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ABSTRACT Control and diagnostic processes in modern vehicles incorporate nowadays a wide set of
functionalities to preserve the vehicle’s health. Automotive vehicles contain embedded systems that must
perform a diverse palette of tasks, ranging from less critical tasks (e.g., audio/video media control), to crucial
ones, such as controlling the engine, fuel consumption, or the aftertreatment system. This paper identifies and
addresses one emerging threat, namely, automotive tampering. Tampering denotes a procedure that changes
the behavior of the system to gain financial or functional advantages, without damaging the system and
without triggering the built-in safety features of the vehicle. Numerous studies show a growing number of
tampered vehicles worldwide and considering that tampered vehicles contribute to air and atmosphere pollu-
tion, tampering remains a serious environmental threat. This paper proposes two ensemble-based approaches
for tampering detection, both using Long Short-Term Memory neural network predictors, together with
Cumulative Sum and Histogram distance-based detectors. Additionally, an Adaptive Majority Weighted
Voting fusion methodology is proposed, that considers the historical decisions of the detectors. Experimental
results are based on three unique datasets that incorporate a multitude of tampering scenarios. The results
prove the efficiency of the proposed ensembles, with a 0% false alert rate and up to 100% detection rate, even
when dealing with intelligent tamperers, and even in comparison with state-of-the-art tampering detection
solutions. Moreover, this paper offers resource consumption and scalability measurements on a reference
embedded system, further demonstrating the integrability of the proposed techniques in a real embedded
environment.

INDEX TERMS Automotive, anomaly detection, tampering detection, ensemble, outlier detection, exhaust
aftertreatment system, long short-term memory, histogram distance, cumulative sum, teacher forcing.

I. INTRODUCTION
In recent years, a handful of studies focused on detecting,
and preventing cyber-attacks in automotive systems, ranging
from anomaly detection techniques [1], [2], firewalls [3], [4],
intrusion detection systems [3], [5], [6], to cryptography-
based methods for assuring authenticity and confidential-
ity of data frames [7], [8], [9]. While the lack of security
for the onboard systems is alarming, the advancement in
Vehicle-to-Everything (V2X) and Vehicle-to-Vehicle (V2V)
technologies are connecting vehicles to the cloud and to
other vehicles, in consequence opening the vehicle networks

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

to a new plethora of threats, vulnerabilities, and attack
surfaces [10], [11].

One specific emerging threat in recent years is vehicle tam-
pering. The distinction between tampering and cyber-attacks,
is that tampering denotes a procedure that changes the behav-
ior of the system to gain a specific advantage or profit. Thus,
it is important to emphasize that the tamperer (i.e., the one
who performs tampering) does not intend to cause damage to
the system, but to gain a financial or functional advantage by
manipulating the system. Vehicle tampering can take many
forms, from modifying the readings of an odometer [12] to
altering the Emission Control System (ECS) [13]. Advanced
tampering currently ranges from altering or disabling certain
sub-systems (e.g., aftertreatment), to signal manipulation,
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code injection or reflashing of control units, to actual con-
cealing of the tampering devices [14], [15]. As a response,
the Horizon2020 project Smart Adaptive Remote Diagnos-
tic Anti-Tampering Systems (DIAS) emerged, to research
and develop methods for hardening the vehicle Environmen-
tal Protection System (EPS) against known and unknown
(e.g., possible future) tampering methods. The main objec-
tives of the project include in-vehicle detection methods,
as well as counter-measure solutions, guidelines and rec-
ommendations for future anti-tampering legislation, with the
final goal of partial or total elimination of automotive tam-
pering attempts [16].

The European Commission (EC) estimates that up to 50%
of second-hand vehicles sold across the European Union
(EU) were subjected to odometer tampering [17], while a
study from the Danish Ministry of Environment and Food
reveals that up to 25% of heavy-duty vehicles in Denmark
may be tampered [18]. Giechaskiel et al. [19] revealed the
true magnitude of tampering with reports from 2017. The
authors point out that a large number of sites, 87 to be exact,
were selling tampering devices for Euro IV - VI vehicles,
all across EU. Furthermore, the authors point out that up to
25%of vehicles have tampering devices.More alarming is the
fact that in Europe there is no clear anti-tampering legislation
in place, compared to the United States of America, where
tampering is prohibited by law. Even so, in 2020 the Air
Enforcement Division of the United States Environmental
Protection Agency presented a study where more than half
a million pickup trucks had their emission control tampered,
this corresponding to 15% of Class 2b and 3 diesel trucks
produced after 2003 [20]. Additionally, the study addresses
automotive tampering in Canada, revealing that in 2007 at
least 20% of light-duty vehicles were responsible for almost
80% of the emissions, while out of 6000 heavy-duty vehicles
analyzed, 26% of them were high emitters. Considering the
fact that tampered vehicles contribute to air and atmosphere
pollution, while altered ECS produces excess emissions of
nitrogen oxides (NOx), particulate matter (PM ), and other
pollutants, tampering still remains an unresolved threat for
the environment, and for human health as well.

The complexity of the problem at hand requires a suit-
able solution. Therefore, this paper proposes two tamper-
ing detection ensembles positioned at the application level
as independent Electronic Control Unit (ECU) applications.
The proposed ensembles leverage the predictive capabilities
of Long Short-Term Memory Neuronal Network (LSTM-
NN), which are used as predictors, together with Cumu-
lative Sum (CUSUM) chart and Histogram distance-based
detection approaches. The LSTM-NN are empowered with
a Teacher Forcing (TF) [21] variant that allows to feed back,
at the current time-step, the previously observed values of the
output monitored variables, in parallel with the set of inputs,
during both the training and testing phase. Thus, an open-
loop forecasting methodology is proposed, resembling a
Series–Parallel architecture of Nonlinear Auto-Regressive
Neural Networks with exogenous inputs (NARXNN) [22].

The usage of Teacher Forcing (TF) represents a creative way
of applying TF to detection techniques (e.g., anomaly detec-
tion, tampering detection). Moreover, the proposed ensem-
bles use an Adaptive Majority Weighted Voting (AMWV)
fusion methodology, that takes into account the historical
decisions of each detector, and outputs one of three decisions:
normal, alert and warning. Lastly, this paper showcases an
offline training methodology for predictors, to reduce the
complexity of the model training procedures.

The proposed tampering detection solutions were tested
on three distinct datasets and were validated using eight
performance metrics on different tampering types and driving
scenarios. The first dataset was produced by a state-of-the-
art aftertreatment simulation model of a heavy-duty vehicle
developed at the Laboratory of Applied Thermodynamics
fromAristotle University of Thessaloniki. The second dataset
was created by the Vehicle Emissions Heavy Duty chas-
sis laboratory at the Joint Research Centre of the EC, and
the third dataset originates from a Skoda Rapid passenger
vehicle. The proposed solutions obtained notable results,
including 0% False Positive Rates on all datasets and up
to 100% detection rates in most of the cases. Furthermore,
the ensembles were compared to state-of-the-art tampering
detection methodologies [23], [24], with promising results.
Additionally, the comprehensive experimental assessment
conducted on real and simulated tampering scenarios, intents
to push forward towards a more resilient, generalized tamper-
ing detection solution. Finally, in addition to the previously
mentioned, this paper provides resource consumption and
scalability measurements on a reference embedded system,
demonstrating the possibility of integrating the proposed
solutions in an actual embedded environment.

The remainder of the paper is organized as follows.
A description of the threat model and Automotive Exhaust
Aftertreatment System (EAS) tampering is offered in
Section II. The proposed tampering detection solutions are
presented in Section III. Next, the datasets are described,
together with the final design of the proposed ensembles
in Section IV. Section V presents the experimental results,
following a series of discussions in Section VI. Afterwards,
the most relevant related studies are presented in Section VII.
The paper concludes in Section VII.

II. THREAT MODEL AND AUTOMOTIVE EAS TAMPERING
A. THREAT MODEL
The considered threat model assumes that a tamperer
(e.g., attacker) is capable of altering the vehicle’s sub-systems
without causing physical damage or affecting it’s safety.
A tamperer is assumed to have unrestricted physical access
and unlimited time to add, change or remove certain vehi-
cle components (e.g., remove/replace sensors). It is further
assumed that the tamperer has access to the in-vehicle net-
works. Thus, this assumed tamperer is capable of injecting
messages and emulating certain signals (e.g., via emulators),
while remaining stealthy (i.e., without causing alerts to be
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generated by the on-board diagnostic systems), or that the
tamperer is capable of deleting any diagnostic trouble codes
that might result from tampering (e.g., by connecting Diag-
nostic Trouble Code erasers to the vehicle’s network). It is
also assumed that tampering is performed with the vehicle’s
owner consent or that the vehicle owner is the one performing
the tampering. Tampering is assumed to be persistent over an
extended period of time. The assumed scope of tampering is
for the vehicle’s owner to gain certain advantages (e.g., opera-
tional, financial). Lastly, it is considered that the environment
in which the ensembles run is protected via state-of-the-art
security solutions (e.g., code signing, secure boot).

B. AUTOMOTIVE EXHAUST AFTERTREAMENT
SYSTEM TAMPERING
Developed as a response to the constantly increasing vehicle
emissions, the Exhaust Aftertreatment System (EAS) reduces
the pollutants generated by diesel engines by converting them
to less harmful elements. Early EAS models were equipped
with metal catalysts which oxidized carbon monoxides and
hydrocarbons, reducing them to carbon dioxide and water.
Modern EAS models utilize additional catalytic converters,
sensors, and automated processes to achieve, not only higher
efficiency in reducing pollutants but also reduced produc-
tion and maintenance costs [25]. Pollutants, such as carbon
monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx)
and particulatematter (PM ) after passing through the EAS are
converted to less harmful elements like carbon dioxide (CO2),
water (H20) and nitrogen (N2). Pollutant reduction operations
are performed by the catalytic converters including Oxida-
tion catalysts (oxycats), Three-way catalysts (TWCs), Lean
NOx traps (LNTs), Particulate Filters (PFs), Selective Cat-
alytic Reduction (SCR) systems and Ammonia Slip Catalyst
(ASC) [25].

Advancements in the EAS design, in conjunction with
stricter regulations imposed by governments, led to a
considerable reduction in emission levels. However, manip-
ulations of the EAS are still discovered during periodical
vehicle inspections [14]. Emulators used on heavy-duty vehi-
cles affect the functionality of the SCR systems and the NOx
sensors. Here, the motivation for tampering remains a finan-
cial one, to save funds on Diesel Exhaust Fluid (DEF) (e.g.,
AdBlue) and maintenance. DEF is utilized by the SCR in the
NOx reduction process. Disabling the dosing of DEF causes
increased NOx emissions, which are hidden by injecting false
NOx values using the emulators.

For the reader to get a better understanding of how effi-
cient this kind of emulators can be, Figure 1, illustrates the
downstream NOx readings in the presence and absence of
an emulator. Here, the measured NOx values when DEF
is normally dosed are illustrated in the top sub-figure. The
measured NOx values when DEF dosing is reduced (e.g.,
tampered) are illustrated in the middle sub-figure. Finally,
the false NOx values injected by an emulator are illustrated
in the bottom sub-figure. As shown, the injected false values
closely match the real readings while the average real NOx

FIGURE 1. Illustration of the NOx concentration measurements with
normal/reduced DEF dosing vs the false NOx values injected by an
emulator.

concentration values doubles. The cumulative values for the
NOx measurements increase from 8 ∗ 106 ppm to 16 ∗
106 ppm for a driving cycle of 6000 seconds.

Nowadays, tampering is supplied in specialized vehi-
cle workshops both as a service and as product. For
the latter, instructions are provided through online shops,
forums, and even social media websites [19], making it
easily accessible for everyone interested in it. Furthermore,
Giechaskiel et al. [19] published data related to the real mag-
nitude of tampering. The study shows that the NOx emis-
sions of tampered passenger vehicles can have NOx values
increased up to 850 times. On the other hand, Euro IV
heavy-duty trucks can have the NOx values increased up to
220 times. For a Non-Road Mobile Machinery (NRMM), the
results show an increase of NOx emissions of over 200 times.
Concurrently, [20] brings forward research data showing
that the emissions of tampered vehicles are increasing from
30 to 300 times in terms of NOx values, by three orders of
magnitude in terms of Non-methane hydrocarbons, by two
orders of magnitude in terms of carbon monoxide values, and
by 15 to 40 times in terms of particle matter.

These issues become worse when not only single vehicles,
but entire fleets are tampered, for extended periods of time.
As previously mentioned, emulators can be easily purchased
online, at low prices and often times they can be installed
with ease just by connecting them to the On-board diag-
nostics (OBD) port. This, however, is only one tampering
method, other more advanced methods require additional
hardware/software manipulations together with the use of
more advanced emulators.

III. PROPOSED TAMPERING DETECTION SOLUTIONS
The two proposed tampering detection ensembles, further
denoted as Cumulative Sum Based Ensemble (CBE) and His-
togram Based Ensemble (HBE), both use predictive models
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FIGURE 2. General overview of the proposed ensembles architecture. The two proposed ensembles are differentiated by the detection
method used by the base detectors (e.g., CUSUM, Histogram distance).

and detectors. Predictive models have long been used for
anomaly detection, and more recently for tampering detec-
tion [23]. Compared to statistical profiling and clustering
methods [26], [27], [28], [29], predictive models are built
using historical data from which they learn the trends and
seasonality of the time-series data. While statistical profiling
and clustering methods are suitable for detecting obvious
anomalies, represented by points or series of points which
deviate significantly from the baseline, in the case of tam-
pering, the anomalies are subtle and almost identical to the
normal observations, as depicted in Figure 1.
The proposed ensembles are envisioned to function as in-

vehicle solutions, at application level in the Electronic Con-
trol Units (ECUs). The distancing from the network level has
several advantages, for instance, the ability to function on top
of different communication protocols (e.g., LIN, CAN, Flex-
Ray, Ethernet), without requiring information about the data
frame structure or frequency.

One crucial aspect of the proposed techniques is the
offline training. The processing capabilities of the ECUs are
extremely limited, while the training procedures of the base
predictors (e.g., LSTM-NNs) are slow and demand high com-
putational resources. Nonetheless, a solution to this problem
is an offline training methodology. Predictors are trained and
tested outside the vehicle with tamper-free measurements,
and a variant of Teacher Forcing (TF), where the ground
truth value from the current time-step is used as input to the
next time-step. Furthermore, the detection thresholds are also
computed in an offline manner. The trained models (i.e., the

weight matrices of the LSTM-NNs, the hyper-parameters and
the thresholds) are later deployed onto the ECUs.

During the detection phase, each detector from the ensem-
bles monitors a signal (e.g., a variable) by analyzing the
deviations from the normal learned behavior.

A. ENSEMBLE ARCHITECTURE
A common element in both ensembles is the Multiple-
input Single-output (MISO) predictive LSTM-NN. In both
ensembles, the base detectors monitor one specific signal
by constantly analyzing the prediction errors received from
the predictor, using two distinct techniques. These detectors
are the Cumulative Sum Based Detector (CBD) and the His-
togram Distance Based Detector (HBD).

The individual decisions of the base detectors are
combined using the Adaptive Majority Weighted Voting
(AMWV) scheme. A general overview of the proposed
ensemble’s architecture is depicted in Figure 2. Here, the
building blocks of the ensembles are identified, namely:
the predictors, the detectors, and the decision combination
method. Each building block will be further described in the
following sub-sections.

B. PREDICTORS FEATURE SELECTION
Selecting the appropriate group of signals for the LSTM-
NN is an important step towards designing the tamper-
ing detection ensembles. The proposed approach follows
a correlation-based technique for selecting the groups of
inputs and outputs. The selection process is identical for
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both proposed detection ensembles, leveraging the Pearson’s
product-moment correlation coefficient [30]. Here, from a
large number of measured signals, the ones that exhibit a
high correlation coefficient with the chosen output signal
are selected. Pearson’s product momentum correlation (Pear-
son’s correlation) describes the strength of the relationship
between variables. The process begins with the selection of
the output variables (e.g., monitored variables), followed by
the selection of the group of variables exhibiting the highest
positive and negative correlation coefficients.

Let’s consider X of size n, the set of all measured variables
inside a vehicle. Let’s also define Y a subset of X in such
a way that Y ⊆ X encompasses the set of output variables.
Furthermore, let m be the number of deployed LSTM-NNs.
For each j LSTM-NN, let yj ∈ Y denote the response variable
(e.g., monitored variable), here, yj can be further selected as
input to the other predictors as well. Considering K the num-
ber of samples for each variable, given yj and x i ∈ X , where
i = 1..n, the correlation coefficient R(yj, x i) is computed as:

R(yj, x i) =

∑K
l=1(y

j
l − y

j)(x il − x
i)

[
∑k

l=1(y
j
l − y

j)2
∑K

l=1(x
i
l − x

i)2]1/2
, (1)

here, x i and yj denote the average values of x i and yj respec-
tively. R can take values between [−1, 1], where the sign
of R represents the positive or negative correlation between
x i and yj. In the following sub-sections, for the LSTM-NN j,
where j = 1..m, X j, will denote the set of selected input
variables.

C. LONG SHORT-TERM MEMORY NEURAL NETWORKS
AND TEACHER FORCING
LSTM-NNs are a type of Recurrent Neural Networks (RNN)
developed as a solution to the vanishing and exploding gra-
dient problem found in vanilla versions of RNNs. This was
achieved by integrating memory units capable of learning
when to forget and when to updatememory information. Two
core components differentiate LSTM-NNs from other neural
networks. First, a sequential input layer capable of feeding
data sequences or time-series data to the subsequent layers
(e.g., hidden layers). Second, LSTM-NN layers which are
responsible for learning dependencies between the time-steps
of the data.

A standard LSTM-NN layer is composed of blocks. These
blocks incorporate one or more memory cells and three
types of gates (e.g., input, output and forget gates). The
role of the memory cell is to store information over time
and, in term, is controlled by the three gates. These gates
regulate the incoming and outgoing information flow to and
from the memory cell. The contribution of each gate is as
follows: the forget gates, denoted as fj(t), regulate the dis-
carded information; the input gate, denoted as l(t), regulates
what information is to be saved and finally; the output gate,
denoted as o(t), computes the current unit’s output.

The equations for the gates, cell update and output, at time t
are as follows:

fj(t)
j=1,3

= sigm(Wfj (x(t)+ o(t − 1))+ bfj ), (2)

l(t) = f2(t) · C(t), (3)

C(t) = tanh(WC (x(t)+ o(t − 1))+ bC ), (4)

C(t) = f1(t) · C(t − 1)+ l(t), (5)

o(t) = f3(t) · tanh(C(t)), (6)

whereW denotes the weight matrices, x is the input vector, C
are the new candidates for the cell state and C is the current
cell state. The activation functions are: the Sigmoid, denoted
as sigm and the Hyperbolic Tangent, denoted as tanh and are
computed as follows:

sigm(x) =
1

1+ ex
, (7)

tanh(x) =
ex − e−x

ex + e−x
. (8)

Training RNNs with Teacher Forcing (TF) involves feed-
ing the ground truth output from the previous time-step
y(t − 1), as input to the current time-step, while during test-
ing(inference) instead of the ground truth, the network output
ŷ(t−1) is fed back as input. This procedure (with the network
outputs fed back as input) has, however, some disadvantages.
For instance, the kind of inputs that the network sees during
training could be quite different from the kind of inputs that it
sees at inference time, this effect is known as exposure bias.
The way TF was originally proposed assumes that during
inference the ground truth value will not be available. In this
paper, a modified version of TF is proposed, where at each
time-step, during both training and detection, the ground truth
y(t − 1) is fed back as input to the current time-step. During
detection, a given signal is monitored by predicting its future
values and analyzing the deviations from the ground truth
value. Figure 3 illustrates a side-by-side depiction of a generic
LSTM-NN block and a LSTM-NN block with TF.

FIGURE 3. LSTM-NN generic block (left) alongside LSTM-NN block with TF
(right).

TF is applicable to models that have a recurrent connection
from their output leading back into the model and can be
used as an alternative to Back Propagation Through Time
(BPTT) when the model lacks hidden-to-hidden connections.
Nonetheless, TF may still be applied in conjunction with
Back Propagation Through Time (BPTT) for training models
with hidden-to-hidden connections [31].
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The concept behind TF originates from the maximum
likelihood criterion [32]. This implies maximizing the condi-
tional log likelihood of the tuple of predictors and responses
{xj, yj}, where j = 1..s, s is the number of sequences and W
denotes the weights of the neural network, as follows:

L =
s∑
j=1

log p(yj|xj,W ), (9)

here, the response probabilities are assessed consecutively
while each tuple depends on the previous ones. The probabil-
ity term from the previous equation can further be expanded
as:

p(yj|xj,W ) =
Lj∏
t=1

p(ŷj(t)|yj(< t), xj,W ). (10)

In Equation 10, the probability of the response ŷj(t) at time-
step t is dependent on both the previous responses yj(< t) =
{yj(0), yj(1), . . . , yj(t − 1)} and the input sequences xj.
In our proposed method, the LSTM-NN are trained with

both TF and BPTT. The only change in BPTT, using the
current version of TF, appears in the forward propagation step
as follows:

In Equations 2 and 4 the weight matrices Wfi and WC are
in term composed of the weight matrices for the terms inside
the brackets, that is, the current inputs x(t) and the previous
state o(t−1). By extending the brackets we get the following:

fj(t)
j=1,3

= sigm(W x
fj x(t)+W

o
fj o(t − 1)+ bfj ), (11)

C(t) = tanh(W x
Cx(t)+W

o
Co(t − 1)+ bC ), (12)

Let y(t − 1) denote the ground truth value at time t − 1,
which will be fed as input at the current time-step t . Then,
the weight matrices for the inputs can be separated in two
terms: the weight matrix for the current external inputs x and
theweightmatrix for the previous ground truth value y(t − 1).
Equations 11 and 12 are rewritten as:

fj(t)
j=1,3

= sigm(W y
fj y(t − 1)+W x

fj x(t)+W
o
fj o(t − 1)+ bfj ),

(13)

C(t) = tanh(W y
Cy(t − 1)+W x

Cx(t)+W
o
Co(t − 1)+ bC ),

(14)

the same changes will also apply to Equations 3, 4 and 6. The
current hidden state o(t), which is also the current output ŷ(t),
becomes:

o(t) = f3(t) · tanh(C(t))

= sigm(W y
f3
y(t − 1)+W x

f3x(t)

+W o
f3o(t − 1)+ bf3 ) · tanh(C(t)) (15)

It becomes obvious, from Equation 15, that the current
hidden state, which is also the output, quantifies all previous
hidden states together with the previous ground truth values,
and this applies to both the training and detection phases.

As there are no recurrent connections and weights from
the output layer to the input layer, the backwards propagation
is not affected. For a more detailed description of LSTM-
NN and the BPTT algorithm the reader is encouraged to
examine [33], [34], [35].

In this paper, the predictor is defined as the LSTM pre-
dictive neural network with an additional component that
computes and outputs the prediction error at each time-step,
further defined as ε = y(t)− ŷ(t).

D. BASE DETECTORS ARCHITECTURE
The current subsection will describe the architecture of the
base detectors, namely, the Cumulative Sum Based Detector
(CBD) and the Histogram Distance Based Detector (HBD).

1) CUMULATIVE SUM BASED DETECTOR
The CBD monitors changes, in both the mean and the vari-
ance values of the LSTM-NN prediction error, using two vari-
ants of the 1-CUSUM scheme [36]. The 1-CUSUM scheme
has the ability to detect changes (i.e., increase and decrease
shift) in both the mean and the variance values, using a single
two-sided control chart, which works with single observa-
tions. The first proposed variant utilizes the CUSUM chart
as it was originally proposed in [36], for a point-by-point
CUSUM computation, while the second variant employs a
sliding window methodology, which computes the CUSUM
over a sliding window of size τ .
Let µ0 be the mean value of the training prediction error ε,

and let ν = ε − µ0. The CUSUM value, further denoted as
CSM (t), at time t , is computed as follows:

CSM (t)

= max[0,CSM (t − 1)+ (λν(t)+ (1− λ)ν2(t))− β],

if (CSM (t − 1) > 0 or

(CSM (t − 1) = 0 and ν(t) > 0))

or,

CSM (t)

= min[0,CSM (t − 1)+ (λν(t)− (1− λ)ν2(t))+ β],

if (CSM (t − 1) < 0 or

(CSM (t − 1) = 0 and ν(t) < 0)). (16)

In Equation 16, β is the reference parameter value, λ (0 ≤
λ ≤ 1) is the weighting factor and CSM (0) is initialized
with 0. The algorithm for computing the CUSUM over a
sliding window is presented in Algorithm 1.

The detection threshold for each detector, denoted as θj,
is computed as θj = µCSM j + 6 · σCSM j . Here, µCSM j

and σCSM j , denote the mean and standard deviation of the
cumulative sum computed over the training data prediction
errors.

During the detection phase, the CBD constantly computes
the CUSUMvalue, over the prediction error received from the
predictor, and outputs a binary decision which can be: clean,
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Algorithm 1: Sliding Window Cumulative Sum
Data:
ε: Prediction absolute errors;
µ0: Training prediction error mean value;
τ : Sliding window size;
β: Reference parameter value;
λ: Weighting factor;

Result:
CSM : The cumulative sum;

Function CUSUM (ε, µ0, τ, β, λ):
For i← 1 to size(ε) - τ do
idx ← 1;
WC[idx]← 0 ; // CUSUM over the sliding window.
For j← i to i+ τ − 1
idx← idx + 1;
ν ← ε[j]− µ0;
if WC[idx − 1] > 0 or (WC[idx − 1] == 0 and ν > 0)
WC[idx]← max{0,WC[idx − 1]+ (λν + (1− λ)ν2)− β};

else ifWC[idx − 1] < 0 or (WC[idx − 1] == 0 and ν < 0)
WC[idx]← min{0,WC[idx − 1]+ (λν − (1− λ)ν2)+ β};

End
End
CSM [i]← WC[idx];

End
Return CSM

End Function

if the computed CUSUM remains under the threshold value,
or tampered, if it surpasses it.

2) HISTOGRAM DISTANCE BASED DETECTOR
The base detector of the second ensemble, named HBD,
also utilize LSTM-NN predictive models but processes the
prediction errors differently. Firstly, the HBD constructs the
histogram of the prediction errors, over a given time win-
dow. Secondly, using a custom distance metric it computes
the distance between the histogram of the prediction errors
of the training data and the histogram of the data contained
in the current time window. Lastly, each detector outputs a
binary decision using a threshold-based approach.

The proposed histogram distance metric computes the
maximum absolute distance between two given histograms.
Let H and U be two histograms, defined as H =

(h1, h2, . . . ., hψ ) and P = (p1, p2, . . . ., pψ ), having the same
number of bins, denoted as ψ , with the same bin edges BE ,
where, hi and pi represent the frequencies of points in bin i.
The distance between the two histograms, further denoted as
d(H ,P), is computed as follows.

d(H ,P) = max
hi∈H ,pi∈P

{|hi − pi|}. (17)

Before applying the proposed distance metric, let us first
prove that it is a metric.

A distance d(H ,P) defined in a space of dimension Rn,
d : Rn x Rn

−→ R must satisfy the following properties,
in order to be considered a metric:
Property 1 (Non-negativity): d(H ,P) ≥ 0.
Proof: The distance d(H ,P) is the maximum of the

absolute differences between the probability of points in each
bin. The absolute value of each |hi − pi|, where hi ∈ H and
pi ∈ P has a non-negativity property by the definition of the

absolute value, where:

|a| =

{
a if a ≥ 0
−a if a < 0,

(18)

Therefore, d(H ,P) = max
hi∈H ,pi∈P

{|hi − pi|}

also has the non-negativity property by definition. �
Property 2 (Reflexivity): d(H ,H ) = 0.
Proof: Since H = H then each value hi = hi, where

hi ∈ H . If each hi = hi then each hi − hi = 0 and each
|hi − hi| = 0.
Therefore, d(H ,H ) = max

hi∈H
{|hi − hi|} = 0 by definition.

�
Property 3 (Commutativity): d(H ,P) = d(P,H ).
Proof: Given the symmetry propriety of the absolute

value, where, |a| = |−a| by substituting (H−P) for a, we can
write |(H − P)| = |−(H − P)|. This means that for each
hi ∈ H and pi ∈ P we can write |(hi − pi)| = |−(hi − pi)| ⇒
|(hi − pi)| = |(pi − hi)|. Since |(hi − pi)| = |(pi − hi)| then

max
hi∈H ,pi∈P

{|hi − pi|} = max
hi∈H ,pi∈P

{|pi − hi|}.

Therefore, d(H ,P) = d(P,H ). �
Property 4 (Triangle Inequality): d(H ,Q) ≤ d(H ,P) +

d(P,Q).
Proof:

Let’s begin by fixing i = 1, . . . , n.
Then, we have |hi − qi| = |hi − pi + pi − qi| ≤ |hi − pi| +
|pi − qi| by definition of the Triangle Inequality in R.
Next, we take the maximum of both sides of the inequality

which gives us:

max
hi∈H ,qi∈q

{|hi−qi|} = max
hi∈H ,pi∈P,qi∈Q

{|hi − pi + pi − qi|}

≤ max
hi∈H ,pi∈P

{|hi−pi|}+ max
pi∈P,qi∈Q

{|pi−qi|}.

Therefore, d(H ,Q) ≤ d(H ,P)+ d(P,Q). �
The algorithm for HBD with a sliding window approach

is presented in Algorithm 2. In the same Algorithm, H (ε0)
denotes the histogram of the training prediction errors,
H (ε0) = (h1, h2, . . . ., hψ ), here, hj where j = 1..ψ , repre-
sents the frequencies of points in bin j, and ψ denotes the
total number of bins. Also, H (ετ ) denotes the histogram of
the data points from the current time-window.

The threshold computation for the HBD begins with
the construction of the histogram distance vector, over the
training prediction errors, using the approach presented in
Algorithm 2. The threshold value is computed as: θj = µz±6·
σz, here,µz and σz denote themean and the standard deviation
of the histogram distance vector z. The same procedure is
followed for all the detectors in the ensemble.

During the detection phase, the detectors will constantly
compute the distance between the training histogram and the
histogram of the prediction error from the current time win-
dow. Similarly to the CUSUM based approach, the detectors
will output a binary decision, namely, clean or tampered,
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Algorithm 2: Sliding Window Histogram Distance
Data:
ε: Prediction absolute errors;
τ : Sliding window size;
ψ : Histogram number of bins;
H (ε0): Histogram of the training prediction errors;
BE : Bin edges from H (ε0);

Result:
z: Histogram distance vector;

Function HistDist (ε, τ, ψ,H (ε0)):
For i← 1 to size(ε) - τ do
H (ετ ) = Histogram(ε[i: i + τ − 1], ψ , BE);
z[i] = d(H (ε0),H (ετ ));

End
Return z

End Function

based on the computed histogram distance and the detection
threshold.

E. ADAPTIVE MAJORITY WEIGHTED VOTING
The proposed fusion technique is a modified version of the
MajorityWeighted Voting scheme, with an additional historic
reputation component. That is, at each time-step the weights
of the detectors are adjusted (e.g., increased or decreased)
depending on whether the detector votes the same as the
majority or not. The weights are adjusted by a percentage,
which is computed based on the previous decisions of said
detector (e.g., if in the past, it has voted the same as the major-
ity). This weight adjustment methodology awards higher
weights to the detectors that vote the same as the majority
compared to the detectors that more often disagree with the
majority. Furthermore, the weights can drop down to zero,
thus temporarily ignoring that detectors decision.
The final decision of the ensembles can be one of the

following: normal, alert and warning. The warning state is
triggered when the majority vote doesn’t trigger an alert but
there is at least one detector that identified a tampered obser-
vation. Considering that each detector monitors a different
signal, there is the possibility that tampering one or more
signals might not affect the rest of signals, especially if the
physical tampered component is not running in a closed-loop.
Thus, by generating a warning, further investigations can be
carried out on that component.

Recall, each detector of the ensembles outputs a binary
decision, namely, clean or tampered. Let k denote the total
number of detectors of an ensemble and let Dj, where j =
1..k , be the j−th detector. The output of detectorDj is denoted
as �j,i ∈ {0, 1}, here, i ∈ {1, 2} represents the two possible
decisions (e.g., 1: clean, 2: tampered).�j,i will take the value
of 0, if detector j outputs a clean decision, and 1 otherwise.
These decisions are further passed on to the voting system
which sums the weights, for each decision, and outputs the

decision that receives the most weighted votes, as follows:

V (t) =

 1, if
∑k

j=1
wj(t)�j,1>

∑k

j=1
wj(t)�j,2,

2, otherwise,
(19)

where V (t) denotes the majority weighted decision at time t
and wj denotes the current weight of detector Dj. The final
ensemble output at time t , denoted as VE (t), is computed as
follows:

VE (t)=


Normal, if V (t) = 1,

Warning, if V (t)=1 and
∑k

j=1
�j,2>0,

Alert, if V (t) = 2.

(20)

In case of a draw between Normal and Alert, the decision will
be: Alert (tampered).

The weights for the next time-step, wj(t + 1), are adjusted
as follows:

wj(t+1) =



min

1,wj(t)+wj(t)
1

1+
p∑
l=1

[Aj,l == 0]

 ,

if Dj voted the same as the majority.

max

0,wj(t)−wj(t)
1

1+
p∑
l=1

[Aj,l == 1]

 ,

otherwise,
(21)

here, A is a matrix of size k x p denoting the historical
decisions for the detectors, namely, each row represents a
detector, and each column holds a value of 1 if the detector
voted the same as the majority and 0 otherwise, in the previ-
ous p time-steps.

In Equation 21, the first case represents the scenario where
a detector’s decision is the same as the majority, so its weight
is increased. In the denominator

∑p
j=1[Ai,j == 0] repre-

sents the number of times the detector disagreed with the
majority in the past p time-steps. Conversely, the second case
represents the scenario where a detector disagrees with the
majority and

∑p
j=1[Ai,j == 1] is the number of times the

detector agreed with the majority in the past p time-steps.
If a detector’s weight drops to zero and after a while it starts
voting the same as the majority, its weight is initialized to a
value of 0.1.

IV. MATERIALS AND METHODS
A. DATASETS AND TAMPERING SCENARIOS
As previously mentioned, the proposed ensembles were
tested and validated on three independent datasets. Each
dataset originates from different environments (e.g., vehi-
cle or simulation), containing distinct tampering scenarios.
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The primary dataset was used for evaluation and validation,
while the two secondary datasets were used for evaluation,
validation, and performance comparison with state-of-the-art
tampering detection techniques.

1) PRIMARY DATASET
The first dataset was produced by a state-of-the-art aftertreat-
ment simulation model of a heavy-duty vehicle developed at
the Laboratory of Applied Thermodynamics from Aristotle
University of Thessaloniki.

Here, a simulation was developed, to produce vehicle data
covering multiple driving cycles and tampering scenarios.
Using the Exothermia suite simulation environment [37] a
bus incorporating a state-of-the-art exhaust aftertreatment
system was created. This bus incorporates the major com-
ponents found in heavy-duty aftertreatment systems: an in-
line Diesel Oxidation Catalyst (DOC), Selective Catalytic
Reduction (SCR) Filter, SCR system, and Ammonia Slip
Catalyst (ASC). Exothermia suite has the ability to model the
flow through the systems of emission control systems using
physicochemical solvers. Among the inputs of the model we
find the mission profile (e.g., target speed, road slope and
diverse environmental conditions such as temperature, pres-
sure and humidity). The simulation outputs several param-
eters, including emissions, exhaust gas temperature or urea
dosage [38].

In the above-mentioned system, two driving cycles were
created: the World Harmonized Vehicle Cycle (WHVC), and
the Fige transient cycle. The WHVC represents a heavy-duty
chassis dynamometer test developed mainly for research
purposes and utilized for engine emissions certifications.
It comprises 1800 seconds of measurements, divided into
three segments which include urban, rural and motorway
driving [39]. Developed by the FIGE Institute, from Aachen,
Germany, the Fige transient cycle is a truck and bus engine
test cycle, based on real measurements of heavy-duty vehi-
cles [40]. Alike the WHVC cycle, Fige cycle comprises
1800 seconds which include urban, rural and motorway driv-
ing segments. All simulations were carried out at a 10Hz
sampling frequency for all signals.

To create tamper-free (baseline) evaluation scenarios, the
two driving cycles were simulated without modifications.
Next, the tampering scenarios were created. They include
known and unknown (possible future) tampering approaches
and follow two main operating modes. The first operating
mode refers to disabling EAS components and hiding the
affected signals by injecting emulated signals resembling
the real ones. The second operating mode considers more
advanced emulators that could function in training mode
as well, where the emulator attempts to model and fit the
emulated signals to the real ones.

A significant tampering scenario, frequently observed in
heavy-duty vehicles, involves disabling the NOx reduction
system for a decrease in maintenance costs (e.g., refiling
the AdBlue DEF). This specific tampering scenario was
simulated by recreating an AdBlue emulator, which was

previously tested on a Renault MDA2C EuroVI truck, while
known and possible future hiding methods were applied to
the affected signals. This emulator performs two actions,
namely, it reduces the Urea dosing command while concur-
rently creating two hiding signals targeting the Engine Con-
trol Module. Here, the hiding methods range from simpler
approaches like injection of NOx downstream values as a
fixed and random percentage of the NOx upstream values,
to more complex ones, like fitting the emulated signals using
multiple linear regression and moving average techniques.
To stay undetected from plausibility and tampering detec-
tors, these advanced models provide emulated signals with
patterns resembling the ones of functional exhaust aftertreat-
ment system. Nonetheless, as the complexity of such models
increases so does the computational demand together with the
need for additional available signals for an efficient training.
The resulting tampering scenarios, further denoted as T1 - T6,
include 6 hidingmethods applied to the NOx downstream sig-
nal combined with one tampering method applied to the Urea
signal. The tampering scenarios fit the emulated signals as
follows, T1 - T2 using a fixed and random percentages of the
upstream values, T3 - T4 using moving average techniques
and T5 - T6 using linear regression. A more detailed descrip-
tion of the simulation model and the tampering scenarios can
be found in [38].

2) SECONDARY DATASET I
The second dataset was used for two reasons, first, to evaluate
the proposed ensembles on a dataset that originates from
a real vehicle, and second, for the performance compari-
son experiments. This dataset originates from the original
VetaDetect paper [23] and it comprises data collected from
a EURO VI D N2 class truck in the Vehicle Emissions
Heavy Duty chassis laboratory (VELA) at the Joint Research
Centre of the European Commission. This dataset contains
emission-related tamper-free and tampered data measured
while using an AdBlue emulator mounted inside the vehicle.
Both baseline and tampered scenarios were tested using the
WHWC driving cycle and contain 1800 seconds of mea-
surements. Furthermore, the authors also included a more
advanced tampering scenario, where the tamperer uses an
ARX model to emulate and replace the readings of an Intake
Oxygen sensor. Additionally, another scenario was included,
where the tamperer might use a more complex model (e.g.,
an LSTM network trained with tamper-free measurements
from the same truck) to emulate the Intake Oxygen sensor.

3) SECONDARY DATASET II
Moving forward to the third dataset, created by
Roman et al. [24]. Here, the authors collected their data from
the On-Board Diagnostic II (OBD-II) port of a 2015 EUR6
Skoda Rapid 1.2 L TSI passenger vehicle. They used an
OBD-II USB interface cable together with an aftermarket
diagnostic software (e.g., VCDS) to collect the data. The
tamper-free collection contains measurements from 12 in-
vehicle sensors, while the tampered collections include replay
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tampering methods on multiple signals, such as: oxygen,
coolant temperature, engine torque and throttle value posi-
tion. Furthermore, the authors included several tampering
scenarios, ranging from tampering one sensor all the way to
four concurrent sensors. Additionally, each of the mentioned
collections having two versions: original and anonymized.
This dataset was also used for the performance comparison
experiments.

B. DATA PRE-PROCESSING
As a first step, the constant and duplicate features were
removed from the datasets, this was followed by data normal-
ization. As the range of the features varies significantly, data
normalization is needed to bring all the features to the same
scale. Each feature was normalized using the feature scale
method (e.g., bringing all values in [0, 1] range), as shown in
Equation 22.

x ′ =
x − xmin

xmax − xmin
, (22)

here, x ′ is the normalized value for a given feature x and xmin,
xmax denote the minimum and maximum values of x. Further-
more, the scaling is done independently for each feature.

The feature scaling method, as described above, is however
applicable only for the training dataset or for offline testing,
as it uses the dataset’s minimum and maximum values for
each feature. In a real-time scenario though, the incoming
data needs to be normalized without having access to the
whole dataset. To address this issue, the minimum and max-
imum vectors from the training dataset are stored and used
for scaling the rest of the datasets. For real-world usage,
considering the fact that different systems work on different
ranges, the maximum and minimum values would be taken
from the specifications of each vehicle model.

1) SELECTING THE OPTIMUM NUMBER OF BINS
Selecting the optimum number of bins ψ , as it is showed
in this section, is important for the performance of the His-
togramBased Ensemble (HBE). A small number of bins, each
covering a larger range of values, might cause an incorrect
grouping of clean and tampered points in the same bin, pro-
ducing higher false negative detections. Conversely, a large
number of bins, each covering a smaller range of values,
might cause clean points to be inserted in empty bins, pro-
ducing false positive detections.

In contrast, the number of observations (e.g., window size)
also influences the detection procedure. Recall Figure 1, the
tampered observations closely resemble the tamper-free ones,
using a small number of points might not fit the distribution
correctly and the changes in the data distribution will not be
captured.

Another aspect that needs consideration is that the thresh-
old computation methodology involves constructing the his-
togram of the prediction error over the entire training set,
which naturally is larger than the window size used dur-
ing evaluation. Thus, it is important to observe how the

relationship between the window size and the number of bins,
affects the performance.

In order to observe the performance variations, several well
known bin selection rules were identified, so called rules of
thumb. Authors who have suggested selection rules include
Freedman and Diaconis [41], Terrell et al. [42], Scott [43]
and Sturges [44]. These techniques are quite popular, most of
them being integrated in well known numerical and statistical
frameworks (e.g., by default the R framework uses Struge’s
rule, while MATLAB offers out-of-the-box implementation
for all of the above mentioned rules). Other papers, which
proposed histogram based outlier score techniques [45], [46],
[47], suggest using the square root method, namely, setting
the number of bins to be equal to the square root of the
number of samples. Others have also proposed using powers
of two as the number of bins in their experimental assessment
[48], [49]. The above presented bin selection methods are
summarized in Table 1.

TABLE 1. Selection methods, for the number of histogram bins, found in
the literature. In this table, N denotes the number of observations, Y
denotes the observation vector, σY denotes the standard deviation of Y
and ψ denotes the number of bins computed for 15000 observations.

When selecting the number of bins ψ , the following pro-
cedure was considered: a base detector and a predictor were
selected, together with a tamper-free test dataset, this was
followed by measuring the False Positive Rate of the detector
using different values for ψ while modifying the number of
observations (e.g., window size). Figure 4 depicts the results
in terms of False Positive Rate with ψ ranging from 2 to 512
(with highlighted colors showing the number of bins, com-
puted using various well known methods for the largest win-
dow size of 15000) and the number of observations ranging
from 100 to 15000. As depicted in Figure 4, in this specific
scenario, for 32 bins (Terrel-Scott Rule) and for 15 bins
(Sturge’s Rule) the False Positive Rate on average remains
close to zero for all window sizes (number of points), thus
providing two feasible number of bin selection methods.

C. PROPOSED ENSEMBLES DESIGN
This section describes the final architectures of the two
proposed ensembles, including the common components,
such as, the configuration of the predictors and the hyper-
parameters, as well as ensemble specific parameters, the
threshold values, window sizes and histogram specific
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FIGURE 4. False Positive Rate vs Number of Bins vs Number of Points.

TABLE 2. The complete list of selected hyper-parameters for the LSTM-NN.

parameters (e.g., the histogram length and number of bins).
These architectures were used for the evaluation on the pri-
mary dataset, the architecture of the predictors used on the
secondary datasets is presented in Subsection V-C.

Both ensembles consist of 4 base detectors, monitoring the
NOx Outlet ASC, Oxygen ASC, Oxygen SCR and the Urea
dosage command signals by processing the prediction resid-
uals. These four signals represent the responses (outputs) of
4 predictors. The complete list of selected inputs and outputs,
for the predictors, is summarized in Table 4. For LSTMhyper-
parameter tuning, two techniques were selected, namely,
Bayesian optimization [51] and parameter sweeping (e.g.,
grid search). The final values for the hyper-parameters and
the search ranges used during tuning are presented in Table 2.
Apart from these, the Adam optimizer was used [52], and
the following parameters were manually selected: Batch size:
128, Learning Rate drop period: 10 epochs, Learning Rate
drop factor: 10%.

For the Primary Dataset, the LSTM-NNs were trained
using only tamper-free observations originating from the
WHWC dataset using a 90:10 split, namely, 90% of the
data was used for training and 10% for validation during
training, while the ensembles were tested on the tamper-free
and tampered variants of the WHVC and Fige datasets.

In total, 14 datasets were used, namely, the 2 tamper-
free and 6 tampered variants for each of the WHVC and
Fige driving cycles. The tampered datasets are as fol-
lows: each driving cycle consisted of 6 tampered datasets
(T1 - T6) containing 6 different NOx hiding methods
combined with 1 Urea hiding method, as described in
Section IV-A1.
For the Secondary Datasets I, as this dataset contains only

one tamper-free collection, the LSTM neural networks were
trained using 60% of the tamper-free collection. During test-
ing, the remaining 40% of the tamper-free collection and the
tampered variants of the dataset were used.

Finally, for the Secondary Dataset II, similarly to the previ-
ous case, the LSTM neural networks were trained using 60%
of the tamer-free collection while during testing the remain-
ing 40% of the tamper-free collection, the entire anonymized
versions of the dataset and the tampered variants of the dataset
were used.

Another two common parameters between both ensembles
are the length of the historical vector and the initial weights
used by the fusion system, in all experiments the value for
the former was 10 while for the latter it was 1. The remaining
parameters are ensemble specific and are summarized in
Table 3.
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TABLE 3. The final values for the CBD and HBD parameters.

V. EXPERIMENTS AND EVALUATION
The experimental assessment consists of two distinct environ-
ments:
(i) Prototype environment.
(ii) Embedded environment.
In the Prototype environment (i), the ensembles were

implemented in MATLAB R2022a, running on a Lenovo
Legion laptop with an AMD Ryzen 5 5600H CPU, 16 GB
RAM DDR4 running Windows 10 PRO. Here, the solutions
were evaluated on both the tamper-free and tampered datasets
using the metrics described in Section V-A.

As for the Embedded environment (ii), the ensembles were
implemented in python using TensorFlow and Keras, on a
Raspberry Pi 4 model B board, having 8 GB RAM and
running Raspbian OS. In this case, the aimwas tomeasure the
resource consumption in a real embedded environment. These
measurements include CPU and RAM usage, only during the
detection phase, since the training is done offline. Offline
training would reduce the resource requirements whilst run-
ning the ensemble in a real automotive environment. To mea-
sure the CPU and RAM usage, psutil [53] was used. Psutil is
a cross-platform library for Python, used for retrieving infor-
mation on running processes and system resource utilization
(e.g., CPU, memory, disks, network, sensors).

A. PERFORMANCE EVALUATION METRICS
For a complete in-depth performance evaluation of the pro-
posed detection methodologies, the following performance
metrics are used:
• Accuracy. Accuracy is defined as the ratio between the
correctly classified observations to the total observa-
tions.

ACC =
TP+ TN

TP+ TN + FP+ FN
. (23)

• Specificity (True Negative Rate). Specificity is defined
as the number of correctly classified negative observa-
tions out of all the true negative observations.

TNR =
TN

TN + FP
. (24)

• Recall (True Positive Rate). Recall is defined as the
number of correctly classified positive observations out
of all the true positive observations.

TPR =
TP

TP+ FN
. (25)

• False Positive Rate. False Positive Rate is the propor-
tion of negative observations incorrectly identified as
positive observations (i.e. the probability of false alerts
will).

FPR =
FP

FP+ TN
= 1− TNR. (26)

• False Negative Rate. False Negative Rate is the pro-
portion of positive observations incorrectly identified as
negatives observations.

FNR =
FN

FN + TP
. (27)

• Precision (Positive Predicted Value). Precision is
defined as the fraction of correctly classified positive
observations of all predicted positive observations.

PRC =
TP

TP+ FP
. (28)

• F1 score (F-Measure). F1-Score is defined as the har-
monic mean of precision and recall. It is a statistical
measure of the accuracy of a test or a model.

F1 =
2 ∗ PRC ∗ TPR
PRC + TPR

. (29)

• AUC-ROC. The area under the receiver operating char-
acteristic (ROC) curve, denoted as AUC, is an perfor-
mance evaluation metric defined as the integral of a
ROC curve (i.e., TPR) with respect to the FPR from
FPR = 0 to FPR = 1.

The above performance metrics are dependent on the fol-
lowing: true positives (TP), denoting the number of correctly
detected positive observations; the true negative (TN), the
number of negative values that are detected as negatives; false
negative (FN), the number of negative values that are falsely
detected; and, false positive (FP), the number of negative
values that are categorized as positives. In this paper the
positive class denotes the tampered (anomalous) observa-
tions while the negative class denotes the clean (tamper-free)
observations.

B. DETECTION RESULTS
The current section presents the detection results of the pro-
posed ensembles on the primary dataset, as described in
Section IV-A. Recall, this dataset contains 14 collections,
out of which 2 contain tamper-free observation, 1 for each
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TABLE 4. The complete list of selected inputs and outputs, for the LSTM
predictive neural networks, on the Primary Dataset.

driving cycle (e.g., WHVC and Fige), while the remaining
12 collections contain 6 types of tampering on the NOx signal
combined with 1 type of tampering on the Urea command
signal, for each driving cycle.

The results for the first variant of CBE, using CUSUM
based point-by-point detectors, using 8 performance metrics,
is summarized in Table 5. In the absence of tampering, on the
tamper-free scenarios, the CBE obtained 0% FPR and 100%
TNR, on both driving cycles. Concurrently, in the presence
of tampering, the detection rate was high on all tampering
scenarios, for both driving cycles (>99.75%), with a Precision
score of 100% for all the experiments and over 99.8% for the
F1 Score, Accuracy and AUC.

Moving forward to the evaluation of the second variant of
the CBE, using a sliding window approach. In the absence
of tampering, similarly to the first CUSUM based variant of
the ensemble, the FPR was 0% with an 100% TNR on both
driving cycles, while in the presence of tampering, the CBE
with sliding window performed better than the first variant,
obtaining 100% for all other metrics. Compared to the point-
by-point variant, the sliding window approach, demonstrated

a maximum increase of 0.24% in terms of TPR and a maxi-
mum increase of 0.12% in terms of Accuracy on the WHVC
driving cycle. Simultaneously, on the Fige driving cycle, the
sliding window CBE exhibits a 0.14% increase in terms of
TPR and a 0.07% increase in terms of Accuracy and F1 score.
Table 6 summarizes the evaluation results for the sliding
window CBE, on both driving cycles.

Lastly, the evaluation results for the HBE are summarized
in Table 7. In a similar manner to the other variants of the
ensemble, in the absence of tampering, the HBE obtained a
0% FPR on both driving cycles, together with a 100% TNR.
In the presence of tampering, HBE obtained similar results to
the sliding window CBE, scoring 100% on all the metrics,
on all tampering scenarios. Compared to the the point-by-
point CBE, an increase of 0.24% in terms of TPR and 0.12%
in terms of Accuracy, is observed on the WHVC driving
cycle. On the Fige driving cycle, the HBE evaluation reveals
an increase of 0.14% in terms of TPR and 0.07% in terms of
Accuracy, F1 score and AUC.

C. COMPARISON WITH STATE-OF-THE-ART SOLUTIONS
Both proposed detection ensembles were compared to state-
of-the-art detection techniques, namely, to VetaDetect [23]
and to the detection technique in [24]. The evaluationmethod-
ology focused on measuring and comparing both the False
Positive Rate and the True Positive Rate on the original
datasets from the two papers, these datasets were detailed in
Section IV-A (SecondaryDataset I and SecondaryDataset II).
The motivation behind choosing these two metrics (e.g., FPR
and TPR) lies in the fact that the authors of both papers
measured the performance of their models using only these
metrics.

The results for the first comparison, on the Secondary
Dataset I, between the proposed ensembles and VetaDe-
tect [23], are summarized in Table 8 and the configuration
of the predictors in summarized in Table 9.

On tamper-free dataset, the three flavors of the proposed
ensembles, CBE, CBE with sliding window and HBE all
yielded 0% FPR, a decrease of 0.38% compared to VetaDe-
tect. Advancing to the first tampering scenario, where a real
emulator was used, CBE with sliding window and HBE
obtained similar results to VetaDetect, showing 100% detec-
tion rate (e.g., TPR), while the CBE, with point-by-point
detection obtained a TPR rate of 82.14%, a difference of
17.86% compared to the other ensembles.

Moving forward to the advanced tampering scenarios.
Here, the first scenario involves that the tamperer might use
ARX trained models to emulate a variable (IntakeO2). In this
case, the tamperer disables the actualO2 sensor and emulates
the normal behavior of the sensor, using ARX models. Here,
the TPR of the CBE was 99.52%, with an increase of 1.02%
compared to VetaDetect, while the CBE with sliding win-
dow and HBE obtained a respectable 100% detection rate,
an increase of 1.5% compared to VetaDetect and a 0.42%
increase compared to the CBE. Finally, in the last advanced
tampering scenario, where the tamperer fits and deploys an
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TABLE 5. Evaluation results for two driving cycles (WHWC, Fige) on clean and 12 tampering scenarios, using the CBE (CUSUM Based Ensemble) with
point-by-point CUSUM computation.

TABLE 6. Evaluation results for two driving cycles (WHWC, Fige) on clean and 12 tampering scenarios, using the CBE (CUSUM Based Ensemble) with a
sliding window CUSUM computation.

TABLE 7. Evaluation results for two driving cycles (WHWC, Fige) on clean and 12 tampering scenarios, using the HBE (Histogram Based Ensemble).

LSTM based predictor to emulate the Intake O2. Similarly
to the first advanced tampering scenario, the tamperer here
disables the O2 sensor and emulates the normal behavior of
the sensor, using LSTM models. In this scenario, VetaDetect
obtained a TPR of 64.46% while the proposed ensembles
all obtained better results. CBE obtained a TPR of 84.27%
an increase of 20.81% compared to VetaDetect. CBE with
sliding window and HBE both showed an 100% detection
rate, with a 36.54% increase compared to VetaDetect.

The results for the second comparison, on the Secondary
Dataset II, between the proposed ensembles and the random
forest based approach proposed by Roman et al. [24], are

summarized in Table 10 and the predictor configurations are
summarized in Table 11.
In the tamper-free scenario, the proposed ensembles,

namely, CBE, CBE with sliding window and HBE all yielded
0% FPR even with anonymized data. The random forest
approach obtaining 18.5% FPR and 21.5% FPR on the
anonymized version of the dataset. In comparison, this trans-
lating to a FPR decrease of 18.5% and 21.5%, respectively,
obtained by the proposed ensembles.

Advancing to the first tampering-scenario, where for each
predictor one signal was tampered. The best results were
obtained by HBE and CBE with sliding window, with a TPR
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TABLE 8. Performance comparison between VetaDetect [23] and the proposed detection ensembles.

TABLE 9. The complete list of selected inputs and outputs, for the LSTM
predictive neural networks, on the datasets from [23], originating from a
EURO VI D N2 class truck.

of 100%, while the point-by-point CBE obtained a 95.62%
detection rate on the anonymized scenario and 95% on
the non-anonymized scenario. The random forest approach
obtained similar results, ranging from 76% when the Current
of oxygen sensor was tampered all the way to 100% TPR,
in the cases where the Coolant Temperature, Engine Torque,
Throttle and Valve Position were tampered.

Lastly, the authors in [24], considered an advanced
tampering scenario, where the tamperer simulates four con-
current signals (Current of Oxygen Sensor, Coolant Temper-
ature, Engine Torque, Throttle and Valve Position). In this
final scenario, the random forest approach obtained simi-
lar results to CBE with sliding window and HBE, namely,
100% TPR, even on the anonymized version of the dataset,
while the point-by-point CBE obtained a 98.83% TPR on
the anonymized version and 98.75% on the non-anonymized
version of the dataset. This signifies an average of 1.21%

decrease in the TPR, compared to the other proposed ensem-
bles and the random forest approach.

D. RESOURCE CONSUMPTION
Neural networks in general require higher resources to run.
The LSTM-NNs from the proposed ensembles were imple-
mented in the reference testbed from (ii), to observe how
resource consumption increases while running concurrent
predictors. While some predictors might use fewer inputs and
a simpler architecture, this experiment measures the worst-
case scenarios, meaning, all the LSTM-NNs predictors were
configured with the maximum number of inputs from the
ones proposed in Subsection IV-C. The final configuration
of the LSTM-NNs includes 1 sequential layer with 10 input
neurons, 1 hidden LSTM-NN layer with 10 LSTM-NN cells,
1 output regression layer with 1 neuron. As for the dataset
used, the WHWC driving cycle was chosen.

1) CPU USAGE
The CPU usage was measured while concurrently running
from 1 to 5 predictors, with increments of 1. At the start of
the measurements, an idle state was measured to show the
resource consummation with inactive predictors, since other
processes were still running on the Raspberry PI. Figure 5
illustrates the actual CPU usage while running the exper-
iments with an increasing number of predictors. Here, the
predictors were idle for the first 20 seconds, running for
60 seconds, and idle for another 20 seconds. While running
only one predictor, the CPU usage increased and remained
almost constant at 25% (±0.1%), consequently, while run-
ning 2 or more predictors, the CPU usage increased to a
maximumof 34%with an average of 31% for all experiments.

2) MEMORY USAGE
In a similar manner, the memory usage measurements con-
sidered the idle state first. Afterwards, 1 to 5 predictors were
started in parallel, with increments of 1. Figure 6 illustrates
the RAM usage with the entire dataset loaded in memory.
It can be observed that the idle RAM usage was 3.8%
(292 MB) and increased to 5.2% (400 MB) with one predic-
tor, 5.3% (408 MB) with two predictors and 5.4% (416 MB)
with 3-5 predictors. It is to be noted that in a real-world
scenario the RAM usage might be lower as it wouldn’t be
necessary to load and hold the entire dataset in memory.
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TABLE 10. Performance comparison between the random forest based approach proposed by Roman et al. [24] and the proposed detection ensembles.

TABLE 11. The complete list of selected inputs and outputs, for the LSTM
predictive neural networks, on the datasets from [24], originating from
a 2015 EUR6 Skoda Rapid 1.2 L TSI passenger vehicle.

3) SCALABILITY
To get a sense of how scalable the proposed ensembles are, the
experiments were extended to measuring the CPU and RAM
usage while increasing the number of predictors from 1 to 20,
on a single Raspberry PI device. The results, which include
the minimum, maximum and average consumption are illus-
trated in Figure 7. In terms of CPU usage, the maximum
value was 34%, while running 3 concurrent predictors and
33% with 20 concurrent predictors, while the average CPU
usage was between 29.5% and 31.5% when running 2-20
concurrent predictors. The maximum RAM usage was 5.5%
(424 MB), measured when running more than 17 predictors,
consequently, the averagemeasuredRAMusagewas between
5.3% (408 MB) and 5.4% (416 MB).

FIGURE 5. CPU Usage comparison when running 1-5 LSTM predictors on
the Raspberry PI.

VI. DISCUSSIONS
The current paper presented results that point out the effi-
ciency of the proposed tampering detection ensembles,
together with resource measurements, that show the imple-
mentation possibility in real embedded systems. However,
the following paragraphs will introduce the advantages and
shortcomings of each ensemble, together with scenarios in
which one can chose to implement an approach, or the other.

The first ensemble, using the Cumulative Sum (CUSUM)
based detectors has several advantages. First, the CUSUM
allows for the detection of small changes in the mean value
and the standard deviation of the prediction error. If the
CUSUM doesn’t use a sliding window, then the detection
starts instantly and has a higher frequency of detection (e.g.,
every data point). However, there will be a delay between
the first anomalous data and the generation of an alert, as it
was observed in Section V-B. This is owed to the fact that
the CUSUM needs to accumulate enough information before
surpassing the detection threshold. The threshold value can
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FIGURE 6. RAM Usage comparison when running 1-5 LSTM predictors on
the Raspberry PI.

FIGURE 7. Average, Maximum and Minimum CPU and RAM usage when
running 1-20 LSTM predictors on the Raspberry PI.

be adjusted, for a faster detection, this in term increasing
the risk of false alerts. On the other hand, using a sliding
window CUSUM approach, brings the advantage of resetting
the cumulative sum to an initial zero value, after travers-
ing the sliding window. The sliding window approach also
offers the possibility of lowering the detection frequency by
moving the sliding window with more than one point at a
time, this is advantageous in the case of tampering, where the
vehicle manipulations are persistent over extended periods of
time.

The second ensemble, which uses the histogram distance
based detectors, can monitor the changes in the distribu-
tion of the data. Even if the mean value or the stan-
dard deviation doesn’t change, the distribution can still be
affected by tampering. This method, compared to the point-
by-point CUSUM approach, needs to accumulate sufficiently
enough data points, which results in a delayed detection start.
Nonetheless, as tampering does not cause obvious changes in

the distribution of the data, a larger number of data points is
needed for detection. Furthermore, this method has a lower
detection frequency, as one data point might not change
the distribution of the data, thus the sliding window can be
moved with a larger number of points. By having a lower
frequency of detections, once every k points, also decreases
the number of generated true/false alerts. This might be an
advantage in environments with limited storage capabilities,
or in environments where the alert is visible/audible, by not
overwhelming the system and the user with alerts.

To get the best of two worlds, the detectors could be
combined in an ensemble which uses both CUSUM based
and histogram based detectors. This approach would have the
advantage of being able to detect both the changes in themean
and variance but also the changes in the distribution of the pre-
diction error. However, one would need to use two detectors
for the samemonitored signal (e.g., NOx emissions,O2, etc.),
for a large number of monitored signals this, however, would
increase the resource requirements. Moreover, the fusion sys-
tem would have to be adjusted for the different frequencies at
which the detectors work.

As documented in this paper, the design of the ensem-
bles requires a data analysis procedure. Nonetheless, when
implementing such a solution into a real environment, expert
knowledge is needed to select the monitored signals and to
finely tune the hyper-parameters. Moreover, the generated
warnings and alerts should be analyzed. This can easily be
done at periodical or at random road-side inspections. While
the alerts would clearly indicate the presence of tampering
in multiple components, the warning system could identify
more subtle tampering, where the tamperer is able to alter
only one component.

In a real-world scenario, the proposed detection methods
are envisioned to function as ECU applications, with the
possibility of distributing them among multiple ECUs, while
the generated alerts would have to be stored in a secured
environment, as not to be deleted or altered. Similarly to
what the authors proposed in [23], the generatedwarnings and
alerts could be aggregated, signed and securely stored using
techniques such as secure logging, Trusted PlatformModules
(TPMs) and Hardware Security Modules (HSMs).

VII. RELATED STUDIES
This section bisects in two distinct directions. Firstly, it anal-
yses recent studies on tampering and anomaly detection in the
automotive field, together with ensemble detection methods.
Secondly, it presents related studies on the concept of TF for
RNN to emphasize the approach of TF tackled in this paper.

A. AUTOMOTIVE TAMPERING DETECTION AND
ENSEMBLE METHODS
In the automotive field, tampering detection is addressed
by only a handful of papers. Nonetheless, in the scientific
literature we find several other ensemble-based techniques
addressing a large palette of issues, such as fault detection,
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TABLE 12. Existing ensemble techniques applied in the automotive industry.

emission identification and object detection. The most rele-
vant papers are summarized in Table 12.

One recent paper addressing tampering detection is the
work ofHaller et al. [23], where the authors proposedVetaDe-
tect, an adaptive independent ensemble detection technique
usingMultiple-input Single-output (MISO) andAuto Regres-
sive Moving Average (ARX) models. Their solution lever-
ages the Granger causality for automated input/output model
selection. Furthermore, the output from each individual
model is fused using Dempster-Shafer (D-S) theory of evi-
dence causality that offers a close-loop detection methodol-
ogy, where the degree of belief for each detector is computed
based on the reported belief on tampering. The authors pro-
vide an extended experimental assessment using two distinct
ensemble configurations, namely, open-loop and closed-loop.
In the open-loop scenario the confidence associated to each
base detector is static, while in the closed-loop scenario it
is automatically adjusted. Their dataset was created by the
Vehicle Emissions Heavy Duty chassis laboratory at the Joint
Research Centre of the EC, and it contains emission-related
tamper-free data together with tampered data measured while
using an AdBlue emulator mounted inside a real vehicle.
A more detailed description of this detaset is presented in
Section IV-A, as the studywas used as a comparison reference
in the experiments.

Locality Sensitive Hashing (LSH) was used as a methodol-
ogy for detecting tampering in [58]. Here, the authors lever-
age the properties of LSH, namely, the high probability that
two points close to each other in Euclidean space hash to
similar values, to detect tampering in high dimensional data.
The authors proved that even small deviations in the tampered
data, produces high deviations in the LSH method, thus the
probability of collision of the tampered data-points decreased
significantly.

Roman et al. [24] proposed a novel privacy preserving
tampering detection technique for automotive systems, well
capable of detecting tampering even in anonymized data.
They employed a Fast Fourier Transform (FFT) distortion
method capable of preserving privacy in vehicle sensor data.
While for tampering detection they used a Random Forest
regressor together a custom sliding window CUSUM based
approach. While the authors are not mentioning that their
solution is an ensemble-based detection technique, Random
Forest is in itself an ensemble method comprising multiple
decision trees. Moreover, the tampering scenarios proposed
in their paper includes a high number of tampering methods
which could very well be carried off in future by mali-
cious actors (e.g., tamperers). Section IV-A further describes
this dataset, since similarly to [23], this work is a point of
comparison.

Moving towards fault detection in the automotive field,
we find the work of Theissler [55]. The paper describes
an offline fault detection technique using an ensemble of
two-class and one-class classifiers, trained using both clean
and anomalous data. The classifier decisions are combined
using a Weighted Voting methodology. To test their solution,
the authors created a custom dataset. This dataset consisting
of clean and faulty OBD-II measurements that were extracted
from a Renault Twingo I passenger vehicle. Here, the authors
used a self-made device that allowed them to manipulate the
engine bay and inject faults ranging from ignition, engine
temperature all the way to engine temperature faults.

Mozaffari and Azad [57] proposed an independent ensem-
ble method using Extreme Learning Machines (ELM) for
engine coldstart hydrocarbon emission identification. That
is, modeling the behavior of a spark-ignited engines dur-
ing coldstart operations. Their ensemble consists of sev-
eral ELMs with different types of regularization techniques
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(e.g., LASSO, Tikhonov, Elastic net, Cascade of LASSO and
Tikhonov).

Another notable work is that of Taylor et al. [1]. Here,
the authors designed a frequency-based anomaly detection
technique for the Controller Area Network (CAN). Their
solution aims to compute network traffic statistics (e.g., Ham-
ming distance between packets and inter-packet timings), and
compare them with historical values to produce an anomaly
signal. Their study showcases experiments with one-class
support vector machines for anomaly detection. To prove
the efficiency of their method, the authors created a custom
dataset simulating attack traffic using real CANdata collected
from a 2011 Ford Explorer vehicle.

Longari et al. [59] designed an Intrusion Detection Sys-
tem (IDS) based on LSTM-NN auto-encoders to identify
anomalies in CAN data. Their solution is automatically
trained on CAN streams to create models of the legitimate
data sequences. The reconstructed errors are later used for
anomaly detection, by comparing them to the reconstructed
errors computed during several simulated attacks. Similarly
to [1], this solution is addressing anomaly detection at frame
level, without decoding the actual signals contained in the
payload of the data frames.

Other papers focused on clustering approaches to detect
anomalies. Guerreiro et al. [60] offers a case study on the
detection of pricing anomalies of different automotive parts
that have similar physical characteristics. Detecting pric-
ing anomalies would aid in optimizing the production costs
of similar parts produced by different manufacturers. The
case study applies and analyses multiple clustering algo-
rithms (e.g., K-Means, Hierarchical clustering, or Fuzzy
C-Means). These algorithms were ranked using the Borda
count method [61]. In the final evaluation the Hierarchi-
cal method obtained the best results, closely followed by
K-Medoids and K-Means. It is worth mentioning that their
proposed solution is not envisioned as an in-vehicle anomaly
detection technique, but rather as a tool for automotive manu-
facturers to optimize the production process and reduce their
production costs.

B. TEACHER FORCING
Teacher Forcing (TF)was first proposed in [21] to avoid using
Back Propagation Through Time (BPTT) because of the
growing memory requirements for long training sequences.
The authors of the original paper describe a training method
that involves feeding back the current ground truth values
as input in the subsequent time-steps. This way, forcing the
neural network to remain as close as possible to the ground
truth sequences. In recent years, several variants of TF have
been proposed [62], [63], [64], [65], [66], most of them
offering variations of this method for training RNNs.

Taigman et al. [62] proposed a neural Text-To-Speech
method, based on a fixed size memory buffer, for mimicking
voices based on audio samples captured in the wild. The
authors describe amodified version of teacher forcing, where,
during the training stage, the average between the ground

truth and the previous network output plus a random noise
vector is fed to the input instead of just the ground truth value
of the previous time step.

In the field of language modeling, the work of Drossos et
al. [63] stands out. The authors offer a RNN based method
for learning language models for sound event detection. Their
method utilizes the ground truth values during the initial
training epochs, and based on a probability, these values are
gradually replaced by the predicted values of themodel. Their
approach is based on scheduled sampling [64]. Scheduled
sampling is a method where during training a random deci-
sion ismade onwhether to use the previous ground truth value
or the previous model prediction as input at the current step.

Lamb et al. [67] presented a Generative Adversarial Net-
works (GAN) approach titled Professor forcing. Their tech-
nique leverages an adversarial training approach that involves
training an additional discriminator to differentiate between
free-running and teacher-forced hidden states. This way they
encourage the dynamics of the recurrent network to remain
identical when using both previous ground truth and freely
sampled values, during training.

In the field of anomaly detection, Loganathan et al. [65]
present an anomaly detection technique for Transmission
Control Protocol (TCP) requests. Their solution employs
a multi-attribute prediction model for network packet
sequences, using a Seq2seq encoder-decoder model to reduce
the error propagation in testing. Their models are trained
using the original version of teacher forcing. In a differ-
ent direction, Massaoudi et al. [66] proposed a Photovoltaic
Power Forecasting hybrid model, consisting of a combination
between NARXNN and LSTM-NN. Their solution uses a
NARXNNmodel to acquire data and generate a residual error
vector which is fed as additional input to the LSTM-NN,
which produces point-by-point and sequence forecasts.

The above studies leverage TF and use the trained models
in a closed loop forecasting mode (e.g., the network predicts
future time-steps by also using the previous predictions as
input). In this case, the model does not require the ground
truth values to make a prediction. In comparison, the pre-
dictors proposed in this paper are used in an open loop
forecasting mode, where they predict future time-steps by
using the input data together with the ground truth response
value from the previous time-step. The detectors monitor
certain signals by constantly analyzing the deviations (e.g.,
errors), between the ground truth value and the predicted
value, using two distinct methodologies (e.g., CUSUM and
Histogram analysis). To the best of my knowledge, this is
the first proposed LSTM-NN based tampering (or anomaly)
detection solution which utilizes TF, with the ground truth
value, from the previous time-step, being fed back as input,
during both training and detection (inference).

VIII. CONCLUSION
This paper addressed a new emerging threat in the automotive
field, namely, tampering of the vehicles environmental pro-
tection systems. Tampering can have serious effects on both
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human health and the environment, as tampered vehicles emit
higher concentration of pollutants, such as nitrogen oxides
and particulate matter. In response to this threat, this paper
proposed two ensemble-based methodologies for tampering
detection. The proposed solutions are concurrently using
LSTM predictive neural networks together with CUSUM
and histogram distance-based detectors. The CUSUM and
histogram distance-based detectors receive as input the pre-
diction error from the predictive models and output a binary
decision using a threshold-based approach. Additionally, this
paper introduced an adaptive majority weighted voting fusion
methodology which considers the past decisions of the detec-
tors in the weight adjustment procedures.

The proposed ensembles obtained notable results, over a
large number of tampering methods and scenarios, originat-
ing from three different datasets, even in comparison with
state-of-the-art tampering detection solutions. Furthermore,
the possibility of integrating the proposed techniques in real
embedded environments was also demonstrated. As future
work, the ensembles will be further refined, while exploring
the possibility of using different components (e.g., predictors,
detection methods). Additionally, the proposed solutions will
be tested on datasets from other domains, and on other types
of attacks.
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