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ABSTRACT Human activity wearable obstacle detection for the visually impaired (VI) was developed for
routine monitoring and observation of surrounding events. Environmental observation, home surveillance,
and assistive supports are now built on wearable devices using inertia-based sensors, such as accelerometers,
linear acceleration, and gyroscopes. However, previous assisted living system (ALS) still faces challenges in
energy management and resource allocation when performing daily activities, particularly with ambulation.
Legacy systems cannot fully improve self-esteem, hence, WearROBOT, which detects rearview obstacles
and has an audio feedback system incorporated for voicing out once an obstacle is detected. Linear
programing (LP) multi-commodity graph (LMCG) learning model is proposed while coupling the shortest
path resource allocation for space diversity linearization. An Infrared sensor problem function that minimizes
link utilization is derived. Angle-Intensity analysis (AIA) was carried out on various use case scenarios to
enable the user to know the best angle to consider depending on its usage and battery conservation. This
work showed how intensity differs at various angles of 5◦, 15◦, 20◦, 35◦, and 45◦. Also, the reflectivity of
different materials and how it affects the battery life are studied. As the wearable robot moves away from
the node-obstacle, the LMCG narrow-band sensor node (LMCG-NB-IoT) drops energy significantly. The
Low Power WAN (LP-WAN), Bluetooth Low-Energy (BLE) and proposed LMCG-NB-IoT offered 51.28%,
33.33%, and 15.39% respectively. In terms of energy latency, the schemes gave 65.63%, 31.25%, and 3.12%
respectively. Similarly, the proposed LMCG-NB-IoT had a 50% battery life profile. Finally, WearROBOT
mobility aid minimizes injuries experienced by the visually impaired.

INDEX TERMS Artificial intelligence, assisted living systems, machine learning, robotics, embedded
systems.

I. INTRODUCTION
The field of future wearable robotics is rapidly chang-
ing especially in terms of human-robot interaction (HRI).
Assisted living communities are growing globally. According
to the latest world health organization (WHO) report, about
2.2 billion people globally are suffering from a near- or dis-
tance vision impairment [1]. Nearly half of these cases, or at
least 1 billion, are caught up with vision damage that could

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

have been avoided or fully unaddressed with smart wear-
able technologies. From the report, yearly costs associated
with productivity losses are linked to visual impairment (VI).
This is attributed to untreated myopia and presbyopia among
other factors. The cost is estimated to be US$ 244 billion
and US$ 25.4 billion, respectively. Therefore, the VI places
a significant financial burden on the entire world [1]. The
only solution is centered on disruptive technologies such as
the Ambient Assisted Living system (AALS). This concept
seems to have drawn attention due to its wide range of
benefits in modern times [2], [3], [4]. The advancements in
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technology especially artificial intelligence, IoT, and analyt-
ics have equally contributed to the growth trend [5], [6], [7].
These systemsmake extensive use of smart devices to support
older and disabled persons to stay safe and healthy in their
environments.

The usual component of ASL systems includes smart-
sensing devices, wireless sensing/IoTs, analytic software, and
medical sensing tools [7]. This makes aging less complicated.
In most cases, the visually impaired mostly use mobility
aids during ambulation. The mobility aids (traditional and
electronic) provide different functionalities such as detection
of obstacles, drop-offs, overhanging obstacles, potholes, and
elevation among others [9], [10], [8], [11], [12], [13], [14].

Existing electronic mobility aids for the visually impaired
and deaf person (such as - white cane, snow guard, miniguide,
sonic pathfinder, tom pouce, smart cane, intelligent walking
stick, and ultrasonic cane), are limited in their attributes and
functionalities [15]. Though the highlighted types provide the
above-listed functionalities, detection on the rear side is not
feasible, especially in a community of limited vision persons.
Also, these do not provide additional information about the
direction of the obstacle. Again, battery life, miniaturization
of the aid, and obstacle proximity alert remain unsolved
issues in the existing mobility aids.

The major driving motivation accelerating AALS in most
countries is government policy on disruptive technolo-
gies [16]. This has been made compulsory for assisting
the aging and disabled population [17], [18]. The ease of
monitoring and control systems has triggered the smart elec-
tronic gadget market segment. These can be linked to cloud-
based applications, home devices, etc. In the community
of the limited vision, AALS will provide massive support
for the limited vision and visually impaired. Graph theory
has been seriously applied in Chemical Graph Theory [19],
drug-naïve obsessive-compulsive disorder [20], non-human
primates [21], and other smart health domains [22], [23].

This research has significance to society considering the
increasing number of the visually impaired globally [24].
Existing mobility aids have limitations especially in trans-
mitting energy conservation during mobility. Hence, there is
a need to design an efficient and reliable mobility aid that
would address current limitations.

With the LP multi-commodity graph, signal transmissions
under energy conservation are realized. An audio feedback
graph will be used to detect the direction of the obstacle,
thereby giving additional information about the environment.
Furthermore, one of the challenges faced by other electronic
systems in use is the significant energy consumption, battery
drops, and link connectivity issues. This work will provide
an improved battery life performance with a much lower
consumption rate. The implementation of the robot will sig-
nificantly improve the self-esteem of the visually impaired by
reducing their dependency level.

This paper focused on addressing the limitations of existing
mobility aids, particularly in obstacle detection at the rear
side and in real time. This helps to prevent back injuries,

which cause a major threat to the visually impaired thereby
reducing their functionality and, at the same time, increasing
their standard of living.

A. RESEARCH CONTRIBUTIONS
This article aims at designing a resilient sensor-based wear-
able obstacle detector robot for the visually impaired using
LP multi-commodity graph theory. The detector is based on
the infrared sensor device implementation. The main contri-
butions are summarized below:

• Formulation of an LP Multi-commodity graph for
AALS.

• Determination of the optimal sensor placement position
that would facilitate the detection of rear-side, front-
side, right-side, and left-side obstacles.

• Design of a miniaturized wearable obstacle detector
architecture using an infrared sensor.

• Integration of scalable transducer feedback routine into
the wearable obstacle detector system.

• Performance evaluation considering energy consump-
tion, energy latency, battery life performance, reflectiv-
ity, and span distances.

This article highlights the design concepts as found in AAL
systems, embedded implementation schemes, and graph the-
ory applications. The evaluation of mobility aid for the visu-
ally impaired is discussed. Use case optocoupler, secure
digital card (SD card), audio system, vibrator, buzzer, and
PIC16F876A microcontroller are explored. The system can
be integrated into aids for the physically and mentally chal-
lenged such as wheelchairs, prosthetic limbs, Zimmer walk-
ing frames, and crutches, but these are outside the scope of
this work.

The rest of this paper is organized as follows. Section II
presents related works. Section III reported the optimiza-
tion model. Section IV discussed the WearROBOT algo-
rithms and computational complexity. Section V discussed
the proof-of-concept validation. Section VI discussed Simu-
lation Analysis. Section VII addressed performance valida-
tions. Section VIII concludes the paper with future works.

II. RELATED WORKS
This section focused on related works in ALS efforts, and
embedded node capabilities. Also, a systematic literature
review (SLR) is used to establish foundations for Wear-
ROBOT in this research.

A. EFFORTS ON ASSISTED LIVING SYSTEMS
There have been various efforts in AALS for the visually
impaired (the limited vision) to detect obstacles beyond knee
level at a long-range and in real-time using radio frequency
identification [11]. Also, common obstacle detection tech-
niques are elucidated, self-attention model, [13], [25]. Physi-
cal disability has been a major setback to individuals, their
families, and subsequently, national development. Visual
impairment is a major physical challenge that has rendered

105844 VOLUME 10, 2022



K. C. Okafor, O. M. Longe: WearROBOT: An Energy Conservative Wearable Obstacle Detection Robot

many helpless. The authors [11], presented an assisted glove
device that supports the visually impaired to interact with
their environments. The work [12] focused on a smart assis-
tivemachinewith emphasis onwearable smart glasses includ-
ing a motion stick for the visually impaired (VI). This was
used to detect aerial obstacles and falls. In [13], the authors
proposed an assistive module for the VI that explores more
dimensional data to identify objects. The research converts
3-D spatial information into sound details using 6-axis and
ultrasonic sensors while drawing a 3-D space image for the
user. In paper [14], the authors discussed the implementation
of a unit-cell electromagnetic refreshable braille display that
can be read by the VI or the limited vision. The authors in [15]
proposed a monocular vision-based system for assisted liv-
ing, especially for persons that needs help during ambulation
(i.e., in-outdoor, and outdoor places). The authors in [26] also
proposed a fully latching and scalable haptic display system
that conveys dynamic graphical information to the limited
vision/VI. In [27], assistive technology- Cardbot 2.0 was
introduced as a learning aid for the VI. Similarly, a haptic AT
was developed for the visually impaired considering Braille
reading, tactile graphics, orientation, andmobility [28]. Other
related efforts were studied including the applications of
Gaussian hiddenMarkov model [29], locomotion recognition
algorithm [30], three-dimensional (3D)-printed multifunc-
tional hand device (3DP-MFHD) [31], eye-tracking assis-
tive [32], and unsupervised sim-to-real adaptation [33]. The
major gap is that most works lack details on the effect of angle
positioning on distance while keeping the energy absorbed
constant. Hence, energy management is yet to be fully unre-
solved in smart wearable devices.

B. ASSISTED LIVING NODE CAPABILITIES
Most assisted living wearable systems have issues with
energy conservation. Various analytical models have been
reported to address power drain concerns in AALS [34]. Most
of the works are based on IoT, which naturally has power
limitations [7], [35]. Also, there are experimental investiga-
tions carried out to distinctly evaluate localized metrics such
as energy consumption [34], node capacity, sensing scalabil-
ity [36], prediction accuracy [25], node-to-node communi-
cation [37], and security [38]. The commonality in several
existing studies is that one or more technologies are focused
upon in their discussions.

A comparative study of various results considering most
works in literature may hardly offer an insightful and bal-
anced perspective since each experimental model is carried
out using baseline assumptions varying in several optical
landscapes by these authors. Lately, there are very few
works involving more than three technologies. However,
the work [34] compared wearable IoT performance with
GPRS [39], Bluetooth [40], andNB-IoT [41] with Sigfox [42]
and LoRa [43], [44]. The scarcity of graph-based literature
in the previous studies suggests the need for more efforts in
lightweight multi-commodity graph theory. Recent reviews
of wearable robots are summarized in Table 1 based on their

areas of focus. Many of the works focused on single tech-
nologies while energy consumption and graph optimization
were not considered in most of the studies. However, looking
at the significance of narrowband IoT-powered wearables in
context, it is critical to consider graph-based energy perfor-
mance in literature. One of the areas of investigation is the
positional angles, energy consumption, and how the surface
of the material affects the absorption rate.

Most works in literature failed to emphasize these areas in
wearable AALs. The closest efforts in wearable dynamic sen-
sor selection activity recognition have been discussed. Pre-
processing, feature extraction, and classification are critical
in obstacle sensing. Sleep state in activity recognition, active
classification of sensed obstacles, and energy faulty states
lack empirical evidence as well as theoretical perspectives.

A closer look at Gaussian Hidden Markov Model
(GHMMs) offers good insights into obstacle identifica-
tion via data aggregation [45]. Their parametric learning
design is based on a maximization algorithm that leverages
collective Gaussian Forward-Backward algorithm. Another
good work on wearable sensor algorithms was presented
in [46]. In their work, sensor-basedwearable devices explored
machine learning to achieve posture-triggered detection and
real-time activity recognition. The efforts involve raw data
machine learning computation while reducing computational
costs and latency. Also, Multi-Mapping Spherical Normal-
ization (MMSN) was applied in obstacle detection and clas-
sification Support Vector Machine (SVM) with Radial Basis
Function Kernel (RBF-SVM). This addressed computational
complexity and accuracy while considering energy conserva-
tion on wearable nodes.

C. MULTI-DIMENSIONAL GRAPH-BASED COMPUTING
In a wearable sensor network (WSN), optimal capacity anal-
ysis is needed for energy conservation. Multi-radio-multi-
channel WSN intrinsically demands mixed integer program
multi-radio formulation [47]. This is an NP-hard problem
found in most recent heuristic algorithms such as the Gaus-
sian mixture model (GMM), and multi-dimensional con-
flict graph (MDCG). Trajectory planning has been addressed
with MDCG while capacity optimization concerns have
been accurately dealt with using linear programming (LP)
multi-commodity flow (MCF) problem [48]. These schemes
have been optimized with maximal independent constraints.
The MDCG-based offering gives maximum throughput and
optimal configurations on routing, channel assignment, and
scheduling in complex WSNs. Also, MDCG-based optimal
capacity planning uses dynamic channel swapping. As an
improvement, the proposed LMCG offers better obstacle
sensing capability, which is challenging to achieve in existing
heuristic algorithms. In this article, the proposed LMCG
offers polynomial computing based on the shortest-path
scheduling in obstacle detection.

The central concept of this article is on the wearable sensor
node module. It discussed an energy conservative wearable
obstacle detection robot that detects rear view obstacles with
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an audio feedback system incorporated for voicing out once
an obstacle is detected. A LMCG learning model is proposed
while coupling the shortest path resource allocation for space
diversity linearization considering the wearable sensor nodes
that makes this obstacle detection for the visually impaired.
The various domain applications, contributions, and gaps
analysis are summarized in Table 1.

Now, let’s define a major design concern. To minimize
average signal package delays, there is a need to optimize the
max link utilization in the space diversity domain.

III. OPTIMIZATION MODEL
In this section, this article formulates the Infrared sensor
problem function that minimizes link utilization consider-
ing traffic demand hd (1,2, . . .D) and capacity Ce(e =
1,2, . . . ..,E). Also, a routing algorithm is mapped with an
open shortest path First (OSPF). Let’s denote the link weight
metric e with βe. This can assume a non-negative or positive
value depending on the OSPF boundary for the IR sensor.
This implies that the β(β1,β2, . . . ..,βE) then pushes IR
demand flow (traffic) for respective node demand using the
OSPF routing scheme. The equal-cost multi-path (ECMP)
rule applies when there are various available shortest paths for
demand d making transmission flow split equally among the
transmitter and the receivers. See Appendix I for notations.

Let’s give the RF flow on path P for traffic demand d
triggered with a link metric system β i.e., xdp(β). This energy
metric is important given the level of dependency of traffic
flows on β based on OSPF. By summation convention, this
gives (1). ∑

p

xdp (β) = hd , d = 1, 2, . . . .D (1)

In the link metric system β, let δedp represent the link-path
indicator, which implies that it can assume a value of 1 if route
p for demand d makes use of link e, else it uses 0. The flow
link or link load y−e on link e induced by β is given by (2).

y−e(β) =
∑

d

∑
p
edpxdp (β), e = 1, 2, . . . . . . ..,E

(2)

Certainly, the flow- link will be capacity-bounded such that
(3):

y−e(β) ≤ Ce, e = 1, 2, . . . . . . .,E (3)

The link utilization on each transmitter traffic link e is
represented by (4):

y−e(β)/Ce (4)

The maximum utilization over all links depends on a vari-
able (5):

τ = Maxe = 1, . . . . . . . . . .,E {y−e(β)/Ce.} (5)

In the system, the link with optimal. Maximum utilization
is the link e where the ratio is highest (max congestion). The

formulation of the objective function will be minimizing the
link utilization of the sensors. This is obtained as follows (6):

Minimize
β

F = Maxe

{{
y−e (β)
Ce

.

}}
S.t

∑
p
xdp (β) ,= hd d = 1, 2, . . . ..D∑

d

∑
p
δedpxdp (β) = y−e (β) e = 1, 2, ..E

y−e(β) ≤ Ce, e = 1, 2, ..E

βe Non-negative integers (6)

Considering the above formulation, the link metric vari-
ables can be modified with an auxiliary variable τ to remove
the link load equation in the previous formulation.

Minimize
β,τ

F = τ

S.t
∑
p

xdp (β) ,= hd d = 1, 2, . . . ..D∑
d

∑
p

δedpxdp (β) ≤Ceτ e = 1, 2, ..E

τ continuous

βe.Non-negative integers (7)

From the above formulation (7), there will be zero link
congestion if the optimal τ ∗ < 1. This is used to develop
a sensor optimal algorithm that determines the appropriate
optimal link-metric system β. The algorithm I then help to
compute β considering traffic volume capacity and energy
dissipation. The idea is to have the relaxed routing removed
from (7) especially when independent decision variables xdp
are used rather than β and xdp(β). Such LP multi-commodity
flow context can reduce optimal objective τ ∗. Again, the
weighted metric β influences the imposition of constraints
states on the link flows.

Let’s now discuss the systemweight optimization problem.
Given that once the link capacity Ce is provided a Poisson
distribution arrival rate y−e pps. The RF packet length has
exponential distribution, and this gives an average energy
packet delay in (8).

Apd = 1/
(Ce − y−e) (8)

This is done according to theM/M/1 queuing model. It is
referred to as the latency function of the link e. For the
link capacity connected workload, capacity demand is given
by (9).

y−e ≤ Ce − 1/
T (9)

Hence, the weighted-dependent optimal network objective
is met with (9). Here, the NP-Completeness for the shortest-
path routing assignment problem must be sufficiently satis-
fied. But let’s further investigate the formulated theoretical
context for the RF shortest-path link allocation challenge in
WearROBOT architecture in Appendix II.
Proposition 1: Problems of Link Path Formulation for

shortest path routing/bounded link delay (i.e., energy latency)
need to be highlighted and proved.
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TABLE 1. Summary of related work.

Proof: Imagine the directed WearROBOT single-
commodity flow graph in Figure 1. The vertex µs is the
source transmitter, and the vertex µt is the sink. Also, the
vertices in the mapped upper row represent the 3-sets of
family C while those at the lower row correspond to the
elements of set X . The edges between the two rows reflect
the incidence relation between family C and set X . Vertex Ci
is connected to vertex xk if and only if xk ∈ Ci, i.e., C1 =

{x1, x2, x3} ,C2 = {x2, x4, xk} and Cn =
{
xk−1, xk+1, xp

}
.

The new assumption is that X ⊆ C .
The source vertex µs and the sink vertex µt are shown

in Figure 1 depicting the graph transactions. The physical
architecture is shown in Appendix II.

In Figure 2, the maximal flow from vertex µs to vertex
µt could be described in polynomial time. Assuming IR
subfamily C o =

{
Ci(1),Ci(2), . . . ..Ci(q),

}
houses link state

setX . By assigning flows =1 to all edges
(
s,Ci(j)

)
for j =

1, 2, . . . . . . q(i.e., f
(
s,Ci(j) = 1, j = 1, 2, . . . . . . q

)
, and

flow= 0 to the rest of the edges of the form (s,Cl). This state
allocation will compel f (xk , u) = 1/3 for k = 1, 2, . . . ..p.
Finally, by assuming f (s, t) = 1, this makes ECMPflowwith
a value of q+1. The edges are saturated incoming to vertex
u. The vertices Cl with f (s,Cl) = 1 defines the family C

FIGURE 1. WearROBOT RF multi-commodity flow graph.

covering X . Hence, by finding ECMP flow = q + 1, this
verifies NP-completeness found in ECMP flow problem.

IV. WearROBOT ALGORITHMS AND COMPUTATIONAL
COMPLEXITY
In this section, WearROBOT shortest-path problem is solved
by modifying Dijkstra’s algorithm [57], [58]. The idea is to
allow the IR transmitter to identify the least administrative
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FIGURE 2. WearROBOT single-commodity flow graph instance.

path starting from source to sink in a community of wearable
nodes. For sensor-based data gathering, Reliable Path Selec-
tion and Opportunistic Routing (RPSOR) [59], software-
defined networking, Fog/edge IoT systems [57], [60], [61]
have extensively explored the Dijkstra routing algorithm.

For a distance vector L and predecessor vector P, let’s use
a designated distance set and predecessors’ vectors Li and
Pi (i = 1, 2 . . . n).

The Li(v) harvest the updated shortest path from source
to sink at most active i jump. Pi (i = 1, 2 . . . n) and Pi(v)
houses the previous vertex v on the recent closes path having
at least i jumps. The computational algorithm uses clustered
node-set, ψ which refers to the set pairs (v, i) (i.e., v is not
labeled at level i ≤ i ≤ n). Here, Li(v) < ∞ in a way that
vertex v could be linked from IR source s without middle
deviations at the vertices. The algorithm I use vectors L and
P with a set of labeled vertices C and X . Each entry L(v)
contains the distance measured from s to t along the current
shortest path, while each entry P(xp) contains the parent of
vertex v, i.e., the vertex fromwhich vertexC has been reached
(labeled) during the construction of the shortest path. Vector
u is used at the last stage of the procedure to restore the
constructed shortest path (⊕ is the concatenation operator).
Upon completion, L(t) is equal to the length of the shortest
path, P from s to t . Note that when the narrow band IR
sensor needs the least administrative distance path from s to
all available graph vertex. Without loss of generality, we can
modify the algorithm by changing the status in the ‘‘while
statement’’ using a similar line statement.

As shown in Dijkstra’s Algorithm I, the sum vertices that
could be energy conserved are C(C − 1) and X (X − 1).
Hence, the complexity of the algorithm is O(V 2). Advanced
data structure design will minimize the complexity analysis
to O(E + Vlog (V ). From Figure 1, the robot SPDA moves
source S to destination t in the graph. The control routine ter-
minates only if the destination sink t gets a label (i.e., moves
into set S). The computational complexity of the considered

variants in Algorithms I and II is then n times bigger than the
complexity of the original algorithm. However, it is also less
than o(n× V 2).

Algorithm 1:Modified WearROBOT Dijkstra’s SPDA
1: Procedure: SPDA(G, s, t)

S := ϑ; t := ϑ;L(s) := 0;
For S ∈ V | {s} doL (v) := ∞

While t /∈ S do (while |S| < V do}
Begin
Cl := argMin

{{
Ci(1),Ci(2), . . . ..Ci(q),

}}
;

{ ˙S = V\S}
t := argmin

{
L (v) : v ∈ Ṡ

}
; { ˙S = V\S}

S := S ∪ {v} ;
C1 = {x1, x2, x3} ,C2 = {x2, x4, xk} &
Cn =

{
xk−1, xk+1, xp

}
for β ∈ N (v) ∩ S̀ do
If L (β) > L (v)+ Lvw;P (w) := v;
end

P := (t) ; v := t;
Repeat
v := P (v) ;
P := v◦∅ ≥ ⊕P
until v = S̀,
SPDA := P

end while
end {procedure}
Return

Algorithm II discussed the WearROBOT from closest
paths having hop limit. This aspect of the IR nearest path chal-
lenge in the graph node is addressed by modifying Dijkstra’s
algorithm. The idea is to find the nearest RF path `e term)
from the wearable transmitter s to respective sinks nodes
within the signal paths for sink hops (i.e., edges). Algorithm II
finds the nearest paths with active n jumps from source s
to all other IR nodes. It comes back from s to an active
sink t . In this scenario, we can avoid the vector L and p
while using another set of Li and pi(1, 2, 3 . . . ..n), where
Li(v) houses the distance of the current closest path from s
to v with active i link jumps. Also, rather than the set S of
labeled vertices, for respective i = 1, 2, 3 . . . ..n, let’s then
create a set Si labeled vertices tagged i, i.e., the set of vertices
having the least administrative path that can connect any path
IR node. In context, the algorithm used a conjugate set, R,
(i.e., a set of all pairs (v, i). In this case, v is not labeled
at level i. (note that i ≤ i ≤ n. This is convolved in a
manner that gives Li (v) < ∞. Similarly, the vertex v may
be located from the source s in exactly i hops. Only actively
assigned node transmitters can reach others using labeled
vertices.

For the WearROBOT used in a limited vision commu-
nity, a two-layer dimensioning problem is further consid-
ered for resource allocation in Algorithm III. Assuming the
following additional considerations in a link formulation
context.
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Algorithm 2: Smartest-Path Dedicated Lower Hops
(SPDLH)
1: procedure: SPDLH (G, s, t, n)

R := {(v, 1) : v ∈ N (s)} ;
for i := 1 to n do Si := {s} ;

While v /∈ R do
for v = V (N (s)

⋃
{}s) do

for i := 1 to n do Li (v) ::= ∞;
for v ∈ N (s) do

for i := 1 to n do
Begin Li (v) ::= Lsv;Pi (v) ::= s end;
WhileR 6= 0 do
Begin
find (v, i) ∈ R such that:
(1) ∀ (w, j) ∈ R,Li (v) ≤ Lj(w)
(2) ∀ (w, j) ∈ R,Li (v) = Lj (w)→ j ≥ i;

Si := Si
⋃
{v} ;R\{v, i};

if i > n then

for w ∈ N (v) ∩ (Si+1)′ do {(Si+1)′ = v(Si+1)};
Begin

if LiC1 (w) > Li (v)+ Lvw thenR ∪ (w, i+ 1))}
for j := i+ 1 to n do

Begin
Lj (w) := LJ−1 (v)+ Lvw;Pj(w) := v end;
end;
end;

p := (t) ; v := t; i := n;
repeat
v := Pi (v) ;
p := v⊕ p;
i := i− 1
Until v = s;
SPDLH := p

end while
end {procedure}
Return

Additional constants
M: the size of the IR node capacity in an upper

location/layer
ξe: cost overhead on node capacity
ζeq: Unit capacity routing for graph node Vari-

ables
xdp: positive continuous RF flow allocated to path

p
ye: positive integral node capacity.
zeq: positive RF flow/path allocation q for link

capacity.

Objectives

Minimize
∑
e

ξeye +
∑
e

∑
q

ζeqzeq (10)

Constraints∑
p

xdp = hd , d = 1, 2, . . . . . . ..,D (11)∑
d

∑
p

δedpxdp ≤ Mye e = 1, 2 . . . .,E (12)∑
q

zeq = ye, e = 1, 2, . . . .E (13)∑
e

∑
q
γgeqzeq ≤ cg, g = 1, 2, . . .G (14)

The above mode is crucial when the RF transport network
forWearROBOT is considered in a non-invasivemode. In this
case, the traffic network serves as the higher layer. The lower
layer is dimensioned to transport signals across the various
vertices. The IR sensor capabilities are leveraged to create
multiple extended service sets for other connecting devices.
All the nodes use Algorithm III to conserve link energy.

Algorithm 3: LCMG Flow Allocation (LFA)
procedure: CPU controller
LCMG_Allocation (i, j, hd , pi,j)
Given demands d with start Node i
End Node j and set of LFA paths P̂i,j
Begin Sij :=

{
e : e is first link of path P ∈ P̂i,j

}
;

find (v, i) ∈ R such that:
(1) ∀ (w, j) ∈ R,Li (v) ≤ Lj(w)
(2) ∀ (w, j) ∈ R,Li (v) = Lj (w)→ j ≥ i;

Si := Si
⋃
{v} ;R\{v, i};

if i > n then
for w ∈ N (v) ∩ (Si+1)′ do (Si+1)′ =

P̂i,j =
{
e : e is first link of path P ∈ P̂i,j

}
;

//set of LFA paths but exclude link e
LCMG_Allocation(i, j, hd ,Pi,j)
Begin

end while
end {procedure}

V. PROOF OF CONCEPTS VALIDATION
A. PRELIMINARY DESIGN DESCRIPTION
In this subsection, the WearROBOT LMCG implementation
was done using various materials and electronic devices
including obstacle detection narrowband infrared sensor,
microcontroller: PIC16F876A, vibrator, buzzer, audio sys-
tem, LM 7805 voltage regulator, and secure digital (SD)
Card in Figure 3. This obstacle detecting system uses the
multi-modal graph for the visually impaired. This is accom-
plished using these steps:
STEP 1: The hardware components were developed rang-

ing from sensor circuit, audio circuit, control unit, and mem-
ory unit, all built around a microcontroller.
STEP 2: Software development for the microcontroller

was designed considering PIC16F876A. This is because of
the ease of interfacing with other components and cost-
effectiveness.
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STEP 3: Testing was completed using agile-unit test
scripts. The following are the specifications forWearROBOT.

i. WearROBOT energy consumption should not be more
than 0.1 J. This will enable longer battery life and
reduce energy quick battery replacements.

ii. Reflectivity: The reflectivity of the materials was put
into consideration. The reason is that different surfaces
offer different reflectivity. Also, quantity of energy
absorbed differs for different materials. For instance,
black objects absorb more energy than any other sur-
face properties.

iii. Battery capacity, Size, and Weight: The higher the
capacity, the bigger the size of the device and the
greater the area occupied by the device. Nokia BL- 5CA
will be used in this design because of its weight (20 g),
with a dimension of 53 mm∗33 mm∗5 mm, a capacity
of 1100 mAh, an output power of 4 Wh, and a voltage
of 3.7 V.

iv. WearROBOT Battery life: The battery determines how
long it can last. This is done by considering the battery
capacity, energy absorbed by the reflecting material,
and the energy absorbed by the sensor.

v. Environment: WearROBOT functions at a temperature
of 18 to 70◦C. It should function reliably for about two
years on continuous operation. This system should be
able to adapt to different environmental conditions.
An infrared sensor, audio system, earpiece, vibrator,
buzzer, and secure digital (SD) card (SSD-card) were
used in the hardware design as proof of concept. These
are built around the PIC controller. The SSD card
is interfaced with the PIC- chip leveraging the serial
peripheral Interface (SPI).

B. WEARROBOT SUBSYSTEM DESCRIPTION
- Narrowband Infrared Sensor: Infrared receivers used in
context is the photodiode. Some important specifica-
tions of infrared receivers are photosensitivity, detectiv-
ity, and noise equivalent power. Active infrared sensors
comprise an infrared source and an infrared detector.
The sensor consists of IR LED, and IR Photodiode
(i.e., Photo–Coupler). The transmitter and the receiver
were positioned at a certain angle for seamless object
detection. The sensor directivity angle is+/- 45 degrees.

- SSD-Card:Micro SD card series are non-volatile, hence,
external power is required to retain the stored informa-
tion while running on 2.7 to 3.6 volts.

- Audio Unit: The visually impaired uses it to communi-
cate with the outside world.

- The vibrator module is the electric motor used in daily
life. This is used as a haptic technology which is applied
in the tactile framework for the visually impaired to
sense or touch. This is done through force application,
vibration, or motions to the VI. This manual activa-
tion alerts the visually impaired to give attention to the
ingress signals. For instance, the cell phone vibrating

mode. Haptic adaptive technology alerts the limited
vision and provides feedback from surrounding environ-
ments and movements.

- Buzzer Actuator Module – It is used as an audio
signaling device built from mechanical, electromechan-
ical, or piezoelectric material It is used as alarm devices,
timers, and confirmation of user input such as a mouse
click or keystroke.

- PIC-Microcontroller Unit is interfaced with the memory
card. It enables the chip to select a pin on the memory
card. It also ensures the appropriate clock rate for com-
munication between it and the memory card by sending
400 kb/s to the clock pin (i.e., the serial clock pin of
the memory card). The provision of communication to
the memory card is done by sending appropriate serial
data to the memory card. The memory card sends feed-
back to the PIC-chip by sending the digital equivalent
of the pre-recorded voice the visually impaired should
hear. The controller then takes this pre-recorded voice
to the push-pull amplifier which is connected to the
speaker. The push-pull amplifier has an inherent feature
of converting streams of ones and zeros to their analog
equivalent.

C. DETERMINATION OF SURFACE PROPERTIES
In designing the device, so many factors were considered
among which are the surface properties. The surface prop-
erties suggested the best angle to be considered, the energy
consumed, the battery life, the distance to the object, and
the intensity of the infrared ray. These factors are of utmost
importance in designing and fabricating the device for accu-
rate detection. For the comparison of these factors and
simulations, the following assumptions were made for the
following reasons listed below:

- The distance to the object was kept constant to ascertain
the intensity, distance traveled, and energy consumed at
different distances (i.e., 5 cm, 50 cm, 0.8 m, 1 m, 3 m,
5 m, and 10 m). This aid to determine the property of
the sensor considered. It reveals at what point or distance
will the sensor start fading; and how the angles can boost
the distance traveled.

- The energy consumed was kept constant to ascertain the
distance to the object at different angles for different
energy consumed. This also aids to determine the battery
life of the sensor. The battery life is dependent on the
energy absorbed or consumed by the device.

The different surface properties and the effect of inten-
sity on both angle and distance to the object are studied.
Appendix II shows the physical design and the interconnec-
tion of the various blocks. WearROBOT controller captures
the detected signals and transmits the feedback via a buffer
to a sound-buzzer, vibrator, and the audio-speaker via a high
pull-up. The sound transducer, and the controller talk with
the secure digital card. The chip select (CS) control achieves
this function and then transmits serial data to the memory
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TABLE 2. GPY0A02YK0F sensor specification.

card using the serial data port. After sending the data, the
memory card activates the controller using its serial data
output port. The controller then pushes the prerecorded voice
to the push-pull amplifier while disabling the CS. Recall
that an infrared sensor is a transducer device that detects a
physical property and responds to events. It is possible to have
a physical quantity measurable by different sensors but the
question about selecting the appropriate sensor has to do with
the following characteristics of the sensor:

- Sensitivity: minimum physical parameter input that will
create detectable output change.

- Accuracy: how close is the actual/expected value to the
value measured by a sensor?

An electronic sensor for measuring a variablemust be read-
ily available, portable, selective, sensitive, accurate, reliable,
durable, and at a low cost. When a sensor fails to satisfy any
of the above characteristics, then the variable or quantity to
be measured cannot be incorporated into the system and thus
the integrity of the system is undermined.

In this article, four (4) sharp long-range infrared
GP2Y0A02YK0F sensors were placed at the right, left, front
and rear sides of the device as shown in Figure 3. The sensors
have a range of 0.2 m to 1.5 m; a consumption current of
33mA. The acceptable input voltage ranges from 4.5 to 5.5 V.

As shown in Figure 3, the battery life of the sensor deter-
mines the longevity of the WearROBOT device [65]. With
the battery capacity and the energy absorbed by the nodes,
this is determined. Energy is equally absorbed by the micro-
processor due to the active state of the device. A simple DC
supply explores the battery energy, But the 12V power supply
is controlled up to 5 V TTL 7805-voltage chip regulator. This
regulated output is used to power the microcontroller via a
user toggle switch. Filtering is completed using capacitors
C1 and C2. This prevents unnecessary voltages that have
spikes. A 100µF capacitor drops the voltage transients on the
regulator input while enhancing the voltage output stability.
The four-IR sensors were tested with a secure digital card and
the digital oscillator circuit. The oscilloscope confirmed the
status of the SD card and the corresponding waveforms.

Table 2 shows the specification of a sharpGP2Y0A02YK0F
sensor.

- Secure Digital (SD) card: This communicates with the
controller via the Serial Peripheral Interface (SPI). The

SD cards are universal low-cost, the high-speed card
with data storage media.

The microcontroller communicates with the SD card by
sending data serially to the card. This is done by activating
the chip select (CS) by making it LOW. Once is LOW, data
can be exchanged between the SD card and the controller. The
IR transfer rate is usually 400 kb/s.

- Distance measurement: Infrared (IR) sensors were used
as proximity sensors in obstacle avoidance.

- Determination of the surface property of the obstacle
detection as well as the orientation angle of the surface
with the IR sensor is investigated including the distance
to the object.

- Battery capacity, size, and weight: BL-5CA Nokia bat-
tery model is employed.

- Battery Life Sensing- This is implemented to support the
sensors optimally.

- The battery capacity (Bc) and the energy absorbed by
the sensor were benchmarked. Themicroprocessormon-
itors the battery life of the device as it absorbs constant
energy aside from the energy consumed because of the
device’s active state as shown in Figure 3.

Contextually, the term ‘‘angle’’ as mentioned in this article
refers to the angular positional displacement from the patient
or visually impaired relative to the obstacle detected. The
wearable robot can be titled to any angle to detect obstacles
while noting the distance from the object and the intensity of
surface impact. For experimental convenience, four infrared
sensors were wired together to increase surface impact and
sensitivity through posterior probabilities. As shown in Fig-
ure 4, there are Wear-ROBOT S1, S2, S3, and S4triggered
continuously by an astable multivibrator (N555 timer). With
the LMCG algorithm, the controller responds immediately to
an object that is sensed while activating a buzzer, vibrator,
etc. Figure 3 shows the simplified wired schematics.

The link budget considerations for the IoT-enabled sensor
node and LP-WANs are given by Shannon–Hartley theo-
rem [62] in (15).

Eb
N
=

ε

Cp

[
2
Cp
g − 1

]
=

2n − 1
n

(15)

where

Cp = capcity(bits/s)
ε = bandwidth
n = Spectral efficiency (bit/s/Hz)
1
Cp
= Bit duration

Eb =
(
S
Cp

)
in Joule

N .ε = Total noise power (watts)

As shown in Figure 5, the WearROBOT signals are fully
decapsulated at the receiver node. Hence, the threshold
energy detected is based on the node receiver sensitivity (σ )
as highlighted in (16) [63].

σ =
Eb
N
+ 10. log10 Cp+ (ϑ − 174 dBm)
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FIGURE 3. WearROBOT Link capacity utilization schematics (Proof of concept).

ϑ = Noise figure (2− 6 dB) (16)

The potentially available IR throughput per coverage unit
is given by (17).

R (λ, θ) = λ. log2 (1+ θ)Pr(SNR ≥ θ (17)

where

λ = IR optional Fog or gateway density
Pr (.) = IR probability operator
θ = IR SNR threshold
R = IR Throughput (bps/Hz/Km2)

In a scenario of cascaded cluster gateways connecting the
IR sensor nodes, the area spectral efficiency (ASE) is given
by (18) [64].

ψA (λ) = λ.τ
[
log2 (1+ SNR)

]
, SNR ≥ θ (18)

This (18) gives the bit rate adaptation based on the SNR
rather than a signal outage. Figure 5 shows prototype system

derived from similar efforts [65]. The summarized Wear-
ROBOT is decomposed into a PIC controller, input sensors
(ultrasonic sensor, accelerometer, voice synthesizer), and out-
put actuators (sound buzzer, and vibrator). These are labeled
as follows. A: Voice recognition module (VRM), B: GSM-
IoT Module (GIM), C: Buzzer translation, D: Microphone
tab, E: BIOS chipset, F: Primary breadboard, G: rear GIM,
H: PIC controller, I: IR sensor Antenna, J: Accelerator, K:
Ultrasonic sensor, L: Motion vibrator. Figure 4 shows the test
rig for the WearROBOT node.

Using the setup in Figure 5, optimal sensor placement
positions for detection of rear-side, front-side, right-side, and
left-side obstacles were calibrated. The design of a miniatur-
ized wearable obstacle detector was derived in Figure 5. Also,
the work integrates a scalable transducer feedback routine
into the wearable obstacle detector system.

In Section VI, the performance evaluation via the sim-
ulation studies is presented. Energy consumption, energy
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FIGURE 4. WearROBOT simulation testbed at IEEE MSR-Lab, FUTO.

FIGURE 5. WearROBOT proof of concept reference hardware.

latency, battery life performance, and system validation of
LMCG are discussed.

VI. SIMULATION ANALYSIS
In this section, over 1000 limited vision-agent community
representatives were considered in the simulation training
using the Protus C++API library in Figure 4. The setup com-
prises 1GB GPU RAM size running on Intel Core i5 CPU,
and 8 GB RAM. IEEEMSR-Lab in the SEET complex, at the
Federal University of Technology Owerri, Nigeria was used
for the investigations. Also, the proof-of-concept simulation
setup for numerical analysis was configured in Figure 4.
A comparison of the effect of angle positions of the sensor
on the device is evaluated considering β. The simulation was
done to compare the effect of node wearable-node angle to
intensity, distance traveled, and energy absorbed at different
distances to the object while considering various angles.

For the WearROBOT LMCG network, the localization
size of the network was considered in the selected GPU
memory employed during the trials. Figure 4 has Riverbed

TABLE 3. Intensity of infra-ray, distance traveled, and energy absorbed at
5 cm.

TABLE 4. Intensity of infra-ray, distance traveled, and energy absorbed at
50 cm.

17.5 sensor libraries which were configured through trace
files using the radio energy dissipation model and simulation
parameters [34]. In this paper, Fresnel clearance, path loss,
coverage, and link budget have been fully considered [34].

The simulation analysis involves obstacle detection using
various distances with angular displacements. Figure 6a
shows that at 5 cm (distance) with an angle of 450, the
intensity of object detection is 11 W/m2. This happens at
the traveled distance of 0.08 m in Figure 6b. In this case,
the energy absorbed is 18 kJ as shown in Figure 6c. This
can be shown in Table 3 depicting different angles with
their corresponding intensity, energy absorbed, and distance
traveled.

Figure 7 shows that at 50 cm with a wearable angle of 450,
the intensity is 1.1 W/m2. Also, the energy absorbed is 2 J
and the distance traveled is 0.7 m. Table 4 shows different
angles with their corresponding intensity, energy absorbed,
and distance traveled.
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FIGURE 6. Illustration of the intensity of the infrared ray, distance
traveled, and energy absorbed at 5 cm. (a) Experimental linear intensity
response (b) distance traveled response (c) Energy absorbed response.

TABLE 5. The intensity of infra-ray, distance traveled, and energy
absorbed at 5 cm.

Fig. 8 shows that at 0.8 m with a wearable angle of 450,
the intensity is 0.7 W/m2. The energy absorbed is 0.5 J and
the distance traveled is 1.15 m. Table 5 shows the different
angles with their corresponding intensity, energy absorbed,
and distance traveled.

FIGURE 7. (a-c) Illustration of Intensity of the Infrared Ray, distance
Travelled, and energy absorbed at 50 cm.

TABLE 6. The intensity of infra-ray, distance traveled, and energy
absorbed at 1 m.

Figure 9, shows that at 1m with an angle of 450, the inten-
sity is 0.55 W/m2; energy absorbed is 0.3 J, and the distance
traveled is 1.4 m. Table 6 depicts the different angles with
their corresponding intensity, energy absorbed, and distance
traveled.
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FIGURE 8. Illustration of the intensity of the infrared ray, distance
traveled, and energy absorbed at 0.8 cm. (a) Experimental linear intensity
response (b) distance traveled response (c) Energy absorbed response.

TABLE 7. The intensity of infra-ray, distance traveled, and energy
absorbed at 3 m.

Figure 10 shows that at 3m with a wearable angle of 450,
the intensity is 0.04 W/m2. The energy absorbed is 0.1 J and
the distance traveled is 4.25 m. Table 7 shows the different
wearable angles with their corresponding intensity, energy
absorbed, and distance traveled.

FIGURE 9. (a-c) Intensity of the infrared ray, distance traveled, and energy
absorbed at 1 m.

TABLE 8. Intensity of infra-ray, distance traveled, and energy absorbed at
5 m.

Figure 11, shows that at 5 m with an angle of 450, the
intensity is 0.10 W/m2. The energy absorbed is 0.002 J and
the distance traveled is 7 m. Table 8 shows the different
angles with their corresponding intensity, energy absorbed,
and distance traveled.
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FIGURE 10. (a-c) Intensity of the infrared ray, distance traveled, and
energy absorbed at 3 m.

TABLE 9. Intensity of infra-ray, distance traveled, and energy absorbed at
10 m.

Figure 12 shows that at 10m with an angle of 450, the
intensity is 0.10 W/m2, energy absorbed is 0.002 J and the
distance traveled is 7 m. Table 9 shows the different angles
with their corresponding intensity, energy absorbed, and dis-
tance traveled.

FIGURE 11. (a-c) Intensity of the infrared ray, distance traveled, and
energy absorbed at 5 m.

Figure 13 shows the relationship or the effect of the wear-
able angle on distance using LMCG. This is achieved by
keeping the energy absorbed constant while comparing the
different energy absorbed. The result shows that there was
a progressive decrease in distance as the absorbed energy
increased. It gives a guideline for the wearable angles and
different distances to consider in the device design. The
result suggests an increase in the angle if a lower distance
is desired for the energy absorbed. Comparison of the bat-
tery life was considered based on the distance an object is
placed. It is seen that the battery life increases as the dis-
tance increases with an increased wearable angular displace-
ment. An increase in wearable angle positioning increases the
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FIGURE 12. (a-b) Intensity of the infrared ray, distance traveled, and
energy absorbed at 10 m.

TABLE 10. Battery life at distance travelled with wearable sensor angular
displacement.

battery life of the wearable sensor device due to displacement
kinematics. Table 10 gave the summary of the evaluation
study while justifying the proposed scheme forWearROBOT.
Figure 14 shows the WearROBOT battery optimization with
LMCG. The comparison between an unoptimized wearable
node and a reference node is depicted in the plot. About
63% of the battery life results from wearable node optimiza-
tion while the unoptimized node had 31.58% battery life in
Figure 14. Also, it is observed that a typical wearable node
without LMCG has 5.42% battery life.

Figure 15 shows the number of batteries against the weight
of the device. It can the seen from the graph that the number of
batteries affects the device’s weight. The result further shows
that the battery weight 120 grams since three batteries were
used.

Figure 16 shows the battery capacity against the weight
of the device. It can the seen from the graph that the battery
capacity affects the weight of the device. It was observed that
the battery capacity is 11.1 V while the weight of the device
is 121 grams.

VII. PERFORMANCE VALIDATIONS
The WearROBOT validation is presented for the LP
Multi-commodity graph (LMCG-IoT). The LMCG robotic
scheme/mode with narrowband IR IoT (LMCG -NB-IoT)
was compared with Bluetooth Low-Energy (BLE-IoT) and
Low Power WAN (LP-WAN) schemes. As shown in Fig-
ure 17, the amount of energy used for each operation per-
formed by the communicating wearable sensor under the
LMCG is discussed. Energy consumed is investigated by
considering the measurement distances of the nodes. Previ-
ously, the controller sensor and RF units are the key energy
consumers. The sensor node’s transceiver component uses
most of its energy. The sensor node will need to retransmit
the proposed LMCG -NB-IoT frame in this situation.

According to [66], the proposed LMCG -NB-IoT stan-
dard can transmit a packet signal up to eight times if the
downlink frame is corrupted. Considering the sensor tasks
viz-a-vis distance from the nodes, energy consumption was
observed. In Figure 17, as the wearable robot moves away
from the node-obstacle, LMCG NB-IoT drops energy sig-
nificantly. The LP-WAN, BLW-IoT and proposed LMCG-
NB-IoT offered 51.28%, 33.33%, and 15.39% respectively.
This energy sensitivity analysis has implications as regards
the maximum coverage distance needed for full connectivity.
The proposed LMCG-NB-IoT has the least energy drain for
the selected distance coverage.

In terms of energy latency in Figure 18, this deals with
latency experienced by the transceiver nodes due to space
diversity constraints. The payload size, travel time, and exter-
nal factors like temperature all have an impact on the active
device life across all technologies. Extreme weather con-
ditions have been found to severely shorten the active IoT
device life within the LP-WAN in addition to the imposed
load. The LP-WAN, BLW-IoT, and the proposed LMCG-
NB-IoT had 65.63%, 31.25%, and 3.12% respectively. The
latency profile of the proposed LMCG-NB-IoT makes Wear-
ROBOT highly sensitive and responds quickly to external
actuation.

In Figure 19, LoRa-WAN, LP-WAN, BLE, and the pro-
posed LMCG-NB-IoT had battery life profiles of 80%,
96.6%, 100%, and 50% respectively. Also, from Figure 19,
the transmitted signal is received and acknowledged upon
impacting an obstacle. A demodulation process at the receiver
sink is used to verify success in transmission. In this
case, more energy would have been consumed. The energy
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FIGURE 13. Comparison of battery life vs distance at various angles.

FIGURE 14. Comparison of battery life with WearRobot Node optimization.

FIGURE 15. Weight against several batteries.

dissipated by the nodes is smaller in the proposed LMCG
-NB-IoT compared to the other schemes as shown in Fig-
ure 19.

In this case, the IR communication node sends data to the
controller upon detecting an obstacle. Recall that the BLE

FIGURE 16. Weight concerning battery capacity.

mode operates from 2.402 GHz to 2.48 GHz and stays asleep
in between connections. Since it only communicates for a few
seconds at connection, switching off between transmissions
allows BLE nodes to communicate effectively at fractional
power. The indeterminate state in Table 11 explains close to
100% power savings in bidirectional communication while
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FIGURE 17. Impact of sensor distance placement on the energy consumption profile.

FIGURE 18. Impact of sensor distance placement on energy latency profile.

offering data transfer at 125 kBs to 2 MBs. It does so with
a latency of about 6ms consuming between 0.01 and 0.5 W.
Hence, the indeterminate status implies that the battery life
will be longer as it uses 100 times less power under small
workloads.

Fig. 20 shows the various angular orientations of theWear-
ROBOT vis A0 = 50, A1 = 150, A2 = 350, A3 =

450 A4 = 650 A5 = 750 At each angular displacement,
the intensity of impact on the surface is shown. An increase
in angular orientation leads to corresponding surface inten-
sity impact. This makes the wearable entity respond more
intuitively to sudden impacts. To validate the proposed work,
quality of user experience (QoUE), computational workload
(CWL), and average latency profile (ALP) were employed

TABLE 11. Validation results summary (case 1).

in the proposed LMCG, MMSN, and GHMMs respectively.
In terms of QoUE in Figure 21, the work yielded 41.18%,
23.53%, and 35.29% respectively. This implies that the
patient can use the device comfortably. In terms of CWL in
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FIGURE 19. Impact of sensor distance detection on Battery life profile.

FIGURE 20. Impact of sensor distance detection on battery life profile.

TABLE 12. Validation results summary (case 2).

Figure 22, this gave 51.14%, 28.41%, and 20.45% respec-
tively. Finally, the ALP in Figure 23 gave 32.97%, 33.59%,
and 33.44% respectively.

In summary, Figure 22 shows very high computational
workload utilization for the WearROBOT LMCG. The active
clocking of the CPU, battery, power management rou-
tine, vibration, audio, and displays offers a huge work-
load depicted in plot. By including other sensors such as
gyroscopes, accelerometers, etc, much signal processing

will be required. Ultimately, after the processing, a conver-
gence behavior was observed showing good performance.
Hence, an optimal processing computation will support
extensive battery life management functionality. Figure 23
shows the latency response of the WearROBOT LMCG.
The lower latency behavior has been verified in the LAB
testbed even when tested with external Universal Serial
Bus (USB), universal asynchronous receiver transmitter
(UART), synchronous serial communication interface (SPI),
and Inter-Integrated Circuit (I2C) interfaces. The lower
latency allows for measurement of impedance (such as gal-
vanic skin response, GSR), measurement of voltage (e.g.,
right-hand drive ECG monitoring), measurement of current
for photoplethysmography LED function, sensing of pulse
rates, and measurement of oxygen saturation level SPO2.
With the lower latency profile, accuracy optimization and
speed adaption will be very useful in applications such as
fitness-wearable pulse rate monitoring systems.
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FIGURE 21. Quality of user experience metric validation.

FIGURE 22. Computational workload validation.

TABLE 13. Technical feasibility comparison of AALS.

So far, this article has identified some trade-offs in
terms of cost, computational workload, energy efficiency,
and quality of user experience. For instance, the bat-
tery energy life preservation is at the expense of a huge

computational workload estimated at 51.15% unlike other
schemes with lower computational workloads such as
MMSN and GHMMhaving 28.41% and 20.45% respectively
(See Table 12).
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FIGURE 23. Computational workload latency validation.

FIGURE 24. WearROBOT Flow Convergence Architecture.

Also, the introduced Quality of user experience has asso-
ciated cost-overhead. The WearROBOT is a non-invasively
worn-body sensor that uses LMCG to monitor obstacles as
well as variants of real-time physiological attributes. The
design could be well adapted for capturing body temperature,
respiration/heart rate, variability, or even perfusion attribute.
All these could add to the computational workload overhead.

Finally, WearROBOT data extraction and analysis will
require a lightweight spike neural network to save battery life
extensively.With LMCG, battery life can be enhanced but this
has significant cost implications. Big data analytics is largely
power-driven and may not be well suited for WearROBOT.
At rest state, WearROBOT will explore machine and deep
learning schemes to benchmark the efficiency of patient-
driven data acquisition. However, LMCG cannot solve the
big data optimization problem. In this case, lightweight edge
computing can be explored for sensor data analysis. This is
preferable and less time-consuming while offering a reason-

able trade-off in terms of the computational workload of the
CPU.

VIII. CONCLUSION
This paper presented an Energy Conservative Wearable
Obstacle Detection Robot based on the LPMulti-Commodity
Graph flow technique. This relies on the concept of the
Infrared shortest distance path method for obstacle detec-
tion. This was used to establish foundations for Wear-
ROBOT needed for assisted living communities and related
applications. Specifically, the work investigated the proposed
LP multi-commodity graph IR sensor implementation under
reliable communication. The determination of the optimal
sensor placement position that facilitated detection of rear-
side, front-side, right-side, and left-side obstacles was real-
ized. An embedded wearable obstacle detector using an
infrared sensor was achieved. The performance character-
istics of the designed system including the battery energy
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conservation, life performance, reflectivity, spanning dis-
tances, and integration of an audio feedback system into
the wearable obstacle detector system were accomplished.
The formulation of the Infrared sensor problem function that
minimizes link utilization considering traffic demand was
discussed with optimality variables.

Various analysis on distances with angular positions was
investigated. The system validation involving the LP Multi-
Commodity graph (LMCG-IoT) modes was investigated.
Narrowband IR IoT (LMCG -NB-IoT) was compared with
Bluetooth Low-Energy (BLE-IoT) and Low Power WAN
(LP-WAN) modes. Energy consumption, energy profile, and
battery life were compared in the WearROBOT contexts.
The proposed scheme converges faster than existing schemes,
especially in terms of transaction energy resources. Wear-
ROBOT has energy consumption as a critical constraining
factor in the IoT-based sensor implementation. Therefore,
an optimized energy path algorithm for sensor nodes has been
achieved.

The results show that the transmitted and received
acknowledgment drains energy and this drops the sensor
node lifetime. Therefore, the energy path is optimized to
minimize fast drain in prolonged exposure. Under varying
distances, the Angle-Intensity analysis (AIA) is measured.
Optimizing narrowband IR-IoT parameters is necessary for
energy consumption reduction. Hence, the work showed the
real application case of the multi-commodity graph energy
algorithm using sensor design architecture. In this case, the
energy consumption of the sensor node as well as a lifetime
can be estimated considering an acknowledgment transmis-
sion. The optimized shortest path first algorithm on Infrared
wearable hardware provided sufficient insight via numerical
results. Future work will include the design of a spike AI
energy model for processor power management in sensor
nodes via energy harvesting to maximize the sensor node
lifetime.

APPENDIX I.
NOMENCLATURE
hd (1, 2, . . .D) = traffic demand
Ce (e = 1, 2, . . . ..,E) = capacity
e = link weight metric
βe = link metric band-

width
β = (β1, β2, . . . .., βE ) = link metric system
P = flow on path
d = traffic demand
β xdp (β) = triggered by the

link metric system∑
p
xdp (β) = hd , d = 1, 2, . . . .D = level of

dependency of
traffic flows on β

β = link metric system
δedp = link-path indicator
p = route for demand

d

y−e on link e = link flow or link
load

y−e (β) ≤ Ce, e = 1, 2, . . . . . . .,E = flow link bounded
task capacity

τ = Maxe=1,..........,E {y−e(β)/Ce} = maximum utiliza-
tion over all links

Ce = link capacity
Apd1

/
(Ce − y−e) = average packet

delay
y−e ≤ Ce − 1/

T = link load capacity
dependent event load

X = elements of set.
Vertex Ci is connected to vertex xk
if and only if xk ∈ Ci, i.e., C1 = {x1, x2, x3} ,C2 =

{x2, x4, xk} and Cn ={
xk−1, xk+1, xp

}
.

µs = maximal flow
from source vertex

µt = maximal flow
from sink vertex

Co =
{
Ci(1),Ci(2), . . . ..Ci(q),

}
= visually impaired
family sets.

Sdc = Sd card interface
IrPe = IR Emiter
IasPd = IR Detector
Act = Actuator

controller∑
f Pic = microcontroller

Plant

APPENDIX II.
See Figure 24.
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