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ABSTRACT Graphs are used widely to model complex systems, and detecting anomalies in a graph is
an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not
conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph
neural networks (GNNs) have been studied extensively and have successfully performed difficult machine
learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive
capability via message passing in effectively learning graph representations. To solve the graph anomaly
detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or
structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in
detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according
to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph),
and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our
knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on
GNNs.

INDEX TERMS Dynamic graph, graph anomaly detection, graph neural network, node anomaly, static
graph.

I. INTRODUCTION
A graph is an effective data structure for efficiently repre-
senting and extracting complex patterns of data and is used
widely in numerous areas like social media, e-commerce,
biology, academia, communication, and so forth. Data objects
represented in a graph are interrelated, and the objects are
typically represented as nodes and their relationships as edges
between nodes. The structure of a graph refers to how the
nodes are related via individual edges, and can effectively rep-
resent even far-reaching relationships between nodes. More-
over, graphs can be enriched semantically by augmenting
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their structural representations with attributes of nodes and/or
edges.

Anomaly detection is the process to identify abnormal pat-
terns that significantly deviate from patterns that are typically
observed. This is an important task with increasing needs
and applications in various domains. There have been sig-
nificant research efforts on anomaly detection since Grubbs
et al. [1] first introduced the notion of anomaly (or outlier).
Since then, with the advancement of graph mining over the
past years, graph anomaly detection has been drawing much
attention [2], [3].

Early work on graph anomaly detection has been largely
dependent on domain knowledge and statistical methods,
where features for detecting anomalies have been mostly
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FIGURE 1. Example of graph anomaly detection. Nodes A and C are
detected anomalous attribute-wise. Nodes A and B are detected
anomalous structure-wise (as they do not belong to any community).
Using GNN detects node A to be anomalous both attribute-wise and
structure-wise.

handcrafted. This handcrafted detection task is naturally very
time-consuming and labor-intensive. Furthermore, real-world
graphs often contain a very large number of nodes and edges
labeled with a large number of attributes, and are thus large-
scale and high-dimensional. To overcome the limitations
of the early work, considerable attention has been paid to
deep learning approaches recently when detecting anoma-
lies from graphs [4]. Deep learning’s multi-layer structure
with non-linearity can examine large-scale high-dimensional
data and extract patterns from the data, thereby achieving
satisfactory performance without the burden of handcrafting
features [5], [6].

More recently, graph neural networks (GNNs) have been
adopted to efficiently and intuitively detect anomalies from
graphs due to the highly expressive capability via themessage
passing mechanism in learning graph representations (e.g.,
[7] and [8]). With GNNs, learning and extracting anoma-
lous patterns from graphs, even those with highly complex
structures or attributes, are relatively straightforward as GNN
itself handles a graph with attributes as the input data [9].
The state-of-the-art graph anomaly detection approaches [7],
[10] combine GNN with existing deep learning approaches,
in which GNN captures the characteristics of a graph and
deep learning captures other types of information (e.g., time).
Fig. 1 illustrates an example of graph anomaly detection with
GNN. Suppose that nodes (A) and (C) are detected anomalous
in terms of the node attributes, and nodes (A) and (B) are
detected anomalous in terms of the graph topology. Then,
only node (A) should be detected anomalous if both node
attributes and graph topology are taken into account together
as anomalous factors. GNN models enable us to detect
such anomalies by examining both graph topology and node
attributes simultaneously.

In this survey, we provide an overview of GNN-based
approaches for graph anomaly detection and review them
primarily by the types of graphs, namely static graphs and
dynamic graphs. Compared with other surveys on related
topics — on graph anomaly detection (in general) [2],
[3], graph anomaly detection specifically using deep learn-
ing [11], [12], and general anomaly detection using deep
learning [13], [14] — this survey aims to touch on the unique

angle of graph anomaly detection using GNN models. Given
the significance of GNN and the active ongoing research
efforts for its use in graph anomaly detection, it is our con-
viction that a comprehensive survey on this particular topic is
timely and beneficial to the research community.

Fig. 2 shows the timeline of the surveyed methods. The
survey in Section III is organized according to the classifi-
cation framework used by other surveys on graph anomaly
detection [2], [3], [11], [12]. This area is still new, and yet
the published methods cover a broad range of graphs (static
versus dynamic, plain versus attributed) and anomaly types
(structure, node, edge, subgraph) although the distribution
of the study topics seems skewed toward node anomalies
in static graphs. Additionally, in Section IV, we share our
opinions on several promising opportunities and challenges
pertaining to graph anomaly detection using GNN.

II. GNN FRAMEWORKS
GNNs have been widely used as an effective method to
extract useful features, especially from attributed networks,
while performing graph representation learning (also known
as network embedding) through the message passing mecha-
nism.Model architectures of GNNs have been actively devel-
oped, and include, but not limited to, graph convolutional
network (GCN) [15], GraphSAGE [16], and graph attention
network (GAT) [17]. The main idea of such GNN models is
message passing, which aggregates individual features from
h-hop neighbors. The message passing mechanism of GNNs
can be expressed as follows [18]:

m(k−1)
u ← AGGREGATE(k−1)({h(k−1)v ,∀v ∈ N (u) ∪ {u}}),

h(k)u ← UPDATE(k−1)
(
h(k−1)u ,m(k−1)

u

)
,

where AGGREGATE and UPDATE are arbitrary differen-
tiable functions andmu is themessage that is aggregated from
the neighborhood N (u) of node u as well as the node itself.
At the k-th layer of a GNN, the previous embedding h(k−1)u of
u is updated to h(k)u by aggregating neighborhood information
via message passing. The initial embeddings are set to the
features of nodes, and the output at the final layer corresponds
to the embeddings of the underlying GNN model.

GCN originally presented an effective network represen-
tation model that naturally combines the network structure
and node attributes in the learning process. Subsequently,
Hamilton et al. [16] introduced GraphSAGE, which samples
nodes for message aggregation in a neighbor to handle large
graphs. GAT learns the weights of each node in a neighbor
during message passing.

There have been follow-up studies that use alternative
model architectures. For example,Wang et al. [19] introduced
a graph stochastic neural network (GSNN) to alleviate the
inefficiency of a deterministic way used in existing GNN
models. Most existing GNN approaches embed networks into
either the Euclidean or hyperbolic space. These approaches
have the issue of inflexibility in modeling a complex graph
topology. To address this issue, Zhu et al. [20] proposed a
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FIGURE 2. Timeline of graph anomaly detection methods using GNN models. The methods above the timeline are for static graphs, and those below are
for dynamic graphs.

graph geometry interaction learning (GIL) algorithm, which
employs both Euclidean and hyperbolic spaces.

III. GNN-BASED GRAPH ANOMALY DETECTION
The surveyed methods are categorized by the graph types
(static versus dynamic), anomaly types (nodes, edges, sub-
graphs, andwhole graphs), and network architectures. Table 1
outlines the organization of our survey.

A. GNN-BASED STATIC GRAPH ANOMALY DETECTION
A majority of research efforts on static graph anomaly detec-
tion addressed node anomalies, and only a few addressed
edge anomalies and subgraph anomalies.

1) ANOMALOUS NODE DETECTION
Detecting anomalous nodes using GNNs was carried out
mostly in attributed graphs. That is, each of GNN-based
methods extracts node attribute information as well as struc-
tural information from a static attributed graph and evaluates
the anomaly score of nodes using a certain scoring algo-
rithm. Various GNN-based approaches have been proposed
to effectively extract the necessary features from attributed
graphs. We categorize these methods according to their net-
work architectures and then briefly describe the key ideas
behind each method.

On the basis of the structural information, anomalous
nodes can be further divided into the following three
types: global anomalies, structural anomalies, and commu-
nity anomalies [12]. Global anomalies are referred to as
deviated node attributes in the graph; structural anomalies are
referred to as deviated structural information in the graph; and
community anomalies are referred to as both deviated node
attributes and structural information in the same community.

Note that a fair number of GNN-based approaches are built
upon the graph autoencoder (GAE) framework instantiated
with either GCN or GAT. For anomalous node detection in
static graphs, we review GNN-based GAE methods as well
as standalone GNN methods.

a: GCN-BASED GAE FRAMEWORK
GAE has been most widely used for detecting graph anoma-
lies. For anomalous node detection in static graphs, while

existing GAEs mostly use GCN in the encoder, they adopt
their own decoders depending on the perspective on which
each method focuses. Additionally, an anomaly scoring func-
tion, following the decoder, identifies the abnormality by
scoring each node on the basis of reconstruction errors from
the decoder.

It is likely that graphs are sparse in real-world situations.
Moreover, complex interactions between individual nodes
are difficult to capture due to the non-linear characteristics.
To address these issues, deep anomaly detection on attributed
networks (DOMINANT) [7] detected the global and structural
anomalies using GCN as the encoder while discovering node
representations from a given attributed graph. Decoders in
DOMINANT were designed in the sense of reconstructing
the original graph structure and nodal attributes.

To capture complex interactions of GAE-based approaches
in high-dimensional graphs, Zhang et al. [21] proposed a one-
class classification-based framework, called dual support
vector data description based autoencoder (Dual-SVDAE),
which aims to learn the hypersphere boundary on the normal
nodes’ latent space based on the graph structure and attributes
in order to detect global and structural anomalies. Specifi-
cally, its AE has a dual encoder–decoder architecture — 1) a
GCN-based encoder and an inner product-based decoder
for structural features and 2) a multilayer perceptron
(MLP)-based encoder–decoder for attributes. The nodes out-
side of the hypersphere space are regarded as anomalous
nodes.

Subsequently, Yuan et al. [22] presented a dual GAE
framework, higher-order structure based anomaly detection
(GUIDE), which leverages the higher-order structures in
modeling the complex interaction to detect global and struc-
tural anomalies. Specifically, it consists of the attribute AE
for attribute embeddings and the structure AE for structural
embeddings based on the attention mechanism.

Since GCNs learn node representations via message pass-
ing from the neighbors, they could over-smooth the rep-
resentations, making anomalous nodes less distinguishable
from the normal nodes. To alleviate the over-smoothing issue,
spectral AE (SpecAE) [8] was presented an approach for
detecting global and community anomalies by employing
the Laplacian to calculate the inter-node distances and to
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TABLE 1. Taxonomy and summary of graph anomaly detection methods using GNN models.

simultaneously embed attributes and relations in the under-
lying graph. It used the GCN encoder and the decon-
volutional decoder. Similarly, Luo et al. [23] proposed
community-aware attributed graph anomaly detection frame-
work (ComGA) to detect global and community anomalies
by propagating community-specific representations of each
node with a gateway. In a community detection module,
communities were encoded and decoded for community rep-
resentations. In a tailored deep GCN (tGCN) module, the
representations, structural information, and nodal attributes
were used as input of GCN layers. The gateway concate-
nates the community feature, structure, and attribute. Finally,
in an anomaly detection module, the well-designed structure
decoder and attribute decoder reconstruct the output from the
tGCN module.

Most existing studies do not carefully take multi-view
properties into consideration. The complementary infor-
mation from multi-view attributes can help detect anoma-
lies more efficiently. In a multi-view attributed network,
each node is affiliated with a set of multi-dimensional
features (attributes), which can be represented by k dis-
tinct feature spaces along with k views. By making
use of the multi-view attributes, Peng et al. [24] pro-
posed a deep multi-view framework for anomaly detection
(ALARM) for detecting global and structural anoma-
lies. Specifically, it employs multiple GCNs to embed a
multi-view attributed graph as an encoder and uses two
decoders, each of which reconstructs the graph structure and
attributes.

Chen et al. [25] proposed a framework, called anomaly
on multi-view attributed networks on attributed networks
(AnomMAN), which aims to detect community anoma-
lies. It first decomposes multi-view attributed graphs into
k-subgraphs and encodes the subgraphs with GCNs. Then,
the representations from different subgraphs are concate-
nated using the attention mechanism and reconstructed by a
decoder with respect to both structures and attributes of the
multi-view graphs.

The existing GAE-based approaches do not effectively
extract the contextual information (e.g., neighboring nodes
and subgraphs). In addition, they focused primarily on
node-level representation learning. To address these issues,
Zheng et al. [26] proposed self-supervised learning for graph
anomaly detection (SL-GAD), where the GCN-based encoder
and decoder are used to capture node- and subgraph-level
features along with a self-supervised learning strategy for
community anomalies. Specifically, a target node and sub-
graphs centered on each target node (i.e., contextual infor-
mation) were sampled and fed into the encoder. Afterward,
generative attribute reconstruction and contrastive learning
modules were leveraged to extract the useful features in a self-
supervised fashion. The GCN-based decoder reconstructs the
node attributes, and then the anomaly score is calculated on
the basis of both modules.

b: GCN FRAMEWORK
Since labeling anomalies is labor-intensive and costly, many
efforts have focused on unsupervised learning. Nonetheless,
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labeling information can help enhance the model perfor-
mance. For this reason, Kumagai et al. [27] proposed a simple
yet effective GCN-based method, called semi-GCN, which is
capable of embedding nodes into a hypersphere space while
taking advantage of the structure and attribute features of
a graph by stacking graph convolutional layers in order to
detect global anomalies.

To address the issue above in unsupervised learning and
leverage global context information, Huang et al. [28] pro-
posed the hop-count based model (HCM) based on self-
supervised learningwith thePairwiseDistance algorithm [52]
in which hop counts of node pairs are leveraged as labels [52].
Specifically, it consists of a preprocessing module for label-
ing, GCNs for learning the representation of graphs, and the
MLP module for calculating the anomaly scores.

Pei et al. [29] proposed residual GCN (ResGCN) to alle-
viate the sparsity and over-smoothing issues in modeling
attributed graphs. It uses the attention mechanism with resid-
ual information, modeled by MLP layers, in a graph.

Basically, GAE can bring sub-optimal performance on the
anomaly detection task. To tackle this problem raised by
GAE-basedmethods, Liu et al. [30] proposed contrastive self-
supervised learning (CoLA), which concentrates onmodeling
the relations between nodes and their neighboring subgraphs
to detect the community anomalies. More precisely, the well-
organized node and its subgraph pairs were carefully sam-
pled, and then the GCN-based contrastive learning model
embedded the pairs. Subsequently, a readout module com-
puted discriminative scores, while showing the abnormality
of a target node of the pairs.

Jin et al. [31] presented graph anomaly detection frame-
work with multi-scale contrastive learning (ANEMONE),
which detects community anomalies, to overcome the sub-
optimality based on a multi-scale contrastive learning model.
In the model, two GCN-based contrastive networks are
trained at a patch-level (i.e., node–node) and a context-level
(i.e., node–egonet) to catch the information in multiple graph
scales. Then, a statistical anomaly estimator computes the
anomaly scores of target nodes on the basis of the patch- and
context-level scores.

There were a few studies that jointly take into account
pattern mining and GNNs for graph anomaly detection. For
example, Zhao et al. [32] introduced a GCN-based frame-
work, pattern mining and feature learning (PAMFUL), which
employs pattern mining to guide the GCN in aggregating
local information in order to catch global patterns in the sense
of detecting the global and structural anomalies.

c: GAT-BASED GAE FRAMEWORK
While the GCN-based framework exhibits good performance
in anomalous node detection, its simple aggregation opera-
tion, which can cause the over-smoothing issue, limits the
GCN’s ability to extract useful features. To overcome this,
GAT-based approaches have been developed as an alternative.

Earlier studies did not take into account the complex
interactions between nodes and attributes due to the shallow

learning architecture. To solve this issue, Fan et al. [33]
proposed a deep joint representation learning framework for
anomaly detection through a dual AE (AnomalyDAE), which
captures the complex interactions between the structure and
attributes to detect global and structural anomalies. Specif-
ically, it consists of a GAT-based structure encoder and an
attribute encoder, each employing an inner product decoder.

Moreover, to alleviate the over-smoothing issue in GCNs,
the graph attention-based AE (GATAE) [34] embedded the
input attributed graph by usingmultiple graph attention layers
as an encoder in order to detect global and structural anoma-
lies. An inner product decoder was used for reconstruction of
the graph structure, and a decoder with the same architecture
as its encoder was used to reconstruct node attributes.

Since most efforts have not yet handled the unseen nodes,
the underlying model may be unnecessarily retrained for
newly discovered nodes in graphs. To address the issue,
adversarial graph differentiation network (AEGIS) [35]
detected the community anomalies using an attention-
based graph differentiation network (GDN). Specifically,
an encoder based on GDNs first embeds the graphs at node-
and neighborhood-levels, and then a GDN-based decoder
reconstructs the input graphs along with the anomaly ranking
list.

d: OTHER GNN FRAMEWORKS
Wang et al. [36] proposed one-class graph neural network
(OCGNN), which aims at detecting the global anomalies.
OCGNN combines the representation capability of GNNs
with a hypersphere learning objective function, which enables
us to learn a hypersphere boundary and detect points that are
outside the boundary as anomalous nodes.

Despite significant efforts, it remains an open challenge to
learn suitable communities for effective anomaly detection.
Additionally, defining anomalies is nontrivial since the devia-
tion patterns of anomalies are not easily disclosed. To address
these issues, Zhou et al. [37] introduced abnormality-aware
GNN (AAGNN), which employs a subtractive aggregation
method to decide the pattern deviation between a target node
and its nearby nodes along with hypersphere learning for
community anomaly detection. Specifically, by subtracting
the feature of a target node from the aggregated feature in the
k-hop neighborhood, abnormality of the node is determined
for further embedding into the hypersphere space.

Due to the expensive labeling cost, there have been only a
fewmethods designed in a supervisedmanner. Ding et al. [38]
introduced a supervised GNN-based framework, few-shot
network anomaly detection via cross-network meta-learning
(Meta-GDN), which aims to detect the global anomalies on
the target graph by using very limited knowledge of ground-
truth anomalies from auxiliary graphs with the GCN-based
encoder. Meta-GDNwas built upon graph deviation networks
(GDNs), which first score each node by using a GCN-based
anomaly score learner and then use the deviation loss to
enforce the model to give high anomaly scores to nodes
whose features deviate from normal nodes significantly.
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2) ANOMALOUS EDGE DETECTION
Anomalous edges generally represent different or atypical
interactions between nodes in a graph. Research on such
anomalous edge detection in a static graph has been relatively
limited.

Duan et al. [39] proposed anomaly aware network embed-
ding (AANE), which was designed for plain graphs and imple-
mented using the GCN-based GAE framework. This method
adjusts the fitting loss and the ‘‘anomaly-aware’’ loss, which
consists of both the deviation loss and the removal loss. The
probability from the loss functions is the score of an edge.
An edge with a lower probability is more likely to be an
anomalous edge.

Song et al. [41] proposed subgraph-based framework
(SubGNN) for fraud detection. Sub-graphs near target edges
are extracted and relabeled for entity independence. The pro-
posed relational graph isomorphism network (R-GIN) learns
the features for precise fraud detection.

Zhang et al. [40] proposed a competitive graph neural
network (CGNN)-based fraud detection system (eFraudCom)
to detect fraudulent behaviors on an e-commerce platform.
The CGNN is a GCN-based GAE system. The eFraudCom
system consists of a data processor and a fraud detector.
Specifically, in the data processor, representative normal data
were sampled, and a heterogeneous graph with the sampled
normal data and the rest was generated; and in the fraud
detector, neighbors in the graph were sampled and anomalous
edges were detected by the CGNN.

3) ANOMALOUS SUBGRAPH DETECTION
Anomalous subgraph detection is far more challenging than
anomalous node or edge detection. For one noticeable thing,
nodes and edges in an anomalous subgraph may be con-
sidered normal in themselves. Moreover, a subgraph can be
very diverse in its structure and size. Presumably due to this
challenge, there exist only a limited number of studies in the
literature. We have found one GAT-based GAE method.

Ma et al. [42] proposed a GCN method, global and local
knowledge distillation (GLocalKD), which extracts graph-
and node-level representations from a set of graphs by using
two different stacked GCN modules to detect locally or glob-
ally anomalous subgraphs. Specifically, it consists of two
GCNs, namely, a random target network and a predictor
network, that have the same GCN architecture and incur the
same distillation losses. GLocalKD learns the graph normal-
ity at a fine-grained level by using the predictor network to
predict the graph- and node-level representations produced
by the random target network.

Huang et al. [43] proposed a GAT-based GAE framework,
called hybrid-order graph attention network (HO-GAT),
to detect anomalous nodes and subgraphs simultaneously
by using the structure and attributes of abnormal nodes and
subgraphs. To define the most representative subgraph, the
motif — the widely studied higher-order structure charac-
terized as a densely connected subgraph — was leveraged.

To model the relations between nodes and motifs, HO-GAT
effectively measured the significance of four relations: a node
to another node, a node to a motif, a motif to a node, and a
motif to another motif. Specifically, the graph attention layer
was used in the encoder in order to capture information of the
four relations mentioned above. Additionally, two individual
decoders were employed to reconstruct the structure and
attributes.

4) GRAPH-LEVEL ANOMALY DETECTION
Graph-level anomaly detection (GLAD) finds graphs that
are notably different from most of the graphs in a set of
graphs. There have been limited studies on addressing this
task. As mentioned above, GNN-based methods have proven
its capabilities in graph-structured data, and several methods
such as OCGNN [36] and DOMINANT [7] have successfully
applied GNN to graph anomaly detection tasks. Recently,
there have been attempts to adapt GNN-based graph classi-
fication methods to GLAD tasks.

Zhao and Akoglu [44] proposed one-class graph-level
anomaly detector (OCGIN) based on Graph Isomorphism
Network (GIN) [53], which has drawn attention to barely
studied GLAD tasks while improving the detection perfor-
mance. GIN [53] generalizes the Weisfeiler-Lehman (WL)
test [54], which can efficiently distinguish a broad class of
graphs [55], and achieves powerful classification capability
among GNNs. Specifically, it optimizes the one-class Deep
Support Vector Data Description (deep SVDD) objective
function [56] at the output layer of a GIN model.

To further improve the performance and overcome the
hypersphere collapse where the deep one-class objective
encourages all graph embeddings in the training data to
concentrate within a hypersphere, Qiu et al. [45] presented
a new GNN-based approach, one-class graph transforma-
tion learning (OCGTL), which integrates advantages of deep
one-class classification (deep OCC) [44], [56] and self-
supervised anomaly detection with learnable transforma-
tions [57]. Specifically, OCGTL consists of a set of GNNs
to embed its input graphs into a latent space. Afterward, the
various embeddings were used for training to be close to the
reference embedding.

B. GNN-BASED DYNAMIC GRAPH ANOMALY DETECTION
Unlike a static graph, temporality is an important factor in
a dynamic graph whose structure or attributes change over
time. Recently, various methods for detecting anomalies in
graphs changing or evolving over time have been proposed
based on graph communities, compression, decomposition,
distance metrics, and probabilistic modeling of graph fea-
tures [2]. There are several approaches proposed for dynamic
graphs where GCN is combined with deep learning methods
that are suitable for temporal processing, such as recurrent
neural network (RNN), gated recurrent unit (GRU), and trans-
former. A few studies addressed detecting anomalies in edges
or in nodes of a dynamic graph. There is no study that
addresses detecting anomalous subgraphs yet.
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1) ANOMALOUS EDGE DETECTION
The basic concept of using GCN and GRU together is that
GCN extracts features from a graph and GRU captures his-
torical information useful for anomaly detection. Alongside
the fact that GCNs do not consider the temporal factors in
dynamic graphs, anomaly detection in dynamic graph (Add-
Graph) [10] combined GCN and GRU, which enables us
to integrate long-term and short-term patterns in a window
in order to describe the normal edges by using structural,
attribute, and temporal information. Specifically, it leveraged
GCN to process the previous node state with edges in the cur-
rent graph by harnessing the structural and attribute features
of nodes. The nodes’ states in a short windowwere used as the
short-term information. The GCN output and the shot-term
information were then combined in a contextual attention-
based GRU to extract the hidden state of nodes in order to
calculate the anomaly probability of an edge.

Note that Zheng et al.’s work [10] requires the entire set of
nodes as the input and, thus, is not able to effectively manage
newly added nodes. To address this issue, Zhu et al. [46]
proposed anomaly detection in dynamic network (DynAD),
which uses evolving GCNs, consisting of multiple layers at
each time, and attention-based GRU for adaptive parameter
learning.

There aremulti-level data structure (in addition to temporal
factors) inherent in graphs. Thus, a hierarchical convolu-
tional network model may be conducive to simultaneously
capture global and local features from those graphs. In this
regard, Wang et al. [47] employed a hierarchical GCN with
a Laplacian-based graph coarsening algorithm to leverage
the multi-level structure. In addition, they captured temporal
features by using GRU as well.

To take structural changes around the target edge in a
window into consideration, Cai et al. [48] proposed structural
graph neural network (StrGNN), which produces h-hop sub-
graphs from each temporal graph and uses GCN and GRU
to extract features and temporal dependencies. Specifically,
h-hop subgraphs centered on the target edge at each timeline
were extracted firstly. Then, GCNs and pooling technique
were used to exploit features from the subgraphs. Subse-
quently, GRUs captured the temporal dependencies.

2) ANOMALOUS NODE DETECTION
Dynamic graphs often show complex variation patterns,
which can be interpreted by the stochasticity and spatiotem-
poral relationships between nodes and edges. However, previ-
ous deterministic methods could not handle such a problem.
To solve this, Yang et al. [49] proposed hierarchical varia-
tional graph recurrent autoencoder (H-VGRAE) by employ-
ing GCN-based GAE and RNN—specifically, by stacking
multiple GCN layers and combining the GCN layers with
dilated RNN (DRNN) layers in the encoder. The same meth-
ods in the encoder were used in the decoder except the
Bernoulli and Gaussian MLP for reconstruction in order
to detect anomalous nodes. H-VGRAE jointly learns the

anomaly features of the nodes and edges, and detects node
anomalies using automatic threshold selection.

Zhang et al. [50] proposed a novel dynamic evolving graph
convolutional network (DEGCN) model to capture evolving
patterns of both local node-level and global graph-level soft-
ware behaviors. It consists of three stages. First, the multi-
scale graphs are generated by sliding windows. Second, on a
directed GCN (DGCN) model, in-degree node features and
out-degree node features are summarized simultaneously, and
on a graph encoding-based GRU (GGRU) model, the evolv-
ing patterns of graphs are learned for its time steps. Third,
the features from DGCN and GGRU are combined, and MLP
layer calculates the anomality score.

Zola et al. [51] proposed a graph-based approach to detect
malicious connections on traffic networks. Specifically, in the
first stage, a temporal dissection operation was used to split
the entire network information into time intervals and to
extract Traffic Dispersion Graphs (TDGs). In the second
stage, new synthetic samples for each TDG were created to
balance the number of attackers and normal nodes. Finally,
the TDGs were trained by GCNs and anomalous nodes were
detected.

IV. OPPORTUNITIES AND CHALLENGES
GNN-based graph anomaly detection is a quite challenging
problemwith lots of potentials to build sophisticated methods
based upon the existing approaches presented in this sur-
vey, particularly for detecting edge anomalies and subgraph
anomalies. Further, there are research opportunities and open
challenges that are important and not addressed yet. This
section summarizes some of them.

A. EXPLAINABLE GNNs FOR DETECTING GRAPH
ANOMALIES
The output of anomaly detection methods is either an
anomaly score or a top-k ranking list. To intuitively under-
stand the meaning of the score and list, additional explana-
tions need to be provided. Since GNN-based methods are
inherently less interpretable than traditional machine learning
approaches, it is important to resolve the issue along with
explainable models for anomaly detection. Currently, there is
relatively little work on designing explainable GNN models
for graph anomaly detection (e.g., Deng et al. [58]).

B. IDENTIFICATION OF GRAPH ANOMALIES WITH GNNs
Anomalies aremostly recognized on the basis of a reconstruc-
tion loss and a distance-based stochastic function. Although
this loss function is capable of capturing deviating patterns
in training, the reconstruction loss is vulnerable to noise and
the distance-based function does not work properly when
anomalous and normal data are distant in the embedding
space. These challenges will be no less, or rather worse,
for the problem of identifying graph anomalies. While many
GNN-based approaches embed graphs into either Euclidean
or hyperbolic spaces, they do not fully utilize the information
available in graphs or lack the flexibility to model intrinsic
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complex graph geometry [20]. Therefore, it is a promising
future research direction to design a suitable embedding
space and loss functions to detect graph anomalies.

C. CLASS IMBALANCE IN GRAPH ANOMALY DETECTION
WITH GNNs
Imbalance between normal and anomalous data is inevitable
since the anomalies tend to occur rarely. As the model per-
formance is heavily dependent on training data, the class
imbalance is a challenge that must be overcome. Rather than
naïvely using negative sampling, a better strategy may be
augmenting the training data, which is also a challenging
issue in graph domains. There is little research carried out
to resolve the issue of class imbalance in graph anomaly
detection with GNNs in the literature (e.g., Zhao et al. [59]).

D. ANOMALY DETECTION WITH GNNs FROM
HETEROGENEOUS GRAPHS
A heterogeneous graph is a graph that contains multiple
types of nodes and edges and often occurs in practice. Stud-
ies on heterogeneous graph anomaly detection with GNNs
have been largely under-explored in the literature. Handling
the heterogeneity in solving the anomaly detection problem
along with GNNs would be challenging, particularly if com-
pounded by the temporal factors in a dynamic graph, due
to the modeling difficulty including extraction of multiple
relations of nodes/edges. Feasible strategies may include (1)
sampling target edges or subgraphs via meta-paths and (2)
extracting useful information via embedding the types of
heterogeneous graphs.

E. FEW-SHOT GRAPH ANOMALY DETECTION WITH GNNs
Although GNN approaches have rapidly advanced over the
past a few years, few-shot graph anomaly detection with
GNNs has nor been studied much yet. While, in real-world
scenarios, it is easy to obtain a few labeled anomalies from
graphs similar to the target graph, there have been only a few
recent attempts to leverage such a potential to develop GNN
models that can leverage a small number of labeled anomalies
(e.g., Ding et al. [38]). There are still open challenges on
designing diverse meta-learning algorithms to conduct few-
shot graph anomaly detection aided by GNNs.

V. CONCLUSION
In this paper, we provided a comprehensive survey of state-of-
the-art graph anomaly detection methods that were built upon
GNN models. Additionally, we presented several opportuni-
ties and challenges for further research in this area. A major-
ity of research efforts have been concentrated on detecting
node anomalies from static graphs, while types of graphs
and anomaly types are rapidly expanding to include dynamic
graphs and edge/subgraph/graph-level anomalies. This trend
is expected to continue in the coming years. Some specific
application domains, such as anomaly detection in IoT, in pro-
gram analysis (e.g., Android malware and OS verification),
remain for future research. We hope that this survey will

trigger and stimulate more active research on graph anomaly
detection using GNNs and be a stepping stone for subsequent
surveys as the research progresses.
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