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ABSTRACT As long as the COVID-19 pandemic is still active in most countries worldwide, rapid diagnostic
continues to be crucial to mitigate the impact of seasonal infection waves. Commercialized rapid antigen
self-tests proved they cannot handle the most demanding periods, lacking availability and leading to cost
rises. Thus, developing a non-invasive, costless, and more decentralized technology capable of giving people
feedback about the COVID-19 infection probability would fill these gaps. This paper explores a sound-based
analysis of vocal and respiratory audio data to achieve that objective. This work presents a modular
data-centric Machine Learning pipeline for COVID-19 identification from voice and respiratory audio
samples. Signals are processed to extract and classify relevant segments that contain informative events, such
as coughing or breathing. Temporal, amplitude, spectral, cepstral, and phonetic features are extracted from
audio along with available metadata for COVID-19 identification. Audio augmentation and data balancing
techniques are used to mitigate class disproportionality. The open-access Coswara and COVID-19 Sounds
datasets were used to test the performance of the proposed architecture. Obtained sensitivity scores ranged
from 60.00% to 80.00% in Coswara and from 51.43% to 77.14% in COVID-19 Sounds. Although previous
works report higher accuracy on COVID-19 detection, this research focused on a data-centric approach by
validating the quality of the samples, segmenting the speech events, and exploring interpretable features with
physiological meaning. As the pandemic evolves, its lessons must endure, and pipelines such as the proposed
one will help prepare new stages where quick and easy disease identification is essential.

INDEX TERMS COVID-19, speech, vocal tract, signal processing, feature extraction, data-centric, machine
learning.

I. INTRODUCTION among the worldwide community has reached large scale
The SARS-CoV-2 Coronavirus is the agent responsible for levels over the last two years, which led us into a global pan-
the COVID-19 respiratory infection, whose transmission demic scenario [1]. Up to February 2022, COVID-19 caused
more than 418 million confirmed cases and more than 5.8 mil-

The associate editor coordinating the review of this manuscript and lion deaths worldwide [2]. Infection fatality rates range from
approving it for publication was Binit Lukose . 0.1% to 18.1%, always considering that these values can
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vary across different regions, age subgroups, and healthcare
support overload levels [3]. Actually, this last point is the
problem that governments tackle with the highest priority,
i.e., when the amount of people needing medical assistance
overcomes the healthcare system response capacity. Although
vaccination has helped to protect part of the world’s popula-
tion and control the spread of the virus, immunization levels
tend to decrease over time [4], [5], which may contribute to
a periodical rise of the transmission rates. This will require a
continuous, fast, and accurate screening of the SARS-CoV-2
in order to prevent the possible virus spreading, apart from
a vaccination boost (at least until a more effective treatment
is validated and made available). Given that the vaccination
process is not as fast as desired [6], screening tools earn
relevance as being the main instrument to track and restrain
the spread of the disease.

Currently, the most accurate and commonly applied SARS-
CoV-2 virus diagnostic tools [7] are: molecular (real-time
polymerase chain reaction - RT-PCR) and rapid antigen tests.
Nonetheless, most of them are not fast-tracking tests, besides
being invasive diagnostic techniques and still costly. These
high sensitivity tests also result in higher response times,
making them far for an ideal use in triage systems requiring
fast screening tools to sort patients by treatment priority or
even in locations with limited standard diagnostic tests.

Non-invasive COVID-19 screening tools have already
been proposed by some research groups, going from cate-
gorical data (e.g., symptomatic, demographic-related infor-
mation) processing models [8], [9], to speech processing
models [10], [11], [12], or even a combination of both.

This paper proposes a module-integrated end-to-end
framework for COVID-19 screening using audio record-
ings and Machine Learning (ML) techniques. The proposed
pipeline returns the probability of SARS-CoV-2 infection
based on speech audio inputs, symptomatic, and demographic
information. The feature engineering stage brings out new
physiological relevant features from the audio inputs, allow-
ing us to characterize and distinguish a healthy from an
infected vocal tract. Some of these features add an explain-
able layer to the output, resulting in a greater approximation
between the model prediction and the physiological phenom-
ena occurring inside the vocal tract of the patients, addition-
ally contributing to a better understanding of the disease.
The results are validated through the analysis of two large-
scale databases: Coswara [13] and COVID-19 Sounds [14]
datasets, through a pipeline designed to handle most of
the found data quality-related issues. That is followed by a
robustness assessment of our results and a critical comparison
with the recent literature. Thus, this framework poses itself as
a fast, non-invasive, and interpretable screening methodology
for the disease that, with further clinical validation, can offer
many advantages over the standard tools already mentioned.

The following Section II presents a brief description of
the current state-of-the-art related to COVID-19 and present
efforts to tackle it through audio processing. The methodol-
ogy used is described in Section IV. The obtained results are
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presented and discussed in Section V and VI, respectively.
In Section VII some final remarks and future work steps are
described.

Il. RELATED WORK

Since the World Health Organization (WHO) set COVID-19
within a global pandemic context, there have been huge
efforts made by several companies and research groups
around the world concerning the development of fast and
effective diagnostic methods [12], [15], and, most recently,
long-term post-disease assessment [16], [17]. In this present
review, we will converge into diagnostic-based studies whose
approaches adopted audio processing techniques combined
with ML or Deep Learning (DL) strategies to provide a fair
comparison with the proposed methodology. Most of the
papers explored open-access crowdsourced databases, since
they provide an easier reach to higher volumes of data and
would eliminate the need of acquiring new samples, allowing
a fast and forward track to the analysis stage.

Brown et al. [18] introduced a feature-based ML technique
to explore how distinguishable cough and breathing audio
recordings (collected from COVID-19 Sounds dataset) were
between COVID-19 positive and healthy subjects. After
feeding a set of handcrafted and deep features to the clas-
sifier, several classification tasks were followed. The best
score was achieved using cough audio features to distinguish
COVID-19 positive and negative subjects presenting
self-reported cough symptoms (80%, 72% of precision,
recall).

Coppock et al. [19] proposed an end-to-end custom Con-
volutional Neural Network (CNN) to detect COVID-19 using
breathing and cough audio samples from a 355-participant
crowdsourced dataset (a subset of the COVID-19 Sounds
dataset). The audio spectrograms were generated to feed the
CNN during training. As in the previous study, many tasks
(with different combinations of symptomatic and disease cat-
egories) were evaluated. The best score has been achieved at
discriminating COVID-19 positive and asthma subjects with
self-reported cough (90.9% of Area Under the ROC curve,
77.4% Unweighted Average Recall).

A similar framework is presented by Pahar et al. [20],
that explored ML- and DL-based techniques to extract rel-
evant information from raw cough audios (retrieved from
Coswara and Sarcos datasets) to separate COVID-19 positive
and negative subjects. A set of handcrafted features was
computed and provided to both classical ML and Deep Neural
Network (DNN) models. In the classical ML scenario, the
best score was reached for a Multi Layer Perceptron (MLP)
classifier (about 87% and 88% of specificity and sensitivity,
respectively). Regarding the DL evaluation, the best score has
been obtained with a ResNet50 (98%, 93% of Specificity and
Sensitivity).

Melek [21] implemented an ML-based system to detect
COVID-19 patients based on a single cough sound. The
data includes recordings from Virufy and NoCoCoDa
datasets, comprising a total of 107 COVID-19 positive and
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73 negative participants. After extracting the Mel-frequency
cepstral coefficients (MFCCs) from the audios, a few dif-
ferent classical ML estimators were tested. Leave-one-out
cross-validation and sequential forward selection optimiza-
tion strategies returned a K-nearest neighbors’ model as the
best performing (about 94% of accuracy).

Anupam et al. [22] introduced a robust tool for fast
COVID-19 screening through the analysis of cough audio
signals (from the Coswara database) intending to relieve
the overwhelming pressure on most hospitals and health-
care facilities. The authors have relied their strategy on an
ML pipeline, starting with signal pre-processing, a (temporal,
statistical, and spectral) feature extraction stage, and classi-
fication (with implicit optimization). The best performance
was achieved with an SVM (Support Vector Machine)
model (about 97% and 98% of sensitivity and specificity,
respectively).

A slightly different approach has been taken by
Meister et al. [23] who provided an extensive analysis over
the most relevant features to extract from audio samples.
They ranked 15 audio features (from temporal, spectral,
and tempo-spectral domains) evaluated on two large-scale
databases (COVID-19 Sounds and Coswara). This ranking
step rested on the assumption that unique patterns repeated
across independent datasets were COVID-19 and not dataset-
specific. Regarding the COVID-19 positive vs. healthy sub-
jects distinction, a Random Forest model trained solely with
spectral audio features and a cepstral feature-based SVM
have returned the best scores (around 87% of averaged AUC).

A DL-based strategy has been adopted by
Hassan et al. [24], that extracted information from cough,
breathing, and voice audio samples from 80 participants
(60 healthy and 20 COVID-19 patients) recruited in different
United Arab Emirates hospitals. A set of temporal, spectral,
and cepstral hand-coded audio features was computed across
these signals and then fed into an Long short-term memory
(LSTM) Neural Network model. The highest performance
has been achieved for only the evaluation of the breathing
signals (98%, 100% of recall/precision).

Table 1 helps summarize the tasks and best perfor-
mances achieved by each one of the aforementioned stud-
ies. Although the majority of these approaches reports good
performance scores, they lack at handling the quality of the
audios, as well as the interpretability of the output. These
implementations focus more at achieving high metric scores,
rather than supporting them on clinically relevant informa-
tion. Hence, that can be a bottleneck at the time of validating
the models or simply scaling them into the real-world.

Ill. SCIENTIFIC BACKGROUND

A. COVID-19 BIOLOGICAL IMPACT ON RESPIRATORY
TRACT

Infections of the respiratory tract [25] can be classified
according to the symptoms reported and the anatomic struc-
tures involved. Two main groups can be defined: Upper
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and Lower Respiratory Infections (URI and LRI). URIs do
not usually produce severe problems in healthy individuals,
as they affect only upper respiratory structures, such as the
nasal tract, pharynx, larynx, and not the lower airways or
lungs. Common cold, sinusitis, and pharyngitis are some of
the conditions that originate in the upper respiratory tract.
Regarding LRIs, they trigger inflammation on the lungs or
the lower airways (bronchi, bronchioles, alveoli), leading to
more severe respiratory issues.

Depending on the extent of the inflammation, the damage
to the lungs can lead to a reduction in the area available for
oxygen exchange with the blood, which in severe cases leads
to the systemic dysfunction of the body.

Bronchitis, bronchiolitis, and pneumonia are included
within this range of infections triggered in the lower
respiratory tract. Bronchitis and bronchiolitis [26] cause
inflammation of the bronchi and the smaller distal airways,
accompanied by cough, sputum, and wheezing. In contrast,
pneumonia [26] affects the alveoli, and the lung parenchyma
gets infected, which may cause cough along with breathing
problems. Moreover, flu-like infections can also extend up
to the lower tract (in severe cases), although most infections
only affect the upper tract [27].

Cough-related symptoms are associated with several res-
piratory infections [28]. A single cough event is composed
of three distinct mechanisms: explosive, intermediate, and
voiced [29]. It starts with an inspiration phase, glottal clo-
sure, production of high thoracic pressure, and explosive air
exhalation towards the mouth [30], [31]. Cough events can
be voluntary, when forced by the individual, or involuntary,
when induced by cough receptors inside the respiratory air-
ways. As the vocal and respiratory tracts get morphologi-
cally modified for different infections, the sound produced
by the expelled airflow mechanism will also reveal different
patterns. The same applies to breathing and speech-related
symptoms that appear to show perturbations on COVID-19
infected patients and whose sound patterns are also affected
by the respiratory apparatus alterations. The analysis of such
biologically-modified sounds may, thus, gain an important
role in these scenarios.

The clinical picture of SARS-CoV-2 infection can range
from asymptomatic to acute lung injury [32]. Depending
on the severity, patients can be categorized as outpatients
(not requiring hospitalization) and inpatients (hospitalized).
In fact, outpatients end up triggering an effective antiviral
immune response with flu-like symptoms, such as fever, dry
cough, fatigue, sore throat, loss of smell, and headaches,
recovering without developing acute symptoms [32].
However, a small percentage of infected people are inpa-
tients (that may notice more serious symptoms [2] namely
shortness of breath, speech loss, chest pain). Their local
inflammation becomes exacerbated, possibly progressing to
an acute respiratory distress syndrome (ARDS) [33]. Over-
all, the course of this infection can vary between asymp-
tomatic (no symptoms), mild (recurrent respiratory and
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TABLE 1. General synthesis of the performances obtained in the most recent literature, along with the defined tasks and datasets used.

Dimension
Authors Dataset (COVID-19 / Total subjects) Task Best Results
COVID-19 Positive vs Negative ~ 80% Precision
Brown et al. [18] COVID-19 Sounds 54 /86 (with reported cough) 72% Recall
COVID-19 Positive vs Asthma 91% AUC
Coppock etal. [19]  COVID-19 Sounds 62 /355 (with reported cough) 77% UAR
. 98% Specificity
Pahar et al. [20] Coswara and Sarco 92/1171 COVID-19 Positive vs Healthy 93% Sensitivity
Melek et al. [21] Virufy and NoCoCoDa 107 /180 COVID-19 Positive vs Negative ~ 94% Accuracy
P -
Anupam etal. [22]  Coswara 160 / 640 COVID-19 Positive vs Healthy oo ¢ Specificity

97% Sensitivity

Meister et al. [23] Coswara and COVID-19 Sounds

81/ 1155 (Coswara)
111/305 (COVID-19 Sounds)

COVID-19 Positive vs Healthy 87% AUC

Hassan et al. [24] Speech Corpus (private) 20/ 80

100% Precision

COVID-19 Positive vs Healthy 98% Recall

AUC - Area Under the ROC Curve; UAR - Unweighted Average Recall

non-respiratory symptoms), moderate (pneumonia-like
symptoms), and severe (acute pneumonia) [34].

B. BIOMARKER EXTRACTION THROUGH AUDIO
PROCESSING

The previous section has shown that COVID-19 causes
respiratory-related symptoms in most of the patients, such
as cough, shortness of breath, throat inflammation, among
others [35]. Nonetheless, such symptoms are only analyzed as
being present or not, through self-report or clinician reports,
besides not being followed by any quantified measurement
of their intensity, not even in their manifestation patterns
within the individual’s respiratory tract. Such measures could
help characterize the respiratory tract and draw more detailed
information about the pathophysiology of this disease. For-
tunately, there are many techniques to monitor the airways,
including stethoscope auscultation, radiography, and inva-
sive sampling techniques (e.g., induced sputum, endotracheal
aspiration, or bronchoscopy [27]). However, these methods
are either invasive, qualitative, or time-consuming.

Some literature shows evidence that vocalized breathing is
related to perturbations on the anatomy and the physiology of
the vocal tract [36]. Rudraraju et al. [37] found strong correla-
tions between cough sound features and FEV1, FVC param-
eters from spirometry exams. Abeyratne et al. [38] aimed
to distinguish childhood pneumonia from other respiratory
diseases through the analysis of cough audio recordings.
Bartl-Pokorny et al. [39] discovered evidence of discontinu-
ities in the lung airflow during vowel phonation in COVID-19
positive individuals. Depending on the physical conditions
and dimensions of the vocal tract, the airflow characteristics
(produced by a cough, breath, or any speaking exercise)
may generate different sound patterns that (when properly
recorded) any microphone can capture. Resorting to detailed
statistical, temporal [40], spectral [41], and cepstral [39]
analysis of these audio recordings, relevant biomarkers [42]
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can be identified as distinctive between different respiratory
infections or even indicative of their severity. Such analysis
can help reconstruct and evaluate (quickly and wisely) the
physiological state of the vocal tract, which is currently only
possible through more invasive assessments.

For instance, Figure 1 shows how easily wheezings can
be detected in a cough audio recording using a spectrogram
representation. Through a quick visual inspection, we notice
the bottom-left spectrogram contains a series of well-defined
horizontal bands (within [1, 2] kHz range), which suggests
the presence of wheezing in the considered cough events.
The same does not apply to the bottom-right spectrogram,
where those bands cannot be identified in the same spectral
characterization.

In fact, speech sounds analysis can overcome the invasive-
ness, cost, and time consumption drawbacks. At the same
time, they provide detailed information about the patients’
respiratory physiological condition through phonetic fin-
gerprints. As speech disturbances and respiratory problems
(shortness of breath, dry cough) are some of the most com-
mon symptoms of the COVID-19 disease, it makes sense
to explore audio samples enhancing these speech types so
that disease-specific biomarkers can be found. These would
support a fast and effective disease screening and other useful
clinical observations.

IV. METHODOLOGY
A modular ML pipeline was developed to classify subjects
as healthy or COVID-positive, based on extracted features
of the audio signals from several produced sounds, such as
coughing, breathing, and prolonged vowel utterances. Rel-
evant statistical, temporal, and spectral signal features are
extracted for each audio signal and grouped by subject to
perform classification on the subject’s level as a whole.
Figure 2 shows a schematic of the implemented pipeline
and its seven main modules, described below and in the
following subsections.
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FIGURE 1. Presence and absence of horizontal spectral bands in cough events with and without wheezings, respectively. Top sub-figures
represents the raw audio signals, below which the spectrogram is shown.
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FIGURE 2. Modular pipeline for COVID-19 diagnosis through analysis of speech, cough, and breathing sounds.

The pipeline is composed of seven main modules that are
combined to form distinct ML experiments: Dataset, Data
Augmentation, Audio Pre-processing, Event Detection, Fea-
ture Extraction, Data Balancing, and the Tree-based Pipeline
Optimization Tool (TPOT) automated ML pipeline (in turn
comprising feature selection, normalization, and classifica-
tion models).

Note that the performed ML experiments are dataset-
dependent, i.e., datasets were not joined for training. The
considered datasets resulted from different acquisition pro-
tocols, with distinct respiratory and speech sounds recorded,
differences in audio quality, number of recorded subjects, and
ground truth determination. Thus, the experiments focus on a
single dataset each time.

VOLUME 10, 2022

A. DATASETS

1) COSWARA DATASET

The Coswara dataset [13] is a large-scale database of res-
piratory sounds, namely cough, breath, and voice, released
in 2020 and created within the scope of the Coswara project
developed by the Indian Institute of Science (IISc) Bangalore.
The dataset samples are crowdsourced through a website
tool. Nine different speech types are requested during the
recordings: cough (shallow, heavy), breath (shallow, deep),
sustained vowel phonation (three types; /a:/, /i:/, /u:/), and
counting (normal, fast-paced). Alongside the audio inputs,
the users provide other symptomatic, demographic, disease-
related data, and the covid status whose reliability can be or
not supported with a validated test. Considering this dataset is
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continuously growing over time, for reproducibility matters,
the dataset explored is the version updated on September
30th, 2021, with a total of 2233 unique subjects. Table 2
helps understand the distinct types of labels, our health status
definition, and the relative frequency over the complete set of
participants.

TABLE 2. Subjects distribution over the set of labels provided in Coswara
dataset. Highlighted labels were used to define our health status
condition (first column).

Number Relative
Health status Raw Label of Frequency
subjects

healthy 1379 0.62
Healthy 'recoveredff_ull ) 99 0.04
resp_illness_not_identified 151 0.07
no_resp_illness_exposed 174 0.07
positive_moderate 118 0.05
Covid-19 Positive positive_mild 261 0.12
positive_asymp 51 0.02

In ground truth definition terms, only the Coswara’s
healthy label has been assigned to our definition of Healthy
status. Such a restriction intended to offer higher status
reliability for our training/test sets, considering the remain-
ing labels (recovered_full, resp_illness_not_identified, and
no_resp_illness_exposed) were not really conclusive at all.
On the other hand, all the COVID-19 positive labels (with
moderate, mild, or no symptoms) defined our COVID-19
positive status.

2) COVID-19 SOUNDS DATASET

The COVID-19 Sounds database is the largest multi-
modal dataset of respiratory sounds for COVID-19 detec-
tion, containing 53,449 audio samples crowd-sourced from
36,116 distinct participants [14]. Multimodal respiratory
sources comprise cough, breathing, and voice recordings
(sentence reading). Beyond respiratory sounds, additional
metadata, such as demographic, symptomatic, and disease-
related data, is collected. The COVID-19 status is self-
reported, thus not validated by any of the abovementioned
tests. The major health-related categories are COVID-19-
positive, healthy, and asthmatic (although none are clini-
cally confirmed). After request, a subset of the full dataset
was provided for analysis (containing only breath and
cough audios, without any metadata). Table 3 presents the

TABLE 3. Subjects distribution over the set of labels provided in
COVID-19 Sounds dataset. Highlighted labels were used to define
our health status condition (first column).

Number Relative
Health status Raw Label of F
. requency
subjects

healthynosymp 298 0.61
Healthy healthywithcough 32 0.06
asthmawithcough 20 0.04
. . covidnocough 87 0.18
Covid-19 Positive . : dwithcough 54 0.11
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distribution of these different labels over the provided sub-set
of participants.

We removed asthmatic participants from our subset
because the asthma factor implies a modified respiratory
tract and symptoms. Since it could add confusion during the
model training stage (given the smaller number of patients),
we decided not to mix up our classes’ distributions in the
sense that these were, pathologically, as distinguishable as
possible.

B. SUBJECT REJECTION

Throughout the audio processing pipeline, subjects’ audio
files undergo different checkpoint steps, confirming their
eligibility for the following stage. Such steps are generally the
same, with slight differences among both datasets addressed
here. The criteria were:

1) Quality-based manual annotations: following the
efforts made by https://github.com/iiscleap/Coswara-
ExpLEAP Lab [13], these annotations allowed us to
a priori reject some ineligible subjects either due to the
presence of any bad or noisy audios. Such a step only
applies to Coswara dataset processing;

2) Empty files: subjects containing any empty audio files
are immediately set as ineligible for the analysis;

3) No available segments: subjects whose audio files
don’t have any relevant segments or these are wrongly
classified by the segmenter are excluded.

As COVID-19 Sounds dataset already undergoes an audio
quality check (through an automatic tool) [18], the quality of
the provided audio files is assumed to be good enough for
analysis.

C. DATA AUGMENTATION

Data augmentation was used to mitigate the unbal-
anced nature of both datasets regarding the percentage of
COVID-19 positive subjects.

Augmented subjects are generated by copying pre-existing
subjects altering their audio data. Augmented audio
signals are created using the audiomentations Python pack-
age [43], which transforms the original audio using a
combination of techniques, namely time stretching, pitch
shifting, time shifting, gain increase, and addition of Gaussian
noise.

Note that only the train set can be subjected to data aug-
mentation. Test sets across the several experiments contain
no augmented subjects.

D. AUDIO PRE-PROCESSING
After augmentation, all audio signals present in the selected
dataset are subject to several pre-processing steps to ease their
analysis. The implemented pre-processing steps are similar to
the ones used in [44].

To remove high-frequency content, signals are converted
to mono, normalized, and low-pass filtered (cutoff frequency
of 6 kHz).
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E. SPEECH EVENT SEGMENTATION AND CATEGORIZATION
The collected audio samples from different speech types
were recruited from crowdsourcing. The total duration of
each signal and the interval between the events (e.g., coughs,
breathing, counting) were not under control. Moreover, the
background environment could differ among participants,
so it is not ensured all the samples show an acceptable
signal-to-noise ratio. Thus, we decided to perform a segment-
wise analysis, extracting and classifying all the relevant
(non-silent) segments before undergoing the feature extrac-
tion stage. Figure 3 presents a diagram illustrating this speech
event categorization pipeline.

Observing Figure 3, we note two consecutive processing
stages before feature computation takes place. In Stage 1,
the non-silent segments are extracted through a silence trim-
ming tool (from librosa python package [45]). In this way,
audio silences are removed from our analysis since back-
ground sounds can induce undesirable bias both to our feature
extraction and model training stages. After extracting the
relevant segments, each one is mapped into a spectrogram
representation and passed through a pre-trained Speech Event
Detection model, which classifies the type of event. Then,
segments whose assigned speech event matches the labeled
audio sample event are accepted, being rejected otherwise.
The window parameters’ settings used to extract non-silent
segments and generate the spectrograms, as well as other
pre-processing restrictions introduced to normalize the input
shape, are reported in Table 4.

TABLE 4. Hyperparameters definition for pre-processing audio files
regarding non-silent segments extraction and spectrograms
generation tasks.

Parameter Segme.n t Spectrograms
extraction
Window length (s) 0.060 0.040
Window overlap (%) 50 50
Maximum duration (s) 1.0 N.A.
Minimum duration (s) 0.1 N.A.

Summing up, this audio event-based segmentation step
helps reject silent (energy-negligible) and non-conformant
(not matching the expected audio file label) audio segments.

Relative to the segment classification model selection, our
choice fell on a 2D-CNN, after some preliminary experi-
ments with VAE (Variational AutoEncoder), CNN and LSTM
architectures. Convolution operations can exploit spatial and
temporal correlations of data samples, which explains their
extensive use in image- and speech-related applications.
In our case, the model was built to distinguish between audio
spectrograms generated from different speech types. The
designed architecture is represented in Figure 4.

Concerning the model training optimization, hyperparam-
eter tuning was carried out empirically across several exper-
iments, and the best-performing model was selected. The
training is dataset-dependent, i.e., there is one single model
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per dataset, meaning that, in this case, a model trained in one
dataset was not reused to infer on the other. The selected set
of hyperparameters is reported in Table 5 for both datasets.

TABLE 5. Set of hyperparameters applied during the 2D-CNN training
step.

Parameter Value
Epochs 100
Batch size 16
Early Stopping patience 10
Learning-rate 5x 1072
Activation function SeLU
Convolutional kernel size 3x3

At the inference step, non-silent segments are extracted
from the complete audio signal, converted to a spectrogram
representation, and passed through the CNN, whose output is
then evaluated in a final if-based rule (accept/reject).

F. FEATURE EXTRACTION

Each subject can be described by a set of extracted features
obtained from different data sources, such as collected meta-
data and audio signals from recorded samples. These features
form a single feature vector per subject so that classification
is performed on a subject level.

1) METADATA FEATURES
A set of features is generated from the available metadata
relative to each subject in a dataset. The specific data may
vary from dataset to dataset, but feature encoding is fixed.
Categorical variables, such as gender and location, are
encoded using a one-hot encoding schema. Yes or no answers,
such as the expression or absence of a given symptom, are
converted to boolean features. Numerical answers, such as
age, number of days since a given test, etc., are used as-is,
but when represented as a list of interval categories (e.g., age
interval 30-40), the mean value of the interval is used.

2) AUDIO FEATURES

To perform feature extraction, all audio segments are win-
dowed according to customizable window length and overlap
parameters since feature computation can be expensive for
original audio signals while capturing the collected sam-
ples’ non-stationary behaviour and evolution. These window
parameters can be adjusted according to the type of audio to
be analysed, but remain fixed within the same experiment. For
instance, it is recommended to use shorter windows for cough
signals since they are naturally unstable with high-frequency
content.

Audio feature extraction was based on time-series anal-
ysis, with several groups of spectral and temporal features
calculated for each extracted audio segment window. The
TSFEL Python package [47] was used as a basis for audio fea-
ture extraction, with several relevant features added for this
specific application of speech and breathing sound analysis
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FIGURE 3. Scheme illustrating the speech event detection inference pipeline. Stage 1 comprises the extraction of non-silent segments from the
complete audio signal. Stage 2 covers the classification of the audio segments extracted in the previous step, followed by a label matching

procedure.
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FIGURE 4. Speech event-based classification model. The architecture comprises an encoding part, where 2D-convolutions are computed
on the input through five similar consecutive layers, and a decision part, where the convolutional product is used to calculate the
confidence level of each defined class. All the neural network layers are followed by a SeLU activation gate [46], except the last one

(which has a Softmax probability mapping).

(e.g., phonetic-related features). Table 6 shows a list of fea-
tures for audio analysis.

3) FEATURE AGGREGATION
The final feature vector for a given subject is given by con-
catenating the encoded metadata features with the overall
audio feature vector. A schema of this operation is shown
on Figure 5.

Audio features are extracted on a window level for all
segments of all audio types. The set of all window features
extracted from all segments categorized as a given audio type
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is used to describe the features of the referred type, through
six descriptive statistics (minimum, maximum, mean, vari-
ance, skewness, and kurtosis). Thus, for a subject with
K audio types and L features extracted from signal windows
of audio type k, )", K x L x 6 features compose the overall
audio feature vector.

G. DATA BALANCING

The calculated feature matrix may still present a significant
unbalance between healthy and COVID-19 subjects even
with data augmentation. To combat this phenomenon on a
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TABLE 6. List of temporal, spectral and phonetic features used for audio feature extraction. Features marked with * were considered clinically relevant by

an expert in pathological speech analysis [48].

Feature type = Number of Features Feature Names Reference
Spectral Centroid Spectral Decrease
Spectral Kurtosis Spectral Skewness
10 Spectral Spread Spectral Slope [47]
Spectral Spectral Variation Spectral Roll-off*
pectra Spectral Bandwidth* Spectral Roll-on
2 Period* Root Mean Square Energy* [18]
Mean Square Energy .
3 Spectral Contrast Polynomial fit to the Spectrum [13]
1 Harmonic to Noise Ratio* [49]
Cepstral 2 Mel Frequency Cepstral Coefficients**  Linear Prediction Cepstral Coefficients® [47]
1 Cepstral Peak Prominence* [50]
1 *
Temporal 1 Zero Crossing Rate [47]
1 Jitter* [51]
Amplitude 1 Shimmer* [51]
b ot i
Phonetic 4 Vowel Space Area Formant Centralization Ratio [52]

Bandwidth of Formants®*P

Formants*®

a - first 12 coefficients used
b - first 2 formants used

classifier level, this module allows for data balancing of
the feature matrix, where several balancing methods can be
used and tested, such as random over/under-sampling and
SMOTE [53].

Note that only the train set can be subjected to data balanc-
ing techniques. Test sets on all ML experiments are kept with
the same class imbalance.

H. TRAINING AND OPTIMIZATION SCHEME
1) DATASET SPLITTING
The dataset has been divided into two subsets: one to
train and validate the segment-classification neural network
(Subset A), and the other to train, validate, and test the
COVID-19 detection model (Subset B). To save as many
COVID-19 infected patients as possible (mitigating the dis-
crepancy among the number of healthy vs. COVID partici-
pants), we forced Subset A to contain only healthy subjects.
Table 7 helps characterizing the content of each subset.
Additionally, Subset B is further randomly split into two
distinct ones: By, (used to fit TPOT with a cross-validation
training scheme) and By (used to test the TPOT’s output
model behavior, as described below). The splitting rate was
defined as 75% for training and validation, and 25% for
testing.

2) CLASSIFICATION OPTIMIZATION

After feature extraction and dataset splitting, data is ready
to be fed to a classifier to generate a binary model able to
distinguish between healthy and COVID-19 positive subjects
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TABLE 7. Distribution of Coswara dataset subjects over each separated
subset.

Subset Application % Healthy % COVID-19
Train and validate the
A speech event detector 40 0
model
Train, validate, and test
B the COVID-19 detection 60 100

model

based on information extracted from audio files from cough,
breathing, and additional metadata.

The proposed pipeline can be used with any ML classifica-
tion model as its final module to generate predictions on the
COVID-19 status of an unknown subject. For this particular
work, the Python package TPOT [54] was used to automat-
ically generate classification pipelines. The training strategy
adopted inside TPOT is schematized in Figure 7. Considering
our validation set was imbalanced, and the pipeline choice
decision would rely on it, the Fl-score was defined as the
score to maximize (for selecting the best returned pipeline),
since it is a fair metric dealing with imbalanced datasets, and
it balances well both Sensitivity and Specificity scores from
both classes, which is exactly what we are looking for in this
task.

The use of TPOT [55], based on genetic programming,
allows for quick prototyping of a classification schema, being
able to effectively cycle through hundreds of combinations
of all available methods in scikit-learn for feature selection,
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FIGURE 5. Feature extraction and aggregation for a given subject. Audio features are extracted by segments and are summarized with statistical
descriptors. Metadata features are obtained by appropriate encoding techniques according to their nature. A final feature vector is obtained by
concatenating all audio and metadata features. Note that this example only includes two types of audio files (breathing and coughing), but additional
types can be used (for instance, vowels, counting), and contribute to the final subject feature vector.
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FIGURE 6. Classifier training and performance estimation with the extracted feature matrices, from train and test subsets. The classifier module can be

any traditional ML model or an instance for pipeline optimization.

feature transformation, and classification models, while per-
forming cross-validation for hyperparameter tuning of the
deployed models for these tasks. Although computationally
expensive, this package enables efficient use of the time
available to improve the audio processing algorithms. It auto-
matically performs the laborious tasks of feature analysis,
removal, and processing, model benchmarking, and hyper-
parameter tuning. This framework has two critical param-
eters, that will define the extent of the pipelines’ search:
population_size and generations. The number of pipeline
configurations being evaluated during TPOT training is given
by population_size x generations. If we take into account a
cross-validation training scheme, this number will grow up
to population_size x generations x n_folds. TPOT tries a
pipeline, evaluates the performance and starts changing parts
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of that pipeline looking for better performing algorithms. The
higher these parameters, the deeper it will search and the
longer the running process will take.

After optimization, TPOT returns the best performing
pipeline (according to a user-defined metric), with optimized
hyperparameters for each step. A Selector-Transformer-
Classifier pipeline (comprised of a feature selector, scaler,
and a classification model) was used for the ML experiments
of this work, with a macro-averaged F1-score as the optimiz-
ing metric in a 5-fold cross-validation scheme.

V. RESULTS

This section reports the results obtained from the proposed
pipeline regarding training and testing steps applied to the
Coswara and COVID-19 Sounds audio samples.
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FIGURE 7. Training strategy adopted insite TPOT framework. A K-fold stratified cross-validation flow was combined with a score-based pipeline
choice. Each loop returns a pipeline composed by a feature selector, scaler and a classification model. Then, the best pipeline is chosen as the one

maximizing the obtained macro F1-score.

A. COSWARA DATASET

1) SPEECH EVENT DETECTOR PERFORMANCE

After pre-processing the audios of each different speech type
and subsequently extracting their non-silent segments, these
were fed into the speech classification model (CNN), for
training. The confusion matrix is presented in Figure 8, and
some associated scores are indicated in Table 8. There were
a total of 42,719 validation segments.

100

breathing 1.68 0.16 0.33 0.24

cough -

counting - 3.39

Actual

vowel-a- 3.56 40

vowel-e - 4.74
-20

vowel-o - 5.04 0.80

i ! i ! !
breathing cough counting vowel-a vowel-e vowel-o

Predicted

FIGURE 8. Normalized confusion matrix reporting the performance of the
speech event classification model in the Coswara dataset.

2) COVID-19 DETECTION MODEL: TRAIN AND TEST

After training the segment classification model, the target
segments (from Subset B) are ready to be extracted and go
through feature extraction, which will attempt to character-
ize each subject’s health status according to the audios and
metadata provided by each subject at the collection phase.
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TABLE 8. Performance scores of the speech event detection model
applied to the Coswara dataset. Macro scores were chosen instead
of any other metric as they are not affected by class

balancing issues.

Metric Score (%)
Macro-Precision 85.70
Macro-Recall 83.46
Macro-F1 84.56

As the subjects are continuously going under confor-
mity check procedures, the number of subjects available at
this stage may be lower than the initial number retrieved
from the By, subset (see subsection IV-H1). Furthermore,
N augmented subjects are generated for each training subject
(unless N = 0), which helps increase the volume of data
to train and fine-tune the TPOT chosen model. The general
training hyperparameters are defined in Table 10, noting the
Optimization column refers to the TPOT training scheme
(see Figure 7).

Following the subsequent stages, the total number of com-
puted features reached 1,626. In addition, the number of
subjects comprehending the test feature sets (on each dataset)
is given in Table 11. The models’ overall performance over
the whole sort of test sets is shown in Table 12. Positive and
negative classes are assigned with the COVID-19 positive and
Healthy labels, correspondingly. The best split was obtained
when TPOT returned a Variance Threshold feature selector,
associated with a Standard Scaler normalizer and a Ran-
dom Forest classifier. The respective confusion matrix is dis-
played in Figure 10. The complete set of pipelines generated
in each iteration during TPOT training stage is introduced
in Table 13.
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B. COVID-19 SOUNDS DATASET

1) SPEECH EVENT DETECTOR PERFORMANCE

Training the classification model is preceded by audio nor-
malization and segment extraction steps. In this dataset, only
breathing and cough speech types are available, so this prob-
lem reduces to a binary classification task. The validation
confusion matrix and some associated performance scores,
obtained after training, are shown in Figure 9 and Table 9,
respectively. The total number of validation segments reached
the amount of 3,250.

100

o
£
<=
=
©
o
2
a

Actual

- 40

-20

i
breathing cough

Predicted

FIGURE 9. Normalized confusion matrix reporting the performance of the
speech event classification model in the COVID-19 Sounds dataset.

TABLE 9. Performance scores of the speech event detection model
applied to the COVID-19 Sounds dataset. Macro scores were chosen
instead of any other metric as they are not affected by class balancing
issues.

Metric Score (%)
Macro-Precision 89.81
Macro-Recall 79.83
Macro-F1 84.53

Due to the resulting performance and some other concerns
(addressed in the Section VI), the approach of analysing the
complete recordings as one segment (no segment extraction)
has been carried out in opposition to what has been done in
the Coswara dataset evaluation.

2) COVID-19 DETECTION MODEL: TRAIN AND TEST
The trained speech-event segmenter has not been used in this
stage, so Subsets A and B (see Table 7) were reduced to
a single set while keeping the same 4:1 train/test splitting
ratio. Due to the same reasons reported previously (subjects’
rejection criteria), the total number of subjects contained in
this Subset might not be the same as the one presented in the
dataset description (see Table 3).

Thus, following a similar reasoning path as the one
described for Coswara dataset evaluation, the general hyper-
parameters that returned the best results on the COVID-19
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Sounds dataset evaluation are introduced in Table 10. Relative
to the feature extraction, the number of features reached 319.
The composition of the test set (used to report the classifier
performance), concerning the number of gathered subjects,
is shown in Table 11. Finally, the overall COVID-19 detection
performances are reported in Table 12. The best pipeline
generated by TPOT was comprised of a Percentile feature
selector, a Standard Scaler normalizer, and an MLP classifier.
The respective confusion matrix is displayed in Figure 11.
The complete set of pipelines generated in each iteration
during TPOT training stage is introduced in Table 13.

VI. DISCUSSION

In this section, a critical discussion about the results obtained
(either for the speech event and COVID-19 detection mod-
els) for both respiratory datasets under analysis is presented.
During the interpretation of our classification results, other
studies are added into the discussion not to achieve a direct
performance comparison (as it was not possible) but to assess
our framework’s robustness (in terms of data processing and
model training good practices) against theirs. Finally, the core
elements that also limits the validity of out study are reported
in a separate subsection.

A. RESULTS INTERPRETATION

The Coswara dataset has a large volume of samples, though
its audio content is sometimes of questionable quality.
The Coswara project team led some efforts to mitigate
that issue, but because the database keeps growing, that
approach becomes unfeasible in the long run. Concerning the
present approach, such a high volume of data helped achieve
a better convergence during CNN training, softening the
influence that sporadic wrong audio segments have in the
neural network learning step. In fact, observing the confu-
sion matrix represented in Figure 8, we notice a satisfactory
performance, especially considering breathing, cough, and
counting classes. Such an overview presented relatively good
macro-aggregated scores (see Table 8) accounting for the
number of classes, with the Fl-score reaching 84.56%.
The remaining three classes are vowels, which only differ
on the type of vowel and not the speech type. Given that,
we consider that the model confusion between vowels is nor-
mal and expected, with less impact than other classes (despite
occurring as well). Because, in terms of the ground truth
definition, the complete audio file label is assigned to all the
extracted non-silent segments, this can worsen the validation
scores. We cannot ensure that each one of these segments
effectively corresponds to the expected or any other speech
type (induced by noise, background corruption, or simply
human errors).

Hence, the segment-wise approach has been followed con-
sidering the performance of the CNN model adequate at
distinguishing the segments, offering us an additional degree
of certainty that the speech type over which we are extracting
features is indeed what we expect. The subsequent feature set
was then estimated with TPOT and the best-suited pipeline
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TABLE 10. General parameters used on the COVID-19 detection model training and optimization scheme for both datasets (Coswara and COVID-19

Sounds) evaluation.

Window dynamics
Dataset Augmentation for feature extraction TPOT settings Class
[length (ms), overlap (%)] Balancing
No. . Class Breath Cough Count Vowels Scoring No. CV Generations Popglatlon
augmented/subject splits size
Coswara 1 o ] OverSampling
COVID-19 Sounds 4 covid [32,50] [16,75] [32,50] [64,50] | Fl-score 5 1 100 NA

CV — Cross-Validation

TABLE 11. Composition of the testing feature sets of both Coswara and
COVID-19 Sounds datasets in terms of the number of subjects. X;e5; Was
generate through a random splitting process from the global set of
features (X). Mean (1) and standard deviation (o) values were calculated
over 5 distinct iterations of the same pipeline, regarding each dataset.

Number of subjects (X¢est)

Dataset uto
COVID-19 positive Total
Coswara 55.5£0.5 1958 £1.5
COVID-19 Sounds 35.0 £0.0 118.0 +0.0

has been selected. Exceptionally, in this case, computational
restrictions affected our iteration runs. As the Coswara dataset
comprehends a large number of subjects (each with several
data sources to load and process), the complete pipeline
execution (with several iterations in a row) became compu-
tationally infeasible (due to memory issues), so we opted
to pick up several distinct iterations (from different pipeline
runs), collect all the metrics, and report the results as for
the COVID-19 Sounds dataset. Moreover, for reporting good
practices, we decided not to aggregate the results with a
mean () and standard deviation (o) values, as, for each
iteration, TPOT returns a different pipeline and classifier.
Instead, we declared minimum and maximum intervals to
evaluate the consistency and variability of the results, apart
from the performance. In terms of evaluation, we defined
the COVID-19 recall (sensitivity) and the Healthy class pre-
cision (NPV) as most relevant under the clinical point of
view. In fact, we emphasise a correct classification of all the
effective COVID-19 positive subjects (high sensitivity) even
if, with that, we lose some accuracy on the Healthy subjects
detection (specificity). If the system is not sensitive enough,
we risk labeling a real COVID-19 infected person as Healthy
and potentiate the spread of the virus.

By analysing Table 12 (top row), we can state not only
that the best results obtained are satisfactory but also realistic
given the noise variability and non-conformities present in
many audio samples. The results also suggest a relative vari-
ability either looking at the proposed metrics or the pipeline
selected by TPOT, which may indicate the performance is
weakly dependent on the partition used for testing. Actually,
the fact that each subject collected audio samples in uncon-
trolled environments introduces a new background noise bias
that can impair the way the models interpret the data and their
subsequent predictions. Therefore, the higher the number of
audio sources collected for training the models, the most
likely it is to find noisy audios (at least in one source).
Moreover, the existing 51 asymptomatic participants that
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reported positive COVID-19 diagnosis (see Table 2) may be
more challenging to detect since they do not present typical
symptoms that would effectively reflect their upper/lower res-
piratory tract condition and the subsequent patterns observed
in the recorded audios. Thus, our performance could slightly
improve if such a category was removed from our COVID-19
positive status.

Concerning the existing literature, we did not find a clear,
straightforward comparison as the Coswara dataset is contin-
uously growing sample-wise. Nevertheless, we found recent
publications following similar strategies and tasks to those
proposed here. Meister et al. [23] applied a 5-fold CV strategy
and achieved average COVID-19 detection PPV and Sensitiv-
ity scores of 76.70% and 53.09%, respectively, despite having
used only Breath + Cough audios, whereas we included
also voice (vowels, counting) features to train our models.
Nonetheless, our PPV score is slightly lower ([65.00, 73.21]
% interval). In contrast, the Sensitivity score reached sub-
stantially higher values ([60.00, 80.00] % interval), which
means that our model can be more accurate at detecting real
COVID-19 infected subjects despite having a marginally
higher number of false positives (FP). Such FP can have
a greater influence on the PPV score due to the imbal-
ance between classes (there are notably more Healthy than
COVID-19 subjects). That can be confirmed through the high
NPV score values ([85.14; 91.73] % interval), meaning that
the model is rather sensitive to the Healthy class. In any
case, our (5-fold CV 4 test set) evaluation strategy is still
more reliable to report on model behaviour, so we believe
that our performance is closer to that of the real-world’s.
Pahar et al. [20] adopted a similar approach by extracting
features from cough audio signals and additional metadata,
feeding them to several ML classifiers, and testing their per-
formance. Although they reported significantly higher scores
than ours (reaching 96.73% sensitivity, 97.56% specificity,
and 99.16% precision), the authors did not compute the eval-
uation on a separate test set. As far as we noticed, their per-
formance is reported based on a 10-fold CV strategy, where
we still don’t know whether the final score was obtained
by averaging all the splits or choosing a single one. Despite
their good performance (using a reduced dataset), we defend
that our algorithm has a more reasonable and practical per-
formance (with a transparent and fair evaluation), given the
non-conformities and quality-related issues inherent to this
dataset. Anupam et al. [22] have introduced the extraction of
a set of statistical, temporal, spectral, and cepstral features
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TABLE 12. Classification performance obtained on both datasets (Coswara and COVID-19 Sounds) evaluation. Scores (Sensitivity, Specificity, PPV -
positive predictive value, NPV - negative predictive value, Accuracy) are delimited by the minimum and maximum obtained throughout
five iterations with different test splits. Positive class - Covid-19 positive; Negative class - Healthy.

Dataset Results ([Min, Max])
Sensitivity (%)  Specificity (%) PPV (%) NPV (%) Accuracy* (%)
Coswara [60.00; 80.00]  [84.51;90.00]  [65.00;73.21] [85.14;91.73]  [75.00; 83.89]

COVID-19 Sounds [51.43;77.14]

[83.13; 92.77]

[56.25; 80.00]  [80.23; 89.61] [67.28; 80.67]

*Accuracy is reported in its balanced format [57]

from cough signals, followed by a training strategy similar to
the one described in this paper, with the same 4:1 train/test
splitting ratio, also including a data balancing step and a CV
optimization scheme. The authors tested a wide range of clas-
sifiers, from classical ML to DNN models. We point out this
publication due to the massive performance increase when
neural networks assume the COVID-19 detection task (from
~ 70.0%/79.1% to ~ 98.0%/91.2% specificity/sensitivity
scores). However, even though we consider the results are
promising, and the model’s validation strategy is fair, not
removing the audio silences between cough events intro-
duces the aforementioned background bias that can influ-
ence the learning step. We find it challenging handling the
signal background in this dataset because the model might
be obtaining some information from the environment or the
cough rhythm, not having any correlation with the respiratory
tract condition, making the results less related to biological
causes.

The second experiment described in this paper has been
conducted on the COVID-19 Sounds dataset. As the audio
samples of this dataset have undergone a quality check pro-
cedure, we may expect a larger a priori reliability about their
results. Nevertheless, we decided to try our segment-wise
approach. In this case, the volume of samples to train the CNN
classifier was not as high as in the Coswara dataset.

The multi-class segment classification task has been
reduced to a two-class problem. Therefore, a good model
convergence and a similar performance might be expected,
which was not observed. Analysing Figure 9, the performance
scores were much worse than we expected for a binary clas-
sification. Macro scores from Table 9 masked such a non-
desirable performance, despite being generally worse than
those presented in Table 8, regarding the Coswara dataset
evaluation. In fact, most of the validation segments were
being classified as breathing (including a lot of cough labeled
samples). When listening to the recordings we noted that
cough events were frequently preceded by a quick breath
(after listening some of the extracted non-silent audio seg-
ments). Thus, in our perspective, cough recordings con-
tained both cough and breathing events which, following the
described labeling method, caused a corruption of events in
the cough class more than in the breathing class (a breath
rarely has a cough event associated but the opposite is
highly plausible). Considering these reasons, in this case,
we end up switching to the segment-wise approach in place
of an analysis based on the complete recording.
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Concerning the COVID-19 detection task, the results from
Table 12 (bottom row) have shown that the model presents
a better detection of Healthy (specificity score ranging from
83.13% to 92.77%) than COVID-19 positive subjects (sen-
sitivity score ranging from 51.42% to 77.14%), contrary to
what was desired. The PPV and NPV scores confirm this low
performance by noticeably presenting smaller (56.25% up to
80.00%) and larger (80.23% up to 89.61%) interval ranges,
respectively, indicating that the number of false positives is
increased relative to the number of false negatives. However,
both classes are substantially imbalanced (~ 30% COVID-19
positive test subjects) forcing the reported tendency (see
Table 11). Because the silent regions from the audios were
included, some errors during the learning step could result,
as these signal components are variable and non-disease
related. Also, we believe that a larger sample size would
allow for better performances. It would help mitigate the
diversity introduced by many external variables (e.g., differ-
ent recording equipment, background environments). Hence,
we consider that, in the case that it had been performed,
the segment-wise approach could have helped remove some
audio noise sources, improving current results.

In relation to the recent literature, except for one study, the
remaining publications were not directly comparable, as the
fold/splitting ratio is not provided or the number of overall
subjects is different. Brown et al. [18] present a COVID-19
detection experiment using exactly the same volume of
(breath and cough audio) data reported in Table 3, a 5:1
train/test splitting (we used 4:1), and the same model vali-
dation scheme, using 10 different random seeds (we used 5),
each associated with a 5-fold CV + test set evaluation. Their
sensitivity scores ranged (approximately) from 52.00% to
80.00%, whereas PPV went from 68.10% to 72.80% (using
handcrafted, deep embedded features, or a fusion of both).
Observing the Table 12 (bottom row), the results are similar
([51.43,77.14] % sensitivity and [56.25, 80.00] % PPV inter-
vals) which highlights the competitiveness of our method rel-
ative to the one proposed by these authors. Meister et al. [23]
have also tested their proposal in the COVID-19 Sounds
dataset. They attained sensitivity and PPV average scores
of 81.39% and 87.61%. Such a performance is remarkably
higher than the results of this work. Again, their evaluation,
based only on 5-fold CV results, is not the most reliable, given
that there was no separate test set to report the performance
scores. Furthermore, the number of samples defined in our
paper is also different from their study, making the conditions
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not comparable. Coppock et al. [19] carried out a COVID-19
detection experiment using DNNs. The authors worked with
the same volume of data and a similar validation scheme
(optimization on a validation set and performance reporting
on a test set) with 3-folds of distinct train, validation, and
test sets. The final model prediction UAR (unweighted aver-
aged recall) scores ranged approximately from 72.70% to
82.30% (from their DL-based proposal) and from 62.80% to
73.6% (from a classic ML baseline). Therefore, to keep the
same metrics to compare these performances, our proposal’s
UAR score ranged from 67.28% to 80.67%. It seems that
our pipeline slightly outperforms the ML baseline, despite
it stands below the DL approach. Nonetheless, both per-
formances seem pretty much similar, yet the presence of a
few more common metrics would yield a better comparison
amongst these works.

Overall, the proposed framework places itself as bring-
ing a few more advantages than the recent literature studies
presented in here. First, it is designed in modules, so that
the model training gets independent on any data source.
Second, the segment-wise analysis enables the removal of
non-relevant audio chunks from the analysis (e.g., silent,
noisy), which mitigates the influence that the recording sur-
rounding environment has in the features meaningfulness.
Finally, by using a pre-trained speech event classifier allows
us to mitigate even more the presence of mislabeled or noisy
audio chunk previously assigned to a specific speech type.
The combination of these three main elements along with
a detailed model training and optimization scheme proves
this pipeline follows good and fair data processing and ML
practices.

B. LIMITATIONS OF THE STUDY
There are some conditions that restrict our study’s validity.
One of them is related to the sample size, where a more
representative set of data would enable us to achieve a better
model convergence onto the real-world scenario, to report
more realistic results, and better validate them in a larger
testing set. There is also a substantial imbalancing between
both (COVID-19 and Healthy) classes which can make the
generalization capabilities of the trained model more chal-
lenging. The fact both datasets also have different available
data sources, the type of computer feature not always match
with each other, which ends up hampering the proposed
framework’s generalization capability. That can be seen as an
advantage for training since the proposed modular pipeline
is not expecting for a fixed number of data sources, being
capable to handle as many sources as there are.
Additionally, the crowd-sourced nature of the data intro-
duces some variability drifts that compromise either the per-
formance scores and the explainability of the output, resulting
in a doubtful meaning of the information extracted from
the audio data. The fact that the ground truth labels are
self-reported and not validated by any certified specialist may
also bias the considered health status conditions. Also, adding
more symptomatic-related data will enhance the dataset’s
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robustness and better characterize the individuals’ health sta-
tus, supporting the validity of the features extracted from the
audio signals.

Respecting the audio data analysis itself, we could have
tried any deep learning based approach, as we knew they have
shown really promising performances in the recent literature.
Nonetheless, we were also aware that it would imply a loss of
interpretability, so that option was intentionally not adopted.
Moreover, a different limitation may arise concerning the
strategy adopted to gather all the speech sound types. While it
is extremely useful to gather all the different vocal audio files
in the same model training stage (it enriches the model deci-
sion capabilities), it also adds a dependency on every single
audio file, in the sense any missing/noisy audio will ruin the
algorithm. Considering different data fusion techniques must
be carried out in a further extension of this work.

VII. CONCLUSION

A. MAJOR ACHIEVEMENTS

In this paper, a new ML-based COVID-19 screening tool has
been proposed. The main motivation focused on providing
a non-invasive, costless way for early infection detection,
whose results could be confirmed later on with a clinically
validated test. This would contribute to a more decentralized
screening of the disease, which could help release some
pressure on the healthcare systems (especially at the most
overwhelming times, e.g., fall and winter seasons). Further-
more, additional target points intent to assess and discuss the
robustness of this pipeline when evaluated in distinct test sets,
as well as to compare the proposed strategy with the recent
literature.

To achieve that objective, we relied on different types of
speech sounds (cough, breath, and voice) to characterize the
subjects’ respiratory tract and, together with additional meta-
data, build a decision-support system capable of computing
a final health status report. Nonetheless, the non-desirable
quality of some audio samples led us to design a segment-
wise analysis, where non-silent segments were extracted
and further processed. Furthermore, we also implemented
a speech-event detector to increase the degree of certainty
about the type of sound present in each of the retrieved
segments. It helped assure the meaning and conformity of
the information obtained in the feature extraction stage and
subsequent decisions.

The feature extraction stage was carefully devised, con-
sidering the type of processed audios. The complete feature
set comprised a combination of spectral, cepstral, amplitude,
temporal, and phonetic indicators reported in the literature,
some of them clinically relevant regarding the physiologi-
cal perspective. In fact, another contribution rested on the
a priori selection of features, where the introduction of pho-
netic indicators supported on clinical expertise enabled a
more physiological justification of the obtained results and
a better characterization of the vocal tract.

The full pipeline was evaluated in two different exper-
iments performed on independent datasets: Coswara and
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COVID-19 Sounds. Regarding the Coswara dataset, the
speech-event detector has shown its usefulness at validating
the content type of each extracted audio segment (84.53%
macro Fl-score). The COVID-19 detection results were
pretty encouraging considering the 55/196 proportion of
COVID-19 positive subjects. These results surely support the
need to fine-tune the proposed methodology to be validated
on additional datasets. Tackling the aforementioned audio
quality-related issues would also help to improve the perfor-
mances and be one step closer to scaling the pipeline onto
a realistic framework. Respecting the COVID-19 Sounds
dataset, the COVID-19 detection scores got a little worse,
suggesting some of the following causes: (1) the small sam-
ple size, (2) the lower number of data sources (only breath
and cough audios were made available), (3) the absence of
a speech-event detector to assure segment conformity, and
the consequent replacement of the proposed segment-wise
analysis. We believe that addressing at least one of these
concerns would improve scores since the quality of the audios
(e.g., presence of background noise) seemed to be much
higher in this case.

In conclusion, this first approach has revealed how chal-
lenging the analysis of crowdsourcing audio-based datasets
can be, especially considering that samples are collected
under uncontrolled conditions. The generalization process
is complex since non-disease-related variability sources can
impact the model learning stage. In terms of evaluation,
beyond a single training-test split, this work shows the inher-
ent variability of different data partitions, which may indicate
the need for more standardized datasets to validate this type of
model. We consider that the proposed pipeline could mitigate
some of the reported issues, mainly through the proposed
segment-wise analysis (less sensitive to audio background
noise), whose results seem promising.

B. FUTURE WORK

A significant source of variability when analysing respiratory
and speech sounds from a given population is the uniqueness
of each subject’s voice that arises from anatomical, envi-
ronmental, and demographical differences, such as gender,
age, habits, and health conditions, among other factors. All
these factors impact the intrinsic features of voice, such as
pitch, formants, timbre, and may express themselves in the
proposed extracted features for COVID-19 diagnosis through
audio analysis.

Thus, a logical next step to improve the reported results
is to model further the population and the ML algorithms
used according to self-reported demographical data, such as
gender or age. With these facts in mind, each sub-population
used to train a specific model for a particular group will
have to deal with less inter-subject variability, thus improving
overall results.

Furthermore, to deal with missing metadata, an automatic
voice classifier (low-pitch vs. high-pitch) can be used for
this purpose, grouping a collected dataset according to intrin-
sic characteristics of the subject’s voice. Several attempts
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were made, in this work, to implement such a system and
improve results based on formant analysis of recorded vowel
production. However, due to the crowdsourced nature of
the collected datasets, samples were frequently corrupted
by background noise (from stationary and non-stationary
sources) which made this automatic separation of the dataset
way more challenging and inefficient. This is, nonetheless,
a relevant field of research to be explored and studied in
the future, not only for COVID-19 assisted diagnosis but for
audio-based analysis of other respiratory diseases.

Besides that, an interesting extension of this work could
comprise an ablation study of the features extracted from
the audios, in order to offer a more detailed perspective of
each feature’s impact on the model decision making process.
That could be achieved by introducing different ranking tech-
niques, combine the approaches’ results and figure out which
features are more recurrently selected as having impact in the
model decision. Another trending topic that an extension of
this work could fit into is the prediction of the disease severity.
As we are currently reaching a more endemic phase of the
COVID-19 disease, it is of great interest being capable to
discretize better the binary diagnostic space into a severity-
driven space. A simple approach could rest on evaluating how
the binary classification performance changes by training
and/or testing with different levels of disease severity.

Following the limitations of variability and quality in the
present study with public datasets (and also in some works
in the literature), the authors proposed a new protocol for
data collection being currently executed in the Portuguese
speaking population in Portugal, with more reliable labelling
of positive cases based on certified RT-PCR testing.

APPENDIX A

SUPPLEMENTARY MATERIAL

In this section, a more detailed view over the performance of
the COVID-19 detection model is presented either in the form
of confusion matrices and pipelines returned by TPOT.
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FIGURE 10. Confusion matrix reporting the COVID-19 detection model
best obtained performance regarding Coswara dataset evaluation.
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FIGURE 11. Confusion matrix reporting the COVID-19 detection model
best obtained performance regarding COVID-19 Sounds dataset
evaluation.

TABLE 13. Pipelines returned by TPOT on each iteration performed over
each evaluated dataset. Best performing pipelines obtained for each
dataset are highlighted.

Dataset TPOT choice
Tter.  Selector Scaler Classifier
1 RFE (ExtraTrees) Min Max Random Forest
g 2 Variance Thresh. Min Max Gradient Boost
z 3 Variance Thresh.  Standard Random Forest
8 4 Variance Thresh. Min Max Extra Trees
5 Select Percentile Min Max Random Forest
. 1 Select Percentile Standard MLP
Tz 2 RFE (Extra Trees)  Standard MLP
=) E 3 RFE (Extra Trees)  One Hot Encoder  Extra Trees
% A 4 Select FWE Max Absolute Gradient Boost
© 5 RFE (Extra Trees) = Max Absolute Random Forest

FwE — Family-wise Error rate; RFE — Recursive Feature Elimination
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