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ABSTRACT Image recognition technology plays an important role in advanced driver assistance systems
(ADAS). The objective of this study is to explore the feasibility of using heterogeneous image fusion to
improve the object detection performance of the ADAS. Among the many possible combinations of image
types, the fusion of infrared (IR) and visible (VIS) images has great potential because of their complementary
characteristics. Most studies on image fusion assume that the images involved align themselves perfectly,
which is unrealistic.We address this alignment issue in this study, review variousmethods of image alignment
and fusion, and propose an image-fusion approach that combines alignment and fusion methods for the
ADAS application. Finally, we used deep learning networks to detect pedestrian and vehicle objects before
and after the image fusion. The experimental results show that the fusion of IR and VIS images can improve
the object detection performance of deep-learning networks. Compared with previous studies on fusion, the
proposed approach ranks top if the detection accuracy improvement and execution speed are considered as
a whole. This study also found that, to use image fusion to improve the object detection accuracy of deep
learning networks, it is better to use fused images directly instead of unfused VIS images as the training
samples.

INDEX TERMS Image fusion, infrared image, visible image, image alignment, deep learning, object
detection.

I. INTRODUCTION
With the development of technology, more and more new
cars are equipped with Advanced Driver Assistance Systems
(ADAS). Among all relevant technology in ADAS, image
recognition plays an important role because it provides image
information of the surrounding environment of the vehicle for
ADAS to make critical decisions that could be safety related.
When the image recognition performance is excellent, it is
like installing a pair of always awake and bright eyes on the
vehicle to help the driver be aware of potentially dangerous
situations.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

The driver-assistance or self-driving vehicles encounter
various situations and challenges on the road, such as safe
driving and navigating in adverse weather conditions, and
safe interaction with pedestrians and other vehicles [1].
To deal with such complex situations on the road, all-
round sensing devices are required. For example, achieving
long-range sensing on the highway is critical because it
allows early detection of objects ahead and buys enough
time to take proper actions like braking; in urban areas,
having a wider field of view (FOV) is more important,
so that pedestrians and cyclists can be detected when they
are on sidewalks and crossing the road. To meet the vari-
ous sensing requirements, we need multiple cameras with
different FOVs. Therefore, a pair of cameras is insufficient
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for modern ADAS or self-driving cars because most front
cameras use a fixed-focus solution with a limited viewing
angle and distance. In fact, the development trend of vehicle
camera solutions is definitely multi-camera, and the number
of cameras used can be much greater than two. For example,
in 2020, Tesla had nine cameras on board: three front cameras
with different FOVs, four on the sides, one on the rear, and
an in-cabin camera just above the rear-view mirror. In the
same year, Waymo announced that their latest vehicles had
no fewer than 29 cameras on-board [2]. These cameras are
installed not only at the front of the car but also at the rear
and sides to provide the most complete sensing information
captured from all possible views surrounding the car.

How to integrate so many cameras with different FOVs
(or even modalities) and provide complementary and useful
information to ADAS or self-driving cars presents many
technical challenges, and one of them is the topic of interest
in this study -- data fusion. The development of reliable
ADAS or autonomous driving systems largely depends on the
performance of automatic object detection. According to a
recent report [3], intelligent multi-sensor fusion can improve
the ability of self-propelled robots to detect targets. Similarly,
proper multi-sensor fusion may also be a good solution to
improve object detection in assisted or autonomous vehicles
because it is difficult for a single sensor to generate sufficient
data for accurate detection in all possible situations. There-
fore, combining data from a set of heterogeneous sensors
can theoretically provide richer information to produce more
accurate and reliable results. However, the implementation of
this theory requires experimental trials and verification.

At present, the heterogeneous sensors used in vehicles
mainly include cameras, radars and LiDAR (Light Detec-
tion and Ranging). The best-known sensor for assisted or
autonomous driving is the camera, which has the advantage
of being cheap and reliable, but it needs to overcome poor
visibility at night or in bad weather; it cannot provide range
information either. In contrast, radar emits radio waves for
radio detection and ranging, measuring what is reflected back
by the environment. Radar also works well at night and is
fairly reliable in a wide variety of weather conditions, but its
sensors have a limited FOV and a much lower resolution than
camera sensors. LiDAR works similarly to radar, but using
invisible laser beams instead. LiDAR produces fairly detailed
and extremely accurate maps of the vehicle’s environment,
but the technology is subject to weather conditions. Addition-
ally, LiDAR is expensive and relatively fragile. The advan-
tages and disadvantages of these heterogeneous sensors are
summarized in Table 1. How the raw data obtained by these
sensors and the information derived from them complement
each other to improve driving safety is an important issue,
whether it is assisted or autonomous driving. In fact, data
fusion among these three types of sensors has been explored
[3], [4]. In this study, we only discuss the fusion problem
associated with the camera sensors capturing multiple types
of images. One objective of this study is to investigate what
image fusion methods are suitable to improve the recognition

TABLE 1. The advantages and disadvantages of common heterogeneous
sensors used in vehicles.

performance on moving objects such as pedestrians and vehi-
cles for ADAS.

Image fusion is an image enhancement technique that aims
to combine images acquired by different types of image
sensors to generate robust or informative images that can
aid in subsequent processing or in decision-making. Many
different types of images can be potential sources of image
fusion, such as Visible (VIS), Infrared (IR), Panchromatic
(PAN), Multi-Spectral (MS), Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI). According to dif-
ferent application fields, image fusion technology can have
various combination schemes, such as medical image fusion
(e.g., the combination of MRI and CT) [5], telemetry image
fusion (e.g., the combination of PAN and MS) [6], and
heterogeneous image fusion for general applications (e.g.,
a combination of VIS and IR) [7].

VIS imagery in RGB has good distinguishability in human
visual perception, but it is susceptible to shadows and lighting
noise. In contrast, thermal IR images are less sensitive to
these noises and can provide additional information for warm
objects at night [8]. Therefore, fusing these two kinds of
complementary images may provide a useful solution to the
object detection problem. In recent years, there have been
many studies on the fusion of IR and VIS images for various
applications, including pedestrian detection [9], [10], [11],
[12], [13], [14], face recognition [15], [16], tracking [17],
[18], surveillance [19], [20], and remote sensing [21], [22].
These studies confirm that the fusion of VIS and IR images
can bring some benefit in those applications, where the only
one related to ADAS is the pedestrian detection, to the best
of our knowledge.

However, a practical ADAS needs to detect not just pedes-
trian but many other objects. Therefore, we shall apply the
fusion of VIS and IR images to a broader category of objects
to provide a more complete study for ADAS. Specifically, the
objects of interest in this study are pedestrian, automobile,
bus, bicycle, and motorcycle. In addition, most of these pre-
vious studies assume that the VIS and IR images align them-
selves perfectly. Unfortunately, this assumption does not hold
in many real-world applications. This means that there is a
positional offset between the pixels corresponding to the two
images. This offset problem can be due to physical character-
istics of different sensors (e.g., parallax or parameter tuning),
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imperfect alignment algorithms, external disturbances (e.g.,
car shaking while driving) and hardware aging. Ignoring this
real problem not only fails to achieve the expected effect of
image fusion, but also may bring distortions such as ghost-
ing artifacts on the fused image, which could be extremely
detrimental to the subsequent object detection task.

In this study, we propose an image fusion approach and
evaluate its benefit on the detection accuracy of moving
objects commonly encountered by drivers on the road, includ-
ing pedestrians and various types of vehicles. The proposed
approach combines information from VIS and IR images and
includes image alignment as an indispensable part of fusion
for practical consideration.

The main difference between our work and some previous
works are in two folds. First, we consider the object detection
benefit of fusing VIS and IR images for a wider class of
objects than just the pedestrian object discussed in the pre-
vious studies. Second, most existing methods operate under
the assumption that the two images to be fused are perfectly
aligned, and thus they can directly fuse different types of fea-
tures at the corresponding pixel locations. Obviously, these
methods are not only unsuitable for the unaligned images
appeared in many real-world application scenarios, but also
limit the further development of heterogeneous image fusion
techniques for detecting moving objects on the road. This
alignment issue is worthy of attention but there is still a lack
of related research. Our contributions include:
• We make an important observation that image fusion in
many real-world applications (including ADAS) must
consider the issue of image alignment.

• We review many image fusion and image alignment
techniques and propose an experimental procedure to
find a good combination of these two techniques for
practical applications of interest, not limit to ADAS.

• Taking the performance of object detection and the com-
putational cost as a benchmark, we propose a relatively
good approach that combines the existing image fusion
and alignment methods.

• We consider the object detection benefit of fusing VIS
and IR images for a wider class of objects than just the
pedestrian object as discussed in the previous works,
providing a more complete study.

II. RELATED WORK
We shall give a brief review on the four topics: (1) image
alignment; (2) image fusion methods; (3) fusion techniques
based on deep learning; and (4) road object detection based
on heterogeneous images.

A. IMAGE ALIGNMENT
Image alignment technology can be divided into two broad
categories: the direct (pixel-based) method and feature-based
method. The former directly searches for the matching area of
the pixels between the images, and then obtains the alignment
relationship (through a transformation matrix) between the
images from the pixels of matched area, while the latter

first finds out the most discriminative feature points in the
images, and then obtains the alignment relationship between
the images from these points. For the direct method, if there is
no preliminary alignment, the matching range of the images
to be searched for a global optimalmatching solution could be
very large, resulting in huge computational cost. On the other
hand, the feature-based method may fail when the image
content has weak texture, periodicity, etc. In general, the
direct method is superior to the feature-basedmethod in terms
of alignment accuracy, and it would be the opposite in terms
of computational cost.

There are several well-known feature-based image align-
ment methods. In 2004, Lowe proposed SIFT (Scale Invariant
Feature Transform) [23], which is the most famous feature
detection and description algorithm in computer vision. SIFT
has robust invariance to image rotation, scaling, and limited
affine variations, but its main disadvantage is the high compu-
tational cost. Bay et al. proposed SURF (Speeded Up Robust
Features) [24]. SURF features have invariance to rotation
and scaling, but almost no affine invariance. Rublee et al.
proposed ORB (Oriented FAST and Rotated BRIEF) [25],
where the ORB algorithm is a mixture of the modified Fea-
tures from Accelerated Segment Test (FAST) [26] and the
direction standardized Binary Robust Independent Elemen-
tary Features (BRIEF) [27]. ORB features are invariant to
scaling, rotation, and limited affine variations. Feature-based
methods often use a combination of feature extractors (such
as SIFT, SURF, and ORB) and best-feature searchers such
as RANSAC (Random Sample Consensus) to align images.
In general, SIFT is better than SURF, and SURF is better than
ORB, in terms of the degree of extracted details of feature
points. However, in terms of computing speed, it is quite the
opposite.

Norm Conserved Global Affine Transformation (Norm
GAT) [28] and Enhanced Correlation Coefficient (ECC) [29],
[30] are two typical direct methods for image alignment.
The Norm GAT algorithm has two characteristics. The first
is an exact formula for maximizing the ZNCC (Zero-means
Normalized Cross-Correlation). The second is to linearize the
nonlinear problem, so that it does not increase the computa-
tional time complexity compared with the original GAT. ECC
has been widely used in various applications, such as image
registration, image mosaic, object tracking, super-resolution,
visual monitoring, and medical treatment. The ECC algo-
rithm calculates the transformation matrix by means of a
motion estimation model and iteration. This method has two
advantages. The first is that ECC does not produce photomet-
ric distortions that alter contrast and brightness. The second
is that although the objective function is a nonlinear function
of parameters (the elements of transformation matrix), the
iterative scheme developed to solve the optimization problem
is linear, which enables efficient implementation. In general,
Norm GAT and ECC are comparable in alignment accuracy,
but ECC is faster than Norm GAT in calculation speed.

Later we will show in the experiment section of this study
that a simplified ECC, which is a direct method, can run even
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faster than feature-based methods. This surprising fact makes
it the image alignment method of our choice in this study.

B. IMAGE FUSION METHODS
Image or information fusion can be divided into two broad
categories: model-driven and data-driven [31]. The model-
driven technique is a deterministic approach, which analyzes
the target data to be fused in an analytical manner to capture
the inherent features of the data, while the data-driven tech-
nique is a black-box approach, where the inherent features
of the data are learned from a great quantity of relevant data,
usually through a trainable neural network.

In [32], Muresan et al. proposed data association methods
for the original data to be fused to detect and handle inconsis-
tencies among different sensor measurements, where the sen-
sors include a trifocal camera, a fisheye camera, a long-range
radar, and LiDARs. Since human-recognizable features, such
as object’s appearance and motion, from various sensors
are extracted, it is considered as a model-driven approach.
In [33], Nie et al. proposed the Integrated Multimodality
Fusion Deep Neural Networks (IMF-DNN) framework. The
framework consists of two parts: the individual baseline
neural network associated with each sensor modality and
the central integrated multimodal fusion network, where the
fusion can take place at all intermediate layers of each base-
line neural network. How the features extracted from each
modality are fused is determined by a large amount of training
data, which makes IMF-DNN a data-driven fusion approach.

In our study, we exploit the characteristics of the two
images obtained from two different sensors and fuse them
through the process of image alignment, guided filtering,
and scale decomposition, which makes it a model-driven
approach. In [34], Wang et al. introduced ‘‘NUAN’’, a non-
uniform attention network for multi-modal feature fusion,
which is mainly a multimedia fusion technique for text,
audio, and visual information. There are twomain differences
between the study in [34] and ours: (1) the source data to
be fused are different--the former contains multimedia infor-
mation, the latter contains two kinds of visual information;
(2) the former is data-driven, and the latter is model-driven.

With the rapidly growing demand for various image rep-
resentations, many image fusion methods for VIS and IR
images have been proposed [35], where the authors provide
a finer categorization than just model-driven and data-driven.
A total of seven categories are considered, including multi-
scale transformation, sparse representation, neural network,
subspace, saliency-based methods, mixture models, and oth-
ers. The main ideas of these methods are outlined below.

(1) Multi-scale transformation is a very popular technique
in image fusion. In the technique, the original image is
decomposed into sub-images of different scales, as different
objects may show their significant characteristics at differ-
ent scales. The IR and VIS image fusion scheme based on
multi-scale transformation comprises three steps: perform-
ing a multi-scale transform, fused in the transform domain,
and performing a corresponding inverse transform [36].

The curvelet transform [37] and the dual-tree complex
wavelet transform [38] are the two representative transforms
in this approach.

(2) The sparse-representation image fusion method learns
a complete dictionary from a large number of high-quality
natural images. An original image is then sparsely repre-
sented by this dictionary, making it possible to enhance
the representation of meaningful and stable images [39].
The sparse-representation fusion method also uses a sliding
window strategy to divide the original image into several
overlapping patches to reduce the appearance of visual arti-
facts and improve the robustness of overlapping areas [40].
Yang and Li proposed Adaptive Sparse Representation
(ASR) [41], which is a multi-source image fusion method
based on patched signal sparse representation. To convert
more interesting information from the original image into
the fused image, it computes the global visual attention
saliency map of the original image by analyzing all patched
sparse representations. The saliency image is then used to
guide the fusion rule of the local intensity of the original
image.

(3) The neural network-based method imitates the per-
ceptual behavior of the human brain to process information.
Neural networks have the advantages of strong adaptability,
fault tolerance, and anti-noise ability, but the neural network-
based fusion method is often too computationally inten-
sive to achieve real-time processing at present. Most neural
network-based IR and VIS image fusion methods use Pulse
Coupled Neural Network (PCNN) or its variants [42].

(4) Subspace-based methods, including Principal Compo-
nent Analysis, Non-Negative Matrix Factorization, and Inde-
pendent Component Analysis, have been successfully applied
to IR and VIS image fusion [43]. Ma et al. proposed Gradient
Transfer Fusion (GTF) [44], which is a fusion method based
on gradient transfer and Total Variation (TV) minimization
by mathematically transforming the fusion problem to a
`1-TV minimization problem, where the Data Fidelity Term
preserves the dominant intensity distribution in the IR image,
while the Regularization Term preserves the gradient varia-
tion in the VIS image.

(5) Saliency-based methods are based on the fact that
it is the salient parts of the image (not individual pixels)
that attract human visual attention, so saliency-based fusion
methods are specifically designed to maintain the integrity
of salient object region and improve the visual quality of the
object in the fused image [45]. Since this is a mechanism
based on the human visual system, saliency-based methods
are popular for fusing IR and VIS images.

(6) The IR andVIS image fusionmethodsmentioned above
have their own advantages and disadvantages, and a hybrid
model combines their advantages to improve image fusion
performance [35]. Guided Filtering Fusion (GFF) [46], [47],
for example, combines multi-scale transformation with the
saliency-based method.

(7) Other IR and VIS image fusion methods can inspire
new ideas and directions for image fusion based on total
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variation [44], fuzzy theory [48], and entropy [49], among
others.

C. IMAGE FUSION BASED ON DEEP LEARNING
In recent years, deep learning has also been applied to image
fusion due to the powerful image feature extraction capabili-
ties of deep learning networks. In the past, the measurement
of image activity or saliency and weight allocation in the
core work of image fusion mostly relied on manual design,
but a deep learning network can acquire them through train-
ing and learning to reduce the difficulty of manual design.
For example, in the method proposed by Piao et al. [50],
a Siamese network composed of Twin CNN (Convolutional
Neural Network) was used. In addition, FusionGAN [51]
proposed by Ma et al. was a method of fusing VIS and IR
images through Generative Adversarial Network (GAN). The
method established an adversarial game between the genera-
tor and the discriminator, in which the generator generates
the fused image with IR intensity and VIS gradient, while the
discriminator forces the fused image to have more VIS image
details.

In [51], the authors compare their proposed method (the
Siamese network) with 18 representative methods from the
past. On some objective indicators of fusion performance
(discussed later), their method does have a good performance.
However, the performance of the CPU operation time is
unsatisfactory; for example, it takes 19.47 seconds on average
to fuse a pair of IR and VIS images of 270× 360, while GFF,
which is a hybrid model discussed in Section II-B, takes only
0.0899 seconds, a difference of about 217 times. Later in the
experiment section, we will show that FusionGAN also has
the issue of high computational complexity, while GFF ranks
among the best in the combined performance of image quality
metrics and execution speed.

D. HETEROGENEOUS IMAGE-BASED ROAD
OBJECT DETECTION
Detecting objects on the road is an indispensable step in
many driving assistance systems and has long been the focus
of computer vision. Over the years, algorithms with a wide
range of capabilities have been proposed, including tradi-
tional detectors [52] and the more recently dominant CNN-
based detectors [11]. Recent studies have shown that hetero-
geneous imagery can bring great advantages, especially for
computer vision covering both day and night [53]. Therefore,
the release of large-scale heterogeneous image datasets [54]
encouraged researchers to advance the latest technologies
through the effective use of heterogeneous image data.

As a typical example of traditional approach, Hwang et al.
proposed an extended ACF (Aggregated Channel Features)
method [9], which aggregates aligned VIS and IR images for
pedestrian detection through day and night. As expected, cur-
rently the more dominant approach is CNN-based [13]. For
example, König et al. proposed an architecture that combines
the Region Proposal Network (RPN) and Boosted Forest
(BF) for fusing the VIS and IR information in multi-spectral

FIGURE 1. A flowchart of the proposed fusion approach. First, a pair of
visible (VIS) and infrared (IR) image is captured by an on-board dual
camera, where the two corresponding lenses are located side by side.
Next, image alignment is performed through the calculation of enhanced
correlation coefficient. Finally, the VIS and IR images (after alignment) are
fused using a guided filter, resulting in the fused output image.

images to improve automatic person detection [11]. In [12],
Li et al. proposed an Illumination-Aware Faster Region-based
CNN (IAF RCNN) and used the information from color
and thermal images to improve pedestrian detection. In [55],
Xu et al. employ a deep CNN to learn a nonlinear map-
ping, modeling the relations between RGB and thermal data,
to improve pedestrian detection in poor lighting conditions.

III. METHOD
A. SOFTWARE AND HARDWARE EQUIPMENT AND
RESOURCE FOR EXPERIMENTS
The experiment was carried out on a personal computer
equipped with Windows 10 operating system, and the
hardware specifications were as follows: Intel i7-8700
CPU@3.20GHz, 16G memory, NVIDIA RTX2080 GPU.
For the software part, Anaconda was used with Python
version 3.6.2 and PyTorch version 1.2.0. We used Python
to implement image alignment and image fusion meth-
ods, and PyTorch to build a neural network for object
detection.

For performance evaluation, we also used three image
datasets, namely KAIST [54], TNO [56], and Pascal VOC
2012 [57]. More details on these datasets will be given in
Section III-E-2.
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FIGURE 2. A flowchart of our simplified ECC image alignment method (adapted from [29]). The main
idea of ECC image alignment method is to estimate the transformation matrix (denoted by Ĥ) of the
two images involved (visible and infrared images in our case) by finding the maximum correlation
coefficient between them. One image is treated as a template and the other is regarded as an input
(to be transformed). The original 3 × 3 transformation matrix is simplified to 2 × 3 in this study. The IR
image is aligned through the estimated transformation matrix, and the warped IR image is obtained.

B. FLOWCHART OF THE PROPOSED FUSION
APPROACH
A flowchart of the proposed fusion approach is shown in
Fig. 1. We used an on-board dual camera to capture both VIS
and IR images simultaneously. Due to the parallax of the dual
camera by itself, coupled with the car vibration and shaking
during driving and other factors, the two images will have
deviations in alignment. Thus, the two images are aligned first
based on ECC, followed by the use of GFF.

C. IMAGE ALIGNMENT
Before fusing the VIS and IR images, image alignment is
performed on these two heterogeneous images to ensure that
the objects shown in the images remain at the corresponding
positions in the same plane coordinates, because if the images
are not aligned, it will cause artifacts in the results of subse-
quent image fusion. The artifacts not just affect the neural
network’s capability to identify objects but also produce poor
human visual perception. In this study, the two cameras (VIS
and IR) are put (tied together) side by side so that they usually
capture almost the same scene at the same time except for a
binocular disparity. So we mainly need to solve this kind of
parallax problem before fusing the VIS and IR images. Since
the cameras will be mounted on a vehicle moving on various
road conditions in practice, a fixed calibration result may not
be good enough. Therefore, we want to dynamically predict
the parallax of the two cameras in the most efficient manner.
A fast and accurate image alignment approach is desirable
for this problem. As mentioned earlier, there are many ways
to align images. Considering the computing speed, align-
ment accuracy and the application of this study, we believe
that the ECC alignment method is a good choice for this
study, as supported by the experimental results presented in
Section IV.

The idea of the ECC image alignment method is to cal-
culate the transformation matrix by finding the maximum
correlation coefficient between the IR image and the VIS
image, so that all pixels in the input (IR) image can be
projected to the same plane coordinates as the reference
(VIS) image through the transformation matrix and obtain
an aligned image. Fig. 2 is a flowchart demonstrating our
ECC image alignment method. In the most general ECC
image alignment method, a 3 × 3 estimated transformation
matrix is used to cover a variety of motion models, including
Translation, Euclidean (translation + rotation), Affine (rota-
tion + translation + scaling + shearing) and Homography
(3D transformation of different planes). In the 3× 3 estimated
transformation matrix, h1, h5 and h9 on the main diagonal are
fixed as 1, and the values of other matrix elements depend
on the motion model selected. In this study, the images are
taken through two parallel and closely linked cameras and
it is assumed that there are only the displacements of the X
axis and Y axis, and no other changes such as rotation. So the
last row of the 3 × 3 matrix (including h7, h8 and h9) can be
deleted to form a 2× 3 matrix where the rotation components
h2 and h4 are 0. The simplified matrix is helpful to improve
the operation efficiency of the proposed scheme.

The ECC image alignment algorithm can be divided into
the following steps:
(1) Read an IR image as the Input image and a VIS image as

the Template.
(2) Convert both images to grayscale images.
(3) Select a motion estimation model.
(4) Configure the memory space to store the transformation

matrix.
(5) The transformation matrix is calculated by the ECC

correlation coefficient method until the set termination
condition is met.
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FIGURE 3. A flowchart of guided filter fusion (GFF) for street view images. It can be divided into three parts: two-scale image decomposition, weight
map construction, and two-scale image reconstruction. The processing details are given in the text and the math operations involved are given from
Eq. (1) to Eq. (10).

(6) The input image is aligned through the estimated
transformation matrix, and the warped input image is
obtained.

D. IMAGE FUSION PROCESS INVOLVING GUIDED FILITER
The guided filter has been applied to many applications,
including image smoothing/enhancement, high dynamic
range compression, and image defogging, etc. Here it is for
image fusion. Basically, Guided Filter Fusion (GFF) [46],
[47] is an image filtering technique. Through the guiding
image I, the original image P is guided and filtered, so that
the final output image is roughly similar to the original
image P, while its texture part is similar to the guiding image
I. The guided filter in GFF exploits the advantage of the
bilateral filter [58] (using a non-iterative calculation method
to effectively preserve the edge contour) and overcomes
the shortcoming of the bilateral filter (through designing a
fast filter with O(1) time complexity to ensure that gradient
inversion does not occur). The guided filter not only realizes
the edge smoothing function of the bilateral filter, but also
performs well in the area near the detected edge. This out-
standing characteristic makes GFF rank high among many
representative fusion methods, as shown by the experimental
result in Section IV-B. Therefore, guided filtering is our first
choice for image fusion.

The flowchart in Fig. 3 shows the use of GFF. First,
average filtering is performed on the two source images. The
base layer and detail layer are then fused by the weighted
averaging after guided filtering. The image fusion method of

guided filtering can be divided into three parts, A, B and C,
which are described as follows.

1) PART A: TWO-SCALE IMAGE DECOMPOSITION
The source image is decomposed into two scales by average
filtering, representing the base layer of brightness and the
detail layer of information, respectively. The base layer of
each source image is obtained as in Eq. (1):

Bn = In ∗ Z (1)

where In is the nth source image, where n= 1, 2, . . . , N (here
N = 2 in our study, denoting the VIS and IR images), and Z
is the kernel of averaging filter whose size is usually set as
31 × 31. The detail layer can be obtained by subtracting the
base layer from the original image, as shown in Eq. (2):

Dn = In − Bn (2)

The two-scale decomposition step aims at separating each
source image into a base layer containing slowly-varying
components and a detail layer containing higher-frequency
components such as edges.

2) PART B: WEIGHT MAP CONSTRUCTION WITH
GUIDED FILTERING
First, perform a saliency measure on each original image: the
Laplacian filter is used to obtain the high-pass image Hn as
shown in Eq. (3):

Hn = In ∗ L (3)
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where L is a 3 × 3 Laplacian filter; then, the absolute value
of the local mean of Hn is used to construct the saliency map
Sn as given in Eq. (4):

Sn =
∣∣Hn ∗ grg,σg ∣∣ (4)

where g is a Gaussian low-pass filter of size (2rg+1) ×
(2σg+1), and both parameters rg and σg are usually set to 5.
As stated in [45], the measured saliency maps provide good
characterization of the saliency level of detail information.
Then, the saliency map is examined to determine the weight
map as given in Eq. (5):

Pkn =

{
1, if Skn = max

(
Sk1 , S

k
2 , . . . , S

k
N

)
0, otherwise

(5)

where Skn represents the saliency value of pixel k in the nth

image.
The weight map obtained above is usually noisy and does

not align with the object boundary [46], [47], so if it is used
directly, it may cause artifacts in the fused image. To reduce
this poor impact, the idea of spatial consistency was intro-
duced. The spatial consistency means that if two adjacent
pixels have similar brightness or color, they will tend to have
similar weights. A common method for spatial consistency
is to formulate an energy function for the expected salient
features. This energy function can encode pixel salience,
modify the weight of edge alignment in a normalized manner
(e.g., via smoothing), and be minimized globally to obtain the
desired weight. Guided filtering uses the source image In as a
guiding image to carry out the spatial consistency fusion for
each corresponding weight map Pn. Perform guided filtering
on Pn and In to obtain WB

n [Eq. (6)] and WD
n [Eq. (7)], where

they are the refined weight maps generated by the base layer
and the detail layer, respectively.

WB
n = Gr1,ε1 (PnIn) (6)

WD
n = Gr2,ε2 (PnIn) (7)

where r1, ε1, r2 and ε2 are the parameters in the process of
guided filtering: r determines the salient difference of guided
images under the window, and ε determines the ambiguity of
guided filtering. In [59], the influences of different parameter
values on the performance indexes of mean gradient, stan-
dard deviation, and mutual information of fused images are
discussed. Referring to [59] and our empirical study, we set
r1 = 30, ε1 = 0.3, r2 = 15, and ε2 = 10−6 for the experiment
section (Section IV).

3) PART C: TWO-SCALE IMAGE RECONSTRUCTION
Two-scale image reconstruction consists of the following two
steps. First, the base and detail layers of source images are
fused by weighted averaging, as shown in Eq. (8) and Eq.
(9), respectively:

B̄ =
∑N

n=1
WB
n Bn (8)

D̄ =
∑N

n=1
WD
n Dn (9)

Again, here N = 2. Then the fused image F is obtained by
combining the base layer B̄ and the detail layer D̄ as shown
in Eq. (10):

F = B̄+ D̄ (10)

E. EVALUATION OF THE BENEFITS OF IMAGE FUSION
In order to evaluate the performance of the fusion algorithm
itself, we will use the evaluation indicators commonly used
in image fusion. Furthermore, we will use two deep learning
networks to compare the changes in the performance of object
detection before and after image fusion, and explore how
much the image fusion approach proposed in this study can
improve the performance of object detection.

1) EVALUATION METRICS FOR IMAGE FUSION
Since it is difficult to obtain an accurate evaluation of image
fusion performance only by subjective evaluation, we need
fusion metrics for an objective evaluation. Many fusion met-
rics have been proposed, but none seems to be recognized as
a de facto standard or an absolutely fair evaluation metric,
so we will quantitatively evaluate the performance of fusion
methods with 5 popular metrics, including entropy (EN),
standard deviation (SD), structural similarity index measure
(SSIM), spatial frequency (SF) and correlation coefficient
(CC). A brief description of these metrics is as follows.
a. Entropy (EN)

ENmeasures the amount of information contained in the
fused image. EN is defined in Eq. (11):

EN = −
∑L−1

l=0
pl log2 pl (11)

where L represents the total number of gray levels (set to
256 for 8-bit images) and pl is the normalized histogram
of the grayscale values in the fused image. The larger the
EN, the richer the information contained in the fused
image, and the better the performance of the fusion
method.

b. Standard Deviation (SD)
SD is defined according to the statistical concept, which
reflects the degree to which individual pixel values in an
image deviate from the mean. SD is given in Eq. (12):

SD =

√∑M

i=1

∑N

j=1
(F (i, j)− µ)2 (12)

where F is the fused image of sizeM × N , and µ is the
average value of the fused image F . Since areas with
high contrast always attract people’s attention, a fused
image with high contrast usually results in a larger SD,
which means that the fused image can present better
visual effects.

c. Structural Similarity Index Measure (SSIM)
SSIM is mainly used to measure the similarity between
the original image and its distorted image (for example,
after experiencing lossy compression). In the context of
image fusion, it is used to measure the structural similar-
ity between the source image and the fused image. SSIM
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is mainly composed of three parts: the mean serves as
an estimate of brightness, the standard deviation serves
as an estimate of contrast, and the covariance is used as
a measure of structural similarity. The product of these
three parts is SSIM, which is expressed in Eq. (13) and
Eq. (14):

SSIMX ,F =
∑

x,f

2µxµf + C1

µ2
x + µ

2
f + C1

·
2σxσf + C2

σ 2
x + σ

2
f + C2

·
σxf + C3

σxσf + C3
(13)

SSIM = SSIMA,F + SSIMB,F (14)

where SSIMX ,F represents the structural similarity
between the source image X and the fused image F ; x
and f represent the image blocks of the source image and
the fused image in a local window ofM × N ; σxf is the
covariance of x and f ; µx and µf represent the average
value, σx and σf represent the standard deviation in x
and f , respectively. C1, C2 and C3 are the parameters
that make the algorithm stable. In this study, SSIMA,F
and SSIMB,F represent the structural similarity between
a VIS image A and an IR image B, and their fused image
F , respectively. The higher the SSIM value, the better
the image fusion performance.

d. Spatial Frequency (SF)
SF is used to measure the gradient magnitude distribu-
tion of an image. The processing task to obtain SF is
given as follows [from Eq. (15) to Eq. (17)]:

RF =

√∑M

i=1

∑N

j=1
(F (i, j)− F(i, j− 1))2 (15)

CF =

√∑M

i=1

∑N

j=1
(F (i, j)− F(i− 1, j))2 (16)

SF =
√
RF2
+ CF2 (17)

where RF is the spatial row frequency, and CF is the
column frequency. The larger the SF, the richer the edges
and textures of the fused images.

e. Correlation Coefficient (CC)
CC is to measure the degree of linear correlation
between the fused image and the source image, which
is determined as follows [Eq. (18) and Eq. (19)]:

rXF

=

∑M
i=1

∑N
j=1 (X (i, j)−X̄ )(F (i, j)−µ)√∑M

i=1
∑N

j=1
(
X (i, j)−X̄

)2(∑M
i=1

∑N
j=1 (F (i, j)−µ)

2)

(18)

CC =
rAF + rBF

2
(19)

where X and F are the images of size M × N , X̄ is the
mean of source image X , µ is the mean of the fused
image F , and A and B represent the VIS image and the
IR image, respectively.

FIGURE 4. Some samples in KAIST dataset [54]: VIS images (Left) and
their corresponding IR images (Right).

FIGURE 5. Some samples in TNO dataset [56]: VIS images (Left) and their
corresponding IR images (Right).

FIGURE 6. Some samples of Pascal VOC 2012 dataset [57].

2) DATASETS USED FOR PERFORMANCE EVALUATION
For the evaluation of image fusion, this study uses the
KAIST dataset [54] and the TNO dataset [56]. The for-
mer contains 95,328 pairs of VIS and IR images of size
640 × 512, and covers a variety of light conditions (includ-
ing day and night cases) and weather conditions (sunny).
The latter contains 34 pairs of VIS and IR images (of size
640 × 480) in the Triclobs_images folder, and all the images
were taken in daytime and sunny conditions. Some sam-
ples in these two datasets are shown in Fig. 4 and Fig. 5,
respectively.

In the validation phase of object detection performance,
we use the Pascal VOC 2012 dataset [57], which contains
approximately 15,000 labeled images classified into 20 cate-
gories. We extract a total of 7,427 images from the categories
relevant to this study, including the categories of pedestrian,
automobile, bus, bicycle and motorcycle. Some samples of
the Pascal VOC 2012 dataset are shown in Fig. 6.
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3) USE OF DEEP LEARNING NEURAL NETWORKS
After generating the fused image, we explore how much
object detection performance can be improved after introduc-
ing heterogeneous image fusion. The performance evaluation
will be based on commonly used and well-known indicators
for general object detection, such as precision and recall.
In addition, a visual (subjective) inspection is added in the
experiment section, mainly by analyzing the contour of the
object, exploring the possible impact on the object character-
istics (especially the edge) before and after image fusion, and
thus the change of detection performance. What follows is a
brief review of popular object detection networks, including
those used in our experiment.

Convolutional Neural Network (CNN) is the most well-
known deep learning network architecture. In recent years,
region-based CNN (R-CNN), Fast R-CNN, Faster R-CNN,
single shot multi-box detector (SSD) and YOLO (You Only
Look Once) are all derived from the CNN architecture.

Faster R-CNN [60] combines both R-CNN [61] and
Region Proposal Network (RPN), which shares full-image
convolution features with the detection network, greatly
reducing the cost required to implement region proposals.
RPN is a fully convolutional network that simultaneously
predicts object boundaries and object scores at each location.
RPN is trained end-to-end to generate high-quality region
proposals, detected by Fast R-CNN. By sharing convolutional
features, RPN and Fast R-CNN are combined into one net-
work, and Faster R-CNN is thereby formed. However, for
the embedded system, methods like Faster R-CNN require
too long computing time and cannot achieve real-time per-
formance, and this is the reason why the SSD model was
proposed [62].

The SSD model eliminates bounding box and pixel or
feature resampling process to achieve real-time detection
speed while maintaining detection accuracy. SSD is based on
a forward-propagating CNN network that produces a series
of bounding boxes of fixed size, and followed by performing
non-maximum suppression (NMS) to obtain the final predic-
tion. SSD uses a single deep neural network to detect objects
in images. YOLO adopts a CNN network architecture just
like SSD. The characteristic of the YOLO model [63] is that
it passes the image through CNN just once to get the object
category and position, which greatly improves the detection
speed.

Compared with YOLO, SSD has higher detection accu-
racy; compared with Faster R-CNN, SSD can run faster. The
core feature of SSD lies in the prediction of objects and the
use of scores to indicate the category to which they belong.
In addition, SSD performs multi-scale predictions on several
feature maps at the same time, while YOLO only performs
multi-scale prediction on one feature map. The advantage
of YOLO lies in a single network design, and the result of
judgement will include the position of the bounding box, as
well as the category and probability of each box. The entire
network design is end-to-end, easy to train, and fast. In 2018,
Redmon and Farhadi proposed YOLOv3 [64], which is a

further optimized version of YOLOv2 (an optimized version
of YOLO). After optimization, both the detection accuracy
and the running speed are improved. At the same image
resolution, YOLOv3 is three times faster than SSD with the
same accuracy. Since SSD and YOLOv3 are two powerful
and popular networks, relevant referencematerials are readily
available, so only a brief description about them is given
above. We shall use these two networks for object detection
to verify whether image fusion has resulted in the expected
benefits.

IV. EXPERTIMENTAL RESULTS
In this section, we perform the experiments to evaluate the
proposed image fusion approach by various metrics and
conduct a comprehensive comparison with other methods.

A. EVALUATION BASED ON FUSION METRICS
In this subsection, we take all 34 pairs of IR and VIS images
in the TNO dataset to conduct the experiments. We evaluate
the performance of existing image fusion methods, including
Adaptive Sparse Representation (ASR), Curvelet Transform
(CVT), Dual-tree Complex Wavelet Transform (DTCWT),
Fourth Order Partial Differential Formula (FPDE), Gradi-
ent Transfer Fusion (GTF), FusionGAN, and GFF based
on five evaluation metrics (EN, SD, SSIM, SF and CC).
Table 2 shows the comparison results.

Table 2 shows that GFF is second to GTF and Fusion-
GAN in the EN evaluation, second to FusionGAN in the SD
evaluation, second to FusionGAN in the SSIM evaluation,
second to CVT and FusionGAN in the SF evaluation, and
finally second to ASR, FPDE, and FusionGAN in the CC
evaluation. Although GFF ranks lower than FusionGAN in
all metrics, it has the best execution time performance among
all the fusion methods considered. Obviously, FusionGAN
cannot meet our real-time processing requirements in terms
of execution time, so we choose the second best GFF method
as the image fusion method in our approach.

B. EVALUATION OF IAMGE ALIGNMENT METHODS
In this subsection, we randomly select 100 pairs of IR and
VIS images of size 640 × 512 from the KAIST dataset
to test currently popular image alignment methods, includ-
ing SIFT+RANSAC, SURF+RANSAC, ORB+RANSAC,
Norm GAT, and ECC, and the average processing time per
image is given and shown in Table 3.

The results of Table 3 show that ECC is the fastest among
all alignment methods. Thus, ECC is obviously a good can-
didate for the applications that need fast operation, such as
ADAS. However, the processing speed alone cannot objec-
tively evaluate various image alignment methods, since our
fusion approach embeds the use of image alignment and
we need to know further which image alignment method
works best with GFF fusion, which is a special comparison
benchmark of this study. For this purpose, the results of five
fusion metrics (EN, SD, SSIM, SF and CC) are obtained and
shown in Table 4.
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TABLE 2. Performance comparison in terms of fusion metrics and execution time (the numbers associated with each method show its ranks in
6 respective performance items).

TABLE 3. Average processing time per image (640 × 512) for image
alignment.

TABLE 4. The fusion metric performance for each image alignment
method combining with GFF (the numbers associated with each method
show its ranks in 5 respective performance metrics).

The results in Table 4 show that ECC is second to Norm
GAT and SIFT+RANSAC in the EN evaluation, better than
ORB+RANSAC in the SF evaluation, and second to Norm
GAT in the SSIM, CC and SD evaluation. On average, ECC’s
performance is above average, not too far behind the No.
1 Norm GAT. In contrast, the time spent by ECC is only
about five thousandths of that of Norm GAT, so the overall
performance of ECC is quite excellent if the results shown in
both Table 3 and Table 4 are considered as a whole.

C. DISCUSSION ON THE EFFECT OF IMAGE FUSION
The object detection performance of deep learning network
highly depends on extracting object’s features, such as point,
shape, texture, color and contour. We want to actually see
if fusion can bring the change of these features. Here we
choose the contour feature because of its good visual effect

FIGURE 7. Daytime contour features. Original images (left) and their
contours (right); VIS image (top); IR image (middle); Fused image
(bottom).

FIGURE 8. Night contour features. Original images (left) and their
contours (right); VIS image (top); IR image (middle); Fused image
(bottom).

and easy implementation, though it may not be the best one.
We shall observe the changes of object contour before and
after fusion. Fig. 7 and Fig. 8 show the changes of the contour
features before and after image fusion during the day and at
night, respectively. As shown in Fig. 7 and Fig. 8, after the
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TABLE 5. Confusion matrix for alert object detection.

fusion of VIS and IR images, the contours in the fused images
become richer and more complete than those of separate
source images, which may enable a deep learning network
to provide more information for object detection, and expect
to get improved performance accordingly.

To evaluate the image fusion capability of the proposed
approach in object detection more accurately, we define the
following terms and evaluation criteria. The case where the
detection network detects an alert object within the detection
range is known as positive, and the case where no alert object
is detected is known as negative. The detection results can
also be divided into two situations – with and without alert
objects.

Depending on whether or not there really are alert objects
within the detection range, we have four types of relationship
as shown in Table 5. The Precision is defined as Eq. (20),
which is expressed as the proportion of correctly detected
alert objects to all objects detected as alert objects. The Recall
is defined as Eq. (21), which is expressed as the proportion
of correctly detected alert objects to all actual alert objects.
The F1-score is defined as Eq. (22), which is the harmonic
mean of precision and recall. Finally, the False Negative
Rate (also called Miss Rate) is defined as Eq. (23), which
is the proportion of false judgments out of all actual alert
objects.

Precision =
TP

TP+ FP
(20)

Recall =
TP

TP+ FN
(21)

F1− score =
2× Precsion× Recall
Precsion+ Recall

=
2TP

2TP+ FP+ FN
(22)

False Negative Rate(FNR) =
FN

TP+ FN
(23)

For the test images in our experiment, we provide statistics
on the detection of alert objects within the threat range (the
close distance in front of the vehicle and the adjacent lanes of
the vehicle), as long as the alert objects are correctly detected
within the range, among which the alert objects include cars,
locomotives, buses, motorcycles, and pedestrians. We take
1,000 consecutive frames from each of the three Day/Night
videos as experimental samples, and provide the statistics of
alert object detection results according to Table 5. To evaluate
the performance of our fusion approach by deep learning

networks, we derive the object detection accuracy as well
as the processing speed represented by the number of input
frames that can be processed per second. The statistics are
shown in Tables 6-9.

From the experimental results shown in Tables 6-9, it can
be clearly seen that fusion processing can indeed improve the
detection performance, and this improvement is achieved at
a small computational cost. Figs. 9-12 show typical exam-
ples of image changes and detection results before and after
fusion. These four cases show that, in general, the numbers
of TP and FN cases will increase and decrease, respectively,
for both object detection networks, implying that fusion has
potential benefits, regardless of the object detection network
used.

In addition, we can see that the performance improvement
is much more significant at night than that in the daytime.
Specifically, the former is about 0.22% and the latter is about
1.27% on average in terms of F1-score. This phenomenon
may be due to the direct benefit from the contribution of IR
images at night.

Fig.13 and Fig.14 show more cases that object detection
performance is improved through fusion. Although our over-
all performance has improved, there are still some individual
cases where some alert objects were detected successfully
before fusion, but they were undetected after fusion. Exam-
ples of such cases are as shown in Fig. 15 and Fig. 16.
The reason for this may be that the properties of the fused
VIS image are affected by the IR image, and we used the
unfused VIS images for training the object detection net-
work, so that the confidence in recognizing the fused image
decreases, resulting in very few cases where TP drops and FN
increases.

To fully evaluate the strengths and weaknesses of our
approach, we compare it with other published methods
that also perform object detection after the fusion of IR
and VIS images. The test has been conducted with six
day/night videos from the KAIST dataset, and all of which
were taken on urban roads. Since those previous meth-
ods consider pedestrian objects only as the basis for com-
parison, the following comparison is also made only for
pedestrians. The comparison benchmark is the ability to
reduce the false negative (missed detection) rate [Eq. (23)]
through fusion before and after. The fusion methods con-
sidered include ACF+T+THOG, Halfway Fusion, Fusion
RPN, Fusion RPN+BF, Illumination-aware Faster R-CNN
(IAF-RCNN), Cross-Modality Interactive Attention Network
(CIAN), Aligned Region CNN (AR-CNN), and the proposed
approach. The corresponding object detectors associated with
the above methods are shown in Table 10. The test results
for the daytime situation and the night case are shown in
Table 11 and Table 12, respectively. In Table 11 or 12, the
relative improvement (RI) is defined as Eq. (24):

RI =
FNR (before fusion)− FNR(after fusion)

FNR(before fusion)
× 100%

(24)
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TABLE 6. The detection results before and after daytime fusion in the YOLOv3 experiment.

TABLE 7. The detection results before and after night fusion in the YOLOv3 experiment.

TABLE 8. The detection results before and after daytime fusion in the SSD experiment.

TABLE 9. The detection results before and after night fusion in the SSD experiment.

FIGURE 9. YOLOv3 object detection result. VIS image (left); IR image (middle); Fused image (right).

A zero or negative value of relative improvement indicates no
improvement, whereas a higher positive value indicates better
improvement.

From Table 11, we observe: (a) Halfway Fusion and
AR-CNN give no improvement; (b) The image fusion

approach proposed in this study gives the largest relative
improvement for pedestrian object detection. From Table 12,
we observe: (a) Halfway Fusion and Fusion RPN give no
improvement; (b) The proposed approach is second only
to CIAN in Relative Improvement metric for pedestrian
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FIGURE 10. YOLOv3 object detection result. VIS image (left); IR image (middle); Fused image (right).

FIGURE 11. SSD object detection result. VIS image (left); IR image (middle); Fused image (right).

FIGURE 12. SSD object detection result. VIS image (left); IR image (middle); Fused image (right).

FIGURE 13. More SSD object detection results.

object detection. From Table 11 and Table 12, we con-
clude that CIAN and the proposed approach give the
best comparable performance among others in terms of
the relative improvement for pedestrian object detec-
tion. A further comparison between CIAN and the
proposed approach shows that the proposed approach
executes about 1.5 times faster than CIAN, as shown
in Table 13.

Since there are no nighttime images in the training set
and the properties of the fused image will be modified,
the detection performance of the object detector trained
only with daytime images before fusion may decrease in
nighttime (for example, the false negative rate is high). In con-
trast, training with night-time fused images is expected to
improve the detection performance at night. To verify this
conjecture, we divide the six night videos in the KAIST
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FIGURE 14. More YOLOv3 object detection results.

FIGURE 15. Example of performance degradation for the alert objects in
daytime. (Left) image before fusion; (right) image after fusion.

FIGURE 16. Example of performance degradation for the alert objects at
night. (Left) image before fusion; (right) image after fusion.

dataset into two groups: Set 03-05 (as the training set)
and Set 09-11 (as the test set), and fuse the images of
these datasets through our fusion approach in advance and
use YOLOv3 for training and testing. Since the KAIST
dataset is mainly for pedestrian detection research, here we
only report the detection results of the pedestrian object for
comparison.

We provide statistics on pedestrian detection results based
on the experimental samples taken from the three night videos
(Set 09-11) with 1,000 consecutive frames each. The counting
results of alert object (pedestrian in this case) detection by
the YOLOv3 network are shown in Table 14. The precision,
recall and F1-score are then derived and shown in Table 15.

It is clear from Table 15 that the overall detection perfor-
mance evaluated by precision, recall, or F1-score improved
after simply adjusting the training samples from ‘‘With Visi-
ble Images Only’’ to ‘‘With Fused Images’’. This proves that

FIGURE 17. Pedestrian detection results in various sample
configurations. Training set: VIS image and test set: VIS image (left);
Training set: VIS image and test set: fused image (middle); Training set:
fused image; test set: fused image (right).

TABLE 10. The object detectors used with fusion methods.

our conjecture is correct, that is, the properties of VIS images
are indeed changed because of the contribution of IR images
through image fusion. This also proves that our approach
yields better results when applied to nighttime datasets when
fused nighttime images are used for training. Fig. 17 shows
two sets of images demonstrating the effects of using different
training sample configurations.

From Fig. 17, we can observe that the network trained
using the fused images can still successfully detect objects
previously affected by infrared rays, and objects that were
previously undetectable become detectable. Furthermore,
when using image fusion to improve the object detection
accuracy of a neural network, it is better to directly use the
fused image rather than the unfused visible image as the
training samples.
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TABLE 11. Comparison of pedestrian detection performance with KAIST dataset in daytime situation.

TABLE 12. Comparison of pedestrian detection performance with KAIST dataset in the night case.

TABLE 13. Implementation time of CIAN and the proposed approach.

TABLE 14. The pedestrian detection results (all tested with fused images)
using the YOLOv3 trained by different training samples.

TABLE 15. Performance evaluation based on the results given in Table 14.

V. CONCLUSION
In this study, we propose an approach for fusing IR and VIS
images through dual cameras and explore its feasibility in
ADAS by combining it with an object detection network.
We used the ECC algorithm to align the IR and VIS images
and used the guided filter fusion (GFF) method to fuse

the two source images to obtain a fused image that retains
more useful information for detection than individual source
images. The proposed approach combines the details of two
images through image fusion to improve the integrity of the
contour of the image object, thereby improving the accuracy
of object detection. It can reduce the false-negative rate in
object detection and has a good execution speed compared
with previous studies.

To ensure that the fusion and alignment methods we chose
were a good combination, we compared our ECC alignment
method with the commonly used methods (SIFT, SURF,
ORB, and Norm GAT). Although the ECC method is slightly
inferior to the Norm GAT method in terms of improving the
fusion quality metric, it is the fastest among all the methods
considered in terms of execution speed. In terms of image
fusion, FusionGAN performed slightly better than the GFF
fusion method used in this study for all five fusion metrics.
However, it required a large amount of computing time, mak-
ing it difficult, if not impossible, in real-time applications.
In this regard, GFF is advantageous.

To evaluate our fusion approach, we used the YOLOv3
and SSD networks to train and detect alert objects in the
images before and after image fusion, where the alert objects
included cars, locomotives, buses, motorcycles, and pedes-
trians. The experimental results showed that the detection
accuracy was improved, confirming the benefits of fusion.
We also compared the results with previously published IR
and VIS image fusion methods for pedestrian detection, and
the results showed that the proposed approach was the best
when comprehensively considering the detection accuracy
and execution time performance. We also observed that the
IR images changed the properties of the VIS images during
fusion. Therefore, the network trained using the VIS image
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dataset only caused a decrease in the confidence index of
object detection after fusion as well as a small decrease in
TP and an increase in FN. Therefore, to use image fusion
to improve the accuracy of object detection networks, it is
better to use fused images directly rather than unfused visible
images as the training samples.
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