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ABSTRACT As applications move to multiple clouds, the network has become a reactive element to support
cloud consumption and application needs. Through each generation of network architectures, identifiers and
the use of dynamic locators evolved in different levels of the protocol stack. The identifiers and locators
type is defined by the isolation boundary and how the architecture considers semantic overload in the IP
address. Each solution is an outcome of incrementalism, resulting in application delivery outgrowing the
underlying network. This paper contributes an industrial retrospective of how the schemes and mechanisms
for identification and location of network entities have evolved in traditional data centers and how they match
cloud-native application requirements. Specifically, there is an evaluation of each application artifact that
forced necessary changes in the identifiers and locators. Finally, the common themes are highlighted from
observations to determine the investigation areas that may play an essential role in the future of cloud-native

networking.

INDEX TERMS Workload identifiers, network locators, naming and addressing, data center, cloud-native.

I. INTRODUCTION

In today’s dynamic environment, the network is under pres-
sure to deliver connectivity and identity across multiple
clouds in an agile manner. The architectural support for iden-
tifiers and locator split has solidified their role as an essential
function to keep pace with application growth and flexible
cloud computing models.

From a network access-control perspective, IP addresses
could be viewed as identity labels for authorization in a net-
work zone model and, in parallel, are routing instructions
for networked elements to guide a packet to the destination.
In each generation of network architectures, there is a realiza-
tion that the IP space cannot serve two purposes of identity
and location in virtualization and cloud computing environ-
ments. A technique to overcome the semantic overload of IP
addresses was to split the IP space for persistent identity and
dynamic location through encapsulation protocols as a point
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of indirection. However, as the new generation of cloud appli-
cations emerges, the IP space has become weak and mutable
to maintain its role as a persistent identifier. For example,
microservice applications heavily depend on network prox-
ies, known as sidecars, to provide application availability
and resiliency. In such network rendezvous architectures, the
IP address has no lasting semantics [28]. An observation is
made that the cloud-native architectures have shifted work-
load identifiers and created new namespaces to support ser-
vice discovery, routing, and identification for applications to
extend administrative boundaries.

This paper contributes to a discussion of the schemes and
techniques for identifying and locating network entities that
have evolved in traditional data centers and how they match
cloud-native application requirements. The distinction this
paper makes is that it surfaces how each application arti-
fact forced a shift in workload identifiers required for dis-
covery, routing, and identification, which is not so obvious
in past papers from a comparison point of view. For exam-
ple, the rationale behind identifiers, locators, and insertion
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FIGURE 1. LISP Endpoint Identifier and Dynamic Locator.

points required for today’s cloud-native networks is empha-
sized rather than focusing on identity and location split in its
generality.

In addition, this paper contributes an increased awareness
of evolved cloud application artifacts that lead to the func-
tionality required for Service Mesh and its impact on the use
of location-independent identifiers.

Finally, this paper closes by considering the discussed
techniques, state-of-the-art opportunities, and directions for
future investigation into the critical elements foundational to
a cloud-native network.

Il. LOCATION/ID SEPARATION PROTOCOL

A. SEMANTIC OVERLOAD IN THE IP ADDRESS

As background, the Internet Architecture Board (IAB) work-
shop [43], the concerns centered around the current routing
information base (RIB) size of the border gateway proto-
col (BGP) [50]. One of the underlying causes of routing
scalability was identifier/locator overload in the IP address.
Enterprises were advertising provider-independent prefixes
across sites to avoid server renumbering. From a fire-
wall point of view, the server’s IP address was its iden-
tity; therefore, IP renumbering would be an operational
burden.

With the current IP architecture, it seemed impossible
to have a single IP space that could serve two purposes,
and a split seemed necessary to scale the routing system.
This conclusion was the supporting material that led to the
creation of the locator/ID separation protocol (LISP) [18].
There are several other proposals to separate identifiers and
locators, such as HIP [45], Mobile IP [48] and RINA [29].
To get started, this section selected LISP that addressed the
workload mobility challenges traditional in data centers.

The initial technique of LISP was to provide topological
aggregation, leveraging a locator approach for the IP routing
system. The network’s edge contains more specific details
needed to reach the endpoint. Provider-independent networks
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resided behind LISP networks and behaved similarly to net-
work address translation (NAT) [17]. However, in contrast to
NAT, the translation state in LISP was not held in a network
device but stored in the original IP packet. In LISP, the orig-
inal IP packet is encapsulated with an outer IP header that
contains the locator information.

B. LISP FOR VIRTUALIZED DATA CENTERS AND THE
VIRTUAL MACHINE ARTIFACT

While the initial motivation of LISP was to solve a route scal-
ability issue, it became a tool to address mobility challenges
created by virtualized data centers (VDCs) [4]. VDCs refer
primarily to a hosted virtualization platform, where servers
are decoupled from their underlying hardware resource. This
disaggregation allowed the infrastructure layer to isolate
memory, CPU, and storage to each virtual machine (VM)
instance managed by the hypervisor [62]. Applications within
the VMs artifact remained unaware of this abstraction.
As VDCs became mainstream, VM portability between phys-
ical hosts became an appealing function for disaster recovery,
operations maintenance, and a method to utilize capacity in
active-active data centers (DC).

C. IDENTITY AND THE IP NAMESPACE

LISP naturally addressed the VDCs needs by allowing VM
migration between data centers without burdening the rout-
ing system. The insertion point of LISP was at the edge
of the data center core network, where the endpoint iden-
tifiers (EIDs), in this case, VMs, are mapped to routing
locations (RLOCs) at the geozone level. The VMs are not
globally routable and are topologically independent from
the underlying network. For example, in Figure 1 VM
“/foo* migrates from Geo-Zone-2 to Geo-Zone-3 without
disrupting the existing transport-layer session from a client
in Geo-Zone-1. Through LISP control-plane notifications,
Geo-Zone-1 receives a Map-Notify to inform that “/foo’s*
IP address of ““10.1.1.1‘has migrated to Geo-Zone-3. The
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FIGURE 2. Core versus Edge Split: The Newly Revised Edge.

LISP-speaking router “A1l°‘ updates “10.1.1.1° entry to map
to “C4* in Geo-Zone-3. This map and encapsulation with
a dynamic approach allow the VM’s identity namespace to
remain preserved during the migration procedure.

In summary, LISP introduced a disjoint IP namespace,
where IP is separated as an identity (i.e., EID) attribute and
IP as used for location. This separated namespace technique
in the data center network architecture allowed VMs to pre-
serve their identity while taking advantage of the virtualiza-
tion operational model, which proved to minimize service
disruption based on its mobility usecase. LISP’s mapping
system introduced a new approach to providing network
control at the edge of the data center. The arguments for
separation of edge vs. core become an important approach
for the IP routing system [30], and for providing a network
insertion point to support ephemeral and mobile data center
workloads.

IIl. NETWORK VIRTUALIZATION

A. CORE VS. EDGE SPLIT

In the section above, LISP’s identifier mappings are only
relevant at the edge (i.e., VMs), while the core of the net-
work is forwarding IP packets to the correct Geo-Zone (i.e.,
location). This architecture is similar to Multi-protocol Label
Switching (MPLS) [54]. In MPLS-VPN [53], the provider
core (P) is solely focused on forwarding packets based on
MPLS labels, while the provider edge (PE) has specific
details of the neighbor domains (i.e., identifier). This separa-
tion allowed the PE to create multiple virtualized paths, which
cater to overlapping address spaces over the same physical
network.

B. NETWORK VIRTUALIZATION FOR CLOUD

In the quest for a purpose-built network for a cloud computing
architecture, network virtualization (NV) [36] replicated the
same separation of core and edge as demonstrated in the
LISP and MPLS design and solved new challenges that cloud
computing created.

In the technique of Network Virtualization (NV), the net-
work becomes a reactive element to the application and
cloud needs, promulgating the hypervisor vSwitch [49] as
the newly revised edge, depicted in Figure 2. This is also
known as the virtual network edge (NVE) [37]. Furthermore,
cloud computing forced the network architecture to create a
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unifying abstraction across hypervisors. In contrast to LISP
and MPLS-VPN, NV introduced the dynamic creation of
virtual networks, each with independent address spaces and
topologies that coexist over the same physical network.

In cloud computing, self-service consumption, rapid VM
provisioning, and lifecycle management are subsumed in the
NV architecture. The NVE allowed tenants to dynamically
create network topologies to support the virtualized applica-
tions’ or VM'’s lifecycle state. The virtual switch (vSwitch)
within the hypervisor becomes the first network control point
at the edge. In an NV model, the vSwitches are programmed
by a logically centralized control plane responsible for syn-
chronizing the forwarding state across all NVEs. The con-
troller cluster is responsible for the overall state management,
including the VM location. In addition, the control plane dis-
seminates the VM identifiers to locator mappings efficiently
using an advertisement-based model.

C. IDENTITY AND THE IP NAMESPACE

In the context of NVEs, vSwitches are responsible for
providing connections over IP tunnels as paths without
modifications to the physical network. While there are
many variations of overlays [12], [24], the industry pri-
marily adopted the Virtual eXtensible Local Area Net-
work (VXLAN) [40] encapsulation protocol as the de facto
standard in the data center and cloud. VXLAN embeds
tenant-specific identifiers for isolation to ensure packets are
distinguished between tenants that cohabit on a common plat-
form. VXLAN preserves the original IP space as the VM’s
identity. The encapsulation contains an outer IP space to
be used as a dynamic locator known as virtual-tunnel end-
points (VTEPs), which is a routable interface bound to the
hypervisor.

In summary, NV adopted an application first principle,
unlike LISP, where the NVE dynamically reacts to the con-
sumption needs of self-service clouds. Rapid VM provision-
ing and management of lifecycle state requires the control
plane to disseminate identifiers and locator mappings to
hypervisors on a need-to-know basis. Like LISP, NV created
a disjoint IPv4 namespace, separating the role of identifier
and locator as independent addresses. Due to the prevalence
of internal network-based middleware such as firewalls, the
IP address must maintain its role as the core identifier for
the VM.
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IV. IDENTIFIER LOCATOR ADDRESSING

A. CONTAINER ARTIFACT AND THE ENTERPRISE CLOUD
There has been a great increase in the adoption of delivering
applications in the format of containers [3]. It is appealing for
cloud-native applications to be delivered in container-based
virtulization [61] due to their efficient resource utilization and
portability between cloud platforms. There are two new chal-
lenges that containers create for networking. Firstly, every
container process requires a single IPv4 address, which leads
to exhaustion in CIDR allocation due to the scale of processes
compared to virtual machines. Secondly, the container’s run-
time layer is above the hypervisor, requiring a new network-
ing control point.

B. IDENTIFIER LOCATOR ADDRESSING (ILA) NAMESPACE
To address these challenges, identifier locator addressing
(ILA) [26] was proposed. Similar to NV described in the
previous section, ILA is also an overlay network focused
on separating core and edge networks. However, ILA differs
from NV in two ways. ILA focuses on the layer above server
virtualization, to which NV becomes transparent. In addition,
ILA is an IPv6 overlay solution that takes advantage of a
larger address space to modify the identifier, thus removing
encapsulation overhead that VXLAN and LISP introduced.
Its primary motivation is to support container virtualization
use cases such as scheduling, task migration, and container
orchestration [34], while preserving container identity.

The fundamental principles of ILA were borrowed from
earlier work in the identifier-locator network protocol
(ILNP) [2] and GSE (8+38) [46], which also addressed the
challenges of overloaded semantics in the IP address. The
ILNP approach demonstrated a way of using addressing by
creating a distinction between the core routing and end sys-
tems.

While ILNP had the design properties to fit the dynamic
behavior of cloud workloads, the implementation required
modifications to the TCP stack to perform dynamic changing
of locator bindings. ILA addressed this challenge by imple-
menting an IPv6 [13] transformation technique that ensures
the transport layer remains unmodified with an immutable
64-bit identifier and SIR prefix. There is an allocation of a
/64 prefix per host representing the locator within the ILA
scheme. As described in Figure 3, when a client/server ses-
sion is initiated between two containers, the ILA host will
perform an outside-of-process stateless IP address transfor-
mation on the higher-order 64 bits, the locator, to forward
packets to the container’s destination. On the receiving side,
the ILA host rewrites the destination IP address from the loca-
tor prefix to the original identifier address and subsequently
delivers the packet to the container application.

The control plane of this architecture disseminates iden-
tifiers and locator mappings to all ILA host routing ele-
ments. The ILA control plane is a distributed key-value store
that manages mappings of identifiers to locators in a net-
work. As tasks or containers are registered, the mappings are
published to the control plane and disseminated to all ILA
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FIGURE 3. IPv6: Identifier and Locator Transformation.

hosts through its push-based model, which differs from LISP
pull-based model.

In summary, while the ILA solution applies creative
techniques through IPv6 transformations, the administrative
boundaries of this architecture assume the control of the host
stacks to allow an insertion strategy to preserve the origi-
nal container identifiers and modify the locator instructions
within the packet. In addition, it will continue to become
more challenging to preserve the end-to-end identity that
IPv6 advocates across heterogeneous cloud providers as NAT,
Loadbalancers, and network-based middle-ware will force
identifiers higher in the protocol stack.

V. CLOUD-NATIVE SERVICE MESH

A. MICROSERVICES AND SERVICE MESH

Previous sections discussed the networking challenges in
cloud computing models that deployed N-Tier applications in
VM or container artifacts. This section discusses the network
requirements for a new generation of cloud-native applica-
tions called microservices [15]. A microservice is a collec-
tion of networked services, with each service performing a
specific business function. Services are built independently
from each other and delivered in the format of containers. The
value is that developers can alter and upgrade the application
without a full redeployment.

A single cloud-native application can be represented by
thousands of services that are continually changing states.
The probability of communication failure between services
increases as cloud-native applications grows exponentially.
Application resiliency leads to the need for a dedicated infras-
tructure layer handling the service-to-service communica-
tion. Service mesh [39], [41] addresses this challenge by
injecting a proxy service, known as a sidecar, distributed
within an application or microservice boundary. The service
mesh ensures an optimal application-level response time by
handling requests, retries, and timeouts, such as circuit break-
ing, load balancing, and traffic engineering. Each applica-
tion request is routed optimally and is load-balanced without
the knowledge of the application. The following sections
describe the refinements of identifiers and locators, con-
sidering that an application residence is in multiple cloud
platforms.
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B. SERVICE MESH NAMESPACE FOR DISCOVERY AND
ROUTING

The service mesh is responsible for discovering, locating, and
routing between proxies to establish application connections,
as depicted in Figure 4. In this example, the client /bar”
service requests to communicate with the server ’/foo” ser-
vice. Firstly, the client sends an HTTP [20] request to query
for foo, modifying the host header field to “Host: foo*‘. The
service name ~’/foo” is an anycast identifier [7] mapped to
multiple instances or replicas of the service. The service
mesh has a selection criterion to map the service identifier
to a locator. In this example, the query for ’/foo” is based
on the proximity and latency between the client and server,
and therefore ’foo-1"" is matched against the Fully Qualified
Domain Name (FQDN) fool.example.com . The resolu-
tion of this FQDN is IP address ’100.1.1.1”, which is the
proxy rendezvous point. Furthermore, proxy-1 sets up a TCP
connection with Proxy-2. Proxy-1 modifies the HTTP host
header field to “Host: foo-1°" to connect with the foo-1 ser-
vice. In this example, the HTTP host header is a namespace
that shifted the unique identifier from Layer-3 to Layer-7.
The namespace to distinguish services is not limited to HTTP.
With HTTP/S [51], the host header is encrypted, and the
server name indicator (SNI), which is an extension of the
TLS protocol [16] provides the namespace to distinguish
services.

These name-based techniques were borrowed from earlier
work in virtual-host networking [33], where web servers were
consolidated to a common platform, overloading a single IP
address with multiple service aliases [38]. A client would
replicate the name previously learned from the Domain Name
System (DNS) [44] into the HTTP application namespace,
e.g., Host header field, to provide an application demuxer
beyond the network layers. The HTTP/S protocol became
the vehicle for carrying names and has been widely known
as a name-based routing approach [35]. Content Delivery
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Networks (CDNSs) also adopted the name-based virtual host-
ing to disentangle the conventional bindings between IP
addresses, the applications they represent, and the servers to
which they are assigned to [19].

C. SERVICE MESH IDENTITY AND THE URI NAMESPACE

Regarding identity, It is important to note that there are three
distinct layers: the platform layer, the host layer, and the
process/service layer. IP addresses have been the common
identifier for modeling host-to-host communication. How-
ever, the scenarios where applications span multiple clouds
present three challenges to model identity at the host layer:

o Workloads are ephemeral in nature, and the IP address
is short-lived as an identifier.

« Workloads are deployed outside traditional administra-
tive boundaries, such as the public cloud, which does not
intersect with the internal enterprise network.

« Given that the service mesh proxies TCP connections
and the network is riddled with network-based middle-
ware boxes, the IP address becomes a weak and mutable
identifier.

The objective of workload identity is to model service-to-
service communication without preserving the IP address as
the identifier. Applications that span administrative domains
and cloud realms require identifiers to be uncoupled from the
underlying infrastructure.

For cloud-native applications, the secure production iden-
tity framework for everyone (SPIFFE) addresses the work-
load identity challenge [58] using its naming schema inde-
pendent of the discovery and routing described in this section.
There are three components of SPIFFE: a specification
and identifier used as a referral for a service (SPIFFE-ID),
a SPIFFE Verifiable Identity Document (SVID) for embed-
ding the SPIFFE-ID that is signed by a trusted authority,
and the Workload API, which is an agent running within the
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cloud that provides a method of obtaining the SVID. The
SPIFFE-ID is a uniform resource identifier (URI) [5] that
includes the scheme “spiffe://,* a trust domain, and a path
that specifies the name of the service. For example, the foo
service is a billing system whose administrative domain is in
the production environment. The identifier can be represented
as the following:

spiffe://production.example.com/billing/foo

The SPIFFE ID is codified into an SVID, which is an exten-
sion of the x509 certificate [11], signed by an authority inside
the trust domain. Within the specification, the SPIFFE ID is
set to the URI type in the subject alternative name extension
(SAN) [11]. Thus, each workload will have a SPIFFE bundle
used for path validation against all the SVIDS that belongs
to the trust domain. SVIDs allow clients and servers to gain
mutual knowledge by asserting their provable cryptographic
identity for mutual TLS authentication [14], [23].

Root CA

Intermediate Intermediate
CA1 T CA2

Proxy-1 : Proxy-2
Service /bar mTLS handshake Service /foo
Trust: Trust:

production.example.com

FIGURE 5. PKI: Mutual Authentication within a Trust Domain.

As depicted in Figure 5 an X509 certificate is issued to
services ”’/bar”’ and ’/foo’’. Both services are part of the trust
domain of ”production.example.com’ and have a common
root of trust in the PKI hierarchy [9]. Both services will
undergo the verification process in this scenario and exchange
their x509 certificate as their identity document for mutual
TLS authentication. The trust domain within the SVID identi-
fier allows the administrative domain the flexibility to expand
outside its platform and across multiple clouds where control
of identity at the IP level is harder to achieve.

In summary, in the cloud-native service mesh, IP addresses
are no longer identifiers for applications, and the distin-
guishing factors are names. Names do not represent a host,
VM, or container; they refer to services inside an applica-
tion. Services are assigned a persistent name as the identifier
with a flexible administrative scope, spanning multiple cloud
environments and organizations. Therefore, it is essential to
delineate naming systems’ for identifiers and locators in the
cloud-native service mesh. First, the service name is derived
from the HTTP header for the discovery and locating phase,
which provides a mapping to a concrete FQDN. The URI
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within the SVID provides the verification phase for digital
identity.

VI. COMPARISONS AND FUTURE DIRECTIONS

This paper discussed how the iteration of each network
architecture addressed a new set of challenges that were
non-existent in the previous generation. The paper includes
an observation that the application artifact and cloud con-
sumption model forced changes in identifiers and locators at
various layers of the protocol stack. Firstly, this section will
summarize how the core vs. edge evolved based on the net-
work control required to meet the cloud-native needs. After
that, the paper discusses future directions and provides topical
areas that may play an essential role in future cloud-native
networking.

A. COMPARISON BETWEEN DISCUSSED TECHNIQUES
Table 1 summarizes the association between the generation of
the application artifact, identity controller, identifier names-
pace, and the network architecture insertion point. LISP and
NV were the generation architectures that intersected with
server virtualization. The insertion point in both approaches
assumes control of the network platform and therefore takes
a bottom-up approach to identifiers and locators anchored
to the IP layer. In contrast to LISP, NV shifted the edge
to the hypervisor, projecting an application-first architecture
supporting the dynamic characteristics of enterprise cloud
computing. ILA adopted similar techniques to NV by adding
a layer of indirection with IPv6 to preserve the container
identifier. However, the ILA edge model shifted to a layer
above NV by inserting control at the container OS network
namespace level.

The public cloud created a new challenge not present in
previous approaches. LISP, NV, and ILA are approaches
where the insertion point can assert identity, independent of
location, as long as there is network control of the platform.
However, as the public cloud infrastructure layers are hidden
from consumers, it negates the ability of the network-centric
approaches to provide a persistent identity at the IP layer
using overlay techniques. A new generation of applications
is designed to be less dependent on the underlying platform.
The artifact comprises ancillary services known as a sidecar,
which provides reachability and resiliency. The cloud-native
service mesh addressed this challenge by creating an insertion
point as distributed proxies to be the new edge. The abstrac-
tions for identity evolved to be an attribute of the applica-
tion. Therefore it did not serve the purpose of structuring the
IP address plan for identity and location as demonstrated in
predecessor architectures. The use of naming as a point of
indirection demonstrated that network flows could be distin-
guished in the context of the application-level session.

SPIFFE was separated into its own category with the
cloud-native workload identities framework. Many applica-
tion instances could represent a service in a plurality of cloud
platforms. SPIFFE addresses this challenge by disseminating
identifiers in the form of the URI to genuine instances of a
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TABLE 1. Supporting Network Architectures, Namespace, Idenitifers and Insertion Points.

Single-Tier: Virtual Locator/Identifier

" : Disjoint IPv4 IPv4 Address Data Center Core Network
Machine Seperation Protocol
Multi-Tier: Virtual s e P ;
Machines Network Virtualization Disjoint IPv4 IPv4 Address Hypervisor Network
Multi-Tier: Containers Idanitifisr Lc_)cator Separated IPv6 IPv6 Address Container OS - Network
Addressing Namespace
Mlcrosgrwce: Cloud-Native Service HTTP/S Host Header Service & Canonical Container Sidecar Proxy
Containers Mesh Name
Micraservics: SPIFFE X509 URI PKI Certificate Issuance
Hyperscale

service. The x509 document underpins the SPIFFE solution;
therefore, cloud-native workloads must have a common root
of trust to authenticate mutually. If two services are under dif-
ferent trust hierarchies, then a third-party broker is required to
exchange trust bundles between authority domains for mutual
authentication.

Based on the observations of the cloud-native network
requirements, there are four distinct roles of naming used as
identifiers:

1) Service. A public-like persona to discover and identify
services needed to compose an application.

2) Locator. The core or canonicalized name and the loca-
tor identifier to resolve the IP address of the service
instance.

3) Routing. An application-level identifier replicated in
the application protocol namespace to distinguish net-
work sessions over a common IP address target.

4) Identification. Verifiable identifier to provide assur-
ance it is a genuine copy or application instance.

Using these identifiers is only possible with the strict gov-
ernance of naming inside an isolation boundary. Therefore,
a namespace is required to ensure the scope of discov-
ery, identifying, and locating workloads is within the trust
domain.

B. COMPARISONS WITH THE STATE-OF-THE-ART

In recent years, developers have shifted their focus to con-
structing and deploying microservices without considering
the underlying infrastructure requirements [52]. Serverless
computing is an example of this paradigm that allows devel-
opers to focus on the business logic of the application without
the consideration of provisioning and scaling of the entire sys-
tem. Serverless functions are seen as event-driven, which trig-
gers a temporary execution environment only when required.
Amazon Web Services (AWS) Lambda, Microsoft Azure
Functions, Google Functions, and Cloudflare Workers have
introduced serverless capabilities, known as Function-as-a-
Service (FaaS) [8].
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In the event the serverless function is called, a virtualized
workload is provisioned with application files and dependen-
cies required to execute the function and terminates after the
operations are performed [25]. In most implementations, con-
tainers are used as the primary artifact for their lightweight,
application process isolation, and resource provisioning [21],
[31]. Although serverless was originally enabled for cloud
environments, it gained traction to cement its position in edge
computing [59] where computational resources are closer
to the data source [1]. However, as the edge environments
consist of resource-constrained devices and diverse CPU
architectures, WebAssembly (Wasm) [55] has emerged as a
promising artifact for future serverless support at the cloud-
edge [21], [22], [25], [42].

The serverless model has created new challenges in
cloud-native networking that were not present in previous
sections of this paper. In comparison, cloud-native service
mesh provides end-to-end network control through dis-
tributed proxies. Each proxy enacts as an ambassador for each
service-to-service communication, using the above four iden-
tifiers. Unlike service mesh, serverless computing offered by
cloud providers does not expose the naming and addressing
of the infrastructure platform [32], which thwarts the ability
to bind the identifiers and locators for network control.

Irrespective of the serverless artifact type, the cloud
providers only expose a publicly accessible Universal
Resource Locator (URL) [6] identifier, which is used in the
HTTP protocol as an access mechanism to a serverless func-
tion. The URL namespace describes the path instructions to a
location of the available service. For clarity, serverless appli-
cations do not reside in a single location but are replicated
globally; therefore, the same URL is also required to access
multiple instantiations or replicas.

In Figure 6, the domain name portion of the URL is referred
to as anycast identifier [7], which is persistent and resolves
to multiple locators or IP addresses. The domain name to
IP address translation is coordinated by the cloud-providers
DNS-based global traffic management system (GTM) [27].
The DNS-Based GTM enacts as a geographic site-selector
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directing client connections to the closest serverless func-
tion [56]. This allows the URL to remain immutable, allowing
the DNS to be the identity-like and public persona, returning
customized answers based on the information from the client
queries [10], [57].

C. FUTURE DIRECTIONS AND INVESTIGATIONS

A preview of future directions using Internet identifiers to
support cloud-native services is appearing. Globally decen-
tralized cloud-native applications rely on URLs to mimic and
behave like URIs; To refer to the service independent of its
location. This leads to three investigative areas to provide
identifiers and the underlying infrastructure support that will
play an essential role in cloud-native networks.

1) PERSISTENT IDENTIFIER

In the digital library space, the Digital Object Identifier
(DOI) [47] is a persistent identifier that refers to a book
or document residing in multiple locations at the same
time. Analogous to a library, a cloud-native application also
contains instances simultaneously running in multiple envi-
ronments and locations. However, the complexity is that
cloud-native applications today require four separate iden-
tifiers to be referred to and verified as the given instance.
Cloud-native architectures need to adopt similar principles
from the digital libraries; all application service instances
should refer to as a single identifier. What an application is
should be separated from where it is.

Furthermore, an investigation is also required to provide
referential consistency that anchors application instances
to a common identification scheme. This would comprise
a directory service where the identifier could be passed
between parties to provide locator mappings to cloud
resources. In addition, the identifier is decorated with addi-
tional metadata such that the identifier would remain persis-
tent. Unlike copies of books, applications evolve; therefore,
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providing additional metadata to adorn the query is a possible
technique to obviate the need to create a new identifier.

2) IDENTITY RENDEZVOUS

The identity rendezvous provides two functions. Firstly, iden-
tity attestation to analyze credentials from all workloads to
assure they are qualified application replicas or instances.
Secondly, to connect and mutually authenticate between
source and destination service. This approach is only possible
when there is control over the workload deployment pat-
tern, e.g., container workload and its ancillary service. When
microservices are also constructed with serverless functions,
it exposes new identity challenges that require the following
two investigation areas. Firstly, as described in this section,
cloud providers hide the interconnections of a serverless envi-
ronment. It is possible to provide identity rendezvous as a
sidecar or proxy as long as it is outside the providers’ realm.
The challenge it may create is additional network latency
costs, which are worth exploring. Secondly, the execution of
a serverless function has a temporary runtime environment
which creates performance vs. security pressure to minimize
application startup delays. In the context of the SPIFFE exam-
ple, the framework assumes control of the underlying oper-
ating system of where the application is running. Since the
serverless environment does not provide access, it is unclear
how the attestation process will be completed to ensure the
application is a genuine instance and the true owner of the
identifier it passes before mutual authentication. This is use-
case is not limited to serverless but future applications where
only the API is exposed without access to the underlying
infrastructure.

3) DISSEMINATION OF IDENTITIES

In order to construct complex applications between net-
work and cloud realms, isolation boundaries can span mul-
tiple clouds and be created on-demand. This ensures that
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application instances within an isolation boundary are
uniquely rooted in a common trust model. If the industry
wishes to continue using a SPIFFE-like model, where the
certificate chain of trust underpins the identity framework,
the challenge arises when applications are not within a com-
mon isolation boundary. While federation techniques are
well understood in the industry with various approaches to
exchanging bundles [60], the architecture lacks a third-party
identity broker to manage and distribute trust bundles for
general use and on a need-to-know basis.

VII. CONCLUSION

This paper highlighted how each generation of network archi-
tectures addressed a challenge created by evolved appli-
cation artifacts. It highlights that cloud-native applications
have shifted identifiers from the IP layer and have become
an attribute of the application layer used to distinguish
workloads and provide location-independent identification
schemes. In addition, this paper reviewed the current state-of-
the-art application deployment patterns and the future identi-
fier challenges that may arise. This is an important topic that
requires further investigation into three topical areas. Firstly,
evaluate existing persistent identifiers in the digital space
that could be applied for broader use. Regardless of location,
application instantiations should be referred to as the single
identifier. Secondly, the verification process, where creden-
tials are analyzed to provide identity attestation and issuance
of its imprimatur, should be consistent across any cloud and
edge computing platform. Lastly, the delivery method to con-
trol and disseminate trust anchors to allow application com-
munication between trust realms will underpin the success of
a common identity system. It is hoped this retrospective of
identifiers may influence the future design of identifiers and
locators used in cloud-native architectures.
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