
Received 30 August 2022, accepted 21 September 2022, date of publication 3 October 2022, date of current version 10 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3211296

Fuzzy Congestion Control and Avoidance
for CoAP in IoT Networks
THIEU NGA PHAM1, DANG HAI HOANG2, AND THI THUY DUONG LE 1
1Faculty of Information Technology, University of Civil Engineering, Hanoi 10000, Vietnam
2Posts and Telecommunications Institute of Technology, Hanoi 10000, Vietnam

Corresponding author: Dang Hai Hoang (haihd@ptit.edu.vn)

ABSTRACT In Internet of Things (IoT) networks, congestion is growing with the increasing number of
devices, and a large amount of collected data must be transferred. Congestion control is one of the most
significant challenges for such networks. The Constrained Application Protocol (CoAP) has been adopted
for the IoT to satisfy the demand for smart applications. However, CoAP uses a basic congestion control
algorithm that operates only when congestion occurs. Thus, the basic CoAP and most similar loss-based
congestion control schemes have remaining issues for burst data transfer in dynamic network environments.
This paper proposes a novel rate-based congestion control scheme using fuzzy control for CoAP, called
FuzzyCoAP.We use the round-trip time gradient and bottleneck bandwidth gradient as inputs for FuzzyCoAP
to infer the degree of congestion. FuzzyCoAP uses this indicator to predict early congestion and adjusts the
sending rate to avoid congestion. FuzzyCoAP uses the congestion degree to update the variable RTO for
retransmissions. On the other hand, FuzzyCoAP dynamically checks for the available bandwidth to gain
high performance for burst data transfer. Various simulation experiments have demonstrated the feasibility
of the FuzzyCoAP in different traffic scenarios. We compared the proposed scheme with representative loss-
based CoAP schemes, that is, the basic CoAP. The simulation results proved that FuzzyCoAP provides high
performance in terms of delay, throughput, loss rate, and retransmissions compared with the basic CoAP.

INDEX TERMS Congestion control, rate control, fuzzy control, constrained application protocol, Internet
of Things.

I. INTRODUCTION
With the growth of Internet of Things (IoT) networks, various
smart applications have been deployed to improve the quality
of human life. Typical applications include event- monitoring
networks in healthcare, agriculture, or environmental areas.
An IoT network typically consists of a considerable number
of IoT devices that collect data from the physical environment
and send burst data to a server at a remote center.

The Internet Engineering Task Force (IETF) standardized
the Constrained Application Protocol (CoAP) as a transport
layer protocol for IoT networks [1]. CoAP is a lightweight
protocol that works on top of an unreliable User Data-
gram Protocol (UDP) but provides a reliable connection-
oriented data transfer mode such as the Transmission Control
Protocol (TCP) [2], [3]. Similar to other transport protocols,

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Arafatur Rahman .

CoAP uses congestion control (CC) to alleviate network con-
gestion.

There has been debate regarding the deployment of TCP
in IoT networks because TCP is the dominant transport layer
for the Internet. TCP was designed with congestion control
and reliable data delivery to efficiently transport bulk of data
over the Internet. However, TCP faces significant challenges
and has been neglected in IoT networks [4].

IoT networks have distinctive characteristics compared to
traditional computer networks. IoT devices typically have
limited resources and processing capabilities. IoT networks
are often dynamic and have a high bit error rate. Many IoT
applications rely not only on the occasional transmission of
small data patterns but must also transfer a large amount of
collected data to the server, resulting in enormous traffic on
the network [5]. One example of such an application is the
camera monitoring system [6]. To support the burst traffic of
typical applications, the design of a suitable CC for CoAP

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 105589

https://orcid.org/0000-0003-0931-9141
https://orcid.org/0000-0002-8221-6168

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

is undoubtedly necessary. However, this issue has not been
resolved satisfactorily. The current standardized CoAP [1]
uses basic congestion control that works only when con-
gestion occurs. When a timeout occurs, CoAP assumes that
the network is congested. In response, CoAP triggers the
retransmission of the lost packets. This implies that the basic
CoAP cannot detect early congestion. In addition, CoAP
strictly limits the number of simultaneous outstanding inter-
actions [1, p. 26]. Thus, the current CoAP does not sup-
port a burst traffic transfer. RFC 7252 [1] shows that further
consideration of CoAP congestion control is expected in the
future.

Congestion control (CC) is a broad research topic. This
study focuses only on end-to-end CC solutions for the trans-
port layer because CoAP operates on top of an unreli-
able transport protocol (i.e., UDP). Existing end-to-end CC
schemes for transport protocols can be classified into three
main groups: 1) loss-based CC; 2) delay-based CC; and 3)
rate-based CC. In general, all CC schemes require feedback
from the network or destination to the senders (in terms of
timeout, packet loss, delay, or throughput) to control the load
to the network (reduced window, load, or rate). Examples of
existing CC schemes can be found in [7], [8].

Loss-based CC schemes use timeout or packet losses as an
indication of network congestion to reduce the window. Typ-
ical examples are the schemes in [3], [9], and [10] for TCP,
and [11], [12], [13], [14], [15], [16], [17] for CoAP. CoAP
and most of its variants [11], [12], [13], [14], [15], [16], [17]
use a loss-based CC approach based on a retransmission
timeout (RTO) with a backoff strategy. It should be noted
that CoAP uses a fixed window size called NSTART, whose
default value is one [1]. In the case of packet loss, the CoAP
sender attempts to retransmit the packet using a reduced
retransmission rate (i.e., reduced load) in the backoff phase.
Delay-based CC schemes utilize packet delay, round-trip time
(RTT), or load to predict network congestion. The window
or load is adjusted for each round-trip time. Examples are
some schemes proposed for TCP in [18], [19], [20], [21],
and [22]. Rate-based CC schemes leverage measurements of
round-trip time (RTT), packet loss, or throughput to adjust
the transmission rate, thus avoiding congestion. Examples
include the TCP and TCP-friendliness schemes in [25], [26],
and [27]. Recently, several rate-based schemes have been
proposed for CoAP, such as those in [23], [24], [28],
and [29].

Loss-based CC schemes are activated only when network
congestion occurs. Their drawback is that they require an
additional mechanism for early loss detection to avoid suc-
cessive packet losses due to congestion. In the case of TCP
schemes, Random Early Drop (RED) [10] is a good example
of such a mechanism to support TCP. However, RED is not
an end-to-end CC approach. Such schemes require support
from the network routers. Delay-based and rate-based CC
schemes are similar in that they both use RTT measures to
predict congestion. However, they differ with respect to the
control object. Delay-based CC schemes control the window

size, whereas rate-based CC schemes control the transmis-
sion rate. Delay-based CC schemes rely on window adjust-
ment mechanisms (e.g., [18] and [42]). In contrast, rate-based
CC schemes are based on rate adjustment (e.g., [23], [28],
and [29]). Rate-based CC schemes are the most promising
approaches because they operate in regions with low delays
and high throughput. This point will be described in the next
section. These schemes adjust the sending rate before con-
gestion occurs. Thus, we can call these congestion avoidance
schemes.

In this study, we focus on rate-based CC approaches. As the
sending rate increased, the load on the network increased and
the round-trip delay increased rapidly. Most rate-based CC
schemes measure round-trip delays and use this information
to set timeout timers and adjust the sending rate (or load).
There are three crucial issues related to congestion control:
1) decisions on the increment/decrement of the sending rate
(or load), 2) the number of changes, and 3) frequency of
changes.

The decision to increase or decrease is clear for loss-based
CC schemes, as they should decrease in case of a packet loss
and increase otherwise. This decision is more complicated
for rate-based CC schemes. It is difficult to determine the
bounds of the RTT, load, and rate to make decisions because
of the variance in these parameters, high burst traffic, and
dynamic network conditions. In addition, such parameters are
often fuzzy (i.e., not sharp, uncertain, vague, and ambigu-
ous). A fuzzy control system (FCS) is an excellent choice
for solving such complex problems. An FCS converts crisp
inputs into fuzzy sets, and then produces crisp outputs based
on fuzzy rules and an inference engine [30].

Fuzzy control has been widely applied to network conges-
tion control in the past (e.g., [31], [32], [33], [34], [35], [36],
[37], [38], [39], and [40]), either for TCP or other protocols
such as routing. Such schemes use fuzzy control to infer the
packet drop probability or congested routes based on mea-
surements of buffer sizes in the network nodes. For CoAP,
a fuzzy logic system was proposed in [41] for the backoff
strategy andRTO adjustment. However, this system addresses
only the issues of RTO estimation.

To the best of our knowledge, no study has applied fuzzy
control to the problem of rate control to avoid congestion in
CoAP. In this paper, we propose a fuzzy control system (FCS)
for CoAP CC in IoT networks. Our scheme uses two crisp
inputs: the RT-gradient and bottleneck bandwidth gradient,
which are computed based on the ACK messages (acknowl-
edgment) from the server. Based on these inputs, the FCS
predicts the degree of network congestion and uses this indi-
cator to control the sending rate and to avoid congestion. The
proposed scheme can be implemented for burst data transfers
in IoT networks.

The remainder of this paper is organized as follows.
Section II presents the background and related work.
In Section III, we propose an FCS for a CoAP. The pro-
posed FuzzyCoAP is presented in Section IV. In Section V,
we evaluate the performance of the proposed system and

105590 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

discuss the related issues. Finally, Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK
A. CONGESTION CONTROL AND AVOIDANCE
Network congestion is a state of degraded performance due to
the saturation of network resources (link bandwidth, buffers,
and processing capabilities). Adapted from [18] and [42],
Figure 1 presents a formal relationship between the sending
rate, RTT, throughput, and load. The network state was iden-
tified by three regions: app-limited, bandwidth-limited, and
buffer-limited. The sending rate is the objective of any CC
scheme because it must be increased or decreased according
to the congestion state to adjust the load on the network. The
knee is the point at which the sending rate saturates the bottle-
neck link. A connection (i.e., a path from a client to the server)
has exactly one bottleneck, that is, the slowest link in the
path. The bottleneck link is important because it determines
the maximum sending rate, and it is where persistent queues
form [42]. The load represents the inflight packets (packets
sent but not yet acknowledged). A cliff is the point at which
congestion occurs [18].

FIGURE 1. Overview of parameters for congestion control.

The app-limited region is characterized by low sending
rates (e.g., there are insufficient packets to be sent). In this
region, the throughput increases linearly with the load and
the RTT increases weakly with the load. As the load reaches
the knee point, the network state is in the second region
(bandwidth-limited). In the second region, the throughput

increases slowly, whereas the RTT increases significantly
because some queues build up at the bottleneck link. In the
third region (buffer-limited), packets are dropped because
of buffer overflows. The network was said to be congested.
The RTT increased drastically, and the throughput decreased
rapidly after the cliff point. Loss-based CC schemes oper-
ate at the right edge of the cliff point, whereas delay-based
and rate-based CC schemes operate in a bandwidth-limited
region. The knee is the theoretical optimal point, but we
could not determine it in practice because of dynamic network
conditions [42]. Therefore, our proposed scheme attempts to
maintain the network state in the zone between the knee and
cliff (shaded zone in the figure).

B. COAP CONGESTION CONTROL
CoAP [1] is a lightweight web transfer protocol developed
for constrained devices and networks. CoAP was designed
to exchange messages over datagram-oriented transport (i.e.,
UDP) in the client/server model. CoAP defines four types
of messages: confirmable (CON), non-confirmable (NON),
acknowledgment (ACK), and reset (RST). CON messages
must be acknowledged by the receiver (server). The CON
and ACK messages ensured a reliable data transfer. If a
CONmessage is not acknowledged within a fixed predefined
retransmission timeout (RTO), the CoAP client initiates its
retransmission. The initial RTO was fixed between two and
three seconds as indicated in [1].

The basic congestion control of CoAP is loss-based. If a
CoAP client detects packet losses, it is assumed that conges-
tion has occurred. The CoAP reduces its retransmission rate
using a binary exponential backoff (BEB) (i.e., the RTO is
doubled for each retransmission). Four retransmissions are
allowed. Subsequently, the transaction is considered failed.
CoAP restricts the number of concurrent messages that can
be sent without receiving an ACK (NSTART is one [1]).
CoCoA [11] is an enhancement to remedy the issues of the

basic congestion control of CoAP. CoCoA uses two estima-
tors to adjust the RTOs based on RTTmeasurements. In addi-
tion, CoCoA uses a variable backoff factor (VBF) instead of
a fixed BEB to compute the RTOs. The RTOs were computed
based on the formulas specified in RFC 6298 [43]. CoCoA+
[12], [13] is another enhancement that uses a more advanced
CC. CoCoA+ introduces a smaller RTT variance factor to
adjust the RTO values. Furthermore, CoCoA+ has a new
aging policy for RTO calculation and resolves the problem
of weak RTO estimation in CoCoA.

Most other proposed variants of CoAP have focused on the
issue of RTO computation for CC in CoAP. The calculation
of RTO is important because it determines the retransmission
rate and efficiency of the protocol. Nevertheless, the RTO
calculation depends on the estimation of variable RTTs.Many
researchers have focused on the accuracy of RTO calculations
using several enhanced algorithms for the measurement of
RTT variances and adjustment of retransmission rates. The
typical CoAP variants are as follows. The authors in [14]
proposed a retransmission counter in the option field of a

VOLUME 10, 2022 105591

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

CoAP header to update the RTO dynamically. Fast and slow
RTO algorithms were proposed in [15]. Fast RTO was calcu-
lated for unambiguous RTT samples whereas slow RTO was
performed for ambiguous RTT samples. The backoff logic
follows three transitive states based on fast and slow RTO.
The authors in [16] proposed a pCoCoA with a transmis-
sion count option to match the ACK message with the cor-
responding CON message, even for retransmission. pCoCoA
introduces different methods to update the RTT and limits
the minimum RTO to reduce spurious retransmissions. The
AdCoCoA scheme [17] proposes a smooth estimation of the
RTT variances to enhance the RTO computation algorithm
in CoCoA+. CoCo-RED [44] proposed a combination of CC
with revised Random Early Detection (RED) and a Fibonacci
backoff algorithm. The importance of RTT variances has been
recognized in most studies. Various methods for RTT vari-
ance estimation have been considered in recent works [15],
[16], [17], [44], [46].

According to our survey, all the mentioned schemes are
loss-based CC schemes because they focus only on RTO,
retransmission, and backoff. The main differences between
them are in the RTT estimation, RTO computation, and
backoff policies. Their congestion control is activated only
when packet loss has been detected, that is, when conges-
tion occurs. These schemes attempt to mitigate congestion by
reducing the retransmission rate (not the sending rate). These
schemes do not allow for inflight packets, because they limit
the number of outstanding packets. Therefore, these schemes
are unsuitable for burst data transfer.

RTT-CoAP [24] is a delay-based CC scheme proposed
for CoAP. This scheme monitors the growth of the RTT
variances to infer the network state and determine the
sending rate to prevent network congestion. RTT-CoAP
defines four traffic regions: low congestion, normal opera-
tion, medium operation, and high variability. The sending rate
was adjusted accordingly: fast/slow increased or fast/slow
decreased depending on the network state in the regions. The
scheme uses an additive increase/additive decrease (AIAD)
policy. However, it is unclear how to select the factors for
increments and decrements.

CoAP-R [28] is a rate-based CC scheme for CoAP. This
scheme uses a tree-based routing deployment and supports
burst traffic. This requires information on the node tree to
discover bottleneck links. Congestion is detected using the
present and past channel loads and the ratio between the
current sending rate and allocated rate for a local node. This
scheme uses a multiplicative increase/multiplicative decrease
policy. However, this requires information on the buffer occu-
pancy of the nodes. In addition, it is difficult to determine
the allocation rates of nodes. BDP-CoAP [23] is another
rate-based CC scheme for CoAP that leverages the BBR
(bottleneck bandwidth and round-trip propagation time)
protocol [42]. Based on bottleneck bandwidth estimation,
BDP-CoAP determines the sending rate and keeps inflight
packets bounded to the bandwidth-delay product. The pacing
gain is either 0.6 or 0.2 when the retransmission frequency is

less or greater than 20%, respectively. CoAP-SC [45] can be
called a rate-based scheme, because it regulates the sending
rate based on flow control with error handling for streaming
services. This requires adding sequence numbers to the option
field headers of the packets. Based on the difference between
the sending and receiving sequence numbers, the CoAP-SC
can detect congestion. Recently, RCOAP [29] was proposed
as a rate-based CC scheme for burst data transfer. It uses
probe packets to infer the bottleneck bandwidth and regu-
lates the rate according to an additive increase/multiplicative
decrease policy. This allows for inflight packets and can
distinguish congestion losses from wireless losses based on
probe packets. A good survey for challenges and issues in the
current CoAP can be found in [46].

As presented above, rate-based CC schemes offer several
advantages: 1) they operate in a bandwidth-limited zone,
2) they can vary the transmission rate based on the network
state and bottleneck bandwidth, and 3) they support inflight
packets. Consequently, the proposed scheme used a rate-
based approach.

C. FUZZY CONTROL
Zadeh [47] introduced fuzzy theory in 1965. Since then, the
fuzzy theory has been applied in many fields, with fuzzy con-
trol being an important application. Fuzzy control is a method
based on fuzzy theory, which is used to control dynamic sys-
tems with ambiguous inputs. A fuzzy control system (FCS)
has the advantage of controlling highly nonlinear, complex
systems. Detailed information on the concept of FCS can be
found in [47] and [50] for fuzzy sets, [48], [49] for fuzzy
controllers, [51], [52] for membership grades and member-
ship functions, and [30], [49], [52] for fuzzy relations, lin-
guistic variables, fuzzy rules, fuzzification processes, fuzzy
inference engines, and defuzzification processes.

Fuzzy control has been proven successful in congestion
control, as shown in [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], and [41]. In fact, it is difficult to develop
a precise analytical model for congestion control owing its
complexity. The network conditions are dynamic because of
the burst nature of data transfer and the fluctuation of the
parameters involved. In addition, the uncertainty in deter-
mining network parameters makes it challenging to obtain
a realistic and cost-effective solution for congestion control.
Thus, fuzzy control is a feasible approach to the congestion
control problem.

In [31], the author demonstrated the difficulty of estimat-
ing the flow parameters in practice. A fuzzy controller was
proposed to predict the time series parameters to adjust the
flow rate. The authors in [32] proposed a Fuzzy-RED based
on buffer length variations to predict congestion in TCP traf-
fic [53]. The fuzzy CC scheme in [33] used buffer occupancy,
traffic rate, and number of participating nodes to determine
the congestion level in wireless sensor networks (WSN). The
authors in [34] proposed combining RED with a fuzzy con-
troller to adjust the sending rate for each node in a WSN
using queue length differences and the variation of errors at

105592 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

each node. An FCS was proposed in [35] using the number of
contending nodes, buffer occupancy percentage of next-hop
sensor nodes, and traffic load for video streams over a WSN.
The authors in [36] proposed an FCS for routers using queue
lengths and window size based on active queue management
(AQM). Several studies have proposed the application of
fuzzy control for route selection [37], [38], [39]. In [37],
an FCS was proposed for route selection using an AQM in a
WSN. This scheme isolates malfunctioning nodes to reduce
the route congestion. In [38], a fuzzy priority-based RED
mechanism was proposed to estimate the node congestion
level based on the drop probability and find a less congested
route. The fuzzy CC scheme in [39] uses node buffer occu-
pancy, priority, and packet arrival rates to estimate congestion
levels and regulate the sending rate. In [40], an FCS for rate
adjustment was proposed, which leverages the queuingmodel
in the node buffer to estimate congestion. The authors used
buffer queue length and the ratio of RTT/RTO to estimate the
network state and adjust the sending rate. In [41], an FCS was
proposed for CoAP. However, this FCS is only for RTO esti-
mation and backoff to reduce the number of retransmissions
and not for sending rate control. Because this scheme is based
on timeouts, it is a loss-based CC scheme.

In summary, the complexity and difficulty of congestion
control motivated the use of fuzzy control as an appropriate
solution to address the dynamic nature of network conditions
and variations in the network parameters.

For CoAP, no research has addressed the application of
fuzzy control for rate adjustment to avoid congestion. There-
fore, this study proposes a rate-based congestion control and
avoidance scheme for CoAP based on a fuzzy control system.
In Section III, we present the design of our fuzzy control
system that computes the degree of congestion to reflect the
congestion state. This indicator is used to adjust the RTO
and sending rate to avoid congestion, which is described in
Section IV.

III. PROPOSED FUZZY CONTROL SYSTEM FOR COAP
A. OVERVIEW
An FCS consists of four basic components: fuzzification,
fuzzy rule base, fuzzy inference engine, and defuzzifica-
tion [49], [52]. Fuzzification transforms crisp input values
into a set of fuzzy values with membership functions for
all linguistic variables and assigns grades of input mem-
bership. The fuzzy rule base presents a set of IF-THEN
rules that define the input-output mapping based on mem-
bership functions. A fuzzy inference engine is used to infer
the output based on the defined fuzzy rules and fuzzy
implication operators. Defuzzification generates crisp out-
puts from the output fuzzy set provided by the fuzzy inference
engine.

Depending on the number of inputs and outputs, an FCS
system can be a single-input-single-output (SISO) system, a
multiple-inputs-single-output (MISO) system, or a multiple-
inputs-multiple-outputs (MIMO) system. Owing to the com-
plexity of the congestion control, multiple inputs are required.

However, to reduce the complexity of CoAP CC, we use
two inputs. The inputs of our FCS were the RT-gradient and
BG-gradient. The RT-gradient indicates an increase in round-
trip time. The BG-gradient is defined as the ratio of the
delivery rate to the bottleneck bandwidth. To reflect the
congestion level, one output, namely, the congestion degree
(C-degree), is sufficient. Therefore, the proposed FCS is a
MISO system.

The system model of the proposed FCS is shown in
Fig. 2 with four components: fuzzification, rule base, fuzzy
inference engine, and defuzzification.µ(x),µ(y), andµ(z) are
the membership functions of inputs and outputs, respectively.
Zc is the crisp output (C-degree) of the FCS.

FIGURE 2. The system model of the proposed fuzzy control system.

The design of the inputs and outputs of the FCS is par-
ticularly important and is one of the main contributions
of this study. In the following subsections, we present the
inputs, outputs, and detailed components of our proposed
FCS. Table 1 lists the notations used in this study.

TABLE 1. Notations.

VOLUME 10, 2022 105593

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

B. RT-GRADIENT
End-to-end CC schemes consider round-trip time (RTT) as a
key parameter for CC and use it in diverse ways. Loss-based
schemes use RTT for RTO estimation and RTO adjustment to
limit the retransmission rate (e.g., [11], [12], [19], and [41]).
Delay-based and rate-based schemes use RTT measure-
ments to infer the possible congestion (e.g., [18], [23], [24],
and [28]). It is well-known that RTT variances can be used as
a good indication of the network state. Most solutions lever-
age TCP rules [19], [43] to estimate RTT samples using three
variables: measured RTT, estimated RTT, and RTT variation.
A smoothing factor was used to remove noise in the RTT
measurements. The minimum of all measured RTTs (or all
observed RTTs in a predefined time window) can be used
to determine the network state [42], [23]. Recent schemes
proposed for CoAP [23], [24] use the RTT variation variable
to address the growth of RTT variance and define the regions
of the network states. However, it has been recognized that the
difference between RTT variations is meaningful [18]. Thus,
the relative growth of RTT variations must be considered.

We conducted several simulation experiments using
NS-3 [54] to explore changes in round-trip time (RTT) dur-
ing congestion. In the experiments, ten CoAP clients sent
back-to-back packets to a remote server to build a congestion
situation. The common link bandwidth was 250 Kbps with
a link delay of 50 ms. The simulation duration was 300 s.
Fig. 3 shows the growth of the average RTT when congestion
occurred.

FIGURE 3. Average RTT of CoAP in congestion.

As shown in Fig. 3, congestion started at 200 s with a sig-
nificant growth in the RTT. Various RTT peaks were observed
in the time interval between 90 and 200 s. The RTT peaks
may indicate congestion threats. However, single values of
the RTT or RTT variances are insufficient for predicting con-
gestion.

In this study, we propose the RT-gradient to indicate
the difference and relative growth of RTT variances. The
RT-gradient is defined as the ratio between the relative and

absolute difference in the RTT variances, as follows:

RT (k) =
RTT s (k)−RTTmin (k)

RTTmax (k)− RTTmin (k)
(1)

RTT s (k), RTTmax (k), and RTTmin (k) were determined as
follows:

RTT s (k) = (1−α)×RTT s (k−1)+α×RTTm (k) (2)

RTTmin (k) = min (RTTmin (k − 1) ,RTTm (k)) (3)

RTTmax (k) = max (RTTmax (k − 1) ,RTTm (k)) (4)

where k and k-1 are the step k and k-1, respectively, of the
sampling periods in the discrete time interval. The sampling
period T(k-1, k) is the interval between two successive ACKs.
RTTs(k) are the estimated RTT for each time interval (k-1,
k). RTTm(k) is the current measured RTT at step k . α is a
parameter, and we choose α = 0.25 for a smooth estimation
of RTT according to [12], [43]. RTTmin(k) and RTTmax(k)
are the minimum and maximum RTT, respectively, in each
interval (k-1, k). RT(k) is the RT-gradient at step k . Based
on Eq. (1), the value of RT(k) is in the range of (0, 1).
RT(k) is zero if RTT s (k) = RTTmin (k), and RT(k) is one
if RTT s (k) = RTTmax (k).

Fig. 4 shows the evolution of the RT-gradient according
to the variation of RTT, as shown in Fig. 3. The RT-gradient
was varied between zero and one. RT-gradient values close
to one indicate the likelihood of congestion. Therefore, the
RT-gradient was a good input for our fuzzy control system.

FIGURE 4. Example of the RT-gradient.

C. BOTTLENECK BANDWIDTH GRADIENT
The fuzzy control system is more efficient when a second
input is used. Intuitively, the traffic load can be selected.
However, it is difficult to determine the maximum load as
the threshold for congestion detection. Another possibility is
the use of a bandwidth-delay product (BDP). The BDP of a
connection is defined as the product of its round-trip delay
and bottleneck bandwidth [42]. However, BDP is often small
in IoT environments. In addition, BDP is directly derived

105594 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

from RTT. Thus, BDP is not a good choice because both the
FCS inputs have the same effect.

Therefore, we propose using bottleneck bandwidth for
the second input of our FCS. Specifically, we propose a
bottleneck bandwidth gradient (BG-gradient) instead of a
single bottleneck bandwidth value. As indicated in [42],
bottleneck bandwidth is one of themost important parameters
for congestion control. The bottleneck bandwidth is defined
as the slowest link (or bottleneck) in the end-to-end path of
a connection. In practice, the bottleneck bandwidth continu-
ously changes depending on the variable load and the number
of active connections that share a common network path.
According to [42], if the network path is a physical pipe,
the maximum bottleneck bandwidth is its diameter. To avoid
congestion, the transmission rate must be less than or equal
to the maximum bottleneck bandwidth. From this evidence,
we can deduce that the data delivery rate must be less than or
equal to the maximum bottleneck bandwidth.

Let bWmax denote the maximum bottleneck bandwidth
and dR(k) be the instantaneous delivery rate in the discrete-
time interval T (k-1, k). The bottleneck bandwidth gradient
(BG-gradient) is defined as follows:

BG (k) =
min(bWmax , dR (k))

bWmax
(5)

The instantaneous delivery rate dR(k) can be computed as
follows:

dR (k) =
De (k − 1, k)
T (k − 1, k)

(6)

where De(k-1, k) is the amount of data delivered during time
interval T (k-1, k). The sampling interval T(k-1, k) for dR(k)
can be selected as the time interval between two successive
ACKs.

The value of bWmax can be determined at the startup stage
of a connection as follows. The CoAP client continuously
sends back-to-back packets to the server during the startup
stage. The server recursively computes the minimal deliv-
ery time (Tmin) between two successive received packets and
sends this value back to the client using piggyback ACK
responses. The client computes bWmax as follows:

bWmax = max(bW (k),
s

Tmin
) (7)

where s is the ratio between the probe packet size and data
packet size. bW(k) is the estimated bottleneck bandwidth in
step k . Our scheme uses probe packets to estimate the bottle-
neck bandwidth. In our implementation, the size of a probe
packet was 49 bytes, and the size of each data packet was
106 bytes. At the end of the startup stage, the client obtains
the final values for bWmax .
We used the same simulation experiments as those

shown in Subsection III.B to explore the evolution of the
BG-gradient in congestion. Using the experiments, we rec-
ognized that the maximum bWmax of a connection can be
accurately estimated within an interval of six to ten RTTs
under the fixed network conditions (fixed route, unchanged

link bandwidth, and number of nodes on the path). The
instantaneous bW(k) fluctuates depending on the number and
load of connections sharing the network path. The maximum
bWmax is computed at the end of the startup stage and remains
unchanged. An analogy was given in [42], where the network
path was a physical pipe and bWmax was its diameter. The
instantaneous bW(k) of a connection is part of the maximum
bWmax . The duration of the startup stage can be between six
and ten RTT cycles, as indicated in the next section. Based on
Eq. (5), the value of BG(k) is in the range (0, 1). BG(k) is zero
if dR (k) = 0, and BG(k) is one if dR (k) = bWmax .

Fig. 5 shows the evolution of the BG-gradient according
to the variation in the data delivery rate. As shown in Fig. 5,
the BG-gradient varies between zero and one. BG-gradient
values close to one indicate the possibility of congestion.
If the network is less congested, then the BG-gradient values
are close to zero. Thus, the BG-gradient was selected as the
second input for our fuzzy control system.

FIGURE 5. Example of the BG-gradient.

D. CONGESTION DEGREE
We define the congestion degree (C-degree) as the output of
the fuzzy control system, which ranges from minus one to
plus one (−1 to 1). The C-degree can be used to interpret the
network state as follows:

If the C-degree value is greater than zero, we assume
that the network is in a non-congested state. The closer the
C-degree is to 1, the less congested is the network.
If C-degree =1, it can be assumed that there is no conges-
tion in the network. The operating point corresponds to the
left knee point, as shown in Fig. 1 (app-limited region). The
sending rate can be aggressively increased.

By contrast, if the C-degree value is negative, the network
is assumed to be congested. The sending rate must be reduced
to avoid congestion. The decrease in the sending rate corre-
sponds to a negative value of the C-degree. The closer the
C-degree is to −1, the more congested is the network. The
point with aC-degree=−1 is corresponding to the cliff point
(see Fig. 1). If theC-degree value is zero, then the sending rate
must remain unchanged.

VOLUME 10, 2022 105595

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

That is, the C-degree provides the direction and magni-
tude of the sending rate adjustment. If the load is low, the
congestion possibility is low and the C-degree is positive.
If the load is high, the congestion possibility is high, and the
C-degree is negative. Therefore, by computing the C-degree,
we can determine the direction and the amount of increases/
decreases in the sending rate for a connection.

Until now, we have already answered the issues raised in
Section I, that is, the decision on increase/decrease depends
on the sign of the computed congestion degree (C-degree).
This implies that the decision corresponds to the RT-gradient
and BG-gradient, which represent the current network state.
The amount of increase or decrease depended on the value
of the C-degree. One round-trip time was selected as the
sampling period for the RT-gradient and BG-gradient. The
sending rate is adjusted for each RTT interval to avoid
congestion.

E. DESIGN OF THE FUZZY CONTROL SYSTEM
As mentioned in the previous subsection, the fuzzy control
system comprises four key modules: fuzzification, fuzzy rule
base, inference engine, and defuzzification. The design of
the FCS followed the standard steps indicated in [49], [52],
and [30].

1) FUZZIFICATION
The function of this component is to represent the input
and output data with linguistic variables and to derive their
membership functions. This component converts crisp input
data into fuzzy data. For each input, the number of linguistic
variables should be odd, from three to seven, as recommended
in [52]. Intuitively, the number of linguistic variables depends
on the scale of each input and output variable. However,
there is often no concrete scale for input. Furthermore, the
complexity of the system may increase with the number of
linguistic variables. In the case of CoAP, we consider two
inputs and three linguistic variables for each input in this
study.

The first input was the RT-gradient, which was normalized
to the range [0, 1]. The second input was the BG-gradient,
which was normalized to the range [0, 1]. We define the
following linguistic variables for the inputs:
• RT-gradient: small, medium, large
• BG-gradient: small, medium, large

Linguistic variables are ‘variables whose values are not
numbers but words or sentences in a natural or artificial
language’ [52]. According to the definition of linguistic
variables in [52, p.142], we can demonstrate the linguistic
variables of RT-gradient input as follows. Let X denote a
linguistic variable with a label called ‘‘RT-gradient’’. The
term set T for this input is as follows:

T (RT − gradient) = {small,medium,large} (8)

Each term in this set is a fuzzy set. For our FCS, the
universe of discourse U is in the interval [0,1], and a base

variable u ranges over U . For instance, let µx(u) denotes
the membership function of a linguistic variable X and let
M̃(medium) denote a fuzzy subset ofU that assigns ameaning
to the term medium. We have:

M̃ (medium) = {(u, µmedium(u)|uε[0, 1]} (9)

Similarly, we define the term set for the second input as
follows:

T (BG− gradient) = {small,medium,large} (10)

Several types of shapes can be deployed for membership
functions including triangular, trapezoidal, and Gaussian.
However, triangular and trapezoidal shapes are often used
to represent the membership functions of inputs and outputs.
In this study, we applied triangular and trapezoidal shapes to
the membership functions as follows.

Let a, b, c, and d represent the x coordinates of the mem-
bership function µM (x) in M = (a, b, c, d), where M is a
fuzzy set (a is the lower boundary, d is the upper boundary
where the membership grade is zero, and b and c are in the
middle, where membership grade is one). The trapezoidal
shape membership function is defined as follows:

µM (x) = max
{
0;min

{
1;
x − a
b− a

;
d − x
d − c

}}
(11)

If b coincides with c, let m represent the coincident coordi-
nates of b and c. Then, we define a triangular shape member-
ship function as follows:

µM (x) = max
{
0;min

{
1;

x − a
m− a

;
d − x
d − m

}}
(12)

where M = (a, m, d) is a fuzzy set (a is the lower boundary,
d is the upper boundary where the membership grade is zero,
and m is the center where the membership grade is one).

Fig. 6 and Fig. 7 show the membership functions of the
linguistic variables for the inputs to the FCS.

FIGURE 6. Membership functions of RT-gradient.

The three sets of linguistic variables for the input
RT-gradient are: small (XS), medium (XM), and large (XL).
Similarly, there are three sets of linguistic variables for the
input BG-gradient: small (YS), medium (YM), and large (YL).
Fuzzy sets may overlap each other in some parts. The size
of the overlapping parts depends on the characteristics of the
input characteristics.

105596 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 7. Membership functions of BG-gradient.

We propose membership functions for the output, that is,
the C-degree, of our FCS, as shown in Figure 8. The output
C-degree ranges from −1 to 1. These membership functions
represent the arguments indicated in subsection III.D. Five
linguistic variables were defined for the output as follows:
• C-degree: very low, low, medium, high, very high

The term set T for this output will be the following:

T (C − degree) = {verylow,low,medium,high,veryhigh}

Accordingly, linguistic variables for the output were
divided into five sets: very low (ZVL), low (ZL), medium (ZM),
high (ZH), very high (ZVH).

FIGURE 8. Membership functions of FCS output (C-degree).

2) FUZZY RULE BASE
This component defines the rules for determining the output
linguistic variables based on the input linguistic variables.
We propose the set of rules in Table 2.

A rule base is a set of IF-THEN rules, each of which is
described by a fuzzy set, and fuzzy implication operators such
as AND andOR. In this study, the FCS had two inputs, each of
which had three linguistic variables. Our FCS uses the AND
operators. Thus, we obtained 3× 3 = 9 fuzzy rules.
For instance, a rule can be described as follows:
Rule 3: IF the RT-gradient is ‘‘Small’’ AND the BG-

gradient is ‘‘Large’’, THEN the congestion degree is ‘‘Low’’.

3) FUZZY INFERENCE ENGINE
The fuzzy inference engine determines the fuzzy output set.
This process consists of two steps:

TABLE 2. Fuzzy Rules.

1) The membership grade of the result set was calculated.
This involves the use of a rule base (Table 2).

2) Using inference methods for generating output fuzzy
sets. There are several inference methods such as max-
min, max-product, and singletons. Our FCS uses the
max-min method for inference because of its fast
operation.

4) DEFUZZIFICATION
This component is used to convert fuzzy output data into crisp
output data.

For defuzzification, this study used the well-known center
of gravity (CoG) approximation method [52]. The crisp val-
ues at the output can be approximated using the mean of the
centers as follows:

C_degree = Z c =

∑N
i=1 Zi × µ(Z i)∑N

i=1 µ(Z i)
(13)

where Zc is the crisp output (mean of center of gravity among
N fuzzy sets), zi is the center of gravity of each output set,
and µ(zi) is the membership grade. The resulting Zc is the
C-degree, ranging between −1 and 1, which interprets the
network congestion state, as indicated in Subsection III.D.

IV. PROPOSED FuzzyCoAP
In this section, we present the specific mechanisms of our
proposed protocol, FuzzyCoAP, using FCS designed in the
previous section. FuzzyCoAP is an extended version of the
basic CoAP over the UDP but with several modifications.
FuzzyCoAP replaces the loss-based CC algorithm of basic
CoAP with a rate-based CC algorithm that uses the designed
FCS.

Fig. 9 provides an overview of the proposed FuzzyCoAP.
The shaded blocks represent the three core states in the pro-
posed scheme. The other blocks represent the core functions
of the FuzzyCoAP.

The novelty of FuzzyCoAP is the design of an FCS for
the CoAP CC that detects congestion and controls the send-
ing rate to avoid congestion based on the measurements of

VOLUME 10, 2022 105597

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 9. Overview of the FuzzyCoAP scheme.

RTTs and bottleneck bandwidth, namely, the RT-gradient and
BG-gradient. Using dynamic rate control, FuzzyCoAP
enables inflight packets and is efficient for burst data trans-
fers. FuzzyCoAP controls the sending rate bounded by the
maximal bottleneck bandwidth of the connection, and keeps
the inflight packets limited to the bandwidth-delay product.

FuzzyCoAP primarily consists of algorithms at the sender
to achieve effective congestion control. In FuzzyCoAP, each
sender estimates bWmax and dR(k) during the startup stage
of the connection. The startup stage is typically in the range
of six to ten RTTs (we use ten RTTs in our implementa-
tion). The estimated dR(k) is used to determine the sending
rate. In steady state, the sender continuously estimates RTT,
bW(k), and dR(k) whenever an ACK is received. The esti-
mated RTT, bW(k), and dR(k) values are used by the FCS to
compute the C-degree, which is used to adjust the sending
rate. In addition, FuzzyCoAP uses the C-degree to adjust the
RTO values as follows:

RTT s (k) = 0.75×RTT s (k−1)+0.25×RTTm (k) (14)

D_RTT s (k) = RTT s (k)− RTT s (k − 1) (15)

RTO (k) = RTT s (k)+C_degree(k)×D_RTT s(k) (16)

where D_RTT s (k) is the RTT variance computed at step
k , C_degree(k) is the computed crisp output of the FCS
at step k , and RTO(k) is the retransmission timeout value
at step k . The estimation of RTTs(k) follows Eq. (2) using
α = 0.25 [43].
If the sender does not receive an ACKwithin the computed

RTO, the sender attempts to retransmit the corresponding
packet and checks for the possible transmission of other pack-
ets. Four retransmissions are allowed for each retransmitted
packet. The RTO value is updated for each retransmission.
FuzzyCoAP does not estimate the bottleneck bandwidth from
retransmitted packets.

After four unsuccessful retransmissions, the timeout timer
function marks the corresponding lost packet for loss

detection and returns it. During steady state, if packet loss is
detected, the sender enters the backoff state. At this moment,
several packets may be in flight, including recently trans-
mitted and retransmitted packets. Packet loss indicates that
congestion has occurred. To avoid further congestion, the
sender should not send further packets. In the backoff state,
the sender checks the ACK during each RTT interval. If an
ACK is received, then the sender updates the C-degree. Sub-
sequently, the sender returns to a steady state. Otherwise, the
transaction is considered to have failed after the maximum
transaction time, as defined in [1]. The proposed FuzzyCoAP
is presented in detail in the following subsections.

A. STARTUP
Algorithm 1 presents the pseudocode for the startup stage of
FuzzyCoAP.

Algorithm 1 Startup
1: function Startup
2: mState = Startup
3: if (Cycle > maxCycle) then
4: EndStartup()
5: else
6: packet← SendNextPacket() //probe packets
7: if (ACK == true) then
8: nACK = nACK+ 1
9: Update 1(RT(k), BG(k). dR(k))
10: IPG = 1/dR(k)
11: else
12: if ((nACK == 0)&&(Cycle = maxCycle)) then
13: Restart()
14: endif
15: endif
16: Cycle = Cycle + 1
17: Schedule (IPG, Startup)
18: endif
19: end function
20: function EndStartup()
21: Srate = nACK/(now− t)
22: (IPG = 1/Srate
23: Update2(bWmax)
24: mState = Steady
25: Steady()
26: end function

At startup, a FuzzyCoAP client performs its probe phase
to determine bWmax and the start sending rate. To this end,
the client sends back-to-back packets to probe bottleneck
bandwidth. The startup phase does not use the timeout timer
for the probe packets, that is, the lost probe packets are not
retransmitted. In each cycle, the client sends the next probe
packet (line 6). Upon receiving a packet, the server imme-
diately sends an ACK back to the client. When an ACK is
received (line 7), the client updates the necessary parameters
(line 9), as indicated in Eq. (1)–(4) and (5)–(7), using the
function Update1(RT(k), BG(k), dR(k)), and increments the

105598 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

number of received ACKs by one (line 8):

nACK = nACK + 1 (17)

The pacing time IPG was updated accordingly (line 10).
If no ACK is received, the client checks for connection time-
out (line 12). If nACK 6= 0 or Cycle < maxCycle, the client
invokes the next startup cycle after IPG seconds using the
schedule function (lines 16-17). In the last loop (i.e., Cycle=
maxCycle), the variable nACK can be less than or equal to
maxCycle. If nACK 6= 0 (line 12), the client considers that at
least one ACK has been received. The client then continues
to schedule the next startup (lines 16-17). At the beginning
of the next loop, the startup phase finishes (lines 4 and 20)
because Cycle > maxCycle. If nACK = 0 and Cycle = max-
Cycle (line 12), the client does not receive an ACK after all
cycles. In this case, the client must restart the connection
from the beginning (line 13). The initial IPG is unimportant
because it changes when an ACK is received (line 10). In our
implementation, we initialize the IPG by one millisecond for
back-to-back packet transmission. The variable t is the start
time of the startup state.

At the end of the startup stage (line 20), the client computes
the sending rate Srate (line 21) and IPG (line 22) and updates
the final bottleneck bandwidth bWmax (line 23) using (7). The
FuzzyCoAP client then enters a steady state (line 25).

The startup stage typically lasts for six to ten RTT cycles.
This is because the connection and network require time to
be stable. Through experiments, we found that an interval of
six RTT cycles may be sufficient for the startup phase. Note
that BBR [42] requires eightRTT cycles and BDP-CoAP [23]
requires ten RTT cycles for the initial stage.

B. STEADY
The pseudocode for the steady state of the FuzzyCoAP is
presented in algorithm 2.

At the beginning of the steady stage, the FuzzyCoAP client
computes the bandwidth-delay product BDP (line 4) based on
the bottleneck bandwidth bWmax computed at the startup. The
number of inflight packets will be checked. If this number is
less than or equal to the BDP (line 5), the client sends the next
data packet (line 6). The client sets the initial RTO for each
new packet. If the timer expires, the timeout timer function
(not presented in the algorithm) checks for a retransmission.
If the client has not received an ACK from the server for the
packet and the number of retransmission attempts is less than
four, the timeout timer function retransmits the corresponding
packet and sets an updated RTO. If four retransmissions occur
unsuccessfully, the timeout function marks a flag PacketLoss
for the lost packet.

After each estimated RTT (line 7), the client updates the
RT_gradient and BG_gradient (line 8). It then calls the FCS
function to compute C_degree (line 9). The client adjusts
the sending rate (line 10) and the new inter-packet interval
IPG (line 11). The RTTs are smooth estimated RTT computed
based on Eq. (14) for each RTT cycle. A smooth RTT estima-
tion helps to avoid the impact of RTT fluctuations. The client

Algorithm 2 Steady
1: function Steady
2: mState = Steady
3: t = now
4: BDP = bWmax × RTTmin
5: if (inflight ≤ BDP) then
6: packet← SendNextPacket()
7: if (t ≥ last_adjust + RTTs) then
8: Update(RT(k). BG(k))
9: C_degree = FCS(RT(k), BG(k))
10: Srate = Srate + C_degree× (1/RTTs)
11: IPG = 1/Srate
12: RTO_Update(C_degree,RTO)
13: last_adjust = t
14: endif
15: else
16: if (ACK == true) then
17: packet← SendNextPacket()
18: endif
19: endif
20: if (PacketLoss) then
21: mState = Backoff
22: Backoff()
23: else
24: Schedule (IPG, Steady)
25: endif
26: end function

updates the new RTO (Line 12) and the next adjustment time
(line 13).

If the number of inflight packets exceedsBDP (line 15), the
client must slow the transmission. The reason is that there are
a lot of inflight packets that can cause congestion. To this end,
the client sends only a new packet (line 17) when an ACK is
received (line 16).

During the steady state, the client checks for packet loss
(line 20). Flag PacketLoss causes a gap in the receiving ACKs
for the transmitted packets. Packet loss indicates that con-
gestion has occurred. Successive packet losses occurred in
the case of heavy congestion. If packet loss is detected, the
client exits the steady state and enters the backoff state (lines
21-22). Otherwise, the client schedules the next loop of the
steady state after IPG seconds (line 24) by using the function
schedule (IPG, steady).

The FuzzyCoAP client adjusts the sending rate Srate(k)
based on C_degree(k) as follows (line 10):
• If 1 ≥ C_degree(k) > 0, the sending rate will be
increased. The amount of the increase is the absolute
value of the congestion degree |C_degree(k)|, which
determines a fast or slow increase.

Srate(k) = Srate(k − 1)+ |C_degree(k)|x1/RTT s(k)

• If C_degree(k) = 0, the sending rate will be unchanged.

Srate(k) = Srate(k − 1)

VOLUME 10, 2022 105599

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

• If −1 ≤ C_degree(k) <0, the sending rate will be
decreased. The amount of the decrease is the absolute
value of the congestion degree |C_degree(k)|, which
determines a fast or slow decrease.

Srate(k) = Srate(k − 1)− |C_degree(k)|x1/RTT s(k)

FuzzyCoAP differs from other CoAP schemes in that it
allows for the sending of inflight packets. This means that
FuzzyCoAP attempts to send the next packets while the
retransmitted packets are in flight. FuzzyCoAP does not
use BW estimates from the retransmissions. This is because
parameters such as RTT and delay of retransmitted packets
can lead to incorrect estimation of the bottleneck bandwidth,
as indicated in [23], [42], and [43].

Packet duplication may occur because the retransmitted
packet is sent to the receiver during flight. In addition, the
received packets may be disordered at the receiver owing
to the retransmission. These issues can be solved at the
higher protocol layer, where the application can rearrange the
sequences of the received packets and discard the duplicated
packets. However, these issues are beyond the scope of this
study.

C. BACKOFF
Algorithm 3 shows the pseudocode for the backoff state.
FuzzyCoAP enters this state in the case of congestion, i.e.,
if packet losses are detected.

Algorithm 3 Backoff
1: function Backoff
2: mState = Backoff
3: t = now
4: if (ACK == true) then
5: packet← SendNextPacket()
6: Update(RT (k),BG(k))
7: C_degree = FCS(RT(k), BG(k))
8: Srate = Srate + C_degree× (1/RTTs
9: IPG = 1/Srate
10: RTO_Update(C_degree. RTO)
11: mState = Steady
12: Steady()
13: return
14: else
15: if (t > maxTransactionTime) then
16: ConnectionFailed()
17: else
18: next_pacing = t + IPG
19: Schedule (next_pacing, Backoff)
20: endif
21: endif
22: end function

The client must slow transmission to avoid further conges-
tion. In this state, the client continues to check the acknowl-
edgment from the server after a pacing time without sending

further packets. Packets that were already sent in the previous
stage (including the retransmitted packets) may be in flight.
If an ACK is received (line 4), the client assumes that conges-
tion has been resolved. The client then sends a new packet
(line 5), updates the parameters (line 6-10), and returns to
steady state (line 11-13).

If no ACK is received (line 14), the client checks for maxi-
mum transmission time (defined in [1]). If noACK is received
after this value (line 15), the transaction is considered to have
failed (line 16). The connection stopped. Otherwise, the client
schedules the next backoff period after the next pacing time
(line 18-19). The client may switch between steady state and
backoff in the case of several packet losses due to heavy
congestion. This change depends on the occasional ACK
received for the transmitted or retransmitted packets.

V. PERFORMANCE EVALUATION
In this section, we first present the simulation setup used
for the performance evaluation of our FuzzyCoAP. Then,
we present results for a variety of different simulation scenar-
ios.We use the network simulator NS-3 [54] as the simulation
platform to implement the basic CoAP and the FuzzyCoAP.
NS-3 is a discrete event network simulator that supports fast
and efficient prototyping.

The core implemented functions of the basic CoAP are
startup, send, receive, retransmit, and timeout-timer. For
FuzzyCoAP, we implemented the core functions at the
client, including startup, steady, backoff, fuzzy control, send,
receive, retransmit, and timeout-timer. On the server, both
FuzzyCoAP and basic CoAP perform the main functions for
receiving packets and sending ACKs. The method for creat-
ing CoAP headers was adapted from [55], [56]. In [55], the
authors presented a partial implementation of the basic CoAP
for multicast topology and DNS experiments in NS-3. This
implementation was based on the code sketch for CoAP in
the Spark Core system provided in [56]. Both authors in [55]
and [56] used the same method to create basic CoAP header
using standard parameters indicated in RFC 7252 [1]. The
same standard parameters were used for the CoAP header.

Network simulator NS-3 provides numerous facilities to
create various traffic scenarios similar to real networks. In our
simulation, all clients were implemented at the wireless nodes
in the Wi-Fi network. The clients are connected to the server
through a Wi-Fi access point (AP node) and a bottleneck link
(see Fig. 10). The clients and access point (AP) are imple-
mented using the standard IEEE 802.11, standard internet
stack, standardmobilitymodel, and standard interfacemodels
provided by NS-3 [54].

In our simulation, the size of the CON packet was
106 bytes, including a fixed header of 4 bytes and payload
of 102 bytes. The size of an ACK message was 49 bytes,
including 4 bytes added in the option field. This field is
used by the server to piggyback the delivery time to clients.
The clients use delivery time to accurately measure the delay
and bottleneck bandwidth. To investigate different congestion
states and dynamic bottleneck bandwidth, we used various

105600 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 10. Simulation model for the homogenous traffic scenarios.

configuration parameters for the link bandwidth and delay
between the access point and the server. The details are pro-
vided for specific traffic scenarios. Moreover, we assume
that each client has sufficient collected data to demonstrate
burst traffic transfer. All clients can generate two traffic types:
continuous traffic and burst traffic. The simulation time was
300 s for all experiments.

Although many CoAP variants have been proposed, the
basic CoAP has been standardized by the IETF [1], [57].
In Section II, we explain how the basic CoAP and most of
its variants use loss-based approaches. In this paper, it will
be meaningful to compare two types of CC schemes: loss-
based and rate-based schemes. Therefore, we focused only on
the performance comparison between our rate-based Fuzzy-
CoAP and basic CoAP, because basic CoAP is representative
of loss-based CoAP variants.

We evaluated FuzzyCoAP and the basic CoAP using the
following indicative metrics:
• End-to-end delay: The delay between the sending time
at the client and the receiving time at the server.

• Throughput: the delivery rate computed at the server for
each time interval of one RTT.

• Retransmission: the number of retransmissions and the
percentage of retransmissions.

• Packet duplication: the number of duplicated packets.
• Packet loss: the number and percentage of packet losses.

A. SIMULATION SETUP
Two network topologies were used for simulation: star and
dumbbell topologies. In the star topology, clients send data
to a common server via the access point and router. The
link between the router and the server was the bottleneck
link for the experiments. In dumbbell topology, clients send
data to different servers via the access point, network router,
and edge router that connects to the remote servers. The link
between the network router and edge router was considered
the bottleneck link for the experiments.

We used three types of traffic scenarios for experi-
ments: 1) homogenous traffic, 2) heterogenous traffic, and
3) dynamic traffic scenarios. Homogenous traffic scenar-
ios are used for clients using the same CC scheme, either

FuzzyCoAP or basic CoAP. Heterogeneous traffic scenar-
ios are used for a mixture of FuzzyCoAP, basic CoAP,
and unresponsive clients. The unresponsive client used in
the experiment was an unconfirmable (NON) CoAP client
that sent messages without the need for acknowledgment.
Dynamic traffic scenarios use TCP flow and unresponsive
flow (UDP) as background traffic. Unresponsive flow dynam-
ically changes the transmission rate. The purpose of these
experiments was to demonstrate the behavior of the schemes
under dynamic network conditions.

We used random start times for the flows in all experi-
ments. The random seed was set between 0 ms and 200 ms
to generate the start time for each flow. Thirty random test
runs were conducted for each experiment. We used real-time
tracing data for delay, retransmission, packet duplication, and
throughput to produce the graphic data. The instantaneous
throughput was calculated using the received packet and the
time difference between sending and receiving packets at the
server. The average values of the delay and throughput were
calculated using confidence intervals with a normal distribu-
tion.

Although various link bandwidths and link delays can be
selected for the simulation experiments, we used specific link
bandwidths and link delays to demonstrate the bottleneck
bandwidth for cases with no congestion, single congestion,
and heavy congestion. The aim of these experiments was to
compare the schemes under the same network conditions.

B. HOMOGENOUS TRAFFIC SCENARIOS
1) CHECKING THE FUZZY CONTROLLER
The network topology for homogenous traffic scenarios is
illustrated in Fig. 10. To verify the fuzzy controller, three
FuzzyCoAP flows were used. In these experiments, the link
bandwidth between the AP and router was 250 Kbps with
a link delay of 50 ms. The link between the router and
server had a bandwidth of 45 Kbps and a link delay of
300 ms. The three FuzzyCoAP flows shared a common link
bandwidth. The measured bottleneck bandwidth was approx-
imately 2.6 Kbps, which was much smaller than the link
bandwidth in these experiments owing to the competence of
the flows.

Fig. 11 presents the behavior of the RT-gradient,
BG-gradient, and computed congestion degree (C-degree)
over time for FuzzyCoAP flows.

As shown in the figure, the clients started shortly after the
initial stage and sent burst data. The load increased quickly
(BG-gradient line). RTT increased accordingly (RT-gradient
line). A short positive C-degree peak at 10 s indicates that
the client tried to test the available bandwidth. Subsequently,
the C-degree became negative. This implies that the client
must send packets at a lower rate. In the interval between
10 s and 70 s, the client retained the sending rate to maintain
its performance. The rate was updated at each RTT interval.
The instantaneous packet delay was large, because several
packets were on flight to the server. At 75 s, the C-degree

VOLUME 10, 2022 105601

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 11. Behavior of RT-gradient, BG-gradient, and C-Degree.

became positive, indicating a low congestion threat. The
client can then increase the sending rate. That is why the load
(BG-gradient) was increased. In the time interval from 90 s
to 160 s, the C-degree decreased owing to the increase in the
RT-gradient. The client must reduce the sending rate to avoid
congestion. The same control process was repeated for the
subsequent intervals.

The variation in the C-degree depends on the available
bandwidth of the bottleneck link. As presented, FuzzyCoAP
can predict early congestion based on the computed C-degree
and adjusts the sending rate accordingly.

FIGURE 12. Change of C-Degrees of FuzzyCoAP flows.

In Fig. 12, we compare the C-degrees of the three Fuzzy-
CoAP flows sharing a common bottleneck link. As shown in
the figure, the C-degrees are increased or decreased accord-
ing to the RT-gradient and BG-gradient inputs, as shown in
Fig. 11. The changes in the C-degrees are different because
the flows compete for the available bandwidth of the bot-
tleneck link. However, the difference was small, indicating
fairness between the flows.

FIGURE 13. End-to-end delay of FuzzyCoAP flows.

2) PERFORMANCE OF FuzzyCoAP FLOWS
We used the same network topology as that shown in
Fig. 10 for the performance evaluation of the three Fuzzy-
CoAP flows. Fig.13 presents the end-to-end delay of the
FuzzyCoAP flow. After the initial few seconds, the client
attempted to measure bottleneck bandwidth. The measured
value was 2.6 Kbps for each flow. Subsequently, clients
started to send burst data. At the start of the connection, most
of the packets exhibit a small delay. Packet delay increases
with an increasing number of inflight packets. If the load is
high, more packets are delayed. However, we can see that
the average packet delay was less than 410 ms for all flows.
This is because FuzzyCoAP limits the sending rate below
the bottleneck bandwidth. According to the current measured
available bandwidth, FuzzyCoAP flows attempt to maintain
the sending rate smaller than the bottleneck bandwidth to
avoid congestion. Thus, FuzzyCoAP can limit the maximum
delay in flow.

There were some spikes in the delay. This is because of the
competing packets of flows. As the number of inflight packets
increases, more spikes are observed. However, the values of
the spikes were less than 420 ms for all flows. This implies
that the instantaneous sending rate may temporarily be larger
than the bottleneck bandwidth without causing congestion,
as explained in Section III.

Fig. 14 shows the throughput of the three FuzzyCoAP
flows in the homogeneous experimental set.

Although the bottleneck bandwidth of the shared link was
2.6 Kbps, the throughput of each flow reached an aver-
age of 8 Kbps. This means that FuzzyCoAP can achieve a
high performance. The throughput may vary at the begin-
ning of the flow, but it becomes more stable in the long
term.

In Table 3, we present the comparative performance of the
three FuzzyCoAP flows using various metrics. In this set of
experiments, no packet loss was observed. There was only
one retransmission for each flow owing to timeout. How-
ever, this retransmitted packet is duplicated. This is because

105602 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 14. Throughput of FuzzyCoAP flows.

FuzzyCoAP uses variable RTOs. In the case of a small RTO,
a packetmay be received immediately after its timeout, result-
ing in the retransmission of its duplication. However, no con-
gestion loss occurred during this experiment. Note that the
delay was not computed for retransmitted duplications. The
results indicate that FuzzyCoAP flows can compete for high
throughput without congestion loss. Congestion situations
will be studied in the subsequent experiments.

TABLE 3. Performance comparison: FuzzyCoAP flows.

C. HETEROGENOUS TRAFFIC SCENARIOS
1) COMPARATIVE PERFORMANCE FOR THE FuzzyCoAP AND
BASIC CoAP FLOWS
We used a dumbbell network topology, as shown in Fig. 15,
for the heterogeneous traffic scenarios (i.e., a mixture of basic
CoAP and FuzzyCoAP flows).

For the experiments, the following parameters were used:

- The link bandwidth between the AP and router
was 250 Kbps with a link delay of 50 ms.

- The link bandwidth between the router and the edge
router was 60 Kbps with a link delay of 300 ms.

- The link bandwidth between the edge router and servers
was 1 Mbps with a link delay of 20 ms.

FIGURE 15. Simulation model for the heterogenous traffic scenarios.

The link between the router and the edge router is a bot-
tleneck. For the link between the edge router and servers,
we used a higher link bandwidth to quickly solve the inflight
packets. This configuration ensures that only one bottleneck
link exists in the end-to-end connection path.

Fig. 16 shows a comparison of the packet delays in Fuzzy-
CoAP and basic CoAP flows. As indicated in the figure, the
packet delay fluctuated in both schemes owing to competition
between the flows. If the load increases, more packets will be
delayed, and the delay may increase. However, the maximum
delay was less than 430 ms for all the flows. The density in
the plot indicates the number of packets sent by each flow,
with a corresponding delay.

FIGURE 16. End-to-end delay of FuzzyCoAP and basic CoAP.

For the basic CoAP, the average delay was 390.31 ms for
389 packets sent within 300 s of the simulation. The confi-
dence interval was computed for 389 samples using a confi-
dence level of 99%, giving confidence intervals of (389.46,
391.17). The sending rate does not change. The delay varia-
tion was only due to the delayed ACKs and competition of
the flows.

In the case of FuzzyCoAP, the average delay was
392.43 ms, but for 2558 packets. The confidence interval
was computed for 2558 samples using a confidence level of
99%, giving confidence intervals of (392.02, 392.85). That is,
the FuzzyCoAP successfully delivered more packets than the

VOLUME 10, 2022 105603

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

basic CoAP. This is because FuzzyCoAP sent higher sending
rates using FCS. It had more packets in flight and, in turn,
more delay variation owing to the CC control. This is why
FuzzyCoAP has more delayed packets than the basic CoAP.
However, the sending rate of FuzzyCoAPwas bounded by the
bottleneck bandwidth (60 Kbps in these experiments). Thus,
FuzzyCoAP limits the maximum delay in flows and avoids
congestion.

Fig. 17 shows the throughput evaluation for the
FuzzyCoAP and basic CoAP flows. Owing to the bottle-
neck bandwidth and competition of flows, the basic CoAP
flow cannot send more packets than the allocated available
bandwidth. By contrast, FuzzyCoAP can send more packets.
At startup, the FuzzyCoAP flow attempted to measure the
available bandwidth. This is why there was some spike in
the figure. Subsequently, the FuzzyCoAP flow attempted to
increase throughput while avoiding congestion. As explained
in Section III, the instantaneous sending rate may be tem-
porarily larger than the bottleneck bandwidth, without caus-
ing congestion. The results provide evidence that FuzzyCoAP
operates in a congestion avoidance zone with a high through-
put and low delay, as shown in Figure 1.

FIGURE 17. Throughput comparison for FuzzyCoAP and basic CoAP.

TABLE 4. Performance comparison: FuzzyCoAP and basic CoAP.

The average throughput of the basic CoAP flows was
1.27 Kbps with confidence intervals of (1.26, 1.28) using a

confidence level of 99%. In contrast, the average throughput
was approximately 8.35Kbps in FuzzyCoAPwith confidence
intervals of (8.24, 8.50) using a confidence level of 99%. This
means that FuzzyCoAP achieved high performance without
congestion. Table 4 presents a performance comparison of
FuzzyCoAP and CoAP.

The FuzzyCoAP flow successfully sent 2558 packets,
whereas the basic CoAP flow sent only 389 packets on aver-
age. The average throughput of FuzzyCoAPwasmuch higher
than that of the basic CoAP flows. Both schemes exhibited
no packet losses. No congestion loss was observed in either
scheme. The average delay was 392.43 ms for 2558 packets
in FuzzyCoAP. The basic CoAP flows had an average delay
of 390.31 ms for 389 packets. This means that FuzzyCoAP is
more efficient than the basic CoAP because it can maintain a
high throughput with a low packet delay in the competition.

A single retransmission was observed in FuzzyCoAP
owing to timeout. This retransmitted packet was dupli-
cated. This is because of the variable RTOs of FuzzyCoAP,
as explained previously. In addition, neither scheme com-
putes the delay for the retransmitted duplications. Duplicated
packets were discarded and did not affect the average delay of
the flows. A retransmission percentage of 0.04% is acceptable
for a high number of packets sent by FuzzyCoAP.

The results indicated that FuzzyCoAP flows can sendmore
packets with congestion avoidance based on the FCS. Fuzzy-
CoAP is more efficient than basic CoAP in terms of high
throughput, high received rate, and acceptable delay under
high-load conditions.

2) SINGLE CONGESTION SCENARIOS
In this experimental set, we investigate the case of a single
congestion situation by adding an unresponsive active flow.
This active flow sent several packets at a high sending rate
ranging from 20 to 90 Kbps to cause a single congestion dur-
ing the time interval from 50 to 120 s for the basic CoAP flow
and FuzzyCoAP flow. Fig 18 shows the delay comparison
between the FuzzyCoAP and basic CoAP flows. The delay
values were large between 50 s and 130 s because of several
retransmission timeouts.

Again, there were more delayed packets in FuzzyCoAP
than in basic CoAP because FuzzyCoAP sent more packets
than basic CoAP. However, the average delay in FuzzyCoAP
was less than that in the basic CoAP, owing to the variable
RTOs. The RTO was doubled for each retransmission in both
the schemes. Thus, the delay was longer than 25 s for some
retransmitted packets.

Fig. 19, Fig. 20, and Fig. 21 present the retransmissions,
duplicated retransmissions, and throughput of FuzzyCoAP
and basic CoAP, respectively, under the same single con-
gestion. There were nine retransmissions in in FuzzyCoAP
and seven in the basic CoAP, as indicated in Fig. 19. The
vertical axis represents the number of retransmission attempts
for each packet. In this figure, four packets are success-
fully received using four retransmission attempts for both
the schemes. In Fig. 20, the number of duplicated packets is

105604 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 18. Delay of schemes in single congestion situation.

FIGURE 19. Retransmissions of schemes in single congestion.

one, two, or three if the same packet is duplicated one, twice,
or thrice, respectively. The results indicated that FuzzyCoAP
and basic CoAP have the same number of duplicated packets
(i.e., the same four duplicated packet retransmissions) under
these experimental conditions.

Fig. 21 shows the average throughput of both schemes.
At startup, the throughput increased with the load. Owing to
the competition with the unresponsive flow, the throughput
of FuzzyCoAP was approximately 1.8 Kbps and remained
unchanged from 0 s to 50 s. The throughput of the basic CoAP
was unchanged at approximately 1.4 Kbps during the same
time interval. When congestion occurred from 50 s to 130 s,
both schemes were in the backoff phase with low throughput.

After the congestion had been resolved at 130 s, both
schemes attempted to improve performance. The Fuzzy-
CoAP flow checked for available bandwidth and achieved a
throughput of 8.50 Kbps. In contrast, the throughput of the
basic CoAPflowwas only approximately 1.4Kbps. The unre-
sponsive flow terminated and released its occupied bandwidth

FIGURE 20. Duplicated packet retransmissions in single congestion.

FIGURE 21. Throughput of schemes in single congestion.

to other flows. There was only one FuzzyCoAP flow and
one basic CoAP flow in the time interval from 130 to 300 s.
The FuzzyCoAP flow gained the bandwidth released by the
unresponsive flow. This is why its throughput was higher after
130 s compared to the previous time interval. The results
indicate that FuzzyCoAP can achieve a higher performance
than the basic CoAP when the network operation becomes
normal without congestion.

Table 5 summarizes the results of the experimental set.
Within a simulation time of 300 s, the FuzzyCoAP flow
sent 1660 packets. Among them, 1658 packets were success-
fully received, and two packets were lost because of con-
gestion. By contrast, the basic CoAP flow sent only 372
packets, with 370 successful received and only two lost
packets. This is because FuzzyCoAP can adapt the sending
rate based on the FCS according to the congestion state,
whereas basic CoAP cannot. The number of retransmis-
sions was nine in FuzzyCoAP and seven in the basic CoAP.
Both schemes had four packet duplications. However, the

VOLUME 10, 2022 105605

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

percentages were much lower for FuzzyCoAP owing to the
high number of delivered packets. The average delay in
FuzzyCoAP (458.64 ms) was lower than that of the basic
CoAP (650.23 ms). Consequently, the average throughput of
the FuzzyCoAP (5.40Kbps) was much higher than that of the
basic CoAP (1.21 Kbps). The mean values were computed
using 1658 samples in FuzzyCoAP and 370 samples in basic
CoAP.

The results indicated that in the case of single congestion
scenarios, FuzzyCoAP is more efficient than basic CoAP
in terms of average throughput, average delay, packet loss,
retransmissions, and duplication percentages.

3) HEAVY CONGESTION SCENARIOS
In this set of experiments, we investigated the case of heavy
congestion by adding an unconfirmable CoAP flow. The
common link bandwidth was changed to 75 Kbps with a
link delay of 300 ms. The unresponsive flow started sending
packets at 2 Kbps during the time interval from 0 to 160 s.
At 160 s, the rate was increased in a stepwise manner by
1Kbps during the time interval from 160 to 200 s. This action
aimed to create severe congestion at the end of the simulation
period. After 200 s, the unresponsive flow decreased its rate
in a stepwise manner by 2Kbps to quickly resolve the inflight
packets. Heavy congestion can be expected in the time inter-
val between 180 s and 280 s. Using this experimental set,
we show the behavior of FuzzyCoAP and basic CoAP under
a heavy congestion situation.

Fig 22 shows the delay for both schemes. During the inter-
val from 0 to 160 s, both the FuzzyCoAP and basic CoAP
schemes operated without congestion. As the load increased
with unresponsive flow, the delay in both schemes increased.
Several retransmissions occurred from 155 to 180 s. At 180 s,
packet losses were observed in both schemes (the delay was
not computed for lost packets). The delay values were large
between 220 s and 280 s because of the retransmission time-
out of the packets. The delay plot of FuzzyCoAP is sparser
than that of the basic CoAP. This means that FuzzyCoAP
had fewer delayed packets than the basic CoAP. The figure
indicates that the average delay in FuzzyCoAP was less than
that in the basic CoAP. This is because FuzzyCoAP uses
variable RTOs provided by the FCS. Thus, the number of
retransmissions in FuzzyCoAP was less than that in the basic
CoAP (see the density of the plot).

Fig. 23 presents the retransmissions for both schemes.
As indicated, there were several retransmissions in both
schemes during the congestion interval. Most packets
required a maximum number of four retransmissions. This is
why the average delay was high for both schemes. In the case
of heavy congestion, FuzzyCoAP attempted to retransmit
lost packets similar to basic CoAP. However, the retransmis-
sions of FuzzyCoAP were less than those of the basic CoAP.
The number of retransmissions was 669 for FuzzyCoAP
and 2954 for the basic CoAP. This is because the variable
RTOs in FuzzyCoAP help reduce the number of unnecessary
retransmissions.

FIGURE 22. Delay of schemes in heavy congestion.

TABLE 5. Performance comparison under single congestion.

FIGURE 23. Retransmissions of schemes in heavy congestion.

Fig. 24 shows the duplicated retransmissions in the Fuzzy-
CoAP and the basic CoAP. Several packets were duplicated
during retransmission in both schemes. The number of dupli-
cations was 571 for FuzzyCoAP and 922 for basic CoAP.
As shown in the figure, several packets were duplicated four
times. The number of duplications used one time, two times,

105606 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 24. Duplicated packet retransmissions in heavy congestion.

and three times was smaller. The duplicated packets were dis-
carded at the receiver and neglected in the delay computation.

FIGURE 25. Throughput of schemes in heavy congestion.

In Fig. 25, we present the throughput comparison of the
schemes. It should be noted that the average throughput was
computed for acknowledged packets, including duplicated
packets. Keeping this in mind, the plot does not reflect the
real throughput of the flows (i.e., only acknowledged pack-
ets). The condensed plot of the basic CoAP was due to many
retransmissions and duplications from 230 s to 300 s. The real
average throughput of the flows was smaller in these heavy
congestion scenarios. Although the plot of FuzzyCoAP was
sparser, FuzzyCoAP provided a real average throughput that
was much higher than that of the basic CoAP.

Table 6 presents a performance comparison of the schemes
in heavy congestion scenarios.

As shown in the table, the number of sent packets was
high in both schemes owing to the high bandwidth and num-
ber of retransmissions. However, the number of successful

TABLE 6. Performance comparison under heavy congestion.

received packets in FuzzyCoAP was significantly higher than
that in the basic CoAP. This number was 2020 (95.92%) in
FuzzyCoAP and 1840 (58.01%) in the basic CoAP. More
lost packets were in basic CoAP than in FuzzyCoAP. The
number of lost packets was 86 (4.10%) for FuzzyCoAP and
1332 (41.99%) for basic CoAP. The number of packet retrans-
missions was 669 (31.77%) in FuzzyCoAP, which was much
smaller compared to 2954 (93.13%) in basic CoAP. The num-
ber of duplicated packets was 571 (27.11%) for FuzzyCoAP,
and 922 (29.07%) for basic CoAP. All percentage values were
computed with respect to the number of packets sent. Due to
the higher number of successful received packets (duplicated
packets were excluded), the average delay was 4304.14 ms
in FuzzyCoAP, which was much smaller than 8639.60 ms
in basic CoAP. The average throughput was 6.97 Kbps in
FuzzyCoAP and was 6.32 Kbps in basic CoAP.

The simulation results indicated that FuzzyCoAP provided
better performance than the basic CoAP in the case of heavy
congestion.

D. DYNAMIC TRAFFIC SCENARIOS
1) DYNAMIC SCENARIOS USING FuzzyCoAP, BASIC CoAP,
AND UNRESPONSIVE FLOWS
Using this experimental set, we studied the behavior of
FuzzyCoAP and the basic CoAP in dynamic traffic scenar-
ios. We used the same network topology with ten flows,
as shown in Fig. 15. One FuzzyCoAP flow competes for the
available bandwidth with eight basic CoAP flows and one
non-confirmable flow (a basic UNCON CoAP flow, called
BUNCON flow). The BUNCON flow started sending pack-
ets at a rate of 0.5 Kbps. The rate was increased in a step-
wise manner to 25 Kbps. Subsequently, the rate dropped to
0.5 Kbps. This procedure was repeated three times. Finally,
the BUNCON flow decreased its rate and stopped at 280 s.
The aim of this action was to create a dynamic network con-
dition for all the flows.

Fig. 26 shows the delay in the FuzzyCoAP, basic CoAP,
and BUNCON flow. As indicated, the delay of all flows
increased during the short congestion situation at 55, 110,
and 150 s. The high load was caused by the increased rate
of BUNCON flow during these time intervals. The measured
delay was less than 800 ms for FuzzyCoAP, whereas it was

VOLUME 10, 2022 105607

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

FIGURE 26. Delay performance in dynamic traffic scenarios.

approximately 950 ms on average for all basic CoAP flows.
The average delay was 725.91ms for FuzzyCoAPwith confi-
dence intervals of (700.40, 751.43) and was 973.95 for basic
CoAP with confidence intervals of (948.03, 999.86).
Fig. 27 shows a throughput comparison of the schemes.

In the case of congestion (from 40 s to 70 s, from 80 s to
120 s, and from 140 s to 180 s), the average throughput was
0.49 kbps with a confidence interval of (0.479, 0.501) for
FuzzyCoAP and was 0.48 Kbps with a confidence interval of
(0.477, 0.495) for basic CoAP, respectively. The FuzzyCoAP
flow achieved a throughput comparable to that of the basic
CoAP flows. This is because the BUNCON flow used almost
all available bandwidth. Thus, the FuzzyCoAP flow cannot
gain more available bandwidth to increase the sending rate,
as shown in previous experimental set. However, the average
throughput of the FuzzyCoAP flow was higher than that of
the basic CoAP flows during the congestion situation. The
results indicate that FuzzyCoAP reacts better than the basic
CoAP in dynamic traffic scenarios.

FIGURE 27. Throughput performance in dynamic traffic scenarios.

2) DYNAMIC SCENARIOS USING FuzzyCoAP, BASIC CoAP,
UDP, AND TCP FLOWS
In this experimental set, we compared the performance of
FuzzyCoAP and basic CoAP in the case of background traf-
fic using UDP and TCP flows. The same network topology
was used, as shown in Fig. 15. However, the bottleneck link
bandwidth was set to 500 Kbps with a link delay of 500 ms.
The TCP flow was established using the standard TCP socket
of the network simulator NS-3 with a data rate of 10 Mbps
and a data segment size of 1040 bits. The UDP flow was
created using the standard UDP socket of NS-3. The UDP
flow started with a data rate of 20 Kbps. The rate was then
changed to 50 Kbps at 80 s, 150 Kbps at 150 s, and 5 Kbps at
200 s. The purpose of this experiment was to create mixed
dynamic background traffic scenarios for simulation using
the FuzzyCoAP and basic CoAP flows. All flows started at
random times between 0 and 200ms.We executed 30 random
test runs for this experiment.

Fig. 28 shows the comparable delay performance of
FuzzyCoAP and the basic CoAP in the case of TCP/UDP
background traffic.

FIGURE 28. Delay performance of FuzzyCoAP and basic CoAP using
TCP/UDP background traffic.

As indicated, the delay in both schemes fluctuated depend-
ing on the rate of change in the UDP flow. A large delay was
observed during the time interval from 80 s to 120 ms and
from 150 s to 200 s because the UDP flow sent packets at
a high speed during that time interval. The average delay in
the basic CoAP was approximately 1563.25 ms with confi-
dence intervals of (1550.77, 1575.74). The large delay was
2004ms at 7 s and 1970ms at 153 s. By contrast, the average
delay was approximately 1561.26mswith a confidence inter-
val of (1554.82, 1579.70) for FuzzyCoAP. The maximum
delay in the FuzzyCoAP flow was 1888 ms at 153 s, which
was smaller than that of the basic CoAP (2004 ms). This is
because of the variable RTOs in the FuzzyCoAP flow.

Fig. 29 shows the throughput of the Fuzz CoAP and basic
CoAP. In the time interval from 0 to 50 s, all flows compete

105608 VOLUME 10, 2022

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

for the available bandwidth of the bottleneck link. Fuzzy-
CoAP flow gained a higher bandwidth than the basic CoAP
during this time interval.

At 80 s, the UDP flow was changed from 20 to 50 Kbps.
At this moment, the FuzzyCoAP flow attempted to lever-
age the recently released bandwidth to increase its sending
rate. Owing to the recently updated bottleneck bandwidth, the
FuzzyCoAP flow could increase throughput during 80-90 s
based on its FCS. By contrast, the basic CoAP flow cannot
maintain its throughput.

During the moment of the rate change of the UDP
flow at 150 s, both FuzzyCoAP flow and the basic
CoAP flow attempted to gain the bandwidth released by
the UDP flow. However, the basic CoAP flow could not,
whereas the FuzzyCoAP could obtain some more bandwidth
to increase its throughput based on its updated bottleneck
bandwidth. However, the throughput of FuzzyCoAP fluctu-
ated owing to competition between the flows. Several packets
were lost for both schemes from 150 s to 200 s because of the
high rate of UDP flow. Thus, the throughput of both schemes
degraded accordingly.

FIGURE 29. Throughput performance of FuzzyCoAP and basic CoAP using
TCP/UDP background traffic.

At 200 s, the UDP flow rate was decreased to 5 Kbps.
FuzzyCoAP can gainmore available bandwidth to increase its
throughput, whereas the basic CoAP flow cannot. However,
the throughput of FuzzyCoAP fluctuated because many pack-
ets remained in flight. The average throughput was approx-
imately 1.895 Kbps with confidence intervals of (1.863,
1.927) in the basic CoAP. This is because the basic CoAP had
more retransmitted and duplicated packets in the congested
interval. In contrast, the average throughput was approx-
imately 9.228 Kbps with confidence intervals of (7.907,
10.549) in FuzzyCoAP.

We can conclude that FuzzyCoAP can leverage the
available bandwidth of the bottleneck shared by flows to
increase its performance. By contrast, the basic CoAP could
not. This is because FuzzyCoAP uses the FCS to control

the sending rate according to the dynamic network state.
Thus, FuzzyCoAP can be used to predict early congestion.
FuzzyCoAP can limit the maximum delay while maintaining
a high throughput performance.

All experiment results demonstrate that the rate-based
FuzzyCoAP behaves more efficiently than the loss-based
basic CoAP in various traffic scenarios.

E. DISCUSSION
This paper proposes a new rate-based CC scheme for CoAP.
We focused on experiments to compare the performance of
the rate-based CC and the existing loss-based CC scheme,
that is, the basic CoAP. As discussed in Section II, most of
the existing CoAP variants follow a loss-based CC approach.
We chose the basic CoAP for comparison because it is repre-
sentative of the loss-based CC schemes that have been stan-
dardized. Moreover, the aim of this study is to demonstrate
the feasibility and efficiency of a fuzzy rate-based CC scheme
for CoAP compared to the loss-based CC scheme for CoAP.
Experiments with other related schemes will be a topic for
further studies.

A key issue in the design of our FCS is the computation
of the bottleneck bandwidth to determine the BG-gradient.
As presented in Section III, we used a simple method for
sending back-to-back packets at the startup stage. The initial
state of FuzzyCoAP requires six to tenRTT cycles to estimate
the bottleneck compared with the ten cycles indicated in [23]
and [42]. This is because the clients and network require some
time to be stable. This overhead is negligible compared to the
total time of burst data transfer. In addition, another method
can be deployed for bottleneck bandwidth estimation, such as
the packet pair method indicated in [58]. However, this issue
will be a topic for further study.

In the proposed FuzzyCoAP, we use the C-degree to adjust
the sending rate of the clients, as well as the RTO values
for retransmissions. Accurate computation of variable RTOs
can reduce the number of unnecessary retransmissions and
packet duplications. Our experiment results indicate that the
C-degree can be used to adjust the RTOs, which are used to
adjust the retransmission speed. The issue of RTO adjustment
is a topic for further research.

VI. CONCLUSION
Constrained Application Protocol (CoAP) has been adopted
for IoT networks to satisfy the growing demand for numerous
smart applications. Congestion control (CC) is one of the
most challenges in such networks owing to the requirements
for reliable burst data transfer and the dynamic network con-
ditions. CoAP uses a basic CC algorithm that only regulates
the retransmission rate, that is, in the case of timeout or
packet loss. This typical loss-based CC algorithm operates
only when a network congestion occurs. Enhancement of
CoAP CC is undoubtedly necessary, particularly for burst
data transfers.

In this study, we proposed a novel rate-based CC scheme
called FuzzyCoAP based on fuzzy control system (FCS).

VOLUME 10, 2022 105609

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

An FCS can be an excellent choice because parameters such
as RTT, delivery rate, and traffic load are not sharp, unclear,
approximate, or ambiguous. Thus, an FCS can help in mak-
ing appropriate decisions for congestion control. We chose
the RT-gradient and BG-gradient as inputs to the FCS. The
crisp output of the FCS, that is, the C-degree, reflects the
congestion state. Using the FCS, the proposed FuzzyCoAP
can detect early congestion and adjust the sending rate to
avoid congestion threats. To the best of our knowledge, this
study is the first to address the application of FCS for CoAP
CC using a rate-based approach.

Numerous experiments and traffic scenarios have been
conducted to demonstrate the feasibility of the proposed
FuzzyCoAP. We compared the performance of FuzzyCoAP
with that of the basic CoAP because it is representative of
loss-based schemes. The results demonstrate that the pro-
posed FuzzyCoAP is feasible. FuzzyCoAP frequently checks
for network congestion and reduces the likelihood of conges-
tion by decreasing the transmission rate. Furthermore, Fuzzy-
CoAP enables high throughput by dynamically checking the
available bandwidth to increase the sending rate. FuzzyCoAP
is more efficient than basic CoAP in terms of delay, through-
put, retransmission, packet duplication, and packet loss ratio
in different traffic scenarios. Moreover, FuzzyCoAP is effi-
cient for burst data transfer.

FuzzyCoAP uses a variable RTO estimation based on the
computed congestion degree provided by the FCS. There-
fore, FuzzyCoAP reacts better to dynamic network states than
basic CoAP in both single and heavy congestion situations.
Using variable RTOs, FuzzyCoAP can reduce the number
of retransmissions, packet duplications, and loss rate, while
maintaining a reasonable delay and high throughput. The use
of the computed congestion degree for the RTO adjustment
can be studied in future research.

ACKNOWLEDGMENT
The authors would like to thank the Hanoi University of Civil
Engineering (HUCE) and the Posts and Telecommunications
Institute of Technology (PTIT) for the facilities, and also
would like to thank the anonymous reviewers for their valu-
able comments.

REFERENCES
[1] The Constrained Application Protocol (CoAP), document RFC 7252,

Jun. 2014. [Online]. Available: https://rfc-editor.org/info/rfc7252
[2] CUBIC for Fast Long-Distance Networks, document RFC 8312, [Online].

Available: https://rfc-editor.org/info/rfc8312
[3] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, The NewReno Modifi-

cation to TCP’s Fast Recovery Algorithm, document RFC 6582, Apr. 2022,
[Online]. Available: https://rfc-editor.org/info/rfc6582

[4] C. Gomez, A. Arcia-Moret, and J. Crowcroft, ‘‘TCP in the Internet of
Things: From ostracism to prominence,’’ IEEE Internet Comput., vol. 22,
no. 1, pp. 29–41, Jan./Feb. 2018.

[5] C. Bormann and Z. Shelby. Block-Wise Transfers in the Constrained Appli-
cation Protocol (CoAP). Accessed: Jun. 24, 2021. [Online]. Available:
https://rfc-editor.org/info/rfc7959

[6] W. U. Rahman, Y.-S. Choi, and K. Chung, ‘‘Performance evaluation of
video streaming application over CoAP in IoT,’’ IEEE Access, vol. 7,
pp. 39852–39861, 2019.

[7] H. Haile, K.-J. Grinnemo, S. Ferlin, P. Hurtig, and A. Brunstrom,
‘‘End-to-end congestion control approaches for high throughput and low
delay in 4G/5G cellular networks,’’ Comput. Netw., vol. 186, Feb. 2021,
Art. no. 107692.

[8] H. Jiang, Q. Li, Y. Jiang, G. Shen, R. Sinnott, C. Tian, and M. Xu, ‘‘When
machine learning meets congestion control: A survey and comparison,’’
Comput. Netw., vol. 192, Jun. 2021, Art. no. 108033.

[9] V. Jacobson, ‘‘Congestion avoidance and control,’’ in Proc. Symp. Proc.
Commun. Archit. Protocols SIGCOMM, New York, NY, USA, 1988,
pp. 314–329.

[10] S. Floyd, R. Gummadi, and S. Shenker, ‘‘Adaptive RED: An algorithms
for increasing the robustness of RED’s active queue management,’’ Int.
Comput. Sci. Inst. (ICSI), Berkeley, CA, USA, Tech. Rep. 301, Aug. 2001.
[Online]. Available: https://www.icsi.berkeley.edu/icsi/node/2032

[11] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, ‘‘CoAP congestion
control for the Internet of Things,’’ IEEE Commun. Mag., vol. 54, no. 7,
pp. 154–160, Jul. 2016.

[12] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, ‘‘CoCoA+: An
advanced congestion control mechanism for CoAP,’’AdHocNetw., vol. 33,
pp. 126–139, Oct. 2016.

[13] C. Bormann, A. Betzler, C. Gomez, and I. Demirkol. (Feb. 2018).
CoAP Simple Congestion Control/Advanced. Internet-Draft. Accessed:
Jul. 24, 2021. [Online]. Available: https://tools.ietf.org/id/draft-bormann-
core-cocoa-03.txt

[14] J. J. Lee, K. T. Kim, and H. Y. Youn, ‘‘Enhancement of congestion control
of constrained application protocol/congestion control/advanced for Inter-
net of Things environment,’’ Int. J. Distrib. Sensor Netw., vol. 12, no. 11,
pp. 1–13, Nov. 2016.

[15] I. Jarvinen, M. Kojo, I. Raitahila, and Z. Cao, Fast-Slow Retransmission
Timeout and Congestion Control Algorithm for CoAP, document draft-
ietf-core-fasor-01, IETF CoREWorking Group, 2020. [Online]. Available:
https://core-wg.github.io/fasor/draft-ietf-core-fasor.html

[16] S. Bolettieri, G. Tanganelli, C. Vallati, and E. Mingozzi, ‘‘PCoCoA: A
precise congestion control algorithm for CoAP,’’ Ad Hoc Netw., vol. 80,
pp. 116–129, Nov. 2018.

[17] S. Deshmukh and V. T. Raisinghani, ‘‘AdCoCoA-adaptive congestion con-
trol algorithm for CoAP,’’ inProc. 11th Int. Conf. Comput., Commun. Netw.
Technol. (ICCCNT), Kharagpur, India, Jul. 2020, pp. 1–7.

[18] R. Jain, ‘‘A delay-based approach for congestion avoidance in inter-
connected heterogeneous computer networks,’’ CM SIGCOMM Comput.
Commun. Rev., vol. 19, no. 5, Oct. 1989, pp. 56–71, doi: 10.1145/74681.
74686.

[19] A. Gurtov, T. Henderson, and S. Floyd, The NewReno Modification to
TCP’s Fast Recovery Algorithm, document RFC 3782, 2004.

[20] S. Ha, I. Rhee, and L. Xu, ‘‘CUBIC: A new TCP-friendly High-speed TCP
variant,’’ in Proc. SIGOPS Oper. Syst. Rev., vol. 42, no. 5, 2008, pp. 64–74.

[21] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y.Wang, D.Wetherall, and D. Zats, ‘‘TIMELY: RTT-based con-
gestion control for the datacenter,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 537–550, Oct. 2015.

[22] S. Liu, T. Başar, and R. Srikant, ‘‘TCP-Illinois: A loss- and delay-based
congestion control algorithm for high-speed networks,’’ Perform. Eval.,
vol. 65, nos. 6–7, pp. 417–440, Jun. 2008.

[23] E. Ancillotti and R. Bruno, ‘‘BDP-CoAP: Leveraging bandwidth-delay
product for congestion control in CoAP,’’ in Proc. IEEE 5th World Forum
Internet Things (WF-IoT), Limerick, Ireland, Apr. 2019, pp. 656–661.

[24] E. Ancillotti, E. Bolettieri, and R. Bruno, ‘‘RTT-based congestion control
for the Internet of Things,’’ in Proc. 19th IEEE Int. Symp. Wired/Wireless
Internet Commun. (WWIC), vol. 10866, Jun. 2018, pp. 3–15.

[25] R. Rejaie, M. Handley, and D. Estrin, ‘‘RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the internet,’’ in
Proc. IEEE INFOCOM Comput. Commun. Societies, vol. 3. Mar. 1999,
pp. 1337–1345.

[26] S. Floyd, M. Handley, J. Padhye, and J. Widmer, ‘‘Equation-based conges-
tion control for unicast applications,’’ in Proc. ACM SIGCOMM Comput.
Commun. Rev., Oct. 2000, vol. 30, no. 4, pp. 43–56.

[27] D. H. Hoang, Quality of Service Control in the Mobile Wireless Environ-
ment. Bern, Switzerland: PeterLang Publisher, 2002.

[28] E. Ancillotti, R. Bruno, C. Vallati, and E. Mingozzi, ‘‘Design and evalua-
tion of a rate-based congestion control mechanism in CoAP for IoT appli-
cations,’’ inProc. IEEE 19th Int. Symp.WorldWireless, MobileMultimedia
Networks (WoWMoM), Chania, Greece, Jun. 2018, pp. 14–15.

[29] D. H. Hoang and T. T. D. Le, ‘‘RCOAP: A rate control scheme for
reliable bursty data transfer in IoT networks,’’ IEEE Access, vol. 9,
pp. 169281–169298, 2021, doi: 10.1109/ACCESS.2021.3135435.

105610 VOLUME 10, 2022

http://dx.doi.org/10.1145/74681.74686
http://dx.doi.org/10.1145/74681.74686
http://dx.doi.org/10.1109/ACCESS.2021.3135435

T. N. Pham et al.: Fuzzy Congestion Control and Avoidance for CoAP in IoT Networks

[30] T. J. Ross, Fuzzy Logic with Engineering Applications, 3rd Ed. Hoboken,
NJ, USA: Wiley, 2010.

[31] S. Keshav, ‘‘A control-theoretic approach to flow control,’’ in Proc. SIG-
COMM Comput. Commun. Rev., Sep. 1991, vol. 21, no. 4, pp. 3–15, doi:
10.1145/115994.115995.

[32] C. Chrysostomou, A. Pitsillides, L. Rossides, M. Polycarpou, and
A. Sekercioglu, ‘‘Congestion control in differentiated services net-
works using Fuzzy-RED,’’ IFAC Control Eng. Pract., vol. 11, no. 19,
pp. 1153–1170, 2003.

[33] S. Jaiswal and A. Yadav, ‘‘Fuzzy based adaptive congestion control in
wireless sensor networks,’’ inProc. 6th Int. Conf. Contemp. Comput. (IC3),
Aug. 2013, pp. 433–438.

[34] A. A. Rezaee and F. Pasandideh, ‘‘A fuzzy congestion control protocol
based on active queue management in wireless sensor networks with med-
ical applications,’’ Wireless Pers. Commun., vol. 98, no. 1, pp. 815–842,
Jan. 2018, doi: 10.1007/s11277-017-4896-6.

[35] C. Sonmez, O. D. Incel, S. Isik,M.Y.Donmez, andC. Ersoy, ‘‘Fuzzy-based
congestion control for wireless multimedia sensor networks,’’ EURASIP J.
Wireless Commun. Netw., vol. 2014, no. 1, p. 63, Dec. 2014.

[36] W. Chang, P. Chen, and C. Yang, ‘‘Robust fuzzy congestion control of
TCP/AQM router via perturbed Takagi–Sugeno fuzzy models,’’ Intl. J.
Fuzzy Syst., vol. 15, no. 2, pp. 203–213, Jun. 2013.

[37] M. Zarei, A. M. Rahmani, and R. Farazkish, ‘‘CCTF: Congestion control
protocol based on trustworthiness of nodes in wireless sensor networks
using fuzzy logic,’’ Int. J. Ad Hoc Ubiquitous Comput., vol. 8, Jan. 2011,
pp. 54–63.

[38] P. Aimtongkham, T. G. Nguyen, and C. So-In, ‘‘Congestion control and
prediction schemes using fuzzy logic system with adaptive membership
function in wireless sensor networks,’’Wireless Commun.Mobile Comput.,
vol. 2018, pp. 1–19, Aug. 2018.

[39] M. H. Homaei, F. Soleimani, S. Shamshirband, A. Mosavi, N. Nabipour,
and A. R. Varkonyi-Koczy, ‘‘An enhanced distributed congestion
control method for classical 6LowPAN protocols using fuzzy deci-
sion system,’’ IEEE Access, vol. 8, pp. 20628–20645, 2020, doi:
10.1109/ACCESS.2020.2968524.

[40] G. Cui, H. Wang, Z. Fan, and P. Li, ‘‘NDN congestion control based on
fuzzy comprehensive evaluation algorithm,’’ J. Phys., Conf., vol. 1883,
no. 1, Apr. 2021, Art. no. 012008.

[41] P. Aimtongkham, P. Horkaew, and C. So-In, ‘‘An enhanced CoAP scheme
using fuzzy logic with adaptive timeout for IoT congestion control,’’ IEEE
Access, vol. 9, pp. 58967–58981, 2021.

[42] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
‘‘BBR: Congestion-based congestion control,’’Queue, vol. 14, no. 5, p. 50,
Oct. 2016.

[43] Computing TCP’s Retransmission Timer, document RFC 6298, [Online].
Available: https://rfc-editor.org/info/rfc6298

[44] C. Suwannapong and C. Khunboa, ‘‘Congestion control in CoAP observe
group communication,’’ Sensors, vol. 19, no. 15, p. 3433, Aug. 2019, doi:
10.3390/s19153433.

[45] J. H. Jung, M. Gohar, and S. J. Koh, ‘‘CoAP-based streaming control
for IoT applications,’’ Electronics, vol. 9, no. 8, p. 1320, 2020, doi:
10.3390/electronics9081320.

[46] M. A. Tariq, M. Khan, M. T. R. Khan, and D. Kim, ‘‘Enhancements and
challenges in CoAP—A survey,’’ Sensors, vol. 20, no. 21, p. 6391, 2020,
doi: 10.3390/s20216391.

[47] L. A. Zadeh, ‘‘Toward a theory of fuzzy systems,’’ NASA, Washington,
DC, USA, Tech. Rep. CR-1432, 1969, pp. 1–35.

[48] L. A. Zadeh, ‘‘Outline of a new approach to the analysis of com-
plex systems and decision processes,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-3, no. 1, pp. 28–44, Jan. 1973.

[49] E. H. Mamdani, ‘‘Applications of fuzzy algorithms for simple dynamic
plant,’’ Proc. IEEE vol. 121, no. 12, pp. 1585–1588, Dec. 1974.

[50] R. E. Bellman and L. A. Zadeh, ‘‘Decision-making in a fuzzy environ-
ment,’’Manage. Sci., vol. 17, no. 4, pp. 141–164, Dec. 1970.

[51] S.-H. Chen, ‘‘Ranking fuzzy numbers with maximizing set andminimizing
set,’’ Fuzzy Sets Syst., vol. 17, no. 2, pp. 113–129, Nov. 1985.

[52] H. J. Zimmerman, Fuzzy Set Theory—And Its Applications, vol. 17, 4th ed.
Norwell, MA, USA: Kluwer Academic, 2001.

[53] D. H. Esawi, G. Attiya, and G. Allam, ‘‘Fuzzy controller based TCP-Vegas
enhancement for congestion control,’’ Menoufia J. Electron. Eng. Res.,
vol. 30, no. 2, pp. 39–44, Jul. 2021.

[54] NS-3 Network Simulator, NS3.36. Accessed: Aug. 16, 2022. [Online].
Available: https://www.nsnam.org/

[55] S. Maesoser. A Partial CoAP Implementation With mDNS Support, Mul-
ticast. Accessed: Aug. 16, 2022. [Online]. Available: https://github.com/
maesoser/ns3-coap/

[56] H. Hirotakaster. CoAP Client, Server Library for Spark Photon, Spark
Core. Accessed: Aug. 16, 2022. [Online]. Available: https://github.com/
hirotakaster/CoAP

[57] M. Boucadair and J. Shallow. (May 2021). Constrained Application Pro-
tocol (CoAP) Block-Wise Transfer Options Supporting Robust Trans-
mission. Internet-Draft. Accessed: Jun. 20, 2021. [Online]. Available:
https://tools.ietf.org/id/draft-ietf-core-new-block-14

[58] S. Keshav, ‘‘The packet pair flow control protocol,’’ Int. Comput. Sci.
Inst. (ICSI), Berkeley, CA, USA, Tech. Rep. TR-91-028, 1991. [Online].
Available: http://www.icsi.berkeley. edu/pubs/techreports/tr-91-028.pdf

THIEU NGA PHAM received the Diploma-Ing.
(M.Eng.) degree in technical cybernetics and
automation and the Dr.-Ing. degree in informat-
ics and automation from the Technical Univer-
sity of Ilmenau, Germany, in 1987 and 2000,
respectively.

Since 2006, she has been a Senior Lecturer at
the Faculty of Information Technology, University
of Civil Engineering, Hanoi, Vietnam. Her cur-
rent research interests include fuzzy control, fuzzy

optimization, fuzzy decision, expert systems, wireless sensor networks, the
IoT networks, system techniques, and control systems.

DANG HAI HOANG received the Diploma-
Ing. (M.Eng.) degree in technical cybernetics and
automation and the Dr.-Ing. and Dr.-Ing. (Habil-
itation) degrees in telematics and communication
systems from the Technical University of Ilmenau,
Germany, in 1984, 1999, and 2002, respectively.

Since 2009, he has been an Associate Professor
at the Posts and Telecommunications Institute of
Technology, Hanoi, Vietnam. His current research
interests include information security, communi-

cation protocols, communication systems, QoS mechanisms, and control
systems.

THI THUY DUONG LE received the B.S. degree
in telecommunications and electronic engineering
and the M.S. degree from the Technical University
of Hanoi, Vietnam, in 2002 and 2008, respectively.
She is currently pursuing the Ph.D. degree with the
Posts and Telecommunications Institute of Tech-
nology, Hanoi, Vietnam.

Since 2005, she has been a Lecturer with the
Faculty of Information Technology, University of
Civil Engineering, Hanoi. She is currently a Senior

Lecturer. Her current research interests include computer and communi-
cation systems, wireless sensor networks, QoS mechanisms, and network
performance.

VOLUME 10, 2022 105611

http://dx.doi.org/10.1145/115994.115995
http://dx.doi.org/10.1007/s11277-017-4896-6
http://dx.doi.org/10.1109/ACCESS.2020.2968524
http://dx.doi.org/10.3390/s19153433
http://dx.doi.org/10.3390/electronics9081320
http://dx.doi.org/10.3390/s20216391

