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ABSTRACT Energy disaggregation refers to the process of obtaining the energy consumption of several
appliances in a house by disaggregating the aggregate power consumption measured by an electrical meter.
Currently, deep learning methods are widely applied in this field. Real-time energy disaggregation is
an important branch of energy disaggregation. Based on the Short Sequence-to-Point (Short Seq2point)
(Odysseas) network structure, a real-time energy disaggregation algorithm based on multi-channels deep
convolutional neural networks (MC-DCNN) and autoregressive model (AR) is proposed in this paper, which
obtains theenergy consumption of appliances at the current time point by disaggregating the historical
aggregate power consumption to achieve delivering disaggregation results in real-time. The proposedmethod
takes the original aggregate power sequence and differential power signal as the input of the network, and
extracts the information of different time lengths in the sequence using multi-channels deep convolutional
neural networks with a modified concatenate layer, so that the network can adapt to different appliances with
different operating modes. In addition, the traditional autoregressive model is added as the linear component
for solving the problem that the scale of the output is insensitive to the scale of the input in the neural network
model. Finally, the proposed method was tested on the UK-DALE and REDD datasets, and the experimental
results show that the method has good disaggregation performance on both datasets, has a small number of
parameters and achieves fast inference.

INDEX TERMS Energy disaggregation, short seq2point, MC-DCNN, autoregressive model.

I. INTRODUCTION
Energy disaggregation (also referred to as non-intrusive load
monitoring (NILM)) was originally proposed by George Hart
[1], [2] and refers to the process of extracting the energy
consumption of individual appliances from the total energy
consumption of all appliances in a residence. Compared with
intrusive load monitoring, NILM does not require sensors to
be installed on each appliance to monitor its operation, but
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only requires a sensing device to be installed at the entrance
of the home to obtain the aggregate power information, which
can then be disaggregated algorithmically to obtain the elec-
tricity consumption of each appliance, with the advantages of
convenience and low cost [3].

There has been a lot of studies in NILM, and pattern
recognition-based methods are one of the major research
directions, which include supervised and unsupervised learn-
ing algorithms. Supervised learning algorithms require the
labeling of each device to enable the energy disaggre-
gation system to identify the devices, including artificial
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neural networks (ANN) [4], decision trees [5], support vec-
tor machines (SVM) [6], [7], K-nearest neighbors (KNN)
algorithms [8], [9], and so on. For unsupervised learning
algorithms, the labeling process is not required for system
modeling, but the accuracy is a little lower than supervised
learning, and the main methods adopted are k-means cluster-
ing [10], Hidden Markov Model (HMM) [11], Expectation
Maximization (EM) [12], etc. Both unsupervised learning
algorithms and supervised learning methods require feature
mapping and transformation techniques to extract device-
independent features so as to obtain robust features for effec-
tively modeling NILM systems.

Deep learning algorithms have recently been widely
adopted in the fields of computer vision [13], [14], speech
recognition [15], [16], and natural language processing [17],
[18] with very excellent results, which are able to extract the
intrinsic features of the original data without the need for spe-
cialized knowledge, which has prompted many researchers to
carry out researches related to energy disaggregation based
on deep learning. Kelly et al. pioneered the idea of sequence-
to-sequence into this field and designed three deep neu-
ral network architectures on the basis of convolutional and
recurrent neural networks, namely Long short-term mem-
ory, Denoising autoencoder and Rectangle that regresses
on the beginning and ending times of activation and the
average power consumption of every device. All these net-
works outperform the combinatorial optimisation (CO) and
factorial hidden Markov model (FHMM) algorithms on the
UK-DALE dataset [19]. The adjacent windows of the input
sequences of the sequence-to-sequence model overlap each
other, resulting in predicting every element of the output
sequence many times; also, the model cannot use all nearby
elements of the input sequence for predicting elements at the
edges of the window. To address these problems, Zhang et al.
proposed the sequence-to-point (seq2point) model, with the
input being the aggregate power sequence of window length
and the output being the target equipment power value at
the middle point of the window, and the disaggregation
performance is better than that of the sequence-to-sequence
(seq2seq) model [20]. Yang et al. [21] proposed a sequence-
to-point model based on temporal convolutional networks,
using dilated convolution to obtain larger receptive field and
introducing residual blocks to avoid degradation problems,
which significantly improved the network performance and
reduced the model parameters. Zhou et al. [22] proposed a
multi-scale residual network, which consists of dilated con-
volutional residual blocks as the basic structural unit, residual
blocks are sequentially connected into a residual block body,
and multiple residual block bodies of different depths are
connected in parallel to form multi-branches structure for
learning mixed-data features. The results show that the model
has improvement on disaggregation performance and model
complexity across different devices. Antoine et al. proposed
an energy disaggregation method based on the variational
autoencoders framework, which consists of two parts, the
encoder extracts the target device information from the input

signal and the decoder reconstructs the power signal of the
target device. The method achieved excellent performance
on the UK-DALE and REFIT datasets [23]. Considering
the difficulty of obtaining large amount of labeled train-
ing data, Cui et al. proposed a method for estimating power
consumption via background filtering, which uses only syn-
thetic aggregate data to train the neural network, reducing
the difficulty of obtaining training data and obtaining better
performance [24].

In order to select more effective features from numerous
appliance features, several researchers have introduced atten-
tion mechanisms into NILM. Chen et al. proposed a novel
neural network architecture called scale- and context-aware
network (SCANet), which utilizes a multi-branch architec-
ture to extract multi-scale feature, a self-attention module to
integrate context information and adversarial loss and state
augmentation to improve accuracy. The experimental results
showed a significant improvement in model performance
compared to the state-of-the-art models [25]. Based on bidi-
rectional encoder representations from transformers (BERT),
Yue et al. proposed a structure called BERT4NILM, which
utilizes multi-head attention for energy disaggregation. With
the proposed loss function and masking training procedure,
the proposed method outperforms the state-of-the-art models
in various metrics on the UK-DALE and REDD datasets [26].

In order to estimate the power value of the appliance at
moment t , the above studies used future data as part of
the input, which contains the future operation state of the
appliance (e.g., the appliance is turned on or off; the appliance
is operating in another mode), and this information can help
the network to perform more accurate disaggregation, but it
also means that it needs to wait for the meter to collect the
future power data before disaggregation can be performed,
and these are low-frequency sampled data, which leads to
significant delay in disaggregation, so these schemes are
not suitable for real-time disaggregation scenarios where the
users need to receive the disaggregation results with the
shortest delay as possible. For example, in a dynamically
priced grid, a user may turn on a high energy-consuming
appliance at a time when electricity is expensive. If real-time
notification is given, the user could choose to postpone the
use of the appliance for the purpose of saving money and
reducing the network load during peak hours [27]. Christos
et al. proposed a novel multi-class real-time identification
system using high-frequency data sampled at 100 Hz as input,
and the system updates power data every 6 seconds and iden-
tifies devices. Moreover, by using KNN classifiers, the sys-
tem can add new devices without retraining [28]. However,
high-frequency sampling requires complex hardware, which
can lead to additional costs during the monitoring process
[29]. In contrast, Odysseas et al. still used low-frequency
data, but used the total power over a period of time before
moment t as input for predicting the power consumption
of the appliance at moment t . Three network architectures
that use sliding windows for real-time energy disaggregation
were proposed, namely, Long-Short Term Memory (LSTM)
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networks, Gated Recurrent Units (GRU) networks and Short
Sequence-to-Point (Short Seq2point) networks, which were
more effective on multi-state appliances than on two-state
appliances [30]. Similarly, Virtsionis et al. [31] took only
past data as input. They proposed a lightweight deep neural
network based on attentional mechanism, which is called
Self-Attentive-Energy-Disaggregation (SAED), using atten-
tion mechanism to focus on the most important features.
Additive and point-attention mechanisms are compared, and
the results show that the performance of these two attention
mechanisms are comparable. The network is capable of fast
training and inference.

All the above studies took the aggregate power series as
the network input; however, some researchers found that
the differential signal obtained from the original sequence
through the differential process contains information about
the state change of the electrical equipment, and using it
as input could enhance the network disaggregation perfor-
mance. The literature [32] proposed a composite deep LSTM
based method to perform load disaggregation. It takes the
aggregate power and differential power information as input,
and then encodes, separates, and decodes them to achieve
regression from one sequence to several sequences. Com-
paring to the single sequence to single sequence method,
this method simplifies the procedure of disaggregation and
enhances the disaggregation efficiency. In the literature [33],
a NILM-based EMS and a convolutional neural network
model that uses the differential signal as input are proposed.
It is pointed out that the differential operation is performed
implicitly in the neural network-based models that use raw
data as input, but this is inaccurate and computationally
expensive. Experimental results show that using differential
sequences as input improves the disaggregation performance
of the neural network, while the number of parameters of the
network is greatly reduced.

In this paper, based on Short Sequence-to-Point network,
we propose a real-time energy disaggregation algorithm
based on multi-channels deep convolutional neural networks
(MC-DCNN) [34] and autoregressive model (AR). First, the
original total power sequence is differenced to obtain the dif-
ferential signal, and then the differential signal and the orig-
inal sequence are input to different channels of the network,
so that the network can directly learn the on/off information
of the equipment contained in the differential signal without
simple and explicit differential operation; at the same time,
the remaining useful information contained in the original
sequence can be learnt. Then, feature extraction of the time
series is performed using MC-DCNN to learn the ampli-
tude and state change information of the appliances from
the sequences of the two channels separately; furthermore,
to compensate for the information loss caused by the max
pooling layer and to adapt the network to different appli-
ances, features of different time lengths extracted at different
stages in the channels are concatenated as the input to the
multilayer perceptron (MLP). Finally, a conventional autore-
gressive model is added for solving the scale insensitivity

problem in the neural network model. The proposed method
is validated on the UK-DALE and REDD datasets, and the
results show that the proposedmethod has good performance.
The main contributions of this paper are as following:
• MC-DCNN is adopted for solving this multivariate

time series regression problem, where the aggregate
power series and the differential series are fed into dif-
ferent channels, so that the amplitude and state change
information of the electric appliance are learned from
the sequences of the two channels respectively. The
energy disaggregation performance is improved.

• The features of different time lengths extracted from
two channels are fused to compensate for the informa-
tion loss caused by the max pooling layer in the feature
extraction process and enable the network to adapt to
different appliances.

• The autoregressive linear model is used as the linear
component for addressing the scale insensitivity prob-
lem in the neural network model.

II. PRELIMINARY
A. PROBLEM FORMULATION OF ENERGY
DISAGGREGATION
Given that the total power consumption in time period T as
X = (x1, x2, · · ·, xT ), the power consumption of the i-th
appliance as Y i = (yi1, y

i
2, · · ·, y

i
T ). At each time step, the

aggregate consumption can be expressed as the summary of
the power consumption of all devices, as follows:

xt =
∑i=m

i=0
yit + εt (1)

where εt denotes the Gaussian noise with zero mean and vari-
ance σ 2

t , and m denotes the sum of the number of appliances
in the room. Assuming that we are only interested in house-
hold appliances that are widely used in most households, the
power consumption from other appliances can be expressed
as S = (s1, s2, . . . , sT ), and (1) can be rewritten as:

xt =
∑i=n

i=0
yit + st + εt (2)

Energy disaggregation is obtaining the sequence of power
consumption of the appliances Y 1,Y 2, . . . ,Y n through the
aggregate power.

B. SHORT SEQUENCE TO POINT LEARNING
Seq2point takes a partial sequence of the total power
sequence Xt − w/2 : t + w/2 as input to estimate the
energy consumption of the target device at the intermediate
time point yt . Data after t moment are utilized, which is not
suitable for online disaggregation scenarios. For this problem,
Short Sequence to point takes the aggregate power sequence
segments before the target moment Xt−w/2 : t as input, and
defines a neural networkF , whichmaps thewindow sequence
Xt − τ : t to the device power consumption at the target
moment yt :

yt = F(Xt − τ : t)+ ε (3)

where ε denotes Gaussian random noise.
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FIGURE 1. Overall structure of network.

In this paper, we take the aggregate power series and the
differential series as input, i.e., the inputs are multivariate
time seriesM = {m′1,m

′

2, · · ·,m
′
T }, where m

′

1 ∈ RN ,N is the
number of variables, and hereN = 2. (3) can be reformulated
as follows:

yt = F(Mt−τ :t )+ ε (4)

III. PROPOSED METHOD
In this section, we will give a complete explanation of the
method proposed in this paper, and the overall network struc-
ture is shown in Fig. 1. It includes a nonlinear part and a linear
part, where the nonlinear part is the MC-DCCN with feature
fusion integrated, and the linear part is the autoregressive
model.

A. MC-DCNN
MC-DCNN is designed to solve multivariate time series clas-
sification problems and has achieved excellent results among
several multivariate time series datasets. Since the binary
time series consisting of the aggregate power series and the
differential power series are the network inputs, we treated
the MC-DCNN as the backbone of the nonlinear part. The
structure of the MC-DCNN network is shown in Fig. 2.

First, the aggregate power series and the differential power
series are fed into two channels, one channel focuses on
learning the amplitude information of the appliance contained
in the series, and the other focuses on learning the state
change information of the appliance among the series. In each
channel, a feature extractor consisting of multiple stages
learns hierarchical features from the univariate time series.
Each stage consists of a one-dimensional convolutional layer
withRELU as the activation function and amax pooling layer.

Convolutional layers are used to obtain local time information
of the sequence. The input of every convolutional layer is a
time series x li ∈ Rlenli×m

l
i , 1 ≤ i ≤ n, where l denotes the

layer from which the input comes, i denotes the channel to
which it belongs, n represents the number of channels, i.e.,
the number of univariate time series, lenli and m

l
i denotes the

length and dimensionality of the input series, respectively.
The convolution layer contains k li filters, the width of each
kernel is equivalent to the dimensionality of the input mli and
the height is hli . The j-th filter scans across the input matrix
and generates:

x l+1ij = RELU (W l+1
j ∗ x li + b

l+1
j ) (5)

where ∗ indicates the convolution operator, and x l+1ij denotes
the output. RELU (x) = max (0, x) is used as the activa-
tion function. After each convolution operation, as the size
of the output matrix decreases, the output matrix will lose
information at a large number at the edge positions, and
subsequent convolution operations will be adversely affected.
Thus, we decided to zero-fill the input matrix x li , so that the
outputmatrix has the same length as the inputmatrix. The size
of the output matrix of the convolution layer x l+1i is lenli×k

l
i .

A max pooling layer is connected after each convolutional
layer, which subsamples the output matrix of the convolu-
tional layer x l+1i :

sli = MaxPooling(x l+1i ) (6)

where MaxPooling denotes the 1-D max pooling layer, sli
denotes the output matrix with sizeslenli × k li , slen

l
i =⌊

lenli/stride
⌋
and stride denotes the stride length of the max

pooling layer.
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FIGURE 2. Architecture of MC-DCNN.

Then, the learned features of each channel are concatenated
together. In particular, the method proposed in this paper uses
a feature fusion module instead of the original simple feature
concatenate layer to fuse information of different time lengths
in the channel.

Lastly, the obtained features are input to the fully con-
nected layer to obtain the output of nonlinear part yNt .

B. FEATURE FUSION
This module is integrated into the MC-DCNN to fuse the
input series and the features extracted at different stages in
the two channels.

Usually, time series data can be considered as a one-
dimensional or flattened image, and convolutional neural
networks(CNN) are utilized for extracting signals or charac-
teristics from the time series. It is pointed out in the literature
[35] that the data sophistication of time series is usually
much lower compared to images, and the effective variables
are much less, and the pooling layer shrinks the parameter
dimensionality in the process of down-sampling the data,
which may result in losing too much useful information. The
experimental results indicate the model performance always
decreases after introducing pooling layers, which proves that
pooling layers have negative effects. However, eliminating
the pooling layer would result in too many elements of the
feature map to be processed, and more convolutional layers
would need to be stacked to make the output features of the
last convolutional layer contain the overall information of the
input, which will make the model very large. In addition,
the operating states and running times of different household
appliances can vary, among which, kettle and microwave are
short duration type appliances, fridge is medium duration
type appliances, and washing machine and dishwasher are
long duration type appliances. If only the features obtained
in the last stage are taken as the input of the fully connected
layer for regression, the network will not be able to learn
information of different time length, which will result in not
being able to take into account the operating characteristics
of different household appliances.

To solve these problems, we decided to concatenate the
output matrixes of each stage (convolutional and pooling

layers) in the channel sli and the original input sequences of
the network without removing the pooling layer. The deeper
the level, the larger the observation window, the information
over a larger time length range can be extracted. The output
matrix sli of different stages contains information in the recep-
tive fields of different sizes, representing patterns of different
time lengths in the time series. The model is able to adapt
to different appliances with different operating modes by
learning features of different time lengths, at the same time,
is able to learn from the output of the previous stages some
of the useful information that is lost due to down-sampling.

The length of the output matrix varies from stage to stage.
In order to concatenate the features obtained at different
stages and the original input sequence, the output matrix is
padded with zeros at the end to make its length slenli equal to
the length of the input sequence len. The sequence padding
and concatenation process is as follows:

pad li = padding(sli) (7)

con = concatenate(m1, pad11 , pad
2
1 , . . . , pad

l
1, . . . ,

mi, pad1i , pad
2
i , . . . , pad

l
i ) (8)

where pad li ∈ Rlen×k li , con ∈ Rlen×(i+
∑a=i

a=1
∑b=l

b=1 k
b
a ), len

denotes the length of the input sequence.
These feature sequences have different effects on the dis-

aggregation results, so they should have different weights,
which need to be learned through training.

A CNN kernel is used to scan the concatenated features
to catch the dependent patterns between different time series.
The width of the kernel w is equal to the dimension of the
fusion feature sequence con, and the height of the kernel is h.
Specifically, the k-th convolution filter sweeps over the input
matrix con and obtain:

Rk = RELU (Wk ∗ con+ bk) (9)

where the output vector of the filter is Rk .We pad the input
matrix with zeros, and the output matrix of the convolutional
layer is R ∈ Rlen×q, q denotes the number of filters.
The max pooling layer is connected after the convolutional

layer, compressing the sequence and extracts the very long
patterns:

u = Maxpooling(R) (10)

where, u ∈ Rblen/stridec×q.

C. AUTOREGRESSIVE
Owing to the nonlinear properties of convolutional neural
networks, the model suffers from the disadvantage that the
scale of the output is insensitive to the scale of the input,
resulting in a substantial reduction in the prediction accuracy
of the model on datasets where the scale of the inputs is
changing in an acyclic manner [36]. To address this issue,
in the literature [36], [37], the researchers have incorporated
a conventional autoregressive model to the nonlinear neural
network and demonstrated that it can make the model more
robust to time series that are in violation of scale changes.
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The aggregate power series and the differential series do not
have significant periodicity, and thus similar AR models are
introduced in this paper as well. The autoregressive model is
formulated as follows:

yLt,i =
∑k=window

k=1
W L
k,ixt−k,i + b

L
i (11)

yLt =
∑i=n

i=1
yLt,i (12)

where the output of the autoregressive model is yLt ∈ R, and
the autoregressive coefficient of the model isW L

∈ Rwindow,
and the deviation is bL ∈ R, window denotes the size of the
time window of the AR model (also referred to as the order
of the model).

The final output values are derived through integrating the
output of the neural network with that of the AR model:

Ŷt = yNt + y
L
t (13)

where Ŷt indicates the final output of the model at moment t .

IV. EXPERIMENTS
The hardware environment for this study is a 64-bit computer
with 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz,
16G RAM and NVIDIA GeForce RTX 3050 Laptop GPU.
The software platform is WINDOWS 10 Professional OS,
Python 3.8.12 (64-bit) and TensorFlow-gpu 2.4.0 deep learn-
ing framework. In the proposed model structure, the convo-
lution kernel size is 3 and the stride size is 1; the pooling
size is 2. When training the model, the batch size is set
to 128, the mean square error is adopted as the loss func-
tion, and the Adam optimizer is used with a learning rate
of 0.001.

A. DATA SET
We evaluated our proposed method on two datasets,
UK-DALE [38] and REDD [39]. The UK-DALE dataset
collects electricity consumption data from five UK houses,
while the REDD dataset collects data from six US houses.

The UK-DALE dataset was created by Kelly and Knot-
tenbelt in 2015, which contains electricity consumption data
for five UK houses. All data was recorded at 6-second inter-
vals from November 2012 to January 2015 and contain total
power consumption and measurements for 4-54 devices. Five
appliances such as kettle, microwave, fridge, dishwasher and
washing machine were selected for disaggregation in the
experiment.

The REDD dataset was created by Kolter and Johnson in
2011. The data for different households spanned 23-48 days,
with appliance and mains readings being recorded every
3 seconds and 1 second, respectively. Three appliances such
as microwave, fridge, and dishwasher were selected for dis-
aggregation in the experiment.

We divided the dataset using the same way as in the liter-
ature [19], [20], [30], and the houses that were used to train
and test are listed in Table 1.

TABLE 1. Building used for training and testing.

FIGURE 3. Aggregate and differential power.

B. DIFFERENTIAL PROCESSING
In the energy disaggregation, the aggregate power of the
instant load is taken as the observed sequence. The aggregate
power value of the current point in time is subtracted from the
aggregate power value of the previous point in time to obtain
the differential value. The aggregate power and differential
power are shown in Fig. 3. Each non-zero value in the dif-
ferential signal represents a state change of the appliances.
The literature [33] points out that existing neural network
models that use raw data as input perform the differencing
process implicitly and automatically, however, there is an
error between the calculated differential value and the actual
value, thus, it is inaccurate for the neural network to perform
the differential operation. Therefore, in this paper, we take
the raw data and the differential signal of the raw data as the
input, so that the power variation of the target device can be
extracted more easily. The differential signal is calculated as
follows:

1Xt = X t− Xt − 1 (14)

where Xt indicates the aggregate power consumption at
moment t , Xt−1 indicates the aggregate power consumption
at moment t − 1, and 1Xt denotes the result of differential
operation.

C. SLIDING WINDOW PROCESSING
The aggregate power and differential signals are processed
using sliding windows, taking the sequence segments in the
range [t − w, t]as input and the appliance energy consump-
tion at moment t as output. The window sizes of every appli-
ance and network are shown in Table 2.
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TABLE 2. Sliding window sizes for each appliance and network.

D. DATA NORMALIZATION
Normalizing the data can eliminate the effect of the magni-
tude between indicators. In this experiment, the original data
are processed using min-max normalization to constrain the
size of the data to [0, 1]:

x∗ =
x − xmin

xmax − xmin
(15)

where x∗ denotes the normalized value, xmax denotes the max
value, xmin is the min value.

Appliance activations are extracted using NILMTK, the
obtained related arguments of appliance are presented in the
Table 3.

E. METRICS
For comparing the performance of these methods, appro-
priate evaluation metrics should be chosen for evaluation.
We adopted the mean absolute error (MAE), the relative error
in total energy, Energy F-score and total energy correctly
assigned (TECA) as the energy disaggregation evaluation
index:

mean absolute error

=
1
T

∑t=T

t=1

∣∣∣∧yi(t)− yi(t)∣∣∣ (16)

relative error in total energy

=

∣∣E ′ − E∣∣
max(E ′,E)

(17)

Energy F-score = 2
P(E)R(E)

P(E) + R(E)
(18)

TECA = 1−

∑t=T
t=1

∑i=N
i=1

∣∣∣∧yi(t)− yi(t)∣∣∣
2
∑t=T

t=1
∑i=N

i=1 yi(t)
(19)

P(E) =
1
N

∑i=N

i=1
P(E)i (20)

R(E) =
1
N

∑i=N

i=1
R(E)i (21)

P(E)i =

∑t=T
t=1 min(

∧
yi(t), yi(t))∑t=T

t=1
∧
yi(t)

(22)

R(E)i =

∑t=T
t=1 min(

∧
yi(t), yi(t))∑t=T

t=1 yi(t)
(23)

∧
yi(t) = estimated value of appliance i

at time point t (24)

yi(t) = true value of appliance i at time point t

(25)

T = total amount of predicted time points

(26)

E = total energy consumed (27)

E ′ = total predicted energy consumed (28)

N = total umber of appliances (29)

The ability to accurately identify the on/off state of an
appliance is another aspect of measuring the performance
of an energy disaggregation network. When the power dis-
aggregation is completed, we can discriminate the status of
on/off through the threshold value of the device. Four event
detection evaluation indexes were chosen, namely: recall,
precision, F1-score, accuracy:

recall =
TP

TP+ FN
(30)

precision =
TP

TP+ FP
(31)

F1-score = 2×
precision · recall
precision+ recall

(32)

accuracy =
TP+ TN

T
(33)

TP = number of true positives (34)

TN = number of true negatives (35)

FP = number of false positives (36)

FN = number of false negatives (37)

T = the total number (38)

Among them, mean absolute error (MAE), relative error
of total energy, recall, precision, F1-score and accuracy are
general metrics used for classification/regression problems,
while energy F-Score and TECA are metrics proposed specif-
ically for energy disaggregation.

V. RESULTS
The models without using future data (LSTM [30], GRU
[30], Short Seq2point [30], SAED-dot [31], SAED-add [31],
MC-DCNN [34]) and the model with using future data
(BERT [26]) are adopted for comparison. We report the
results of the evaluationmetrics for theUK-DALE andREDD
datasets in Table 4, Table 5, Table 6 and Table 7. On the
UK-DALE dataset, washing machine was not tested in the
same house as other appliances, so TECA value cannot be
calculated and we do not report it in Table 5. The best result
is highlighted in bold in the tables. We tried to replicate the
experiments in [26], [30], and [31], but could not achieve the
results they reported, and to respect their work, we directly
used the results in the reference, and we emptied metrics that
are not reported in these references.

In UK-DALE, for event detection performance, BERT
outperforms other models on dishwasher, fridge and kettle,
SAED-add performs better on microwave compared to other
models, and the proposed model in this paper has the best
performance on washing machine. For energy disaggrega-
tion performance, BERT has the smallest MAE value on
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TABLE 3. Arguments of appliance.

TABLE 4. Results on the general evaluation metrics for the UK-dale dataset.

TABLE 5. Results on the specialized evaluation metrics for the UK-dale dataset.

microwave, washing machine and fridge, Short Seq2point
has the smallest prediction error on kettle, and the proposed
method in this paper has the smallest MAE value and relative
error in total energy on dishwasher, and it has higher Energy
F-score compared to MC-DCNN.

In REDD, for the event detection performance, the model
proposed in this paper has the best performance on all three
appliances. For energy disaggregation performance, BERT
has the smallest MAE value on dishwasher and fridge, the
proposed method in this paper has the smallest MAE value
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TABLE 6. Results on the general evaluation metrics for the redd dataset.

TABLE 7. Results on the specialized evaluation metrics for the redd dataset.

TABLE 8. Number of parameters for each model.

TABLE 9. Inference time for testing set and for each sample.

on dishwasher and the largest Energy F-score and TECA, and
SAED-add has the smallest relative error in total energy on
microwave and dishwasher.

Generally, the proposed method performs slightly worse
than BERT onUK-DALE, but better than othermodels; it per-
forms well on REDD dataset, especially for event detection
performance. As mentioned earlier, the reason for the better
performance of BERT is the use of future data, the equipment
operation state in the future period helps model perform a

more accurate disaggregation. However, the proposedmethod
has much less number of parameters than BERT and is there-
fore more suitable for deployment in smart meters.

We measured the inference time for each model on the
REDD dataset by using time.time() function, and the infer-
ence times for the test set and for each sample are shown in the
Table 9. The window size of the model input affects the total
sample size of the test set, which affects the inference time of
each model on the test set. Therefore, we mainly compare the
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FIGURE 4. Comparison results of power disaggregation.

inference time for each sample. Compared with LSTM, GRU
and BERT, our method is much faster and the inference time
differs very slightly from the remaining methods. Moreover,
BERT needs to wait until the future data is collected before
disaggregating, and the delay is significant. On the contrary,
other methods can disaggregate a sample in much less than
the sampling period as soon as the data at the target moment
is collected, which fully meets the requirement of real-time
disaggregation to deliver disaggregation results with short
delay.

We further compare the three convolutional neural
network-based models, Short Seq2point, MC-DCNN and
the proposed method. The power disaggregation comparison
results of these five target appliances for these three methods

on UK-DALE is illustrated in Fig. 4. As can be seen in Fig. 4,
for the dishwasher, the proposed method and MC-DCNN
more accurately identify the entire operating cycle, where the
proposed method more accurately estimates the time of the
appliance state change; however, Short Seq2point only iden-
tifies the previous activation of the appliance. For the fridge,
the estimated power of MC-DCNN and Short Seq2point
fluctuate above and below the threshold value (50 watt),
and the estimated power of the proposed method are much
closer to the actual power values and fit much better. For
the kettle, all three methods are able to identify the device
activation relatively accurately, and the Short Seq2point fits
slightly better. For the microwave, the predicted power value
of the device operating by the method proposed in this paper
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FIGURE 5. Comparison results of different inputs.

is closer to the actual value than the other two methods;
however, after the appliance stops working, all the methods
mistakenly assume that the appliance is working again and
classify the negative samples as positive, which leads to a
large FP value and correspondingly Precision is very low. For
the washing machine, Short Seq2point is able to predict that
the device is working, but the predicted value of power is only
slightly above the threshold (20 watt), which is much lower
than the actual value. The predicted values of the other two
methods are closer to the actual values, but the power values
of MC-DCNN fluctuate drastically. It can be found that the
comprehensive performance of the twomethods (MC-DCNN
and the proposed method) that incorporate differential power
as input is superior, and we believe that the on/off state
information contained in the differential signal plays a role,
as we will further demonstrate in section VI. In addition, the

number of parameters in Short Seq2point is tens and hun-
dreds of times higher than the first two methods, respectively,
indicating that doubling the number of filters in the single-
channel model does not achieve the same results as in the
multi-channels model, and is also unnecessary.

In summary, the proposed approach achieves good perfor-
mance on both datasets, which illustrates the generalization
capability of the model structure. In terms of model capacity,
it is a lightweight model that can be easily deployed on smart
meters. In terms of speed, the inference speed of the model
can fully meet the demand of real-time disaggregation.

VI. ABLATION STUDY
To validate the effectiveness of our proposed method, we per-
formed a careful ablation study on UK-DALE dataset. First,
to verify that adding differential power as input enables
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FIGURE 6. Comparison results of removing different part.

the network to directly learn the information about state
changes of devices to improve the disaggregation perfor-
mance, we took the Short Seq2point model as an example
and compared the performance in both cases with(Wi/Dp)

and without(Wo/Dp) adding differential signals, and the
comparison results are shown in Fig. 5. We do not com-
pare the Energy F-score, because it was not reported
in [30].
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As seen in the figure, the performance in most of the
appliances is slightly improved after the addition of the dif-
ferential signal, where the ability of identifying switching
states is improved on all appliances. It indicates that the
information of appliance on/off status contained in the dif-
ferential sequence does help to improve the disaggregation
performance of the network, and the difference operation of
the neural network is inaccurate, which is consistent with the
view of Yuanmeng Zhang et al [33].

Moreover, comparing the performance of the Short
Seq2point model with the addition of differential signals,
MC-DCNN and the proposed method on UK-DALE, it can
be found that the latter two multi-channels structure models
possess superior performance, which indicates that it is nec-
essary and effective to process the two signals separately.

Then, we removed one part at a time in the model structure
of the proposed method. We name the models with different
parts removed with the following names:
• Wo/Fusion: The model without feature fusion which
fuses the information of different lengths of time.

• Wo/AR: The model without Autoregressive
mod-el(AR).

The comparison results are shown in Fig. 6. From these
results it is clear that:
• The disaggregation performance of themethod proposed
in this paper is better than the other two models on most
appliances, where the ability to identify on/off states is
optimal on all appliances.

• Removing the AR component from the completed
model(wo/AR) results in a degradation of disaggrega-
tion performance on most appliances. It is shown that
the AR component plays a key role in the over-all.

• Not fusing information of different time lengths leads to
worse results of the model(Wo/Fusion) on most appli-
ances, which demonstrates the importance of learning
patterns of different time lengths and shows that the
feature fusion part does allow the model to learn some
of the information lost due to the pooling layer.

Overall, this ablation study clearly demonstrates the neces-
sity of adding differential information as the input of the
network, as well as the effectiveness of our model design,
with all components contributing to enhance the performance
of the model.

VII. CONCLUSION
In this paper, a novel lightweight model is proposed, which
takes aggregate power sequences and differential power
sequences as the inputs to the network, and combines multi-
channels deep convolutional neural networks with feature
fusion integrated and autoregressive model as the nonlinear
and linear components, respectively. By conducting experi-
ments on the UK-DALE and REDD datasets, the results show
that the method proposed in this paper has good performance
on both datasets, and is able to deliver results in real time.
In addition to this, we demonstrated the efficiency of the
proposed model architecture through an in-depth analysis.

In the next step, we are ready to implement our system in
a real scenario. As mentioned earlier, this is a lightweight
model, so we plan to embed the model into smart meters.
In addition, considering that when adding new appliances,
a large amount of data needs to be collected and a new model
needs to be trained, we plan to store the collected data and
retrain the model with the help of cloud servers.
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