that must be resolved. This is typically done by
the longest–chain rule [1] or some variant of the heaviest
sub-tree [2]. To guarantee the security of the system, the
throughput of the system is artificially suppressed so that
each block propagates fully before the next block is created,
and very few ‘‘orphan blocks’’ spontaneously split the chain.
Another effect that limits scalability is that the transactions
are handled in batches. The miners create these batches or
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blocks of transactions and the blockchain can be seen as a
three-step process. In the first step, a client sends a transaction
to the block producers, then some block producer proposes
the block containing a batch of transactions, and in the last
step, validators validate the block.

A more novel approach that addresses the asynchronous
setting of the distributed system has been taken by IOTA [3].
This approach eliminates the need for clustered transactions
and uses a directed acyclic graph (DAG) (as the underlying
data structure) to express simultaneous events. In this model,
individual transactions are added to the ledger, and each
transaction refers to at least two previous transactions. This
property reduces the update of the ledger to two steps: One
node proposes a transaction to the ledger and waits for the
other nodes to validate it. The removal of the intermediary of
miners or validators promises to solve (or at least mitigate)
several problems associated with them, e.g. mining races [4],
centralisation [5], miner extractable value [6], and negative
externalities [7] and allows for a fee-less architecture. How-
ever, the parallelism involved in adding new transactions
to the ledger means that consensus must be found on a
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‘‘wider’’ subgraph than just the longest chain or the heaviest
sub-tree.

A. RESULTS
Two main problems of Nakamoto’s ‘‘longest-chain rule’’ are
the severely limited scalability and the lack of parallelis-
ability. The lack of parallelisability results in the underlying
communication network requiring strong assumptions about
synchronicity. We propose a consensus protocol that works
efficiently and fast in an asynchronous model and allows a
high degree of parallelisation. This is achieved by replac-
ing the ‘‘longest-chain rule’’ with the ‘‘heaviest-DAG rule’’.
As the resulting consensus is not based on a total ordering
of the transactions, it enables the transactions to be stream
processed. An optimization that becomes more and more rel-
evant in the validation of smart contract updates and optional
sharding solutions.

Another disadvantage in blockchains, which is perhaps not
so well known, is the need for intermediaries in the form of
miners or validators. By enabling leaderless writing access
to the ledger we remove this dependency and reduce the
system to a dichotomy of fund owners and nodes, where
nodes take additional roles akin to validators. Nodes propose
new blocks, which contain transactions from fund owners,
and append them to the Tangle. Nodes utilise the append
process to validate and vote on previous blocks in a highly
efficient implicit voting scheme.

We propose a generalisation of the voting power of nodes
in form of a generalised weight function. This generalisation
allows for a high level of configurability of our protocol,
making it adaptable to the needs and security requirements
of the system in which it should be implemented, such as
permissionless or permissioned.

We introduce an asynchronous leaderless protocol that
employs a weight-based voting scheme on the Tangle. In this
scheme, the supporters of transactions, which are the nodes,
are tracked through implicit votes. The confirmation status
of transactions can be determined using threshold criteria.
We provide the algorithms for the various core components.
More specifically, we describe how the supporter lists are
updated through the implicit voting scheme and how nodes
should attach their blocks to the Tangle. We provide theorems
for the convergence, as well as the liveness and safety of the
system. First, given a random, unpredictable influx of blocks,
Theorem 1 gives guarantees that the system will converge
eventually on a consensus state if an adversary has less than
50% of the weight, however, no safety guarantees are given
in this case. Second, we give safety and liveness guarantees
by extending the protocol and incorporating the capability to
synchronise the nodes at certain intervals with the help of
a common coin. The security guarantees for this extended
protocol are given in Theorem 2. Finally, we provide an
overview of simulation results that display the performance
of the protocol.

B. STRUCTURE OF THE PAPER
The document is structured as follows. In Section I-C we give
an overview of essential aspects relevant to the design of a
DLT solution. In Section I-D we provide an overview of other
recent DAG-based protocols and highlight the differences
to our proposal. Section I-E provides an overview of used
symbols, acronyms and glossary. Section II gives an overview
of some of the graph-theoretical preliminaries used in this
paper. In Section III we provide a basic network setting within
which the proposed Sybil protection mechanism operates.
Section IV describes the functionality of the Tangle data
structure and how it is utilised to confirm blocks. Section V
introduces an overview of the Reality-based UTXO Ledger,
which forms a central component in our approach that helps
with tracking the opinions of honest nodes about conflicting
transactions. In Section VI, we describe the voting protocol
and confirmation of transactions. In Section VII we define
the communication and adversary models and address the
liveness and security of the system in Sections VIII and IX.
In particular, we show that certain attacks that attempt to
create a ‘‘metastable’’ situation, could become problematic
under specific circumstances and strong assumptions about
the adversary. In Section X we provide a solution to this
by introducing a synchronization of nodes at larger time
intervals. In Section XI, to showcase the performance of the
protocol, we provide results from simulation studies. Finally,
we conclude the paper with Section XII, where we describe
future research directions.

C. BACKGROUND
Consensus protocols in general and even DLTs, in particular,
are such a large research area that we have to refer to some
review articles for a more detailed introduction, e.g. [8],
[9], [10]. Although a consensus protocol depends on many
different aspects, we focus, in the remaining part of the
introduction, on those that are most relevant for the design
choices of our proposed protocol.

1) LEDGER MODEL
Distributed ledgers (DLs) generally arrive in two flavours of
balance keeping: an account-based model, where funds are
directly associated with the account of a user, such as is the
case with Ethereum [11]; and an unspent transaction output
(UTXO)model, where tokens are linked to a so-called output,
and users own the keys to the output, as is the case with Bit-
coin [1] and many of its derivatives, as well as Cardano [12],
Avalanche [13], and IOTA [14]. As an important observation
in the latter case, the UTXOs form a DAG themselves. A total
ordering of the transactions is unnecessary for many use cases
and situations, as most of them are parallelisable. However,
the append-only nature of the UTXO ledger hinders this
advantage of parallelisation in the presence of conflicting
transactions. In [15] we propose an augmented UTXO ledger
model that optimistically updates the ledger and tracks the
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dependencies of the possible conflicts. We construct a con-
sensus protocol that utilises this ledger model to enable fast
and parallelisable conflict resolution.

2) THE TANGLE AND PARTIAL ORDER
The Tangle is the DAG that stores all transactions of the
distributed ledger (DL). Every DAG induces a partial order
on the set of vertices, the collection of transactions in our
setting. This property contrasts with a blockchain where a
total order of transactions is established. As in systems with
crash failures, atomic broadcast and consensus are equivalent
problems, see [16], the partial order of the DAG induces
additional ‘‘difficulties’’ in the consensus protocol. More
precisely, there have been serious limitations concerning the
security of a DAG-based DLT. In the original proposal of
the Tangle, [3], the longest chain rule was replaced by the
‘‘heaviest sub-graph’’, i.e. the sub-DAG containing the most
transactions. However, it turned out that this design is vul-
nerable to various types of attacks and would rely too much
on the Proof-of-Work necessary to issue a transaction, e.g.
[17]. Another critical element of the design that is common to
many other DAG-based proposals is that it suffers a liveness
problem. Honest transactions that refer to transactions that
turn out to be malicious in the future can not be added to the
ledger state. The protocol we propose in this paper solves
the security problems by relying on a weight function for
nodes and by using the Reality-based Ledger. It also treats
the problems of liveness by separating transactions from their
containers, which are blocks,1 and by applying a new block
referencing scheme. In particular, this batch-less architecture
enables a stream process-oriented design of the DLT.

3) SYBIL PROTECTION
Sybil protection plays a crucial role in a ‘‘permissionless
environment’’ where everyone can participate. By leveraging
Proof-of-Work (PoW), Bitcoin’s Nakamoto consensus was
the first to achieve consensus in such an open environment.
As PoW leads to enormous energy waste and many negative
externalities, a lot of effort has been put into proposing more
sustainable alternatives. Themost prominent of them is called
Proof-of-Stake (PoS), where the validators’ voting power is
proportional to their stake (i.e. in terms of the underlying
cryptocurrency) in the system.

The Sybil protection used in this paper is based on node
identities. We describe it generically as a function of a scarce
resource or an abstract reputation function. This function,
called weight assigns every node identity a positive number.
For example, this weight can correspond to an amount of
staked tokens, delegated tokens, or the ‘‘mana’’ described
in [14]. We want to note that the weight does not have to
be connected to the underlying token but can be replaced
by any other ‘‘weight’’ serving as a good Sybil protection.

1Unlike many blockchain protocols, we require each block to contain
precisely one transaction. However, in principle, the protocol can be adapted
such that blocks contain more than one transaction.

In particular, our framework can also be used in a permis-
sioned setting, where only the pre-defined validators would
have a positive weight and can apply to the situation with
dynamic committee selections.

4) NAKAMOTO CONSENSUS
Distributed consensus allows participants to agree on a con-
stantly growing log of transactions. It has been an impor-
tant research topic in recent decades, and its importance in
computer science has never been disputed. There are many
ways to categorize consensus protocols. For instance, there
are the classical landmark results on PAXOS and BFTs, and
the newer Nakamoto type consensus mechanisms.
We understand as Nakamoto consensus the rule to select

the longest sub-chain, e.g. see [10], and as a variant also the
heaviest weighted sub-chain. We extend this concept to the
heaviest sub-DAG. More precisely we consider, a Nakamoto
blockchain consensus to follow the propose-vote paradigm
and that it can be described as follows. The time is divided
into epochs, and for each epoch, there is an ‘‘elected’’ leader.
This leader batches transactions into a new block and pro-
poses this block. Then the other participants vote on the
proposed block, e.g. by extending the chain to which the
proposed block is attached. Once the number of votes reaches
a certain threshold, the proposed block is considered part of
the ledger. The specific definition of the various elements
mentioned above may vary and lead to different variants
of the Nakamoto Consensus. To some extent, the above
paradigm reduces to the necessity to agree on a unique leader
in each epoch. Once the participants have a consensus on
the leader, the linearity of the blockchain implies consensus
on the ledger state. However, the fact that only a leader
can advance the ledger state creates an obvious bottleneck
with well-known performance limitations. In our proposal,
we remove the role of the ‘‘leader’’ entirely and allow the
participants to propose their blocks and the contained transac-
tions concurrently. Once a block is proposed, all participants
can vote and participate in the consensus finding. The weight
of the vote is proportional to the weight of the node, intro-
duced above, such that the protocol adapts to different weight
distributions. The protocol is also classified as a non-binary
consensus protocol since it can decide on several transac-
tions simultaneously and is an ever-ongoing voting procedure
forming a progressively-growing history.2 It also relates to a
probabilistic consensus in the sense that the more supporting
nodes a transaction accumulated the more likely it is that this
transaction is eventually confirmed and added to the ledger.

5) VOTING
In our non-linear architecture, each new block references at
least two existing blocks. This results in a DAG structure
as mentioned above. As with a blockchain, a new block

2Both the ledger DAG structure and the Tangle are technically transient
data structures since they can be pruned in theory. Thus, the voting is also
transient knowledge. However, for simplicity, we assume that both data
structures are not pruned.
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FIGURE 1. Tangle is utilised as a voting layer for nodes to reach a
consensus about the outcome of a conflict. Nodes agree on the winner
between conflicting transactions x̂ and ŷ using a leaderless protocol.
Different colours represent signatures of different nodes. The number of
supporting nodes, shown on the right, increases for transaction ŷ with
time. The dashed references are so-called transaction references and
allow to ‘‘rescue’’ transactions that voted for the ‘‘losing part’’.

not only votes on its direct references but also on its past
cone. Although this is an efficient voting scheme, there is
the problem of orphanage or liveness. If a block contains an
invalid block in its past cone, it can no longer be voted for
and, thus, the contained transaction cannot be included in the
ledger. We solve this problem by introducing two different
references. The first reference is to the Tangle structure and
the second is to the DAG structure originating from the
UTXO ledger. The last reference allows voting for trans-
actions that were originally orphaned and also to change
previously issued votes. Eventually, both types of votes accu-
mulate in a voting weight, which we call the ApprovalWeight
(AW). The higher this AW the higher the probability that the
transaction is eventually included in the ledger. We refer to
Figure 1 for an example of the voting mechanism.

Generally, the voting mechanism can be applied to any
DAG-based data structure with an append process that allows
for referencing previous blocks. It requires three main ingre-
dients: the first essential ingredient is a reference scheme that
efficiently casts and propagates votes. The second necessary
ingredient is the construction of a generalised invariant data

structure that allows conflicts to coexist (see Section V). This
feature allows to treat transactions ‘‘optimistically’’; every
new incoming transaction is considered ‘‘honest’’ unless it
conflicts with another transaction. Consequently, nodes may
start to build on top of every new transaction, even though
this transaction may turn out to be conflicting. The third
ingredient is a voting mechanism, dubbed On Tangle Voting
(OTV), that efficiently votes on a possible unbounded number
of transactions simultaneously. The efficiency is achieved by
maintaining a low block overhead since votes of other nodes
can be piggy-backed through the implicit voting mechanism.
Also in contrast to classical Byzantine fault tolerance, nodes
don’t have to be monitored for activity since the issuance
of transactions (casting of votes) is a clear sign of being
functional.

6) SECURITY
Since the beginning of research on consensus protocols, the
concept of security has been at the centre of attention. Any
consensus protocol aims to reach consensus on a data. Some
of the participants may be faulty or even active in preventing a
consensus, and one is interested in the conditions under which
consensus can be achieved.

The security of a propose-vote consensus protocol is usu-
ally divided into two points; liveness and safety. Liveness
means that any correct transaction is finally accepted by all
honest participants, and safety means that all participants
finally agree on the same set of transactions. The question
of whether a given consensus protocol fulfils these properties
depends largely on the model assumptions. Roughly, these
can be divided into the communicationmodel and the attacker
model.

In the most restrictive communication model, the syn-
chronous model, many different solutions are known since
the landmark result [18]. However, this is not the case under
the most general communication model, the asynchronous
model, which does not assume any bounds on the transmis-
sion delay of block; commonly denoted by1. One of themost
famous results on consensus protocols is the FLP impossibil-
ity result [19] stating that in an asynchronous communication
model, a single faulty participant can hinder the consensus
finding. As the FLP impossibility result relies on specific con-
figurations of block delays, many practitioners argued that it
does not apply to real-world implementations as these par-
ticular situations are very unlikely to occur. In between these
two extreme communications models, several intermediary
models have been proposed, and many positive results have
been obtained under stronger assumptions on the network
delay, e.g. the partially synchronous model [20], the timed
asynchronous model [21], and the asynchronous model with
failure detection [16].

Besides the communication model, the adversary model
plays an important role, especially in the security analysis
of Nakamoto protocols. The protocol’s security is commonly
expressed in the amount of scarce resources, e.g. energy or
computing power, that is necessary to attack the protocol
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and revert already confirmed transactions. Nakamoto [1]
analyzed this property by considering a specific attack, the
so-called private-double spend attack. Note that here the
classic communication model is the partial synchronous one.
Over the last decade, a pertinent research question was the
search for worst-case attacker strategies and the identification
of the security threshold in terms of the percentage of the
scarce resource controlled by an adversary. Tight consistency
boundswere recently given in [22] and [23] for several classes
of longest-chain type protocols. While these security thresh-
olds do hold in the partial synchronous situation, they fail in
the asynchronous setting, e.g. [24].

There is also a line of research that studies how an attacker
can compensate its lower weight with more influence on the
communication level. Themost prominent of such an attack is
the balance attack, [25], which consists of delaying network
communications between multiple subgroups of nodes with
balanced mining power.

This discussion is of particular interest to us because
we propose a framework for modelling the communi-
cation level and adversarial level jointly. Unsurprisingly,
we obtain impossibility results in the asynchronous commu-
nication model. Still, under further synchronicity assump-
tions, we prove that the protocol guarantees liveness and
safety (with a very high probability) if the adversarial weight
does not exceed certain thresholds. The obtained security
bounds are established for any possible attack strategy and
are configurable by the protocol.

The situations that lead to the impossibility results in the
asynchronous model are frequently considered irrelevant for
practicable purposes, e.g. [26], [27]. The argument for this is
that in real-world applications, the randomness in the block
delays is so great that the particular situation cannot occur.
While we partly agree with this reasoning concerning our
OTV, we added a second synchronicity level to our core
voting protocol to obtain a rigorous security threshold. For
this reason, we see our consensus protocol as a two-layer
solution. The first layer works in an asynchronous setting and
allows fast and secure confirmation under normal network
conditions. The second layer is based on an optional syn-
chronization of the nodes that allows consensus finding under
worst-case scenarios. The synchronized level relies on a
decentralised random beacon or common coin that makes the
protocol robust against attacks similar to the balanced attack
described above. Randomization of consensus protocols to
circumvent the impossibility results are known since [28],
which introduces local randomness. A common coin was
introduced [29] and is used in several approaches to increase
the security in the asynchronous setting.

7) PERFORMANCE
Defining a measure for the efficiency of a consensus protocol
is not an easy task since it relies on many different aspects.
Natural choices are the number of blocks sent between the
participants and, in synchronous models, the number of com-
munication steps. In DLTs, commonmeasures are the number

of transactions per second and the time to confirmation.
As our protocol uses implicit voting and no direct blocks are
exchanged between the nodes, it is optimal in block complex-
ity (if votes are cast through blocks that would have been sent
anyway). We present estimates for the time to confirmation
and show their dependence on the distribution of the weights.
We do not evaluate quantitative performance measures such
as throughput and energy consumption in this work. This type
of study will be addressed in follow up research.

A common misunderstanding is that asynchronous con-
sensus protocols are not appropriate for time-critical applica-
tions [26]. The fallacy is that synchronous protocols assume
strong synchronicity assumptions; however, the security is
harmed once these assumptions are not satisfied. We argue
that it is even the converse and that asynchronous protocols
might be better suited for time-critical applications. Under
a good communication situation, transactions are approved
much faster than in synchronous models based on network
delay estimations with an essential security margin.

One main drawback of the leader-based architecture of
blockchains is its lack of scalability capability. To make this
more precise, let1 be the network latency, λ the block issuing
rate, and q the weight of the adversary. Then, following [2],
[22], the condition for the security of the protocol is expressed
as

q <
1− q

1+ (1− q)λ1
. (1)

For the design of a system that should support resilience
against a maximum adversary weight q, this equation informs
about the bound on the maximum rate at which blocks can
be issued safely. A safety violation can occur, for exam-
ple, if there is disagreement about the recent leader. These
disagreements can be caused by blocks being produced in
parallel [30] or due to certain attack scenarios [31], [32]. As a
consequence re-organisations of the blockchain may occur,
in particular for DLTs, where the block production rate is
high [33].

In our case there is no theoretical upper limit for the
throughput of the protocol in this paper; however, the limits
of scalability of our protocol still need to be investigated in
future work.

D. RELATED WORK ON DAG-BASED PROTOCOLS
We already mentioned various related works in the general
introduction. This section focuses on the general architecture
and mention previous proposals that use DAGs in the under-
lying data structures. Blockchain-based protocols rely on a
chain or ‘‘linearisation’’ of blocks that create a total order
of transactions. These blocks have three purposes: leader
election, data transmission and voting for ancestor blocks
through the chain structure, see [34]. Each of these aspects
can be, individually or combined, addressed through a DAG-
based component. The various proposals differ in how and
which of these components are replaced by a DAG.
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The most common approach is to use a DAG structure for
the data transmission. This is the most natural approach since
if blocks are created at a high rate compared to their propa-
gation time, many competing or even conflicting blocks are
created, leading to frequent bifurcation points of the chain.
As this results in a performance loss, a natural proposal is to
include not only the ‘‘main chain’’ but also bifurcations using
additional references, e.g. [2], [35], [36], [37], [38].

Protocols can also achieve a higher degree of parallelisa-
tion of the data transmission or writing access if all partici-
pants can write and propose blocks. This concurrent writing
access removes considerably performance limitations of tra-
ditional blockchains. In blockchains where only a tiny pro-
portion of participants can write to the ledger, and these
participants are randomly chosen, e.g. by PoW or PoS, par-
ticipants need to communicate the set of pending transac-
tions to all their peers. This memory pool is a considerable
performance limitation as nodes must broadcast transactions
twice. Several interesting proposals allow participants to add
concurrent blocks to the ledger and to construct a distributed
memory pool in the form of a DAG. In the following, we give
two approaches that differ in how consensus is achieved and
in the underlying Sybil protection. More specifically the first
utilises a permissioned setting, while the second employs a
permissionless setting.

In the permissioned setting there is the following inter-
esting line of research. The aim is to construct an atomic
broadcast protocol based on a combined encoding of the
data transmission history and voting on ‘‘leader blocks’’.
Such protocols allow the network participants to reach a
consensus on a total ordering of the received transactions,
and this linearised output forms the ledger. The most robust
protocols achieve Byzantine fault tolerance in asynchronous
settings and reach optimal communication complexity, see
Honeybadger [39] and [40]. Improvements are proposed, for
example, in Hashgraph [41] andAleph [42] andmore recently
in Narwhal [43] based on the encoding of the ‘‘commu-
nication history’’ in the form of a DAG. These protocols
remove the bottleneck of data dissemination of the classical
Nakamoto consensus by decoupling the data dissemination
from the consensus finding. Promising improvements for the
consensus finding on top of the DAG-based memory pool
were recently made in DAG Rider [44] and Bullshark [45].
We also want to mention [46] that analyses and discusses this
kind of protocol from a more abstract and general point of
view.

There is a common point with our approach to mention
here. A DAG structure serves as a ‘‘testimony’’ of the com-
munication among the nodes, and new blocks are used for
(implicit) voting on previous blocks. In other words, the
DAG is used for the two purposes of data transmission and
voting. However, voting is done only over so-called ‘‘anchor
blocks’’, leading to an a posteriori leader election and total
ordering of the transactions. Furthermore, and as mentioned
above, these DAG-based broadcast protocols are designed for
permissioned networks, which leads to similar safety-liveness

properties to standard BFT protocols. A difference is, thus,
that our protocol is designed for an asynchronous network
environment and is not round-based as these proposals above.

In the permissionless setting, another route is taken by
Prism [34]. This approach explicitly decomposes the three
purposes of blocks into three types: proposer blocks, trans-
action blocks and voter blocks. Having separate transaction
blocks allows participants to issue transactions and removes
the need for a memory pool. The three types of blocks
form a structured DAG that allows a very efficient way to
vote on ‘‘leader blocks’’ that eventually give consensus via
total ordering. Our approach is orthogonal in that we do not
distinguish between different kinds of blocks but that the
underlying DAG delivers consensus without an additional
tool. In an implementation [47] of Prism, another DAG was
used to increase the performance of the execution of the
transaction. More precisely, [47] used a scoreboarding tech-
nique to execute the (totally) ordered UTXO transactions
in parallel. In our approach, we actively construct a DAG,
called the Ledger DAG, that encodes the dependencies of the
transactions. This DAG is created before reaching consensus
and allows tracking dependencies between pending or con-
flicting transactions. It was demonstrated in [48] that Prism
can also support smart contract platforms and that in their
implementation, the bottleneck is no longer the consensus but
the execution of the smart contracts.

The main difference of our proposal to all the aforemen-
tioned protocols is that consensus is found on the heaviest
DAG without the need for a ‘‘linearisation’’ using any leader
selection. This reduces the purposes of blocks to data trans-
mission and voting.

We want to mention another class of DAG-based and
leaderless consensus protocols. However, it is conceptually
different from the proposals above and our proposal. In this
kind of protocol, e.g. [13], [49], the voting is performed via
direct queries between the peers and hence necessities an
additional communication layer. A DAG structure is used
in Avalanche [13] to ‘‘transitively’’ vote on several blocks
at once. We note, however, that the authors of [13] fail to
analyze their proposed protocol properly, and the question
of whether it has the desired properties remains unclear,
e.g. [50, Sec. 2.3].

Finally, let us note that the above is only a selection of
previous work on DAG-based DLTs and refer the reader
to [10] for a more detailed summary.

E. LIST OF ACRONYMS AND SYMBOLS
For the reader’s convenience, in this section, we summarize
important notations and acronyms that are used throughout
the paper. Furthermore, in Appendix C we provide a glossary
of the terms in use in this paper.
Acronyms:

AW Approval Weight
dRNG Distributed Random Number Generator
DAG Directed Acyclic Graph
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DLT Distributed Ledger Technology
OTV On Tangle Voting
P2P Peer-to-Peer
PoW Proof-of-Work
PoVP Proof-of-Voting-Power
TSA Tip Selection Algorithm
TTC Time to Confirmation
UTXO Unspent Transaction Output
WW Witness Weight

Symbols:

Set Symbols
B set of branches
C set of conflicts
N set of nodes in network
L ledger or set of transactions
T set of blocks
DAGs
DL Ledger DAG
DT Tangle DAG
DV Voting DAG
childV (x) set of children of vertex x in DAG D=(V ,E)
cone(f )V (x) future cone of vertex x in DAG D=(V ,E)
cone(p)V (x) past cone of vertex x in DAG D=(V ,E)
D=(V ,E) directed acyclic graph (DAG) with vertex

set V and edge set E
ρ genesis or vertex with out-degree zero
maxV (S) set of maximal elements in set S (maximal

according to DAG D=(V ,E))
minV (S) set of minimal elements in set S (minimal

according to DAG D=(V ,E))
NV (x) set of neighbours of a vertex x in

graph G=(V ,E)
≤V partial order on set V (usually induced by

a given DAG D=(V ,E))
parV (x) set of parent of vertex x in DAG D=(V ,E)
sprtV (x) supporters of x in DAG D=(V ,E)
Time Symbols
τf (·) time to confirmation defined on T
τcf (·) confluence time defined on T
τs(·) solidification time defined on T

Weight Functions
w(·) weight function defined on N
AW(·) Approval Weight defined on L
WW(·) Witness Weight defined on T

Graph Structures:
We employ several graph structures as a base for the con-

sensus protocol. Table 1 gives an overview of the utilised
graphs.

II. GRAPH THEORETICAL PRELIMINARIES
In this section, we summarize basic graph theoretical nota-
tions that are used in the remaining part of the paper.

TABLE 1. Overview of DAGs.

The set of integers between 1 and m is denoted by [m].
A graphG is a pair (V ,E), whereV denotes the set of vertices
and E denotes the set of edges. A graph is called directed
if every edge has its direction, e.g. for an edge (u, v), the
direction goes from u to v.
Definition 1 (DAG): A directed acyclic graph (DAG) is a

directed graph with no directed cycles, i.e. by following the
directions of edges, we never form a closed loop.

A vertex v in a graph G = (V ,E) is called adjacent to
a vertex u if (u, v) ∈ E . An edge e ∈ E is said to be
adjacent to a vertex v ∈ V if e contains v. The out-degree and
in-degree of a vertex v in a directed graph G = (V ,E) is the
number of adjacent edges of the form (v, u) and, respectively,
(u, v). A vertex in a graph is called isolated if there is no edge
adjacent to it.
Definition 2 (Neighbours in a Graph): Let G = (V ,E)

be a graph. For a vertex v ∈ V , define the set of neighbours (or
G-neighbours), written as NV (v),3 to be the vertices adjacent
to v.
Definition 3 (Parents, Children and Leaves in a DAG):

Let D = (V ,E) be a DAG. For a vertex v ∈ V , define the set
of parents, written as parV (v), to be the set of vertices u ∈ V
such that (v, u) ∈ E . Similarly, we define the set of children,
written as childV (v), to be the set of vertices u ∈ V such that
(u, v) ∈ E . A vertex v ∈ V with in-degree zero is called a
leaf.
Definition 4 (Partial Order Induced by a DAG): Let D =

(V ,E) be a DAG. We write u ≤V v for some u, v ∈ V if
and only if there exists a directed path from u to v, i.e. there
are some vertices w0 = u,w1, . . . ,ws−1,ws = v such that
(wi−1,wi) ∈ E for all i ∈ [s]. Furthermore, we note u <V v
if u ≤V v and u 6= v.
Note that there could be different DAGs producing the

same partial order. The DAGwith the fewest number of edges
that gives the partial order ≤V is usually called the transitive
reduction of D or the Hasse diagram of ≤V .
Definition 5 (Minimal subDAG Induced by a Set of Ver-

tices): Let D = (V ,E) be a DAG. For a subset of vertices
S ⊆ V , we define the minimal subDAG of D induced by S to
be the DAG D′ = (V ′,E ′) whose vertex set is V ′ = S and
there is an edge (v, u) ∈ E ′ if and only if u, v ∈ S, v <V u
and there is no w ∈ S \ {u, v} such that v <V w <V u.
Definition 6 (Maximal and Minimal Elements): Let D =

(V ,E) be a DAG and let ≤V be the partial order induced by
D. For a subset of vertices S ⊆ V , an element u ∈ S is called

3In the remainder of the paper, we will often identify the graph with its
vertex set since for a given set of vertices V , we will have only one DAG
D = (V ,E). Thereby, the set of neighbours NV (v) and other concepts that
use V as a subscript will be clear from the context.
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D-maximal (D-minimal) in S if there is no v ∈ S \ {u} such
that u ≤V v (v ≤V u). Define maxV (S) and minV (S) to be
the set of D-maximal and, respectively, D-minimal elements
in S.
Definition 7 (Future and Past Cones): Let D = (V ,E) be

a DAG. For x ∈ V , define the past cone of x in D, written
as cone(p)V (x) to be the set of all vertices y ∈ V such that
x ≤V y. Similarly, define the future cone of x in D, written as
cone(f )V (x) to be the set of all vertices y ∈ V such that y ≤V x.
Definition 8 (Past-Closed Sets): Let D = (V ,E) be a

DAG. A subset S ⊂ V is called D-past-closed if and only
if for every u ∈ S, the past cone cone(p)V (u) is contained in S.

III. NODES AND PARTICIPATION
At a high level, DLTs can be divided into permissioned
and permissionless networks. In a permissioned setting, only
selected parties can participate, while in the permissionless
setting, anyone can join the network at any time. In a per-
missioned network, participants have either reading access
or writing (validation) rights. A ‘‘fully’’ permissioned (or
private) DLT selects the participants in advance and restricts
any activity in the network to these only. This is in contrast
to a permissionless network where anybody can participate
in the network and validate the ledger. Our protocol can
work in both settings using a generic weight function on the
participating nodes. In the permissionless setting, this weight
function serves as a Sybil protection, and in the permis-
sioned setting, this weight function regulates the participant’s
influence.

In Section III-A, we introduce the network participants
called nodes. In Section III-B we describe a Sybil protection
mechanism based on assigning specific weights to nodes.
Finally, in Section III-C we discuss how the writing ability
of nodes is controlled by their weight.

A. NETWORK
The network participants in the DLT are called nodes, and
we denote the set of all nodes by N := {1, . . . ,N}, where
N is the total number of nodes. A priori, different nodes may
have different perceptions of the set of nodes. For example,
in a permissionless setting, for a node to join the network, the
knowledge of a single node entrance point is sufficient. For
the sake of a better presentation, we assume that every node is
aware of every other node. Nodes directly communicate with
a subset of other nodes, i.e. its neighbours, via bidirectional
channels. Thus, together all nodes create a peer-to-peer (P2P)
overlay network. Nodes use public-key cryptography for their
identification. Their unique node ID is derived from the pub-
lic key, and all their blocks are signed with their private keys.

In contrast to other DLTs, where nodes can be divided into
separate functional classes, we assume all nodes behave in
the same way. Specifically, all nodes have two main roles.
First, they propagate specific blocks through the network by
receiving and sending these from and to their neighbours.
Second, by creating new blocks and appending them to the

data structure, nodes implicitly vote on the state of the pre-
vious blocks and their contained transactions; this procedure
is called On Tangle Voting (OTV), see Section VI. For the
voting part, we assume a scarce resource, see Section III-B.
This resource endows every node with a certain weight that
is used for the implicit voting procedure.

B. SYBIL PROTECTION
A common problem in permissionless distributed systems is
that it is easy to spawn a significant number of nodes, also
known as the Sybil attack. Thus, any critical component must
ensure that the action of nodes is limited, otherwise, it would
be trivial for an attacker to gain a disproportionately large
influence and corrupt the protocol.

To limit or prevent Sybil attacks, we assume that each
node can be associated with a particular reputation or weight
attributing them an equivalent proportion of voting power in
the applied voting mechanism.
Definition 9 (Weight): For a given node i ∈ N there is an

associated weight w(i), given by a function w : N → [0, 1].
The weights are assumed to be normalised, i.e.∑

i∈N
w(i) = 1.

The above weight function plays a crucial role in the
validation process, see Sections IV-D-VI-D.
Remark 1: We make use of the same weights as a control

for the writing access in Section III-C. Note, however, that the
weight for writing and validation could be different.

A commonway to implement such aweight is the so-called
resource testing, where each identity has to prove the own-
ership of specific difficult-to-obtain resources. Since in the
cryptocurrency world, users own a certain amount of a scarce
resource, i.e. tokens, a practical Sybil protection mechanism
can be based on proving the ownership of tokens and, thus,
a certain amount of collateral.

Another way of implementing the weights is through dele-
gation methods. The owners of source tokens, fromwhich the
weights are derived, can then delegate these weights to any
node of their choosing. This brings several key advantages.
For example, fund owners can delegate weight to nodes that
provide good service or revoke it when the node does not
behave as expected, thus enabling the implementation of a
‘‘reputation’’ system. In the extreme case, this even allows
decoupling the weights from the token distribution and incor-
porate real-world trust models.

Generally, the weight distribution in our system may
change over time due to changes in the weights or inevitable
churns (nodes join and leave). Due to the asynchronous nature
of the protocol, the perception of the weights may then differ
from node to node. The protocol design considers this effect
and allows a certain divergence in the weight vector. This tol-
erance to different perceptions provides for some additional
features of the protocol. However, a more detailed discussion
of a divergence in the nodes’ view on the weight vector is out
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of the scope of this paper. Thus, for simplicity, we make the
following assumption.
Assumption 1 (Agreement on Stability of Weights): All

nodes in the network perceive the weight of node i to be
precisely w(i). This weight is assumed to remain constant
over time.

C. WRITING ACCESS
The distributed nature of the protocol and the Byzantine
environment within which it operates puts several constraints
on the writing access. These constraints are evenmore critical
for our protocol since it is not leader-based and does not rely
on the intermediary of miners and block creators. Similar
to [51] we require the following conditions:

1) Consistency: if a block that is issued by an honest node
is written to the (distributed) database by one honest
node, it should eventually be written by all honest nodes.

2) Fairness: given aweight function and amaximum band-
width, nodes can issue blocks at a rate proportional to
their weight.

3) Security: the above constraints are guaranteed in a
Byzantine environment.

Consequently, the protocol should ensure that in congested
scenarios only a limited amount of blocks are propagated,
i.e. the block rate is capped by a certain throughput. Further-
more, this should happen fairly. These requirements prevent
nodes from becoming overloaded and from inconsistencies in
the ledger being created. In principle, this could be enabled
through fees and PoW, or more novel alternatives as the
access control algorithm presented in [51].

For the safe operation of the consensus mechanism,
we assume the availability of such amechanism. The required
tool should provide guarantees on the constraints mentioned
above. We make the following assumption.
Assumption 2 (Writing Access): The writing access is

controlled such that consistency, security, and fairness in
writing access are guaranteed for a given weight function w.

IV. BLOCK STRUCTURE AND WITNESS WEIGHT
In this section, we introduce our protocol’s data structure
concepts. To replicate a certain content over the distributed
network, a node must wrap this content in a block.4 However,
when the content is simply transactions, we require a block to
contain only one transaction in its payload. This assumption is
made for sake of a better presentation and can be relaxed, such
that blocks containmore than one transaction.Moreover, each
block has to refer to at least two blocks issued in the past. The
latter requirement is motivated by the leaderless architecture
of our protocol, in which each node can issue blocks indepen-
dently of others. In addition, we discuss a particular metric
on blocks, called the Witness Weight, that allows nodes to
reliably understand when a significant fraction of the network
has seen a given block.

4In prior works, we refer to this object as a message.

FIGURE 2. Simplified block layout with a transaction as content. The fund
owner provides the node with the transaction. The node wraps the
transaction into a block and signs the block.

In Section IV-A, we formally define a block. Section IV-B
discusses the Tangle, a DAG formed by blocks and their
references. The local version of the Tangle seen by a specific
node is introduced in Section IV-C. Using the weight function
for nodes introduced in Section III-B, we formally define
the Witness Weight of a given block in the local Tangle in
Section IV-D and show how to use this metric as a confir-
mation rule for blocks in Section IV-E. The analysis of the
growth of the Witness Weight is provided in Section IV-F.

A. BLOCKS
The protocol’s goal is to replicate certain content between the
nodes in the network reliably. For example, this content could
be the atomic updates of balances of fund owners.

This content is wrapped into an object that we call block.
A node that would like to initiate the addition of certain con-
tent to the Tangle across the network assembles such a block,
which includes the content, k references to previous blocks
and the signature of the node (see Figure 2). We call the
process of assembling and initial broadcasting the issuance
of a block. Each node that receives a new block forwards it to
its neighbours.
Definition 10 (Block): A reference ref(x) of block x is a

pair (ry, v), where ry = hash(y) is a unique value that cor-
responds to a previously issued block y and v is the value of
a label. We define a block x as an object with content

x = ({ref1(x), . . . , refk (x)}, x̂, nodeID(x)),

where the refi(x)’s are references, x̂ is a transaction and
nodeID(x) identifies the issuing node.
Remark 2: A collision-resistant hash function is used to

map data of arbitrary size to a fixed-size binary sequence,
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i.e. hash : {0, 1}∗→ {0, 1}h. Moreover, it is required that it is
practicably impossible to find for a given sequence x another
sequence x ′ such that hash(x) = hash(x ′). Throughout the
remainder of the paper, we assume that a particular hash
function is fixed and used by all participants.
Remark 3: The label v indicates the reference or voting

type, as we will see later in Section VI-C.
The issuing node obtains the content through a

service-client relationship with the issuer of the content,
which can be facilitated through an application programming
interface (API) call. Alternatively, the node itself may also
be the issuer of the content. An essential application for the
content is the transfer of funds, i.e. the consumption and
creation of outputs. We call this type of content a transaction.
In this paper, for the sake of presentation, we will assume that
each block contains exactly one transaction in its payload.
However, in general, blocks are not limited to this use case.

As blocks will also be used to propagate votes, keeping
track of the issuing nodes is crucial.
Definition 11 (Issuer of a Block): For a block x, the node

that issued x is denoted as issue(x), where issue(x) ∈ N .

B. THE TANGLE
The Tangle is a data structure built in accordance with the
following rule as stated in the original paper [3] of the Tangle:
‘‘In order to issue a [block],5 a node chooses two other
[blocks] to approve’’.

More generally, we modify this by allowing a block to
reference up to k existing blocks. The data structure takes the
form of a DAG, where the blocks correspond to the vertices,
and the references form the edges.

Let us define this data structure more formally. We denote
the set of blocks by T . There is a special block, called the
genesis and denoted by ρ. This block does not contain any
references. Any other block has to directly refer to at least
two (not necessarily distinct) blocks. Thereby, the reference
relationship can be encoded into a DAG.
Definition 12 (The Tangle): The Tangle DT is a DAG

whose vertex set is the set of blocks T . There is a directed
edge from y and x in DT if and only if y directly refers to x.
Using the notation from Section II, we write ≤T to denote

the partial order on the set of blocks induced by DT . For
a block x ∈ T , the Tangle past and future cone of x are
denoted as cone(p)T (x) and cone(f )T (x), respectively. The par-
ents and children of x are written as parT (x) and childT (x).
If x <T y we say that block x approves or references block
y. Specifically, if x ∈ childT (y), then x directly references y;
if x 6∈ childT (y) and x <T , then x indirectly references y.
A leaf in the Tangle DAG is said to be a tip.
Example 1: We refer to Figure 3 for an illustration of the

Tangle and the Tangle future and past cones of block x.

5The term used in the original whitepaper is transaction, however, in this
work we distinguish between the block and its contained transaction.

FIGURE 3. Future and past cones of a block x in the Tangle.

C. LOCAL TANGLES
Due to the distributed nature of the network, nodes can
receive blocks at differing times or even out of order. The
time at which a node first receives a block is called arrival
time.

Blocks can also be lost during their broadcast. While,
generally, this could be problematic, the Tangle DAG allows
for an elegant solution to remedy the loss by a process called
solidification. If a node receives a block for which the parents
are unknown, it requests the missing block from its peers.
Upon receipt of the missing parent block, the past cone is now
complete (unless their parents are missing - in which case the
node has to repeat this procedure recursively). Once a block’s
past cone is completed, the node flags the block as solid. The
time of solidification of a block x in node i is denoted by
τs,i(x). We only consider blocks included in the Tangle after
they are flagged solid.

As a consequence of the above, we can argue that there is
no such thing as one Tangle in the network, as every nodemay
have a different perception of it. Hence, at time t a node i is
aware only of the block x that satisfy τs,i(x) ≤ t . We denote
by Ti,t and DTi,t the local perception of the block set and the
Tangle DAG perceived from node i at (local) time t . Past
and future cones then are also given in their local forms
cone(f )Ti,t (x) and cone(p)Ti,t (x). We omit subscripts and simply
write DT = DTi,t if the dependence on i and t is clear from
the context.
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FIGURE 4. Tangle DAG, where the issuing node of a block can be
identified with a unique colour shown in the bottom of the block. The
colors of the supporters of blocks x, y, z are depicted in the top-right
corners.

D. WITNESS WEIGHT AND WEIGHTED LOCAL TANGLES
In the original Tangle whitepaper [3] the cumulative weight
of a block plays a crucial role in the consensus finding. This
cumulativeweight is the number of blocks referencing a given
block. In case of a conflict, nodes follow the part of the Tangle
that contains the largest cumulative weight.

We adopt this fundamental idea to the setting where each
node carries some weight. In this way, the nodes’ weight
replaces the PoW in the block creation as a Sybil protection
mechanism. The nodes’ signature in each block links the
issuing node to the block (see Section IV-A). Thus, a node
can be associated with the set of blocks on the Tangle issued
by that node, and the node’s weight can be mapped to the
blocks.
Definition 13 (Block Supporter and Witness Weight): Let

x ∈ Ti,t be a block. Denote by sprtTi,t (x) the set of nodes that
issues a block in the future cone of x:

sprtTi,t (x) =
{
j ∈ N : ∃y ∈ cone(f )Ti,t (x) , j = issue(y)

}
.

We call nodes from sprtTi,t (x) supporters of x. We define the
function WWi,t : Ti,t → [0, 1] which is called the Witness
Weight (WW) of a block seen by node i at time t as follows

WWi,t (x) :=
∑

j∈sprtTi,t (x)

w(j). (2)

As the total weight is normalised to 1 the WW describes the
percentage of weight approving a given block. Whenever it is
clear from the context, we omit indices i and t .
Example 2: In Figure 4, we give an example of the set

of nodes approving given blocks x, y and z. We use unique
colours in the bottom of blocks to represent signatures of
different issuing nodes. One can readily check that sprtT (x)

consists of nodes corresponding to brown, cyan and gray
colours.

We proceed with two trivial statements saying that the
WWs of blocks are monotonically increasing toward the
genesis and the WW of a block can only grow over
time.
Lemma 1 (Monotonicity of the WW): For any two blocks

x, y ∈ T such that x ≤T y, it holds that sprtT (x) ⊆ sprtT (y)
and, hence,WW(x) ≤WW(y).
Lemma 2 (Growth of the WW): For any block x ∈ T , node

i ∈ N and time instants t1 and t2 such that t1 < t2, it holds
that sprtTi,t1 (x) ⊆ sprtTi,t2 (x) and, hence, WWi,t1 (x) ≤
WWi,t2 (x).
A more delicate analysis of the growth of the WW under

certain assumptions is provided in Section IV-F.

E. CONFIRMATION RULE FOR BLOCKS
The block stream is controlled by the writing access control,
see Section III-C. A priori, this control alone may not be
sufficient to guarantee that all nodes see all blocks in the
network. However, to guarantee the safety of the system,
nodes must have consensus on which blocks should perma-
nently be accepted in the data set T , otherwise, inconsis-
tencies between the nodes could arise. If such a consensus
is achieved, we consider a block confirmed. Furthermore,
to maintain consistency in the data structure DT , a block
x can only be confirmed if all blocks in cone(p)T (x) are
confirmed.

Tools that provide information about the confirmation sta-
tus of blocks, with specific safety and liveness considerations,
are generally referred to as confirmation rule. We design
such a tool based on the concept of WWs of the blocks. The
WW allows the nodes and users to create their subjective
confirmation criterion. The larger the WW of a block, the
higher the probability that the block will be in the ledger
forever. This idea is similar to the ‘‘depth’’ of a transaction
in a blockchain. Therefore, the actual confirmation criterion
may depend on the protocol environment and the underlying
use case.
Definition 14 (Confirmed Block): Let θ ∈ (0.5, 1] be a

fixed threshold. We say that a block x ∈ T is confirmed for
a node i ∈ N at time t if WWi,s(x) ≥ θ , for some s ≤ t .
Once a block is confirmed for a node, it remains confirmed

forever. This irreversibility of the confirmation status places
some strong requirements on the convergence of this status.
More specifically, once a single node reaches the threshold
for a given block, all nodes should reach this threshold even-
tually with a very high probability.

In an honest scenario, this assumption can be easily satis-
fied since a high WW also represents that a large proportion
of nodes have ‘‘seen’’ a given block and issued a block
approving it. If the default tip selection algorithm is suitably
chosen and followed by sufficientlymany nodes all nodeswill
attach blocks eventually to the future cone of that block with
a very high probability (for more details, see Section IV-F).
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In Section VIII we discuss the liveness and safety of the
protocol in detail.

F. GROWTH OF WITNESS WEIGHT
In this section, we model the block issuance and discuss
the growth of the WW and its dependencies on the protocol
environment.

We consider the following assumption.
Assumption 3 (Issuing Rate): Each node i ∈ N issues

blocks at a Poisson rate λi (per second). The rate λi is propor-
tional to the corresponding weights w(i) (see Definition 9),
i.e. λi = λw(i) for some constant λ > 0. We assume that
every node issues blocks independently of the other nodes.
The rate of issuance for all nodes is then

λ =
∑
i∈N

λi.

Remark 4: Under Assumption 3 the times between two
successive blocks from a node i ∈ N are independent and
exponentially distributed with parameter λi.
To develop a heuristic for the WW we use the following

approach. We assume that there is an ‘‘omniscient observer’’,
that is instantly aware of all blocks issued by all nodes. The
observer’s perception of the state may differ from the per-
ception of a given node, however, these differences have no
substantial influence on the heuristic result. We refer to [52],
[53] where this method has already been proven to lead to
good heuristics. This view is reflected in the notation by
omitting the index i. For instance, Tt denotes the set of blocks
perceived by this omniscient observer at time t and WWt (x)
denotes the corresponding WW of a block x at time t .

Let x be a block issued at time t0 and denote by Ei(δ, x) the
event that node i issues a block in the time interval [t0, t0+ δ]
in the future cone of x. We write 1{Ei(δ, x)} for the indicator
function of this event; it is equal to 1 if the event occurred and
0 otherwise.

For t = t0 + δ, the WW of block x perceived by the
omniscient observer satisfies

WWt (x) =
N∑
i=1

w(i)1{Ei(δ, x)}. (3)

Node i issues blocks with rate λw(i) and, thus, we have that

P(Ei(δ, x)) ≤ 1− exp(−δλw(i)). (4)

Note that the equality does not necessarily hold since not all
new incoming blocks have to witness block x. Taking the
expectation in Equation (3) and applying Inequality (4) we
obtain

E[WWt (x)] ≤
N∑
i=1

w(i) (1− exp(−δλw(i))) . (5)

The formula given in (3) holds in the very general setting.
For the analysis of the protocol, it is, however, important to
consider a specific weight distribution. Probably the most

appropriate modelings of weight distributions rely on uni-
versality phenomena. The most famous example of this uni-
versality phenomenon is the central limit theorem. While the
central limit theorem is suited to describe statistics where val-
ues are of the same order of magnitude, it is not appropriate to
model more heterogeneous situations where the values might
differ in several orders of magnitude. These heterogeneous
situations are frequently described by a Zipf law and appear
in many fields; e.g. city populations, internet traffic data, the
formation of P2P communities, company sizes, and science
citations. We refer to [54] for a brief introduction and more
references, and to [55], [56], and [57] for the appearance of
Zipf’s law on the internet, computer networks, and DLTs.

We consider a situation with N elements or nodes. Zipf’s
law predicts that the (normalised) weight of the node of rank
r is given by

w(r) =
r−s∑N
j=1 j

−s
, (6)

where s ∈ [0,∞) is the Zipf parameter. Since the weights
w(·) in (6) only depends on two parameters, s and N , this
provides a convenient model to investigate the performance
of the protocol in a wide range of network situations. For
instance, a homogeneous network with N nodes having equal
weight can be modeled by choosing s = 0. With increasing
value of s the network becomes increasingly centralised.
Example 3: We refer to Figure 5. The growth of the WW

depends on several factors, notably the issuing rate λ and the
distribution of the nodes’ weight. In the case of a Zipf dis-
tribution the weight depends on two parameters, the number
of nodes N and the Zipf parameter s. The upper bound (5)
is a convex monotone function in δ and λ. The dependence
on the parameters N and s is not so obvious. For this rea-
son, we perform some Monte-Carlo simulations for N ∈
{100, 1000, 10000} and s ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2}, and
λ = 1000.6 For a given t0 we approximate the WW at time
t0 + t to be the sum of the weights of all nodes having issued
a block during the time interval [t0, t0 + t]. This provides a
lower bound estimate for the WW of a block that is issued at
t0. In Figure 5 every line corresponds to one realisation of the
growth of the issued WW (for t0 = 0).

G. ESTIMATES ON TIME TO CONFIRMATION
As discussed in Section IV-E, a confirmation rule is essen-
tial for many use cases, and time to confirmation (TTC) is
undoubtedly a vital performance measure of every consensus
protocol. As a thorough analysis of the TTC is out of the scope
of this paper, we give a first ‘‘heuristic’’ upper bound in this
section.
Definition 15 (Time to Confirmation): We define the time

to confirmation of a block x (at level θ ) by a node i as

τf ,i = τf ,i(x) := inf{t > 0 :WWi,t (x) ≥ θ} − τs,i(x), (7)

6Typical values for the Zipf parameter found in popular cryptocurrencies
for the top 100 addresses are in the range between s = 0.7 and s = 1.2 [57].
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FIGURE 5. Growth of the issued WW in Example 3 with 1000 blocks per second. We see the different behaviour for 100 nodes (left), 1000 nodes
(middle) and 10.000 nodes (right). The growth depends essentially on the chosen Zipf parameter s (in colour) and the number of nodes.

FIGURE 6. Illustration of the Tangle to display the confluence time and
issuance time. The colours in the bottom of the blocks represents the
issuing nodes with significant weight. We demonstrate the colours of the
‘‘heavy’’ supporters of block x on the right after each time period. The
dashed blocks correspond to blocks that are not in the future cone of x .

where τs,i(x) is the solidification time of x (see Section IV-C).
In the remainder of this section, we omit index i ∈ N since

the provided analysis is relevant to all nodes. We divide the

TTC into two periods. During the first period, we wait for the
confluence time τc = τc(x) until a given block x is contained
in the past cone of (almost) all current tips. During the second
period, the issuance time τiss, we let the WW grow until it
reaches the threshold θ . The TTC τf is then bounded above
by

τf ≤ τc + τiss. (8)

Estimates for τiss are obtained from (3) and this formula
can be simplified for specific choices of the weights (see
Example 5).
Example 4: We demonstrate the confluence time and the

issuance time with the help of Figure 6. Blocks with a solid
frame are in the future cone of block x. After the conflu-
ence time, all blocks approve x. The yellow, green and pur-
ple colours represent blocks by nodes that hold significant
weight, i.e. the nodes have a large influence on the confirma-
tion. Once the cumulative weight of the nodes issued in the
future cone of x reaches the threshold θ , the block becomes
confirmed.

With some additional assumptions, we can obtain estimates
for the confluence time τc similarly to [3]. Our first assump-
tion is that the delay between block creation and the moment
that other nodes in the network receive this block is constant.
Assumption 4 (Constant Network Delay): We assume that

the time between the block creation and until any other node
receives this block equals some constant h.
Definition 16 (Number of Tips): Let L(t) be the total num-

ber of tips of the Tangle at time t .
As mentioned in Section IV-C, there is no ‘‘objective Tan-

gle,’’ and every node has its own perception. Nevertheless,
previous work [52] showed that the approximation made in
this section leads to reasonable approximations for some
quantitative properties of the Tangle, such as the number
of tips and confluence times. For this reason, we omit the
subscript ‘‘i’’ and work with a unique objective Tangle in this
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section. Similar to [3] we assume the number of tips to be in
a stationary regime.
Assumption 5 (Constant Tangle Width): We assume that

the number of tips L(t) of the Tangle is stationary and has
mean L0.
Using Assumptions 3, 4, and 5 we follow the heuristics

described in [3, Sec. 3]. A first observation is that at any
given time t there are on average λh hidden tips, those blocks
that have been issued after t − h but are not yet visible to
the network. As in [3] we assume that typically there are r
revealed tips, those that have been attached before t − h but
are still tips. Hence, we can write the total (average) number
of tips as L0 = r + λh. By Assumption 5 we consider that
the number of tips L(t) is roughly stationary. This implies
that since λh tips join the tip pool, during the same time,
roughly λh blocks that have been tips at time t − h became
referenced and are no longer tips. Hence, the tip pool of size
L0 can be divided into r revealed tips and λh blocks that are no
longer tips. This division leads to the crucial observation that
a new block (with k parents) approves on average kr/(r+λh)
(revealed) tips. Moreover, in the stationary situation where
the tip pool size L0 stays approximately constant, the mean
number of chosen tips should be equal to 1; otherwise, the
number of tips would change. Solving kr/(r + λh) = 1 leads
to

L0 = L(k)0 =
kλh
k − 1

. (9)

This result, predicted in [3], has been confirmed through
simulation studies in [53] and [52] and theoretical results
in [58].

A first consequence of (9) is that, if L0 is large, the expected
time for a block to be approved for the first time is approxi-
mately

h+ L0/(kλ) = h+
h

(k − 1)
. (10)

The size of the tip pool is naturally linked to the growth of the
WW of a given block; the larger the tip pool the slower the
growth of the WW.
Remark 5: For any given λ and h we can choose k suf-

ficiently large such that k > L(k)0 . In this case, blocks are
referenced essentially immediately after they become visible,
however, at the cost of a larger block size.

We can proceed similar to [3] to obtain that

τc ≈
h

W
(
(k−1)2
k

) (logL0 + log ε) , (11)

where log denotes the natural logarithm function andW is the
principal branch of the LambertW -function, which is defined
as the inverse function to z = wew, i.e.w = W (z). For large k ,
we can use the approximation

W
(
(k − 1)2

k

)
≈ 2 log(k − 1)− log k ≈ log k

and, hence, obtain

τc ≈
h

log k
log(L0) ≈

1
log k

h log(λh). (12)

In Section A, we will give more details on the derivation of
the confluence time.
Example 5: The behaviour of the issuing time τiss heavily

depends on the actual weight distribution, e.g. see Figure 5.
However, the extreme case of all nodes having the same
weight can be treated more analytically. Extreme is meant
here in the sense that the growth of the WW is to some
extent the smallest. Hence, let w(i) = 1/N for all nodes
i ∈ N and assume that we want to get a bound on the
confirmation time, i.e. the first time a given block x reaches
WWt (x) ≥ θ . Denote by Xi the first time a block was sent
from node i ∈ N . The vector of these times (X1, . . . ,XN )
can be ordered in increasing order and we obtain the so-called
order statistics X(1), . . . ,X(N ). In the case where all Xi follow
the same exponential distribution Exp(γ ) the distribution of
the ith order statistic is given by

X(i) ∼
1
γ

i∑
j=1

Zj
N − j+ 1

, (13)

where the Zj are i.i.d. exponential random variables with
parameter 1. Eventually, the time it takes that dθNe nodes
issued a block is distributed as X(dθ ·Ne). The expectation is
given by

E[X(i)] =
1
γ

i∑
j=1

1
N − j+ 1

,

with i = dθ ·Ne. Using a standard integral approximation for
the above sum, we obtain for large N that

E[X(i)] ≈
N
λ
(log(N )− log(N − i)) .

Hence, for i = θN ,

τiss ≈ E[X(i)] ≈
N
λ
(− log(1− θ )) .

Combing this result with the bound (12) on the conflu-
ence time in (8) we obtain the following asymptotic upper
bound on the TTC for large k (and the other parameters
fixed):

τf .
1

log k
h log(λh)+

N
λ
(− log(1− θ )) .

V. THE LEDGER
This section introduces several novel concepts to represent
transactions and their interrelationships. Recall that in the
standard UTXO conflict-free model, transactions specify the
outputs of previous transactions as inputs and create new
outputs by spending (or consuming) the inputs. No two trans-
actions are consuming the same input. Such a conflict-free
data structure can be implemented in a network where a con-
sensus mechanism filters transactions. The latter is typically
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done by choosing a ‘‘leader’’ among the participants, and
the leader adds a block of transactions to the conflict-free
ledger. To bypass this ‘‘centralised’’ bottleneck, we propose
the concept of the Reality-based UTXO Ledger, an aug-
mented version of the standard conflict-free UTXO Ledger
that allows more than one output spend. We refer the reader
to the parallel work [15], where we discuss all concepts in
detail.

In Section V-A, we recall the definition of a transaction in
the UTXO model and the ledger, which is a set of all transac-
tions. In Section V-B, we introduce definitions of conflicting
transactions, conflicts and branches, which represent proper
subsets of ‘‘non-conflicting conflicts’’. A reality is a maximal
possible branch, and restricting a ledger to a reality results in
the conflict-free UTXO Ledger. Finally, in Section V-C we
discuss how nodes could choose a reality given an abstract
weight function defined on the set of conflicts. The selected
reality allows a node to express its opinion when issuing new
blocks and validating transactions.

A. UTXO MODEL AND TRANSACTIONS
In the Unspent Transaction Output (UTXO) model transac-
tions specify the outputs of previous transactions as inputs
and spend them by creating new outputs.

Thus, a transaction consists of a list of inputs and a list
of outputs, see Figure 2. Note that outputs must be unique.
The uniqueness is typically achieved by creating the output
ID with the involvement of a hash function. For example, the
output ID could be the concatenation of the index of an output
and the hash of a transaction’s content. Every output rep-
resents a specific amount of the underlying cryptocurrency.
The value of all inputs, i.e. spent outputs, must equal the
value of all outputs of a transaction. With each output comes
a declaration by whom and under which conditions it can
be spent. Under unlock conditions, e.g. a signature proving
ownership of a given input’s address, the transaction issuer is
allowed to spend the inputs. We refer to Figure 2 for a general
transaction layout.

As said in Section IV-A, blocks contain transactions in
their payload. Hereafter, we write x̂ to denote the transaction
contained in the payload of a block x.
Let us define the transactions and ledger model more for-

mally. We follow the approach of [59].
Definition 17 (Output and Input): An output is a pair of a

value v ∈ R+ and an unlock condition cond. We write o =
(v, cond) to denote the output. An input i is a reference to an
output. We say the input consumes the output.
Definition 18 (Transaction): A transaction x̂ is a collec-

tion of inputs in(x̂), outputs out(x̂), and unlock proofs
unlock(i), i ∈ in(x̂), where

1) in(x̂) = (i1, . . . , in) is a list of inputs, i.e. references to
unconsumed outputs. We say that those outputs are spent
or consumed by transaction x;

2) out(x̂) = (o1, . . . , om) is a list of new outputs produced
by transaction x̂;

3) unlock(i) is a proof which performs verification of the
unlock conditions of each input i of transaction x̂. This
is usually done by cryptographic proof of authorization
that ensures that the issuer of the transaction satisfies the
condition cond of the consumed outputs.

Definition 19 (Ledger): The ledger is a set of transactions
and denoted as L.

The UTXO ledger starts at the so-called genesis which
contains outputs and no inputs. We emphasize that we use
the same term for the ultimate predecessor of all blocks and
all transactions. Recall that the genesis-block is written as ρ,
whereas the genesis-transaction will be denoted as ρ̂.

Typically every output can be consumed by at most one
transaction and, hence, the value of all unspent outputs is
conserved overall. Specifically, in the standard conflict-free
UTXO model, the ledger can not contain a so-called double
spend, i.e. two transactions that consume the same output of
a transaction.

In the following section, we alleviate this conflict-free
restriction and allow the Ledger to contain conflicting trans-
actions.

B. REALITY-BASED LEDGER
In this section, we propose an augmented version of the stan-
dard conflict-free UTXO ledger model that allows containing
double spends. We suggest different structures that can be
used for tracking conflicting transactions without the need for
consensus.

First, we explain how the transactions and their in- and
outputs result in a DAG structure. The information contained
in the Ledger DAG is split into the Conflict Graph, which
keeps track of the conflicting transactions only. Then we
introduce the concept of branches. A branch forms a possible
non-conflicting state of the ledger. We will then derive a
concept, called a reality, which allows us to reduce L to
a maximal subset of transactions that yield a conflict-free
(Reality-based) ledger.
Definition 20 (Ledger DAG): We define the Ledger DAG

DL to be a DAG whose vertex set is the ledger L. There is
a directed edge (x̂, ŷ) in the edge set of DL if and only if an
input of x̂ references an output of ŷ.

We refer to Appendix B, where we demonstrate this graph
together with many other core concepts. Using the notation
from Section II, we write ≤L to denote the partial order
on the set of transactions induced by DL. The past cone
of a transaction x̂ is denoted by cone(p)L

(
x̂
)
, i.e. transaction

x̂ spends value directly or indirectly from transactions in
cone(p)L

(
x̂
)
\ {x̂}.

Typically, the addition of transactions to this type of data
structure is such that only transactions, which create no con-
flict with any previously recorded transactions are allowed to
be added, i.e. the Ledger DAG is conflict-free. However, this
requires a consensus mechanism that pre-selects transactions.

Now we introduce a new design for a ledger, where this
constraint is replaced by a relaxed one – namely, a new
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transaction x̂ can be added to the ledger if in(x) are references
to outputs which are not already consumed in cone(p)L

(
x̂
)
\{x̂}.

In the following, we provide an overview of some of the
most important concepts of the proposed solution that allows
conflicting transactions to co-exist. Thereby, we start with a
formal definition of conflicts and conflicting transactions.
Definition 21 (Conflicts): Two distinct transactions x̂, ŷ ∈

L are directly conflicting if they have at least one input in
common. A transaction x̂ ∈ L is called a conflict if and only
if there exists a transaction ŷ ∈ L \ {x̂} such that x̂ and ŷ are
directly conflicting.
Definition 22 (Conflicting Transactions): Two distinct

transactions x̂1, ŷ1 ∈ L are said to be conflicting if there exist
distinct x̂2, ŷ2 ∈ L with x̂1 ≤L x̂2 and ŷ1 ≤L ŷ2 such that
x̂2 and ŷ2 are directly conflicting.

The interrelations between conflicts can be encoded with
the help of the Conflict DAG and the Conflict Graph.
Definition 23 (Conflict DAG and Conflict Graph): The

set of all conflicts is denoted by C and dubbed the set of
conflicts of the ledger L. We define the Conflict DAG DC to
be the minimal subDAG of the Ledger DAG induced by C∪ ρ̂
(cf. Definition 5). We define the Conflict Graph GC to be the
graph whose vertex set is C and two conflicts are connected
by an edge if and only if these conflicts are conflicting (as
transactions).

We can group transactions based on whether they conflict
with each other or not.
Definition 24 (Conflict-Free Set and Conflicting Sets): A

subset of transactions S ⊆ L is called conflict-free if it does
not contain any two conflicting transactions. We also say that
S1 ⊆ L is conflict-free with respect to S2 ⊆ L if there is
no x̂1 ∈ S1 and x̂2 ∈ S2 such that x̂1 and x̂2 are conflicting.
Alternatively, S1 is conflictingwith S2 if S1 is not conflict-free
with respect to S2.

We further specialise conflict-free sets and introduce the
notion of branches.
Definition 25 (Branch and Set of Branches): A set of con-

flicts B ⊆ C is called a branch if and only if the two properties
hold:

1) B is conflict-free (cf. Definition 24);
2) B is DC-past-closed (cf. Definition 8).

DefineB to be the set of all branches. A branch that represents
the empty set is called the main branch.

We now introduce the concept of a reality which can be
defined as a maximal possible branch or, equivalently, a max-
imal independent set in the Conflict Graph. In other words,
a reality aggregates the maximal number of conflicts while
preserving non-conflicting nature.
Definition 26 (Maximal Branch and Reality): A branch

B ∈ B is maximal if there exists no other branch A ∈ B
such that B ⊂ A. A maximal branch is called a reality.

Next, we describe the notion of the maximal contained
branch of a given transaction which consists of the set
of conflicting transactions in the past cone of the given
transaction.

Definition 27 (Maximal Contained Branch): Let B be the
set of all branches, and branch(p)L : L → B be a function
that for a given transaction x̂ ∈ L returns the maximal branch
contained in cone(p)L

(
x̂
)
.

We note that there could not be two maximal branches in
the ledger past cone of a transaction. Indeed, the past cone
of any transaction is conflict-free and, thus, if there would be
two maximal branches, we could consider the union of two
branches, which has to be also a branch.
Definition 28 (Ledger of a Reality): Let R ∈ B be a real-

ity. Define the R-ledger, written as L(R), to be the set of all
transactions x̂ ∈ L such that branch(p)L (x̂) ⊆ R.
Recall that a maximal contained branch of a transaction

from the R-ledger is a subset of R. Thus, the past cones of
any two transactions are conflict-free and so is the R-ledger.
Remark 6 (Local Ledger): As discussed in Section IV-C,

there could be subjective versions of the Tangle DAG. Sim-
ilarly, every node has its own perception of the Ledger.
Thereby, we will use subscripts i, t inL, DL and other related
notions if we talk about the point of view of node i ∈ N at
moment t.

C. REALITY SELECTION ALGORITHM
To issue new blocks and validate transactions, each node in
the network has to choose a conflict-free part of the ledger
that it prefers. For this purpose, it suffices for a node to choose
a preferred reality. Once a reality R is chosen, the node can
make different operations on the R-ledger.
Definition 29 (Preferred Reality): Node i ∈ N at time t

chooses a specific reality R = Ri,t ∈ B which is called the
preferred reality for node i.

There could be different ways to choose the preferred
reality. We provide a natural reality selection algorithm that
takes as an input the Conflict Graph and an abstract weight
function w : C → [0, 1] satisfying two properties:
1) monotonicity: for any two conflicts x, y ∈ C such that

x ≤C y, it holds that

w(x) ≤ w(y);

2) consistency: let x1, . . . , xs be pairwise conflicting con-
flicts.7 Then it holds that

s∑
i=1

w(xi) ≤ 1.

Remark 7: In Section VI-D, we introduce the Approval
Weight function defined on the set of all transactions, i.e.
AW : L → [0, 1]. Then the required weight function can
be obtained as the restriction of the Approval Weight to the
set of conflicts, i.e. w = AW|C .
In Algorithm 1 we describe the proposed procedure. In this

algorithm, we initialize R as the genesis and U as the set of
conflicts. Then we iteratively construct a subset R of conflicts

7We say that transactions S ⊆ L are pairwise conflicting if any pair of
transactions x, y ∈ S are conflicting.
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Algorithm 1: Reality Selection in Conflict Graph
Data: Conflict Graph GC = (C,E)
Result: reality R ∈ B

1 R← ∅
2 U ← C
3 while |U | 6= 0 do
4 c∗← argmax{w(c) : c ∈ maxC(U )} ; /* use

min hash(c) for breaking ties */
5 R← R ∪ {c∗}
6 U ← U \ {NC(c∗) ∪ {c∗}}
7 end

and prune transactions conflicting with R from U . Specifi-
cally, we add a conflict to R if this conflict is not conflicting
with this set and attains the highest value of the weight
function among all DC-maximal elements that remain in U .
By construction, Algorithm 1 leads to a maximal independent
set in the Conflict Graph or a reality. The number of itera-
tions in the while-loop is bounded by |C| and the number of
GC-neighbours is also bounded by |C|. Thus, it is possible to
implement this algorithm with complexity O(|C|2).
We refer to Appendix B, where we apply the algorithm as

part of an illustrated example.

VI. ON TANGLE VOTING
In this section, we present a voting mechanism based on
the Tangle and the Ledger DAG. This mechanism allows for
selecting realities in the Reality-based Ledger.

In Section VI-B we give an overview of two suitable DAG
structures, which can be utilised to enable voting on the
realities. Section VI-C combines these two structures into a
Voting DAG and introduces basic concepts that follow from
it. We also address how voting on two DAGs increases the
liveness of the protocol. Section VI-D defines a metric called
Approval Weight which is utilised in Section VI-E to identify
a preferred reality and vote for it using a suitable tip selection
algorithm.

A. EXTENSION OF WITNESS WEIGHT AND LIVENESS
PROBLEMS
In Section IV we introduced the Witness Weight, which is a
metric used for the confirmation of blocks. In this section,
we seek a similar tool for the confirmation of transactions.

The Witness Weight has the property that it is monoton-
ically increasing since it expresses the percentage of the
weight that has witnessed a block’s existence. The situa-
tion is different for transactions where we want to leverage
the node’s weight to decide between conflicting transac-
tions. To ensure liveness, nodes must have the possibility
to change their votes and withdraw their weights from the
approval weight of a given transaction.8 However, changing

8In contrast, if weights are added but not withdrawn, it is possible that two
conflicting transactions gain precisely the same weight which would result
in an impasse.

the opinions might imply that blocks that reference (and
vote for) blocks with rejected transactions might never be
confirmed.

This situation creates a negative incentive to reference new
tips. More precisely, nodes may be incentivized to either
reference only blocks from trusted entities, tips of a certain
age, or in the worst case, ancient and already confirmed
blocks. The last behaviour may eventually lead to no new
blocks being confirmed anymore.

The problems above were until now a significant concern
of DAG-based consensus protocols, e.g. [3]. We propose to
solve these by using the Reality-based Ledger and extending
the reference scheme.

B. IMMUTABLE DAGs
Blocks are the primary information carriers of the network,
i.e. they contain transactions and express the opinion of the
issuing nodes. The references in the blocks, together with the
signature of the nodes and the unlock proofs for the inputs,
form two immutable data structures, similar to a blockchain.

First, the Tangle DT is constructed on the set of blocks T .
The interrelations are defined by the references contained in
the blocks, which are selected and signed by the issuing nodes
(for more details, see Section IV).

Second, the Ledger DAG DL is constructed on the set
of transactions L. Their interrelations are defined by the
consumption of inputs, which are the outputs of previous
transactions. The consumption and creation of outputs are
cryptographically verified by the signature of the fund owner
(for more details, see Section V).

For nodes to objectively agree on a partial order of events,
we require the following assumption.
Assumption 6 (Past Cone Completeness): For a transac-

tion x̂ that spends an output created in a transaction ŷ, it holds
that the block x is contained in the Tangle future cone of y,
i.e. x ∈ cone(f )T (y).

In other words, we have the natural assumption that the
spending of the output should happen in the future cones the
blocks ‘‘creating’’ these outputs.
Lemma 3: Under Assumption 6, the partial order ≤L

induced by DL is consistent with the partial order ≤T
induced byDT . More specifically, if for some blocks x, y ∈ T ,
we have that the corresponding transactions satisfy x̂ ≤L ŷ,
then it holds that x ≤T y.

Proof: The statement can be shown trivially by induc-
tion on the length of the shortest path between x̂ and ŷ in DL.
The base case, when the length of the path is one, is implied
by Assumption 6. �

C. VOTING AND VOTING DAG
As a consequence of Lemma 3 both, the Tangle and the
Ledger DAG, are suitable for nodes to express their opinions
about which transactions they prefer among any conflict-
ing transactions. More specifically by creating and attaching
new blocks, nodes have an implicit way of voting for the
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FIGURE 7. Inheritance of branches: we consider two potential blocks y
and y ′ that contain the same transaction ŷ , but have either a transaction,
or a message reference to block x . Thus, a node can vote in two ways.
Specifically, block can approve a previous block via a transaction
reference or a block reference, and inherit the branch of the referenced
transaction or the referenced block, respectively.

‘‘preferred’’ branches and conflicts. Let us define this more
precisely.

We utilise the references contained in a block, which con-
stitute the edges of the Tangle, see Section IV, to express a
node’s opinion. As by Definition 10 a reference contains two
fields: rx , which is a reference to block x and v, which is the
value of a label. We call the label v the vote type that can take
values in {vT , vL}. This label gives additional meaning to the
reference to x in the Tangle and defines the following two
specialised references.
Definition 30 (Block Reference): We say a reference

ref(y) = (rx , v) from a block y to a block x is a block reference
if y references x. In this case, we set the label v = vT .
To overcome the liveness issues described in Section VI-A

we additionally add a reference that bypasses the block and
directly addresses the contained transaction.
Definition 31 (Transaction Reference): We say a refer-

ence ref(y) = (rx , v) from a block y to a block x is a
transaction reference if y references x̂. In this case, we set
the label v = vL.
Remark 8: Naturally, a block references the transaction

that is the content of the block. As such, an honest node would
not issue a block with a transaction that is not in its preferred
reality (see Section VI-E).
Example 6: Consider Figure 7. Blocks y and y′ contain the

same transaction ŷ, but y refers to the transaction x̂ in block x
and, thus, issues a transaction reference, while block y′ refers
to the block x and, thus, issues a block reference, instead.
Remark 9: The distinction into the sub-categories (trans-

action reference and block reference) is only relevant for the
purpose of voting; the definition of the Witness Weight, see
Section IV-D, remains unaffected.

We define a data structure that combines the two
immutable data structures in Section VI-B into one single
DAG used for propagating the votes.
Definition 32 (Voting DAG): The Voting DAG DV is a

DAG whose vertex set V is the union of the set of blocks T
and the set of transactions L, i.e. V = T ∪ L. Let v and u be

FIGURE 8. Illustration of how the Voting DAG is assembled from the
Tangle and the Ledger DAG. By creating a transaction reference to block z ,
the vote of block x avoids vertices z, y, ŷ shown in grey.

two vertices in V . There exists a directed edge from u to v in
DV if and only if one of the following properties holds:

1) u, v ∈ T and u contains a block reference to v;
2) u ∈ T , v ∈ L and u contains a transaction reference to

transaction v;
3) u ∈ T and v = û ∈ L, i.e. v is a transaction in block u;
4) u, v ∈ L and transaction u spends the output from trans-

action v, i.e. v ∈ parL (u).

So far we described how references between blocks are
given additional meaning to construct the voting DAG. This
DAG allows nodes to express their opinions, recursively.
Following Definition 7 we define cone(p)V (x) as the voting
past cone of block or transaction x in the Voting DAG.
Definition 33 (Voting): Anode i expresses a direct vote for

a vertex x ∈ V in the voting DAG DV by referencing x in a
block y ∈ T , where issue(y) = i. We say node i indirectly
votes for any vertex in cone(p)V (x).
Example 7: We illustrate the concept of a Voting DAG in

Figure 8. The Voting DAG assembles information from the
Tangle and the Ledger DAG.We assume a situation where the
node that issues block x does not approve transaction ŷ and,
thus, can vote neither for blocks y nor z. However, it can vote
for transaction ẑ by using a transaction vote. More precisely,
by creating a transaction reference to block z, the vote of
block x avoids vertices z, y, ŷ shown in grey.
We can also describe the voting past cone in terms of a

recursive equation.
Proposition 1: Suppose a given block x ∈ T has block

references to block y1, . . . , ys and transaction references to
blocks z1, . . . , zr with s + r = k . Then the voting past cone
of x can be written in a recursive way

cone(p)V (x) = x ∪ cone(p)L
(
x̂
)
∪ CL(x) ∪ CV (x),
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where

CL(x) := cone(p)L
(
ẑ1
)
∪ . . . ∪ cone(p)L

(
ẑr
)
,

CV (x) := cone(p)V (y1) ∪ . . . ∪ cone
(p)
V (ys) .

The Reality-based Ledger introduces the concept of
branches, see Section V. The consumption of more than one
output from different branches creates a new branch, which is
the union of the branches of the consumed outputs. Now we
extend this concept to blocks, which can combine branches
by voting for previous blocks or transactions. More precisely
we can relate a given reference in a block with a branch. The
branch of the block is then defined as follows.
Definition 34 (Voting Branch): Given a block x ∈ T ,

we define the voting branch of x to be

branch(p)V (x) := cone(p)V (x) ∩ C,

where C is the set of conflicts.
Remark 10: We highlight that for the correctness of the

protocol, a node has to create references for a new block
x in such a way that branch(p)V (x) is indeed a branch as
defined in Definition 25. The property that branch(p)V (x) is
DC-past-closed trivially follows from the fact that cone

(p)
V (x)∩

L is DL-past-closed. However, the conflict-free property of
branch(p)V (x) is not necessarily true in general and has to be
checked. We address this issue when we discuss tip selection
algorithms in Section VI-E.

Recall Definition 27 that introduces themaximal contained
branch of a transaction x̂, written as branch(p)L (x̂). Using
Proposition 1, we relate the voting branch of block x and the
maximal contained branch of transaction x̂ in the following
statement.
Proposition 2 (Inheritance of Branches): Suppose a given

block x ∈ T has block references to block y1, . . . , ys and
transaction references to blocks z1, . . . , zr with s + r = k .
A block x inherits the union of the branches that are associ-
ated with these votes, i.e. the voting branch can be decom-
posed as follows

branch(p)V (x) = branch(p)L (x) ∪ BL(x) ∪ BV (x),

where

BL(x) := branch(p)L (ẑ1) ∪ . . . ∪ branch
(p)
L (ẑr ),

BV (x) := branch(p)V (y1) ∪ . . . ∪ branch
(p)
V (ys),

Example 8: We follow the same example as shown in
Figure 7. We assume the maximal contained branch of the
transaction in block y is the main branch, i.e. Bŷ = ∅. Block
y votes for the transaction contained in block x and, thus,
inherits the branch Bx̂ . Since Bŷ = ∅ the voting branch of
block y is Bx̂ . Similarly, block y′ votes for the block itself and
inherits the voting branch Bx . We highlight that the branch of
the transaction contained in block y (and y′) is not affected by
the choice of the vote.

We can associate a given block x with a branch BT =
branch(p)V (x). Furthermore, the content of x, which is a trans-
action x̂, also can be associated with a branch BL =

branch(p)V (x̂). Due to Lemma 3 we have that BL ⊆ BT . Since
a node may change its opinion about a conflict and vote for
a conflicting transaction to x̂, the vote is only valid from the
point-of-view of the referencing block y. A later change of
the node’s vote is possible by issuing another block that votes
for a conflicting transaction to x̂.
Definition 35 (Change of Vote and Current Vote): Let x̂

be a transaction for which node i ∈ N voted for. Let
transaction ŷ be conflicting with x̂. If node i votes for ŷ after it
voted for x̂, node i is no longer approving x̂. We say i revokes
its vote from x̂. If i’s most recent vote is approving x̂, i.e. the
vote is also not revoked, we say i’s current vote is approving x̂.
Remark 11: The notion of ‘‘time’’ and its implications on

the meaning of ‘‘after’’ in Definition 35 are crucial. Natural
choices are the timestamp inside a transaction or the solidi-
fication time of a block that contains a given transaction.
Example 9: The principle of Definition 35 is demonstrated

in Figure 1. Specifically, transactions x̂ and ŷ are conflicting;
block references are depicted with solid edges, whereas trans-
action references are depicted with dashed edges. Initially,
brown and purple nodes voted for x̂. However, after a while,
green nodes have revoked their votes from x̂ and their latest
votes are approving ŷ. The supporters of x̂ and ŷ are shown in
the top-right corners of blocks for each of the two periods.

D. APPROVAL WEIGHT AND CONFIRMATION RULE FOR
TRANSACTIONS
Nodes must be able to track the progress of the acceptance
of a transaction. We extend the concepts of Witness Weight,
introduced in Section IV-D, to the Approval Weight (AW) of
transactions. The objective is then to define a parameterisable
confirmation condition for transactions similar to the one
discussed for blocks in Section IV-E.
Definition 36 (Transaction Supporters and Approval

Weight): Let x̂ ∈ L be a transaction. Denote by sprtL(x̂) the
set of nodes that has a current vote for x̂. These nodes are
called supporters of x̂. We define the function AW : L →
[0, 1] which is called the Approval Weight (AW)

AW(x̂) :=
∑

j∈sprtL(x̂)

w(j) (14)

Clearly, the AW describes the percentage of the network
approving a given transaction.
Remark 12: The WW of a block x and the AW of its con-

tained transaction x̂ are related, but there is no ‘‘monotonicity
property’’. If x is only contained in the block x we have that
AW(x̂) ≤WW(x). If x is contained in more than one block,9

we can have that the AW of the transaction is even larger than
the WW of each enveloping block.

9A fund owner may request several nodes to broadcast a transaction x̂, or a
node may issue several different blocks with x̂ contained.
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Algorithm 2: Updating Transaction Supporters When
New Block Arrives
Data: Tangle DAG DT , Ledger DAG DL, new block x

issued by node j, {sprtL(y)}y∈L
Result: updated {sprtL(y)}y∈L

1 for ∀z ∈ cone(p)V (x) ∩ L do
2 sprtL(z)← sprtL(z) ∪ {j}
3 end
4 for ∀z ∈ L that are conflicting with cone(p)V (x) do
5 sprtL(z)← sprtL(z) \ {j}
6 end

The supporter of transactions can be updated using propa-
gation of the supporter information through the voting DAG.
More precisely on arrival of a block x we traverse cone(p)V (x).
We propose Algorithm 2 to update transactions supporters
when a new block is processed. The AWs are then updated
using Equation (14).

Similar to Definition 14 we define the confirmation of a
transaction. We will use subscripts i and t such as AWi,t if
we talk about the perception of the ith node at moment t .
Definition 37 (Confirmed Transaction): Let θ ∈ (0.5, 1]

be a fixed threshold. We say that a transaction x̂ ∈ L is
confirmed for a node i ∈ N at time t if AWi,s(x̂) ≥ θ , for
some s ≤ t .

We also define the AW of a branch, which will form the
base for the algorithm in the next section. The supporters of
a branch are equal to the intersection of the supporters of the
conflicts in the branch. More formally we have the following.
Definition 38 (Branch Supporters and Approval Weight):

Let B ∈ B be a branch. We define sprtLi,t (B) to be the set
of nodes that issued blocks that approve all conflicts in B.
Similarly we define the AW for B as

AW(B) :=
∑

j∈sprtL(B)

w(j). (15)

We define the AW of the main branch, i.e. the empty set ∅,
to be 1.

E. TIP SELECTION ALGORITHM
The consensus protocol relies substantially on an implicit
voting mechanism. Nodes express their opinions and votes
by choosing the references in their newly issued blocks.
The process that determines the references is called the Tip
Selection Algorithm (TSA) and is discussed in this section.

With every block, a node can vote on which parts of the
Tangle and the Ledger DAG it prefers by using block or trans-
action references. The preferred parts of the Tangle and the
Ledger DAG are defined by the preferred reality. Following
the algorithm described in Section V-C, a node i at moment t
keeps its preferred reality R = Ri,t up to date.
We now describe a tip selection mechanism that considers

both block and transaction votes. Note that due to Lemma 3
the Ledger DAG induces a partial order consistent with the

one induced by the Tangle and, thus, voting on the Ledger
DAG allows expressing a more selective, albeit less efficient
vote than on the Tangle.

Let us define some reality-dependent tip sets on the Tangle
DAG and the Ledger DAG.

Denote by TT (R) ⊂ T the tips in the Tangle DAG whose
Tangle past cones contain only transactions in reality R. More
precisely, for any x ∈ TT (R), there is no y ∈ cone(p)T (x) such
that ŷ ∈ C \ R.

Denote by TL(R) ⊂ L the tips in the Ledger DAG whose
past cones contain conflicts from R only. In other words,
it holds that for any x̂ ∈ TL(R), there is no ŷ ∈ cone(p)L

(
x̂
)

such that ŷ ∈ C \ R. A node should apply the following tip
selection and reference setting.
Definition 39 (Uniform Random Tip Selection on a Real-

ity): To issue a new block, node i chooses tips to approve
uniformly at random from all tips in the Tangle DAG until
k references are created. For a randomly chosen tip, the node
proceeds with the following steps:

1) if the selected block is in the setTT (R), a block reference
is created;

2) otherwise, if the selected tip contains a transaction that
is in the set TL(R), a transaction reference is created;

3) if neither of the above apply, the block is discarded
instead.

We call this algorithm the Uniform Random Tip Selection
Algorithm restricted on the reality R (or R-URTS for short)
and refer to Algorithm 3 for a pseudo code.

We refer to Appendix B, where we demonstrate this algo-
rithm as part of an illustrated example.

A node may have voted previously for a branch that is
no longer its preferred branch. It has therefore to change
its vote. With the above tip selection nodes are allowed to
vote for branches they previously did not ‘‘prefer’’ (by voting
for a conflicting transaction) and vote ‘‘against’’ branches
they previously voted for. Every node must therefore keep
the supporters for each branch and their AW up to date.
An important consequence is that the AW of certain branches
may increase in time while for others it may decrease in time.

The addition of the transaction vote demonstrates that solu-
tions for the Tip Selection Algorithm can be found that miti-
gate or reduce liveness issues and that transactions eventually
will be considered for tip selection. Thus, in the following,
we work under the following assumption.
Assumption 7 (Block Inclusion): Let R be the preferred

reality. The tip selection satisfies that for every transaction
x̂ ∈ L(R) (see Definition 28) we have that there is at least
one element in cone(f )V (x) that the tip selection algorithm can
pick up. In particular, there exists at least one available tip in
the union TT (R) ∪ TL(R).
We also refer to Section XII for a more detailed discussion.

VII. COMMUNICATION AND ADVERSARY MODELS
Before stating the security requirements of the proto-
col, we have to make assumptions about the underlying
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Algorithm 3: Uniform Random Tip Selection Restricted
on Reality R
Data: Tangle DAG DT , Ledger DAG DL, preferred

reality R ∈ B, number of references k
Result: tips LT ∪ LL

1 LT ← ∅
2 LL← ∅
3 cnt ← 0
4 while cnt < k do
5 Choose tip x uniformly at random in DT
6 Set QV to be conflicts contained in cone(p)V (x)
7 Set QL to be conflicts in cone(p)L

(
x̂
)

8 if QV ⊆ R then
9 cnt ← cnt + 1
10 LT ← LT ∪ {x}
11 else
12 if QL ⊆ R then
13 cnt ← cnt + 1
14 LL← LL ∪ {x}
15 end
16 end
17 end

communication model. It is common to describe the uncer-
tainty related to the communication by an attacker that con-
trols the delays of the blocks. The communication model
defines the limits the adversary can delay the communication
between the nodes. As a model, it is only a simplification, but
it allows a systematic study of the most critical components.

For simplicity, we also analyse the votingmechanismwith-
out details such as the TSA. We want to emphasise that our
modelling can also be applied to other consensus protocols,
thus, providing a framework for comparing different DLTs.

A. COMMUNICATION MODEL
The participating nodes communicate over a peer-to-peer
(P2P) protocol or network. In this P2P protocol, nodes send
their signed blocks to their neighbouring peers. Neighbours
forward blocks from other nodes in the overlay network only
if they have verified its validity; if a transaction is invalid, the
propagation stops. The transmission of a block between two
nodes is done by sending a package containing the block.
There are three basic (or classic) models for the P2P com-

munication between the nodes: the synchronous model, the
asynchronous model, and the partial synchronous model, e.g.
see [16] and [20].

In the synchronous model, there exists some known finite
time bound 1 by which an adversary can delay the delivery
of a package. In the asynchronous model, an adversary can
delay the delivery of a package by an unknown finite amount
of time. There is no bound on the time to deliver a block
but each package must eventually be delivered. In the partial
synchronous model, we assume that there is some finite

unknown upper bound 1 on block delivery. This bound is
not known in advance and can be chosen by the adversary.

A partially synchronous system can be seen as initially
asynchronous that becomes eventually synchronous. The
time at which the system becomes synchronous is called the
Global Stabilisation Time (GST).

We also consider a probabilistic synchronous model,
see [49]. In this model we assume that for every ε > 0 and
δ ∈ [0, 1], a proportion δ of the blocks is delivered within
a bounded (and known) time 1 = 1(ε, δ), that depends on
ε and δ, with probability of at least 1 − ε. The probabilistic
synchronousmodel is similar to the asynchronousmodel with
crash failure faults, see [20].

The specific implementations for a consensus mechanism
depend heavily on the underlying synchronicity assumption.
It also seems appropriate to distinguish between consensus
protocols that find consensus on one data set and consen-
sus protocols that find consensus on a growing number of
decisions. The latter allows to ‘‘strengthen the synchronicity’’
between the nodes if the data are related by references.

B. THE TANGLE, SOLIDIFICATION, AND SYNCHRONICITY
The references that form the Tangle are essential for the
consistency of information every node has. Consider that a
package propagates to only part of the network, e.g. lost
during some of the propagation processes on the commu-
nication layer. However, nodes that have received the block
start building on it and gossip their blocks to the network.
These new blocks contain references to the partially missing
block. Since nodes must know the past cone of any block
to have a complete Tangle history from that blocks’ point of
view, we use a mechanism called the solidification process.
In this mechanism, nodes that receive a given block only
process it if its past cone is complete or, otherwise, ask their
peers for the missing referenced block (for more details, see
Section IV-C). In other words, the solidification process is a
mechanism to recover lost blocks and, hence, strengthens the
‘‘synchronicity’’ of the communication model. We think that
this, to some extent, supports the assumption that all blocks
are delivered within a bound time 1 with high probability.

C. ADVERSARY MODEL
We distinguish between three types of nodes: honest, faulty,
andmalicious. Honest nodes follow the protocol, faulty nodes
are not working properly (e.g. not sending any transactions),
and malicious nodes are trying to disturb the protocol by not
following the rules actively. In most scenarios, we assume
that the malicious nodes are controlled by an abstract entity
that we call the attacker. We assume that the attackers
are computationally limited and cannot break the signature
schemes or the cryptographic hash functions involved. How-
ever, we assume that the attacker is omniscient and ‘‘knows
immediately’’ about all state changes of the honest nodes.

In classic consensus protocols, the communication model
already covers the adversary behaviours, as delaying blocks is
essentially the only way an attacker can influence the system.
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This is no longer true for our consensus protocol. Here,
adversarial strategies can be divided into twomain categories:
attacks on the protocol level and attacks on the voting layer.

D. CONFIGURATION GRAPH AND SCHEDULE
How events in distributed systems are triggered depends on
some external causes that are often referred to as the environ-
ment. We follow [60] and model this environment using the
abstraction of a scheduler.

To this end, we consider a communication network on
which all communications between the nodes are carried
out. These networks are often referred to as P2P networks.
We model them using a directed graph whose vertex set is
the set of participating nodes. There is a directed edge from i
to j, if node i can send packages directly to node j.

We assume this graph to be connected. Along the directed
edges of this graph packages are exchanged by the nodes.
In our case these packages contain blocks.
Definition 40 (Packages and Communication Graph): For

each block x sent from node i to node jwe add a directed edge,
called package, from i to j that is labelled by the vector

e(x, i, j) := (x, i, j, t(x), δi,j(x)). (16)

This label indicates that package x was sent at time t(x) from
node i and arrives at node j at time t(x) + δi,j(x). The state
space of all packages is denoted byM. We dub the resulting
graph the communication graph G of the protocol.

Essentially a node i does the following once it receives a
package e from node j. It checks if the block x that is con-
tained in the package e was already treated. If this is the case,
the node’s status remains unchanged, and no new package is
issued. If the block is new, the node checks its validity and
adds the block to its local Tangle. If applicable, it updates
the supporters of branches and conflicts and, if the transaction
contained in the block is conflicting, adds a new conflict to
the set of conflict. After this step, the node forwards the block
in new packages to all its neighbours fromwhich the node has
not received the block.

A node may also create blocks. Once it creates a block x,
it attaches x to its local Tangle. Then, it creates a package e
containing block x and sends copies of this package to all of
its neighbours.10

Example 10 We illustrate the concept of networks and
packages in Figure 9. In this figure, the network consists of
six nodes. Directed edges exist between some of them and
show the communication channels. We point out that these
communication does not necessarily have to be symmetric.
Packages containing blocks can be sent along the edges.

Every node keeps a local version of the Tangle DTi that
we consider as the (local) configuration ωi of node i. For
ease of presentation, we consider the following simplified
version of the OTV that does not keep track of where the
actual blocks are attached in the Tangle but only keeps track

10In this example, we use a flooding protocol for the dissemination of
blocks.

FIGURE 9. Illustration of a network of 6 nodes. Packages u,w, x, y, z are
send along directed edges representing communication channels.

of the supporters of the branches or conflicts. The (local) state
space is therefore given by Q = 2N × . . .× 2N︸ ︷︷ ︸

|C|

, where C is

a fixed set of conflicts and 2N is the set of all possible subsets
of N = {1, . . . ,N }.
Remark 13 The simplified version described above allows

a more accessible analysis of the voting on conflicting trans-
actions. This comes with the cost of not describing the confir-
mation of non-conflicting transactions. We give more details
on the ‘‘liveness’’ of these transactions in Section VIII-A.

We interpret the packages a node i receives as input assign-
ments with values in the space of all packagesM. Each input
assignment e yields an update of the current configuration,
and each configuration ωi leads to an output assignment.
We therefore consider two functions

I (e, ωi) :M×Q 7→ Q,

and

O(ωi) : Q 7→M|Ni|−1,

where Ni are the neighbours of node i in the communication
graph G. A node i runs an algorithm A = (I ,O) that reacts to
incoming packages by updating its internal state ωi and even-
tual sending outgoing packages indicating its state update.
We also consider the configuration of the whole system that
takes values ω = {ω1, .., ωN } ∈ QN . The corresponding
algorithm is denoted by A.

The creation of blocks uses randomness (by design)
through the TSA. Moreover, issuing times of blocks may
depend on the interactions of the node with the environment
of our system. For this reason, we model the time between
two successive blocks of one given node by random variables.
oreover, the latency between packages of two given nodes
is described by random variables. This randomness turns
our protocol into a random protocol, and the randomness is
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described by the probability measure P. As we consider a
simplified model and are only interested in the supporters
of given branches, the randomness enters only in the ‘‘time
components’’ of the packages or edges. Consequently, edges
become random variables.
Definition 41 (Configuration Graph): Let e be a package

sent from i to j in G and ω,ω′ ∈ QN be two (global)
configurations. We write ω

e
→ ω′ if and only if

P(I (e, ωi) = ω′i) > 0

for some i and, P(ω′l = ωl) = 1 for all l 6= i. We say that ω′ is
accessible from ω by e. The notation of accessibility defines
a directed graph on the set of (global) configurations that we
dub the configuration graph of the algorithm.
Definition 42 (Valid Packages): A package (or edge) e

from node i to node j is called valid given a global config-
uration ω if and only if

P(O(ωi) 3 e) > 0.

In other words, any valid edge must be the outcome of the
algorithm A. A sequence of edges e1, e2, . . . is called valid
given an (initial) configuration ω(0) if and only if e1 is valid
given ω(0) and inductively e` is valid given ω(`− 1), where
ω(`− 1) is such that ω(`− 2)

e`−1
→ ω(`− 1).

In the following, we assume that honest nodes only issue
valid packages.
Definition 43 (Communication of Configurations): We

say that the (global) configuration ω′ is accessible from a
configuration ω if and only if there exists a finite valid path
from ω to ω′ in the configuration graph. In this case, we write
ω → ω′ We define that a configuration is accessible from
itself. Two configurations ω and ω′ are said to communicate
if and only if they are accessible from each other. In this case,
we write ω↔ ω′.
The relation↔ defines an equivalence relation on the set

of configurations.
Definition 44 (Communication Classes): The equivalence

classes of the equivalent relation↔ are called the communi-
cation classes of the set of configurations. A (communica-
tion) class is called closed if and only if it has no outgoing
edges, and open otherwise.

The closed communication classes play a vital role as they
describe the outcome of the protocol. Let R ∈ B be a reality.
Then the configuration with sprtLi

(R) = N for all i ∈ N is
a closed class. Let us note here that we are still assuming all
nodes to be honest and behave according to the protocol.
Definition 45 (Consensus State): A stateω is called a con-

sensus state if and only if

sprtLi
(R) = N , ∀i ∈ N , (17)

for some reality R.
Remark 14 Let us stress that the definition of ‘‘consensus

state’’ is only about agreeing on the preferred reality. It does
not take into account the meaning of confirmation; see Def-
inition 15. Liveness and safety with respect to confirmation
are discussed in the following sections.

We make a crucial assumption about the communication
layer.
Assumption 8 (Random Block Issuance and Package

Delay): Block issuances and package delays are random and
satisfy:

1) Nodes issue new blocks independently and distributed
according to some probability distribution µiss.

2) The delays of packages between two nodes are inde-
pendent and distributed according to some probability
distribution µpack.

3) Block issuances and package delays are independent.
4) With a positive probability packages are delivered faster

than new blocks are issued. More precisely, if X ∼ µiss
and Y ∼ µpack, then P(Y < X ) > 0.

Lemma 4: Under Assumption 8, for every given configu-
ration ω there exists a consensus state ωc such that ω

e
→ ωc.

Proof: Let ω be a configuration. We wait until all
existing packages and corresponding changes of votes are
sent to all other nodes. During this time, no new block is
issued with a positive (non-zero) probability. After every
node has seen all current blocks every node has the same
perception of the supporters of the different realities. In other
words, nodes agree on the AWs of the different branches.
Now, every node changes its opinion to its preferred reality,
issues transactions indicating their change of vote, and gos-
sips them using packages on the communication graph. Once
all these packages are seen by all nodes a consensus state is
reached. �

There are two immediate consequences of Lemma 4.
Corollary 1: Under Assumption 8, a communication class

is closed if and only if it consists of one consensus state.
Corollary 2: Under Assumption 8 (and in absence of an

adversary), the protocol converges (P-almost surely) to a
consensus state.
Definition 46 (Schedule): A schedule on the communica-

tion graph G is a sequence of (finite or infinite) valid edges
e1, e2, . . .. A (finite or infinite) execution of a sequence of
edges e1, e2, . . . by A on G is a sequence of configurations
ω(0)

e1
→ ω(1)

e2
→ · · · , where ω(0) is the initial (global)

configuration.
The above definitions can naturally extend to models that

distinguish between honest and adversary nodes. We assume
that adversary nodes do not have to follow the algorithm A
but can produce messaging voting for non-preferred realities.
On the communication level, adversary nodes may be more
potent than honest nodes, i.e. issuing blocks more frequently,
and may delay the relaying of honest packages. Nevertheless,
we assume that Assumption 8 holds for all honest and mali-
cious nodes. We say that the protocol reaches a consensus
state if all honest nodes eventually prefer the same reality.
Let us denote by Nh and Na the set of honest and malicious
nodes. In analogy to the above, we obtain the following result.
Theorem 1 (Eventual Consistency - Random Blocks):

Assume Assumption 8 to hold for the blocks and packages
of honest and malicious nodes and let q be the weight of
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the adversary. Then, all honest nodes will (P-almost surely)
eventually prefer the same reality if q < 1/2.

Proof: Since q < 1/2 a consensus state is reached if
all honest nodes have the same preferred reality and all nodes
know about it, i.e.

sprtLi
(R) ⊃ Nh, ∀i ∈ Nh, (18)

for some reality R. We have to prove that for every given
configurationω there exists an available consensus state. This
is proven similar to Lemma 4 together with the situation
where an adversary is neither issuing a block nor can delay
the honest packages, which occurs with a positive probability
under Assumption 8. �

VIII. LIVENESS AND SAFETY
In the previous section, we were interested in the eventual
convergence and proved an optimal result in Theorem 1
under the assumption of random blocks issuance and random
package delay. This section adds the confirmation status of
transactions into our considerations. We divide security into
liveness and safety to allow a more detailed and quantitative
analysis.

From a general point of view, liveness means that eventu-
ally, good things will happen, and safety means that nothing
wrong will ever happen. In our situation, this translates into
the following. The safety condition is that any two hon-
est nodes should always reach an agreement and that this
decision satisfies the specified validity conditions. Further-
more, no two nodes should ever confirm conflicting transac-
tions. The liveness property is that each honest node should
eventually make a decision on the confirmation status of a
transaction, i.e. in our case all nodes reach the confirmation
threshold θ , see Definitions 14 and 37, eventually.
Remark 15: In general, one requires in addition that the

consensus protocol satisfies integrity. Integrity requires that
the eventual outcome of the consensus protocol was initially
proposed by at least one node. Since in OTV honest nodes
always pick a maximal branch, the integrity property is satis-
fied once the protocol terminates.

A. NON-CONFLICTING TRANSACTIONS
Liveness of a non-conflicting transaction is the property that it
will eventually be included in the ledger state. In the strongest
form, it means that every non-conflicting transaction will be
confirmed, see Definitions 14 and 37. Therefore, the security
threshold for liveness is at most a proportion (1 − θ ) of the
weight, as an attacker or faulty nodes holding a proportion
(1 − θ ) can stop the confirmation by not issuing any blocks
anymore.

Liveness is inherently linked with the TSA and the orphan-
age problem. We assume the following Assumption on the
TSA11 and we refer to Section VI-A for a discussion.
Proposition 3 (Liveness and Safety of Non-Conflicting

Transactions):We assume in the asynchronousmodel that the

11Formally it is more a requirement on the definition of ‘‘tips’’.

tip pool size is stationary, and that Assumption 7 is satisfied.
The weight of the malicious nodes is q. Then, eventually
every non-conflicting transaction is confirmed for all honest
nodes if q < 1− θ .

Proof: Let x be a block containing a non-conflicting
transaction x̂ and consider an arbitrary honest node i. Each
time this node issues a new block, the probability that it refers
to (and votes for) x is positive, due to Assumption 7. At this
point, it is important to have the second type of reference that
allows to only vote for the transaction x̂ and not the whole
Tangle past cone of x. Let us denote by pj this last probability
for the jth issued block. Then, due to the assumption on the
stationarity of the tip pool size, there exists some ε > 0 such
that pj ≥ ε for infinitely many indices j. Assumption 7
guarantees the independence of these events, and the Lemma
of Borel-Cantelli implies that node i eventually votes for
block x. Then, since the number of nodes is finite, all nodes
eventually vote for x. �
Some discussion on the validity of the stationary tip pool

size assumption is appropriate. This kind of assumption was
also made throughout Section IV-G as Assumption 5. Let us
review this assumption in the light of the communication and
the adversary model.

An attacker can delay blocks with honest transactions such
that the network delay h increases. This, in turn, will inflate
the tip pool size and the time to confirmation [61]. In the
asynchronous model, this could lead to memory overflow of
the nodes or halt confirmation of certain transactions. While
this attack is theoretically possible in this model, it is more
of a theoretical interest than a practical issue. We also want
to note here that nodes do have an efficient way to ‘‘synchro-
nize’’ their perceptions of the Tangle due to the solidification
process; see Section VII-B.

On the Tangle layer, the ‘‘worst-case scenario’’ seems to
be the following. The adversary issues blocks, referencing
already referenced blocks, not removing any tips from the
tip pool. Under the assumption that nodes can issue blocks
proportionally to their weight, we obtain that q/(1− q) mali-
cious blocks are issued for each honest block. Honest nodes
can increase the number of references to keep the Tangle
width stationary.More precisely, it is sufficient that the honest
nodes’ blocks, on average, remove K := (q/(1−q))+1 tips.
In other words, we can choose the number of references k >
K to guarantee robustness against this attack. For instance,
q = 1/2 leads to K = 2.

B. CONFLICTING TRANSACTIONS
Theoretical results on the liveness and safety of conflicting
transactions rely heavily on the assumptions of the underlying
communication and adversary model. Moreover, the analysis
of the OTV protocol is complex: it requires modeling of the
networking part, modeling of the weight distribution, and var-
ious (even an infinite number of) adversarial strategies. The
following section shows that an adversary can hinder con-
sensus finding in specific situations or edge cases. However,
we want to emphasize that this interference only influences
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the liveness of conflicting transactions and that an appropriate
TSA guarantees liveness of non-conflicting transactions; see
Proposition 3. In Section X, we add a feature to the protocol
that allows us to obtain theoretical results on the liveness of
conflicting transactions.

IX. IMPOSSIBILITY RESULTS AND METASTABILITY
Impossibility results play an essential role in the theory of
consensus protocols, as they emphasize the limitations and
critical edge cases. The most famous impossibility result
is the FLP-result, [19], which states that achieving consen-
sus in the asynchronous communication model is in general
impossible for deterministic protocols. From a general point
of view, this impossibility is due to the possible delay of
packages in the P2P communication and the resulting ‘‘sym-
metric’’ situation that hinders consensus finding.

We will consider the situation of two or more directly con-
flicting transactions. It is the role of the consensusmechanism
to reach an agreement on which transaction should eventu-
ally be accepted. One may consider that keeping conflicting
transactions in an undecided state, i.e. violating the liveness,
is acceptable. However, this is problematic for several rea-
sons. For example, if nodes keep transactions indefinitely
undecided, this could drastically inflate the communication
required on the voting layer and prevent the pruning capa-
bility of the ledger. Transactions that are undecided for a
long time can also harm safety. There is always a chance that
some node confirms an ‘‘undecided’’ transaction. While the
probability of this event might be small, it is still positive, and
hence this unlikely event will happen at some point in time.
We also note that simply rejectingmalicious transactions does
not provide a solution since this would allow delayed cancel-
lation of transactions, thus, violating the system’s safety.

In this section, we give examples where the liveness and
safety of conflicting transactions are not satisfied; more com-
plicated examples can be constructed following the same
principles. They constitute an impossibility result in the sense
that the proposed protocol does not guarantee liveness or
safety under the asynchronous communication model. These
situations rely on strong assumptions about the attackers.
We distinguish between attacks on the communication level
and those on the voting level. By requiring both levels we
give a theoretical result when safety cannot be guaranteed,
Lemma 5.

A. COMMUNICATION LEVEL
We start with an example where an attacker does not take part
directly in the voting but only controls the schedule of the
honest nodes’ blocks. Let us point out that the attacker does
not need to control any weight in this scenario.

The first adversary attack is dubbed a metastability attack
since it tries to keep the honest nodes in an undecided sit-
uation. We refer to [50] for more details and analysis of
these kinds of attacks. On a conceptual level, these kinds
of attacks exploit a situation where the system is kept in
a roughly symmetric condition between two incompatible

FIGURE 10. Illustration of Example 11. Nodes are voting for transaction x̂
(blue) or ŷ (orange). Each node ends up with the opposite opinion it
started with, thus, creating a deadlock.

options. Once the symmetric scenario is broken, nodes likely
converge quickly on one of the options.
Example 11 (Metastability Attack I): We consider N = 4

participating nodes {1, 2, 3, 4} that communicate directly;
the communication graph is the complete graph with four
vertices. We assume that every node has the same weight,
i.e. mi = 1/4 for all i ∈ N . We consider the scenario of a
simple double spend. The set of conflicts is, therefore, {x̂, ŷ}.
We assume for the sake of simplicity that a node prefers its
own opinion if both conflicts have 50% of AW. Nodes 1 and 2
starts with an initial like of conflict x̂ and nodes 3 and 4
prefer ŷ. At the time t0, every node i communicates its vote
to each of its neighbors by attaching a block xi. The attacker
delays these blocks (more precisely, the corresponding pack-
ages) either by some δ > 0 or γ > δ. More precisely,
we have the following edges, as defined in Equation (16),
in our communication graph:

(xi, i, 3, t0, δ), (x1, i, 4, t0, δ), i ∈ {1, 2},

(xj, j, 1, t0, δ), (xj, j, 2, t0, δ), j ∈ {3, 4},

and

(x1, 1, 2, t0, γ ), (x2, 2, 1, t0, γ ),
(x3, 3, 4, t0, γ ), (x4, 4, 3, t0, γ ).

At time γ this schedule leads to an inversion of the pre-
ferred conflicts, see Figure 10. An attacker that controls the
communication level could therefore delay consensus finding
arbitrarily. To make the description of the former attacker
more formal, we must specify the assumption on the issuance
of block and the communication model. For instance, in the
synchronous model, with a known upper bound 1 on the
network delay, such an attack is successful if the δ, γ <

1 and the honest nodes issue blocks periodically. In the
asynchronous setting, an attacker can adjust the delays δ and
γ even if the honest nodes do not continuously issue their
transactions simultaneously.
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FIGURE 11. Illustration of Example 12. Nodes are voting for transaction x̂
(blue) or ŷ (orange).

Remark 16: The situation described above is undoubtedly
a special case and mainly of theoretical interest. However,
it raises the question under which conditions such schedules
exist and how realistic they appear in real applications.

B. VOTING LEVEL
In this section, we describe situations, where an attacker can
successfully interfere in the consensus finding by using the
voting layer. We do not need conditions to control commu-
nication between honest nodes but relatively strong assump-
tions about the adversary’s ability to issue new blocks and
reliably forward them to the honest nodes.
Example 12 (Metastability Attack II): We again consider

the situation of one double spend, i.e. a set of conflicts {x̂, ŷ}.
In this attack, the adversary votes for theminority, i.e. the con-
flict that has less AW. The attack is supposed not to influence
the communication layer, and we work under the assumption
of the synchronous communication model. We assume that
the propagation of blocks happens fast, i.e. each block causes
a state update in all other nodes. Furthermore, we assume that
the adversary can issue at a high rate, such that for every other
honest node’s block, the adversary can issue a block.

We consider an even number Nh of honest nodes and
three malicious nodes, and where each node holds the same
weight. We say if a node votes for x̂ or ŷ it is in set X
and Y , respectively. The protocol starts with 1/2Nh honest
nodes initially voting for x̂ and 1/2Nh honest nodes voting
for ŷ. We refer to Figure 11 for an illustration. Next, the
adversary votes for x̂ (with all three nodes), resulting in a vote
of |X |/|Y | = (1/2Nh+3)/(1/2Nh). Nodes in X will continue to
vote in favour of x̂. On the other hand, an honest node inY will
eventually change its vote and issue a transaction in favor of x̂,
thus, changing from set Y to X . Now, before any other honest
nodes can express their vote, the attacker switches its vote
to ŷ. Hence, in total we have |X |/|Y | = (1/2Nh+1)/(1/2Nh+2).
Honest nodes will now vote for ŷ. However, as soon as a node
from X changes its vote, the resulting situation is symmetric
to the initial condition. Thus, the adversary can repeat this ad
infinitum.

Remark 17: We want to note that in Example 12 the
attacker heavily relies on the capability of an adversary to
immediately adapt its opinion before more than 2 honest
nodes changed their vote to the majority.

The next example, the Bait-and-Switch Attack, depends
less on the adversaries issuance rate but requires a higher
amount of weight.
Example 13 (Bait-and-Switch Attack): We consider a situ-

ation where the adversary possesses the node with the highest
weight. The strategy is to switch frequently the opinions
such that the honest nodes are constantly ‘‘ chasing the
ever-changing heaviest branch’’. For example, consider Nh
honest nodes with total weight wh and individual weight
wh/Nh and one adversary node with weight wa. Let ncr be
the largest natural number such that

ncr ·
wh
Nh

< wa.

In the beginning, the malicious node spends an output in a
transaction x̂1. Then, before ncr nodes with a total weight of
less thanwA express their vote, the adversary spends the same
output in transaction x̂2, i.e. creates a conflicting transaction
with x̂1, and (implicitly) votes for the new transaction x̂2.
Since x̂2 becomes the heaviest branch, all honest nodes will
vote for this transaction. The adversary repeats this procedure
by creating additional double spends repetitively.

C. COMMUNICATION AND VOTING LEVEL
In the previous sections, we presented examples of how an
adversary can harm the liveness of conflicting transactions.
The attacker strategies required either substantial control of
the communication layer or a high issuance rate combined
with considerable weight. In this section, we prove an impos-
sibility result for safety that involves an attack strategy that
uses both levels.
Definition 47 (Broken Safety): We say that safety is bro-

ken if and only if there exist two honest nodes i, j and con-
flicting transactions x̂ and ŷ such that for some times s, t we
have

AWi,t (x̂) > θ and AWj,s(ŷ) > θ.

We have the following ‘‘negative’’ result.
Lemma 5: Let q > θ − 0.5 be the weight of the adversary.

Assume that the weight of the honest nodes is equally dis-
tributed on sufficiently many honest nodes. Then, there exists
an adversary strategy that breaks safety.

Proof: Let us choose a number of honest nodes Nh
sufficiently large such that there exists some N ∗h < Nh such
that

θ − q
1− q

<
N ∗h
Nh

<
0.5
1− q

.

An attacker starts issuing two conflicting transactions x̂ and ŷ.
The attacker decomposes the honest nodes into two groups
X and Y such that each of these groups forms a connected
subgraph of the underlying communication layer, while the
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attacker is connected to both groups. Group X consists of N ∗h
nodes and group Y of Nh−N ∗h nodes. The attacker interferes
with the schedule such that nodes in each group only receive
blocks from their group. The attacker changes the schedule
such that the nodes in X receive transaction x̂ before ŷ and the
nodes in Y receive ŷ before x̂. All honest nodes prepare their
initial statement of their preferred transaction (x̂ for group X
and ŷ for group Y ) and send them to their neighbours.
The attacker sends to X blocks that state that it prefers x̂.

As a consequence, nodes from X confirm transaction x̂ since
AW(x̂) = (1− q)

N∗h
Nh
+ q > θ .

After this, the attacker sends blocks to Y (and X ) that
it votes now for transaction ŷ. Without the vote of the
attacker for transaction x̂ the AW of x̂ in X reduces to
AW(x̂) = (1− q)

N∗h
Nh
< 0.5.

Next, the attacker lets X know about the preferences of Y .
At this point AW(ŷ) > AW(x̂) and as a consequence nodes
fromX update their preferred reality and vote for ŷ. This even-
tually leads to AW(ŷ) > θ for all nodes. As by Definition 47
safety is broken. �
The above proof indicates that the attacker needs very

strong control over the communication layer to conduct such
an attack. Nevertheless, it gives a reasonable theoretical secu-
rity threshold for the protocol’s safety. All the more since
we can prove safety under the assumption q < θ − 0.5 in
Section X.

D. REALISTIC CONDITIONS
The above examples illustrate that the two dimensions,
namely the communication and voting level, may interact
either in favor of the attacker or in favor of the robustness
of the protocol. In all cases, it seems that the attacker needs
excellent control of the communication layer of the protocol.
Randomness or uncertainty on the communication layer may
interfere with the adversary strategy and finally lead to con-
vergence of the honest nodes’ opinions.

We conjecture that these strong assumptions are not met in
most reasonable real-world scenarios and that the attacks that
rely solely on the communication level are hard to perform in
practice.

With a completely random schedule of packages, the sys-
temwill eventually converge to a consensus state in situations
where an attacker controls not more than half of the total
weight, see Theorem 1. However, this convergence time can
be impracticably long for real-world applications and it is
possible that safety (for the confirmation) can be broken as
shown by Lemma 5. The theoretical treatment of the inherent
randomness of real-world implementation systems is at best
in an early state, and a quantification or even its control
seems currently out of reach. We refer to [60] for a theoretical
approach to describe the entropy related to the scheduling of
the transactions.

The following section proposes a more sophisticated vari-
ation that allows a more straightforward theoretical treatment
and provides the ‘‘optimal’’ safety thresholds.

X. SYNCHRONIZED RANDOM REALITY SELECTION
In the previous section, we demonstrated that under several
conditions, the protocol presented so far might lead to situ-
ations where nodes cannot come to an agreement between
several valid options. This section offers a mechanism to
overcome this scenario by utilising external randomness.
As shown in [62], [63], and [50] common randomness can
successfully navigate a system away from such an undesired
situation.

Pre-consensus classes are those classes fromwhich the net-
work reaches a consensus eventually. The aim of the design of
the consensus protocol is, therefore, to construct the protocol
so that its global state reaches such a pre-consensus state fast
and that from there, the actual consensus state is inevitable.

The OTV is an asynchronous protocol and comes with
advantages and disadvantages. One disadvantage is the lack
of synchronization possibilities between nodes that could
be used against adversarial attacks on the communication
level. The arguments and examples in the previous section
showed that it is theoretically possible for an attacker to
keep the honest nodes in an undecided situation for a long
time. To exclude these cases and obtain theoretical results,
we use a distributed random number generation (dRNG)
process to synchronize the nodes and interfere with a possible
adversary.

We choose a parameter D describing the length of epochs
between synchronizations times. In other words, once in
every D time units, we synchronize the nodes with the help
of a given dRNG process. This procedure is inspired by the
paper [62], where a dRNG is used to construct a voting-based
consensus protocol in a Byzantine environment. The dRNG
allows the consensus protocol to reach a pre-consensus state
with a positive (non-zero) probability. This probability is
uniform in the opinions and votes of the nodes, and hence,
the protocol enters a pre-consensus class in a geometri-
cally distributed number of periods of length D. In the last
step, we then prove that consensus is reached from the pre-
consensus state.

We consider a system of N = Nh + Na nodes with Nh
honest nodes and Na adversarial nodes. The honest nodes are
identified with the set Nh = {1, . . . ,Nh} and the adversarial
nodes with Na = {Nh + 1, . . . ,Nh + Na}.
We start with stating our model assumptions.
Assumption 9: We make the following assumptions:

9.1 Every block from an honest node is received by another
honest node during time d = d(ε) with probability of at
least 1− ε. The constant ε > 0 can be chosen arbitrarily
small. The events for each block are independent of each
other.

9.2 The adversary controls a proportion q of the weight. The
adversary might have an influence on the schedule of the
blocks to the extent of 9.1.

9.3 The set of conflicts C is fixed and does not vary in time.
All nodes perceive the same C.

9.4 There exists a dRNG that publishes a random variable
everyD unit of times. The random variable is uniformly
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FIGURE 12. Different epochs in the synchronisation.

distributed on the interval [0.5, θ], where θ is the con-
firmation threshold; see Section IV-E. This value is
received (independently) by every given node before
time d (in every epoch)with a probability of at least 1−ε.

9.5 Honest nodes of cumulative weight of at least θ issue
blocks expressing support for their preferred reality12 at
least every D/2 time units with a probability of at least
1− ε.

Let us comment on the validity of the above assumptions.
Assumption 9.1 is essentially a probabilistic synchronicity
assumption. The fact that the probability ε can be cho-
sen arbitrarily small is supported by the fact that votes are
blocks in the Tangle that can be re-broadcast or obtained by
solidification requests; see Section VII-B. The independence
assumption is essential and the study of correlated errors is
out of the scope of this paper. Assumption 9.2 is natural
in a probabilistic synchronous model. Assumption 9.3 is
essentially for ease of presentation. As nodes will consider
only conflicts of a certain age, older than D, Assumption 9.1
ensures that nodes already have the same perception of the
sets of conflicts with a very high probability. Assumption 9.4
was used in previous work, [50], [62], [63]. A sequence of
such common random numbers can be either provided by
an external source or generated by the nodes of the system
themselves; see e.g. [64], [65], [66], [67], [68], [69]. Let us
stress that it is necessary that the randomness of the dRNG is
not predictable and obtained in each epoch by the majority of
the weight with a positive probability. However, we do not
require that all honest nodes agree on this random number.13

The last Assumption 9.5 is an (almost) necessary condition
to ensure that transaction have a chance to be confirmed.

In the beginning, before timeD, the AWs for each conflict
c ∈ C grow through votes according to the mechanism
described in Section VI-E. At the end of this initial interval,
every node has its own perception of the AW of a conflict c,
written as AWi,D(c).
After the arrival of the first dRNG randomness X (between

D andD+d), every honest node chooses its preferred reality
and adheres with it during the next interval of length D.

In Algorithm 4, we describe an iterative procedure,
inspired by [70], for choosing a preferred reality by a node.

12In other words, for every conflict c in the preferred reality the node
issues at least one block stating that the node votes for this conflict c
and it doesn’t issue any block stating that the node votes for a transaction
conflicting with c.

13The idea is that a ‘‘weak consensus’’ on the randomness of the dRNG
leads to an eventual ‘‘strong consensus’’ on the ledger state.

Algorithm 4: Reality Selection Algorithm With Com-
mon Coin
Data: Conflict Graph GC = (C,E), common

randomness X distributed uniformly in [0.5, θ]
Result: preferred reality R ∈ B

1 R← ∅
2 U ← C
3 while |U | 6= 0 do
4 c∗← argmax{AW(c) : c ∈ maxC(U )} ; /* use

max hash(c) for breaking ties */
5 if AW(c∗) > X then
6 R← R ∪ {c∗}
7 U ← U \ {NC(c∗) ∪ {c∗}}
8 else
9 break the while-loop

10 end
11 end
12 while |U | 6= 0 do
13 c∗← argmax{hash(c||X ) : c ∈ maxC(U )}
14 R← R ∪ {c∗}
15 U ← U \ {NC(c∗) ∪ {c∗}}
16 end

First, it initialises set R to be the empty set andU to be the set
of conflicts C. At every step of the first while-loop, the node
finds a conflict c∗ in U with the highest AW. If AW(c∗) > X ,
then we add c∗ to R, remove all transactions from U conflict-
ing with R and repeat this step. We additionally require c∗ to
be from maxC(U ) (see Definition 6) to guarantee that after
adding c∗ to R, the updated set R is a branch. If AW(c∗) ≤ X ,
then we run the next iterative procedure (while-loop) which
updates R by c∗, where c∗ is the conflict c in U attaining the
largest hash of the concatenation c||X14 and proceed similarly
until U becomes empty. By construction, the resulting set R
is a maximal branch or a reality. We summarize these results
in the following proposition.
Proposition 4: The resulting set R in Algorithm 4 is a

reality.
Denote by sprt(h)Li,t

(x̂) the set of honest nodes seen from
node i at time t that issued a block that votes for a transaction
x̂ (for a similar definition of supporters, see Definition 36).
The honest AW of x̂ seen from node i at time t is defined as

AW(h)
i,t (x̂) :=

∑
j∈sprt(h)Li,t

(x̂)

w(j)

Due to Assumption 9.5 and since the honest nodes change
their vote at most once, every other honest node sees this vote
with a very high probability. In other words, every honest
node has the same perception of the votes of all other honest
nodes (with high probability). In this case, we can speak of

14We assume that c||X can be treated as a binary string for a proper usage
of the hash function as noted in Remark 2
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FIGURE 13. Region of adversarial control. (a) control on large thresholds,
(b1) control on small thresholds, (b2) no control on thresholds.

the honest AW seen by the honest nodes of a transaction x̂:

AW(h)
t (x̂) := AW(h)

1,t (x̂) (19)

if it holds that AW(h)
i,t (x̂) = AW(h)

j,t (x̂) for all 1 ≤ i, j ≤ Nh.
Adversarial nodes may change their opinions. In particular,

they can do this close to the threshold timeD such that honest
nodes may have different perceptions of the adversarial votes.
However, this difference in perception is bounded by the
weight of the adversary. For every c ∈ C we define, similar
to [70], the regions (or intervals) of adversarial control as

It (c) = [AW(h)
t (c),AW(h)

t (c)+ q]; (20)

see Fig. 13. The lower (resp. upper boundary) of this interval
is precisely the overall AW of the conflict when all malicious
nodes vote against (resp. for) it.

We summarize the above considerations in the following
statement.
Lemma 6: Assume that the honest nodes have the same

perceptions on the honest AWs. Then, for all i, 1 ≤ i ≤ Nh,
it holds that

AWi,t (c) ∈ It (c). (21)

The above holds for every adversary strategy that satisfies
Assumption 9.2. The idea is now to choose the support of the
dRNG in such a way that independent of the honest AWs and
the adversarial strategy all honest nodes will decide on the
same reality with a positive probability. Every D time units
we have therefore also a positive probability that all nodes
decide on the same reality. It takes, hence, a geometrically

Algorithm 5: Voting Protocol for a Node i

1 e← 0; /* epochs index */
2 Xe← 0; /* common random variable */
3 while the node did not confirm a reality do
4 Obtain reality Ri by Algorithm 4 with Xe
5 Before time (e+ 1)D issue new blocks with

references selected by Algorithm 3 for Ri
6 Before time (e+ 1)D receive new blocks
7 e← e+ 1
8 Wait time d to get common r.v. Xe
9 end

distributed number of such intervals until all honest nodes
agree on the same reality.
Definition 48 (Convergence to a Consensus State): We

say that the protocol converges to a consensus state if and
only if there exist some reality R and some (random) time T
such that

AWi,t (R) > θ, ∀i ∈ {1, . . . ,Nh}, ∀t > T . (22)

Remark 18: Definition 48 is similar to the definition of
a consensus state; see Definition 45. While it describes the
asymptotic behaviour of the protocol, it delivers not a prac-
ticable criterion for confirmation.15 A ‘‘confirmation rule’’,
as in Definition 15, however, is always susceptible to possible
‘‘re-orgs’’16 of the ledger state; see also Lemma 5. Quantify-
ing the probabilities that such re-orgs happen depends on the
precise communication and adversarial models and is out of
this paper’s scope.

This discussion can be turned into a formal protocol
description written in Algorithm 5 and we obtain the follow-
ing theorem.
Theorem 2 (Liveness and Safety - Synchronisation): Let

q < min
{
1− θ, θ − 1

2

}
be the weight of the adversary. Then, under Assumption 9, the
protocol (described by Algorithm 5) converges to a consensus
state.

Proof: We start the protocol at time t0 = 0 with a fixed
set of conflicts C of size |C| and let the nodes exchange their
votes until time D. We let ε > 0 be arbitrary but fixed and
determine its value at the end of the proof. Every node waits
until timeD+d. If the node received the first random number
X1 it will perform Algorithm 4 with X1 as a random number.
If a node did not receive the random number on time it will
use Algorithm 4 with the threshold of θ (instead of random
X1). Between D + d and 2D every honest node will not
change its preferred reality. Let A1 be the event that all honest
nodes voted for their preferred reality and that these votes are
seen by all other honest nodes. Let B1 be the event that all

15The ‘‘probabilistic’’ reason for this is that T is not a stopping time.
16A re-org is the procedure that a transaction that was confirmed is no

longer in the preferred reality.
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honest nodes expressed their preferred reality on time, see
Assumption 9.5, and C1 that all these blocks arrived at every
other honest node before time 2D. Since A1 = B1 ∩ C1 we
have that

P(A1) = P(C1|B1)P(B1)
≥ (1− ε)|C|Nh (1− ε)Nh

= (1− ε)Nh(|C|+1).

At time 2D+ d with probability of at least (1− ε)Nh the new
random number X2 is received by all honest nodes. Hence,
with probability

p(ε) := (1− ε)Nh(|C|+1)

all honest nodes agree on the honest AWs, defined in Equa-
tion (19) and the threshold X2. We write AW(h)(c) :=

AW(h)
2D(c). Let us note here that no honest node can perceive

the honest AW. However, for the analysis, we assume a
perfect view or total information on the status of the system.
We start a recursive argument on the Conflict Graph by

initialising R = ∅ and U = C. Define the conflict chosen
by Algorithm 4 inside the first while-loop at every iteration
c∗ := argmax{AW(h)(c), c ∈ maxC(U )}. We distinguish
two cases.

Case A: AW(h)(c∗) > 0.5. The support of the random
threshold does lie above 0.5; see also Figure 13. More, pre-
cisely, the probability ξA that every node will include this
conflict in its preferred reality (using Algorithm 4) satisfies
ξA > AW(h)(c∗) − 0.5 > 0. All conflicts that conflict
with c∗, i.e. the neighbours in the Conflict Graph NC(c∗),
are not preferred. Note here, that since every honest node
might have a different perception of the actual AWs, it may
run Algorithm 4 in a different ‘‘order’’. However, as no two
neighbours in the Conflict Graph can have more than 0.5 of
the honest AW, the algorithm treats all ‘‘A cases‘‘ before the
following case.

Case B: AW(h)(c∗) ≤ 0.5. In this case, all conflicts in
c∗ ∪ NC(c∗) have an honest AW of less than 0.5. (This is
because, in Algorithm 4, nodes treat conflicts in the order
of ‘‘decreasing AW’’.) Since q < θ − 0.5, with a positive
probability ξB none of these conflicts will have AWs above
the threshold X2 and none of them will be added to the
preferred reality in the first while-loop of Algorithm 4.

We now remove the conflicts c∗ ∪ NC(c∗) from the set U
and continue this procedure until the set U is the empty set.
We set ξ = min{ξA, ξB}. Let K be the size of the largest
maximal independent set in the Conflict Graph. Eventually,
with a positive probability of at least ξK the nodes agree on
the preferred conflicts originating from case A. The nodes
have to fill up the maximal branch with the second while-loop
in Algorithm 4. Since they agree on the value of X2 they also
agree on the preferred reality.

Altogether, with a positive probability of at least p(ε) · ξK

all honest nodes vote for the same reality during the next
epoch of length D. If this happens, an AW of more than θ
is obtained in the next epoch. Otherwise, we repeat this

procedure until it is satisfied. The number of epochs neces-
sary follows a geometric random variable. �
Remark 19: The above proof offers a possibility to esti-

mate the ‘‘consensus time’’ T . In fact, its expectation is
bounded above by D · (1 + (p(ε) · ξK )−1). This quantita-
tive analysis is one main difference to Theorem 1, where
no bounds on the ‘‘consensus time’’ are obtained. Another
crucial difference is that Theorem 2 does not require assump-
tions on the randomness of the packages and issuance as in
Assumption 8.
Remark 20: The assumption that the set of conflicts is

fixed reduces to the assumption that the set of conflicts is
bounded during the run-time of the protocol. The results,
therefore, also apply to sets of conflicts that may evolve over
time. However, the quantitative bounds in the proof get worse
for larger sets of conflicts.

XI. PERFORMANCE STUDIES
We summarize some of the performance analysis obtained
in [71] via agent-based simulations to validate the perfor-
mance of the presented concepts. The used simulator [72] is
written in Go and is open source. In this simulator, the neces-
sary components of the consensus protocol are implemented,
however, some of them are simplified. In the following we
give a short description but refer to [71] for more details and
further simulation results.

The simulated environment reflects a situation in which
network participants are connected in a peer-to-peer network,
where each node has the same number of neighbors. Nodes
can gossip, receive blocks, request for missing blocks, and
state their opinions whenever conflicts occur. The underlying
network topology is modeled by a Watts-Strogatz network.
In order to mimic a real world behaviour the simulator allows
to specify the network delay and packet loss for each node’s
connection.

Nodes are modeled as different independent agents that
concurrently issue new blocks. This means that different
nodes can have different perceptions of the Tangle and
Approval Weights, at any given moment of time. The number
of nodes does not change during the simulation period, and all
the honest actors are actively participating in the consensus
mechanism. While the simulator allows to model different
weight distributions, we focus here on the case of a Zipf
distribution with s = 0, i.e. every node has the same weight.
Here, we focus on the robustness of the consensus pro-

tocol against the Bait-and-Switch attack, 13, and illustrate
the influence of the Synchronized Random Reality Selection
(SRRS) introduced in Section V-C.

We present simulation studies with the following specific
setup. We consider N = 100 honest nodes with equal weight
and one adversary node with weight q (out of a total weight
of 1). The block issuance time interval of nodes follows
a Poisson distribution with issuance rates proportional to
the nodes’ weight. The total throughput is approximately
constant at about 100 blocks per second. The parents count
(or number of references) is set to k = 8. The default
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FIGURE 14. Consensus time distributions under Bait-and-Switch attack,
without SRRS (N = 100), taken from [71].

FIGURE 15. Consensus time distributions under Bait-and-Switch attack,
with SRRS (N = 100), taken from [71].

confirmation threshold is set to θ = 2/3. The peer-to-peer
network is a realization of a Watts-Strogatz network with
rewiring probability 1 and 8 neighbors for each node. The
latency between two nodes in the peer-to-peer network is set
to be 0.1 seconds and we assume the adversary to have no
influence on the communication layer. The maximal simula-
tion time is set to 60 seconds.

The access to all Tangles of all nodes in the simulator
allows to ‘‘objectively’’ measure the confirmation time as
proposed in [71] for each node. These can be combined
to extract the consensus time, which is defined as the time
between the creation of a conflict and the timewhen all honest
nodes confirm the same spending or branch. As such, for any
given conflict, it is strictly larger than the confirmation time
at any node. By measuring the consensus time, the safety and
liveness of the protocol can be analyzed.

Figure 14 shows the consensus time for the Bait-and-
Switch strategy as a function of the adversarial weight if
SRRS is disabled. It is interesting to note that there this
some ‘‘inherent randomness’’ in the protocol as blocks are
issued randomly. This seems sufficient to guarantee the secu-
rity against an attacker with at most 20% of total weight.
In iFigure 15 we see the effectiveness of the SRRS, that
makes the protocol robust against the Bait-and-Switch attack
up to the theoretical limit of q = 1/3.
We conclude this section with a brief analysis of the per-

formance with the degree of decentralization and the size
of the network. This also allows to support the values for
the growth of the Witness Weight in Figure 5. Figure 16
shows the confirmation time distributions for several Zipf
parameters s with N = 100. The confirmation time increases

FIGURE 16. Confirmation time distributions of blocks with the Zipf
parameter s, taken from [71].

FIGURE 17. Confirmation time distributions of blocks with the number of
nodes, for s = 0.9, taken from [71].

with the ‘‘decentralization’’ of the network, as also discussed
in Section VI-D. Nevertheless, Figure 5 shows, that in the
extreme case where all nodes have equal weight, i.e. s = 0,
transaction are still confirmed within 2 seconds. In Figure 17
we show the dependence of the confirmation times with
respect to the size of the network, for s = 0.9. As described in
Section 5, the Witness Weight increases slower with a larger
number of nodes. However, as Figure 16 shows the increase is
sublinear, resulting in low confirmation times of∼3 seconds,
even for 1000 nodes.

XII. OUTLOOK - FUTURE RESEARCH
The proposed consensus mechanism in combination with
the Reality-based Ledger supports the parallelisation of
many processes, such as processing, booking and voting.
This can lead to a significant performance boost since it
can enable multi-threaded concurrency. The potential for
multi-threadedness of our solution, the capability to work in
an asynchronous setting and the leaderless approach can offer
a highly performant consensus and ledger solution. Detailed
and sound performance analysis will be necessary to validate
theoretically predicted properties.

Since the ledger can be progressed without having global
knowledge of new transaction additions to the ledger, it is
possible that nodes can reach consensus with our mechanism
even without learning about all blocks. As a consequence,
the approach may enable certain sharding solutions directly
on the Tangle layer, in which nodes only observe a propor-
tion of the total ledger. However, this approach may lower
performance and potentially lower security and/or liveness.
To address the viability of our solution for a sharded scenario
key questions such as necessary assumptions and a full secu-
rity analysis are vital.
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The weight system from which the Approval Weight is
derived can be constructed from multiple sources and in vari-
ous settings. For example, the weight may be derived from the
token value and the system can be operated permissioned or
permissionless. A different approach is to obtain the weights
through reputation systems, which has so far received little
attention.

By introducing the transaction reference in addition to the
block reference in Section VI, the orphanage of transactions
can be reduced through Algorithm 3. However, it does not
solve the problem entirely. For instance, an honest transaction
can be referenced (directly) only by eventually rejected trans-
actions and may never reach sufficient AW to be considered
confirmed. This can be improved in several ways. First, nodes
may keep their ‘‘own’’ transactions as tips until they are
confirmed. This resembles an automated way of reattaching
blocks. Second, nodes may also retain transactions that are in
their preferred reality but for which they have not yet voted
for in the tip pool. The transactions may then be supported
via a transaction reference. Third, one could allow block and
transaction references to be conflicting for a given block. The
transaction can then be prioritised over block references in
a transaction. This enables an efficient way to remove parts
of branches from the referenced aggregated branch. Another
possible solution for a more accurate voting is to introduce
more reference types which would eventually allow nodes
to remove more explicitly certain branches from the sup-
ported branches of referenced blocks. The above examples
demonstrate that solutions for the Tip Selection Algorithm
can be found that mitigate or reduce orphanage, however, they
require thorough analysis to cover edge cases.

XIII. CONCLUSION
We have introduced a new leaderless consensus protocol that
can be seen as a generalisation of the Nakamoto consensus.
Our protocol is based on the Tangle, which not only forms a
partially ordered communication record between participants
in a peer-to-peer network, but also serves as an efficient way
to implicitly vote on the history of the underlying ledger.
These nodes are associated with reputation-based weights
which are used to reach consensus on the acceptance of trans-
actions to the ledger. The leaderless nature of the protocol
allows asynchronous and concurrent writing access to the
ledger. It also eliminates the need for shared ‘‘memory pools’’
for pending transactions and the special roles of miners or
validators.

We provide formal definitions and proofs for the func-
tionalities of the protocol, as well as pseudo-code for the
various core algorithms. Furthermore, liveness and security
of the protocol are analysed and several attack scenarios
discussed in detail. We proved an impossibility result for
safety in the asynchronous communication model. However,
by introducing a synchronisation mechanism that utilises a
common random coin, we proved theoretical results on the
safety of the protocol. Finally, we presented initial simulation
studies that confirm the performance of the protocol with

confirmation times in the order of second, and robustness up
to a theoretical upper bound of the adversary weight of 1/3.

APPENDIX A
ESTIMATES ON CONFLUENCE TIME
This section gives an upper bound on the confluence time τc.

In the case where the network is in a low load regime,
we can assume that the tip pool size is small. Then after
several approvals, all new transactions will indirectly refer-
ence this transaction. In the high load regime, the tip pool
size L0 � k and the confluence time can be larger. Denote
K (t) the number of tips that approve the given transaction x
at time t . A new transaction at time t chooses k tips based on
the state of the Tangle at time t− h. Hence, the probability of
a new transaction approving at least one of the K (t − h) tips
that are approving x is given by

1−
(
1−

K (t − h)
L0

)k
. (23)

As mentioned above, during a time interval h we have that
λh new tips arrive and λh tips are approved. Hence, the
probability that a transaction that was a tip at time t − h is
no longer a tip at time t is

λh
L0
=
k − 1
k

. (24)

Therefore, at time t we have that (1)/kK (t − h) previous tips
are still tips and (k − 1)/kK (t − h) have been referenced
and are no longer tips. We denote by A the set of the tips
referencing x that are still tips and by B the tips referencing x
that got approved in [t − h, h]. We write

pA =
K (t − h)
kL0

, resp. pB =
(k − 1)K (t − h)

kL0
(25)

for the probabilities to choose a given parent from the set A,
resp. the setB. Let p1 be the probability to approve at least one
transaction from B but not from A and let p2 be the probability
that at least two parents are chosen from the set A. Let YA
be the number of tips approved from set A. Then, note that
in the first event, the number of tips that reference the given
transaction increases by a factor 1 and in the second event the
number of tips decreases by a factor YA − 1.

The probability of the first event can be described by a
binomial distribution. In fact,

p1 =
k∑
i=1

(
k
i

)
piB(1− pA − pB)

k−i. (26)

Since pB is assumed to be small the two leading terms are for
i ∈ {1, 2} and we obtain

p1 ≈ kpB +
1
2
k(k − 1)p2B. (27)

The random variable YA follows a Binomial distribution
Bin(k, pA), hence,

P[Y1 ≥ 2] =
k∑
i=2

(
k
i

)
piA(1− pA)

k−i. (28)
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FIGURE 18. Tangle, the Ledger DAG, the Conflict DAG and the Conflict Graph are shown. The Tangle starts with the genesis ρ and includes six
other blocks x, y, z,u, v,w . Blocks x and y contain directly conflicting transactions x̂ and ŷ . Similarly, blocks u and w contain directly
conflicting transactions û and ŵ . Weights of four issuing nodes, which are identified with unique colors, are depicted. The WW of blocks and
AW of transactions are computed. In addition, the preferred reality R is highlighted on the Conflict Graph.

For K (t − h) small, and, thus, pA small, the leading term in
the above expression is for i = 2. Hence, the second event
happens with probability approximately equal to

p2 =
1
2
k(k − 1)p2A, (29)

and the tip pool size is reduced essentially by 1. Similarly
to [3] we can write now a differential equation for K (t).We
consider only the first order terms of p1 and p2 since we
assume K (t) to be small:

dK (t)
dt
= (p1 − p2)λ ≈ λ

(k − 1)K (t − h)
L0

(30)

Using Equation (9) we can write

dK (t)
dt
≈

(k − 1)2K (t − h)
kh

, (31)

with boundary condition K (0) = 1. Following the lines of [3]
we obtain a solution of the form

K (t) = exp
(
W
(
(k − 1)2

k

)
t
h

)
, (32)

where W (·) is the so-called Lambert W -function. Taking the
logarithm at both sides we find that the time when K (t)
reaches εL0 is roughly

τc ≈
h

W
(
(k−1)2
k

) (logL0 + log ε) . (33)

For large k we can approximateW
(
(k−1)2
k

)
≈ 2 log(k−1)−

log k ≈ log k and obtain

τc ≈
h

log k
log(L0) ≈

1
log k

h log(λh). (34)

APPENDIX B
ILLUSTRATIVE EXAMPLE
In this section, we demonstrate in Figure 18 the most impor-
tant concepts introduced in the paper using a toy example.
In this example, blocks have two references which are iden-
tical in some cases.

The Tangle starts with the genesis ρ and six blocks are
issued in the order x, y, z, v,w, u by four distinct nodes which
are identified with unique colors (red, blue, brown, green)
and have weights 0.3, 0.1, 0.2, 0.4. In Figure 18 we demon-
strate the Tangle, the Ledger DAG, the Conflict DAG and
the Conflict Graph. Transactions x̂ and ŷ consume the same
output of ρ̂, thereby they are directly conflicting transactions.
Similarly, we say that û and ŵ are directly conflicting as
their input is the same output of x̂. Thus, the Conflict DAG
consists of the genesis ρ̂ and x̂, ŷ, û, ŵ and can be seen as
the subDAG of the Ledger DAG induced by its vertices
(see Section V-B). The Conflict Graph shows the conflicting
dependencies between x̂, ŷ, û, ŵ, e.g. ŷ is connected with x̂
as they are directly conflicting and ŷ is connected with all
conflict-successors of x̂, i.e. û and ŵ.
To demonstrate the steps of our protocol we discuss the

actions from the point of view of the ‘‘green’’ node for
issuing block w. Before block wwas issued (i.e. at time when
blocks x, y, z, v were issued only), the preferred reality (see
Algorithm 1) for the node was R = {x̂} as AW(x̂) > AW(ŷ).
Suppose that the node decided to issue a block w and selected
the two tips x and z by Algorithm 3. Since the voting branch
of x is branch(p)V (x) = {x̂} ⊆ R and the voting branch of z
is branch(p)V (z) = {ŷ} 6⊆ R (see Definition 34), the node set
a block reference from w to x only. After checking that the
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maximal contained branch of transaction ẑ is the main branch
(or the empty set), the node put a transaction reference from
w to z shown in Figure 18 by the dashed arrow.

We observe that the Approval Weight of transactions is
often equal to the Witness Weight of the corresponding
blocks. However, this is not always the case. For instance,
the Approval Weight of transaction ŷ is the sum of weights of
nodes supporting it. In this case, the ‘‘brown’’ and ‘‘blue’’
nodes are the supporters of ŷ, but not the ‘‘green’’ node
because of the transaction reference from w to z. Therefore,
AW(ŷ) = 0.2 + 0.1 = 0.3. On the other hand, WW(y) =
0.2+ 0.1+ 0.4 = 0.7 since the ‘‘green’’ node witnesses the
block y.
To find the preferred reality, a node must follow

Algorithm 1. Specifically, the realityR is constructed step-by-
step by looking at the Conflict Graph (see Figure 18). At the
first step, one includes x̂ in R as it attains the highest Approval
Weight and it is the closest vertex to the genesis. Then we
remove x̂ and all conflicts which are conflicting with x̂, i.e.
ŷ is removed. At the second step, we choose ŵ as its Approval
Weight is higher that the one of û. After this step, we remove
both ŵ and û. Since the empty set remains, we finish with
constructing reality R = {x̂, ŵ}.

We also highlight that if at the next moment the ‘‘brown’’
node, which is supposed to be honest, decides to issue a new
block and attach it to block w (with a block reference), then
it would change its vote on conflicting transaction ŷ (see
Definition 35). Specifically, the Approval Weight of ŷ would
be dropped by the weight of the ‘‘brown’’ node and become
0.1. In contrast, the Approval Weight of x̂ would gain and
become 0.9.

APPENDIX C
GLOSSARY
Approval Weight A function that computes the ‘‘relative’’
part of the network that approves a given transaction

Conflict A transaction that consumes the same output as a
distinct transaction

Conflicting transactions Two transactions that contain
two transactions in their past cones which consume the same
output of some transaction

Cone A set of vertices in a DAG that are reachable from a
given vertex by following the directions (past cone) and the
opposite directions (future cone) of edges in the DAG.

Branch A set of conflicts which does not contain conflict-
ing transactions and is past-closed

Branch DAGADAG that represents the relations between
branches

Ledger DAG A data structure that stores all transactions
in the form of a DAG

Tangle DAG A data structure that stores all blocks in the
form of a DAG

Voting DAG An augmented DAG that represents a combi-
nation of the Tangle DAG and the Ledger DAG and is used
for determining voting cones

Genesis The transaction that is the ultimate predecessor of
any transaction of the UTXO ledger.

Block An element of the Tangle DAG, constituted of iden-
tified data that refer to at least two blocks

Node A machine that is a part of the network. Its role is to
issue new blocks and validate pre-existing ones

Reality A maximal branch
Solidification The process of retrieving missing blocks in

the past cone of a given block which can be requested by a
node

Witness Weight A function that computes the ‘‘relative’’
part of the network that approves a given block
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