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ABSTRACT The elements of the population of the artificial physics optimization (APO) algorithm are
assigned mass, velocity, and displacement attributes. It is a new type of heuristic algorithm, but it still has
defects such as low efficiency of non-dominated solution selection and unbalanced search capacity of global
and local. This paper introduces the mechanism of improved fast non-dominant sorting and partition-guided
individual evolution into the APO algorithm to overcome this imperfection. An improved multi-objective
artificial physics optimization algorithm based on fast non-dominated sorting (IFNS-MOAPO) is proposed,
which is the result of integrating numerous strategies into the APO algorithm. Firstly, an improved fast non-
dominated sorting strategy is introduced. This strategy can increase the efficiency of selecting non-dominated
solutions and decrease the running time of the algorithm. Secondly, the mechanism of individual evolution
guided by partition is proposed. For individuals in infeasible and feasible domains, different mass functions
and virtual force calculation rules are adopted to update the algorithm iteratively to boost the convergence
performance. To verify the comprehensive performance of the IFNS-MOAPO algorithm, eleven benchmark
test problems are selected for simulation experiments and compared with five algorithms in terms of runtime
duration, Pareto front plots, and metric values. The results show that the IFNS-MOAPO algorithm has good
distribution and can converge to the true Pareto front quickly. It is a useful tool for solving constrained
multi-objective optimization problems (CMOPs).

INDEX TERMS Artificial physics optimization, mass function, multi-objective optimization, partition
evolution.

I. INTRODUCTION
The single-objective optimization problem (SOP) and
the multi-objective optimization problem (MOP) are two
branches of optimization problems. The biggest difference
between them is the number of objective functions. The
objective function of SOP is single, and the optimal solution
can be obtained without controversy, so the research results
in the optimization field are relatively complete [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehab Elsayed Elattar .

The sub-objective functions of the MOP are constraints on
each other, so it is necessary to make coordination and
compromise among all the objective functions to make the
overall objective as optimal as possible [3], [4], [5]. The
MOP lacks research compared to the SOP. But actually, most
problems in engineering applications areMOPs, for example,
the optimal path planning problems [6], the distribution
network voltage reactive power optimization problems [7],
and the production task scheduling problems [8]. There are
countless multi-objective optimization algorithms (MOAs),
which are effective ways to be used for solving MOPs. The
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research of MOAs plays an irreplaceable role both in theory
and practice.

To solve MOPs, scholars have done a lot of research
on algorithms. From the beginning of the traditional opti-
mization algorithm, and then to the intelligent optimiza-
tion algorithm, are the condensation of wisdom. Traditional
optimization algorithms are generally aimed at structural
problems, most of which fall into the category of convex
optimization [9]. The essence of the algorithm is to transform
multiple objective functions into a single objective function
based on some rules and then solve the MOP by a single-
objective optimization method [10], [11]. Although the tra-
ditional optimization algorithm has a fast convergence speed
and a clear termination criterion, it can only find one of the
Pareto solution sets of the optimization problem at a time,
and the solution results are strongly dependent on the initial
values. The emergence of the intelligent algorithm breaks the
situation that MOP cannot be solved effectively. And it can
better reflect the characteristics of MOP. Well-known intelli-
gent optimization algorithms include evolutionary algorithms
(EA) [12] and particle swarm optimization (PSO) algorithms
[13]. EA are population-based heuristic search methods that
can be solved without prior knowledge.

Due to the various advantages of intelligent algorithms,
there has been a recent research boom in the related academic
community. As far as multi-objective optimization itself is
concerned, representativeMOEAs are binary differential evo-
lution with self-learning for multi-objective feature selection
[14], a decomposition-based archiving approach for multi-
objective evolutionary optimization [15]. These algorithms
have high robustness, high nonlinearity, parallelism and wide
applicability, and can find globally optimal solutions.

At the same time,MOEAs also have some drawbacks, such
as high computational cost, low operational efficiency, and
poor diversity of solution sets. To overcome these problems,
researchers proposed many improved MOEAs [18], [19].
Meanwhile, other meta-heuristic algorithms are also actively
sought to solve MOP. PSO algorithm is one of them. The key
points of the study of PSO are as follows: the maintenance of
population diversity and distributivity, the selection of non-
dominant solutions, and the pruning of the archive set.

Themulti-objective particle swarm optimization (MOPSO)
algorithm has been widely used to solveMOPs. However, it is
prone to fall into the local optimum when solving discrete
problems. Therefore, most of the improved algorithms are
now based on certain strategies to avoid premature algo-
rithms, and the inclusion of some strategies is accompanied
by an increase in algorithm running time [20], [21]. The APO
algorithm has some similarities with the PSO algorithm, and
its performance can be compared with or even surpasses
the classical optimization algorithms [22], [23]. The core
of the APO algorithm contains the selection of the non-
dominated set, the calculation of the mass function, and
the virtual force. Although the RMOAPO algorithm reflects
the concept of Pareto domination, it is more complicated to
determine the individual number based on individual order

value, neighborhood radius and congestion distance, which
increases the computational complexity [24]. The APO algo-
rithm is a new type of algorithm, which is one of the means
to solve optimization problems, especially for SOPs, showing
powerful solving ability. Based on this, many scholars have
tried to apply it to solve MOPs. However, the APO algorithm
suffers from the defects of low efficiency of non-dominated
solution selection, poor convergence, and distribution in
solving MOPs. To address the shortcomings of the tradi-
tional APO algorithm with low efficiency of non-dominated
solution selection, an improved fast non-dominated sorting
strategy is introduced to save the time cost of the algorithm.
In the iterative solution of the traditional APO algorithm,
it is necessary to first synthesize multiple objectives into one
objective, and then find the optimal individual and the worst
individual in the population before the final calculation of
individual quality, which does not fully reflect the concept of
Pareto domination and cannot fully reflect the characteristics
of multi-objective optimization [25], [26]. This paper recon-
structs the quality function based on individual partitioning
and establishes a direct mapping between the calculation of
individual quality and individual ordinal values and constraint
violation degrees, which fully reflects the characteristics of
multi-objective optimization. Also, the mass function and
virtual force correction rules distinguish between constrained
and unconstrained search according to feasible and infeasible
solutions. The simulation results show that the improved
algorithm proposed in this paper can accelerate the conver-
gence speed, enhance the diversity of the population, and
effectively solve the MOP.

The remainder of this paper is structured as fol-
lows. Section 2 introduces the basic definition of con-
strained multi-objective optimization problems (CMOPs).
Section 3 gives a brief introduction to the traditional APO
algorithm. Section 4 presents the design of key elements
and computational steps of the multi-objective artificial
physics optimization algorithm based on improved fast non-
dominated sorting (IFNS-MOAPO). In section 5, a com-
parison experiment with other algorithms is conducted to
verify the comprehensive performance of the IFNS-MOAPO
algorithm. Finally, Section 6 presents the conclusions.

II. MATHEMATICAL EXPRESSION OF CMOP
The APO algorithm is widely used in practical problems.
In these practical problems, optimization models are often
constructed with constraints and more than one objective
function. In this paper, themathematical expression of CMOP
is defined as:

min f (x) = [f1(x), f2(x), · · · , fk (x)]

s.t p(x) = (p1(x), p2(x), · · · , pm(x)) < 0

q(x) = (q1(x), q2(x), · · · , qs(x)) = 0

x = (x1, x2, · · · xn) ∈ Rn, Li ≤ xi ≤ Ui (1)

where k is the number of conflicting objectives, m and s are
the respective numbers of inequality constraints and equality
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constraints. x ∈ Rn is the n-dimensional vector of decision
variables. Ui and Li are the upper bound and lower bound of
the decision variable xi, i = 1, 2, · · · , n, respectively.

III. APO ALGORITHMS
The APO algorithm is inspired by Newton’s force law. Indi-
viduals in the population adjust their motion according to the
total virtual force and inertia of other individuals to obtain
a satisfactory solution. In addition, the individuals in the
algorithm are given mass properties, which are constantly
updated according to the optimal individual, the worst indi-
vidual, and their fitness value. As the mass changes, the
virtual force of the individual also changes. The rules for
calculating the velocity of an individual in the APO algorithm
are related to the virtual force and mass of the individual.
As the virtual force of the individual changes, the velocity
changes accordingly, and thus the position of the individual
changes accordingly.

The APO algorithm is described as follows:
Definition 1: The mass function of the individual i.

m(i) = e
f (xbest )−f (xi)

f (xworst )−f (xbest ) (2)

where f (xbest ) denotes the function value of the best individ-
ual, f (xworst ) denotes the function value of the worst individ-
ual, and f (xi) denotes the function value of the individual i.
According to Definition 1, the calculation of individual

mass requires the realization of knowing three values. These
three values are the fitness value of the best individual, the
fitness value of the worst individual, and the fitness value of
the individuals in the population, respectively. However, for
MOPs, the best and worst individuals cannot be found due to
conflicting objective functions.
Definition 2: The virtual force exerted on individual i via

individual j in kth dimension.

Fij,k =

{
Gmimj(xj,k − xi,k ), f (xi) > f (xj)
−Gmimj(xj,k − xi,k ), f (xi) ≤ f (xj)

∀i 6= j and i 6= best (3)

where G is the ‘‘gravitational constant’’ and xj,k − xi,k is the
distance from individual i to individual j in the kth dimension.
It can be seen from Definition 2. that the virtual force

calculation rules of the traditional APO algorithm do not
distinguish individuals in the feasible and infeasible domains.
Considering that the test object of this paper is the CMOP, it is
necessary to make corrections to the virtual force calculation
rules based on individual partitions.
Definition 3: The total virtual force exerted on individual

i via all other individuals in the kth dimension.

Fi,k =
n∑
j=1
i6=j

Fij,k , ∀i 6= best (4)

Definition 4: The velocity update of the individual i at
generation t + 1.

vi,k (t + 1) = ωvi,k (t)+ λFi,k/mi, ω ∈ (0, 1) (5)

whereω is the inertia weight; λ is a randomvariable generated
within (0, 1) with normal distribution.
Definition 5: The position update of the individual i at

generation t + 1.

xi,k (t + 1) = xi,k (t)+ vi,k (t + 1) (6)

After calculating the total force, velocity, and position of
the individual iare updated by using (5) and (6), respectively.

IV. PROPOSED ALGORITHM: IFNS-MOAPO
In this paper, the IFNS-MOAPO algorithm is proposed.
Improvements are made based on the APO algorithm as
follows: 1) To address the problem of low efficiency of
the non-dominated solution selection method of the basic
APO algorithm, ameliorated non-dominated sorting strategy
is introduced to decrease the running time cost of the algo-
rithm. And each individual is assigned a different ordinal
number in combination with the congestion distance. 2) The
individual mass function is reconstructed according to the dif-
ferent individual partitions to fully reflect the characteristics
of multi-objective optimization. 3)More specific and detailed
virtual force calculation rules are constructed according to the
different regions of individuals. Through the above improve-
ments, the running efficiency, convergence, and distribution
of the algorithm are increased, so that the algorithm will
evolve in a better direction, and eventually, the global optimal
solution set is found.

A. CONSTRUCTING NON-DOMINATED SETS
The traditional APO algorithm uses Deb’s non-dominated
sorting method to construct the non-dominated set, which
requires all individuals in the population to be compared with
each other to generate non-dominated individuals. There-
fore, this construction method does not have good structural
efficiency.

The improved fast non-dominated sort converts the strat-
egy of comparing one individual with other individuals into a
strategy of comparing two individuals with other individuals
at the same time, where the two individuals are either unre-
lated or the second one dominates the first one, and any indi-
vidual dominated by one of the two individuals is removed,
and only the individual not dominated by both individuals
is retained. The worst situation of the improved fast non-
dominated sort is that the second comparison individual is
not found. And then the improved fast non-dominated sort
degenerates. But even it is theoretically more efficient than
Deb’s non-dominated sort.

Let P denote the evolutionary population, x and y are
individuals in the population. The definition of individual
non-dominant relationships is as follows.
Definition 6: For any individual x and y, x, y ∈ P, we say

that x and y are irrelevant if there is no dominant relationship
between x and y.
Definition 7: For the certain individual x ∈ P, if there is

no y ∈ P such that y � x, we say that x is the non-dominant
individual of the set P.
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Definition 8: We often say x �d y that the relationship�d
is not transitive, if x � y or x and y are irrelevant.

The IFNS-MOAPO algorithm performs the selection of
non-dominated solutions after the population initialization is
completed. The selection method is a quicksort algorithm for
improved construction of non-dominated sets. After execut-
ing the above algorithms, the population reaches the state
of stratification based on the level of non-inferior solutions.
Then an ordinal number is assigned to each level so that
individuals in the same layer have the same non-dominated
order. In the following discussion, we use irank to denote the
non-dominated ordinal value of an individual i. For the set
F1, all individuals are endowed with non-dominated ordinal
values irank = 1. For the set F2, individuals are assigned the
non-dominated ordinal values irank = 2, and so on. Until
all individuals in the same stratum in the whole population
have the same non-dominated irank for the entire population.
For the individuals in the same stratum, their strengths and
weaknesses need to be defined in a certain way. To achieve
selective sorting of individuals with the same irank , crowding
and crowding distance comparison operators are introduced.
The result is that the individuals in the population can be
infinitely close to the true front and uniformly distributed
throughout the Pareto domain.

B. PARTITION RECONFIGURATION MASS FUNCTION
The mass function of the traditional MOAPO algorithm is
calculated by knowing the objective function values of the
best and worst individuals in the population, but the MOP
has multiple objective functions, so each sub-objective func-
tion needs to be combined into a single objective function
through certain strategies. To this end, the mass function is
reconstructed in such a way that the mass of individuals in the
feasible domain is limited to (1, 2), and the mass function of
the individual in the infeasible domain is limited to (0, 1]. The
mass function in the IFNS-MOAPO algorithm is modified as:

mi = 1+ e−
rank(i)
N , xi ∈ feasible (7)

where N is the number of individuals in the population, and
rank(i) is a natural number between 1 ∼ N .

mi = e
−CV (xi)
CV (x) , xi ∈ infeasible (8)

where CV (xi) is the constraint violation degree value of indi-
vidual i and CV (x) is the overall constraint violation.

C. VIRTUAL FORCE CALCULATION RULES FOR PARTITION
RECONSTRUCTION
The discussion in this paper is directed to CMOP, which has
constraints that limit the range of the optimal solution. The
constraints divide the whole search space into feasible design
regions and infeasible design regions. The points that satisfy
the constraints will fall in the feasible domain, and the points
that do not satisfy the constraints will fall in the infeasible
domain. The rules for calculating the virtual forces in the
APO algorithm should satisfy that individuals with good

adaptation values have a gravitational effect on individuals
with poor adaptation values. The rules for the virtual are
modified based on the difference in the area where the two
individuals are located and are discussed in the following four
cases.

Fij,k =

{
Gmimj

(
xj,k − xi,k

)
, (f (xi) > f (xj))

−Gmimj
(
xj,k − xi,k

)
, (f (xi) ≤ f (xj))

i, j ∈ feasible (9)

Fij,k = Gmimj
(
xj,k − xi,k

)
, i ∈ infeasible,

j ∈ feasible (10)

Fij,k = 0, i ∈ feasible, j ∈ infeasible (11)

Fij,k =

{
Gmimj

(
xj,k − xi,k

)
, (CV (xi) > CV (xj))

−Gmimj
(
xj,k − xi,k

)
, (CV (xi) ≤ CV (xj))

i, j ∈ infeasible (12)

When both individuals are in the infeasibility domain, the
rule for calculating the virtual force is the magnitude of the
constraint violation degree value. The individual with a small
constraint violation degree acts as a gravitational force on
the individual with a large constraint violation degree, and
conversely, the individual with a large constraint violation
degree acts as a repulsive force on the individual with a small
constraint violation degree.

D. ALGORITHM DESCRIPTION
The effectiveness of MOAPO algorithms lies in the fact that
an individual in the population is subject to virtual forces
from other individuals and constantly adjusts its position to
move in a more optimal direction. The constraint processing
technique simply uses the constraint holding method to pull
individuals that are not in the feasible domain to the boundary
of the feasible domain. It will fall into local search. The con-
straint violation value is introduced in the improved algorithm
to quantify the degree to which a solution violates a constraint
and to establish a direct mapping between it and the design
of the mass function. The constraint violation CV (x) of a
solution x is calculated as:

CV (x) =
M∑
m=1

〈Pm(x)〉 +
S∑
s=1

|qs(x)| (13)

where Pm(x) is defined as the mth inequality constraint and
qs(x) is defined as the sth equality constraint.

when x is in the feasible design region, CV (x) = 0,
a solution x is called a feasible solution. When x is in the
feasible design region,CV (x) > 0, x is an infeasible solution.

We use the IFNS-MOAPO algorithm to solve MOPS.
Figure 1 shows the design idea of the algorithm.

We use the IFNS-MOAPO algorithm to solve MOPS. The
following algorithm is described in pseudocode form.

V. EXPERIMENTAL STUDIES
The ability of the improved algorithm to deal with problems
can be judged by the comprehensive performance of the
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FIGURE 1. The design idea of the algorithm.

improved algorithm on the test function. In the following
sections, we first list the names of the test functions. The
specific values of the key parameters in the six algorithms
are also given. Next, we plot the comparison of the frontier
obtained by the six algorithms with the true Pareto. The time
complexity of IFNS-MOAPO is analyzed. Then, at the end of
this section, we quantitatively analyze the distributivity and
convergence of each algorithm by specific metric values.

A. EXPERIMENTAL ENVIRONMENT CONFIGURATION AND
BENCHMARK TEST PROBLEMS
The experimental environment of this paper is configured as
11th Gen Intel(R) Core (TM) i5-1135G7 CPU @ 2.50GHz
4.90GHz, 16.00GB, Windows 10 flagship 64-bit OS. The

software environment is MATLAB R2020b (64-bit), and
some algorithms implementations rely on the EMO platform.

To verify the effectiveness of IFNS-MOAPO algorithm,
the MOPs with constraints are selected as the standard test
set [27], [28], as shown in TABLE 1, MOP1-MOP7 are bi-
objective test functions, while the Viennet series functions
are selected as the standard test set, and the Viennet (VNT)
series test functions are tri-objective test functions. The per-
formance of IFNS-MOAPO algorithm and other comparison
algorithms are compared through simulation experiments.
The comparison algorithms in this paper are NSGA-II [29],
CMOPSO [30], MOAPO [25], MOEA/D-DAE [31], CCMO
[32], respectively. The reasons for choosing these comparison
algorithms are as follows: (i) NSGA-II is an algorithm based
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TABLE 1. Test function.

Algorithm 1 IFNS-MOAPO
Input: Population sizeNP; initialize coordinates xi,k and
vi,k , where xi,k ∈

[
xmin
k , xmax

k

]
and vi,k ∈

[
vmin
k , vmax

k

]
.

Output: Pareto front found by the IFNS-MOAPO
algorithm.

1: procedure IFNS-MOAPO
2: Initialize population
3: Pareto Front (PF)
4: Improved fast non-dominated sort stratification
5: Calculate the individual’s crowding distance
6: Assign each individual an ordinal number rank(i)
7: while (t < Maxiterations) do
8: for each individual from the archive do
9: calculate the constraint violation value for each

individual by (13).
10: if i ∈ feasible domain, then
11: calculate the individual’s mass with (7).
12: else
13: calculate the individual’s mass with (8).
14: end if
15: select the corresponding virtual force calcu-

lation rules to calculate the force receives from other
individuals in the kth dimension by (9)-(12).

16: calculation of the combined virtual forces
by (4).

17: update the speed and position of each individ-
ual by (5) and (6).

18: end do
19: t = t + 1
20: update Pareto front by the algorithm.
21: end while
22: return Pareto Front (PF)
23: end procedure

on non-dominated sorting, and it is used as a comparison to
test the effectiveness of the improved non-dominated sort-
ing method in the IFNS-MOAPO algorithm to save time
costs. (ii) The reason for choosing MOPSO algorithm as
the comparison object is that the essence of traditional APO

TABLE 2. Parameter description.

algorithm is similar to that of particle swarm algorithm. (iii)
Compare with the traditional MOAPO algorithm and ana-
lyze the effectiveness of the improved strategy in the IFNS-
MOAPO algorithm. (iv) MOEA/D-DAE and CCMO have
excellent performance and are relatively advanced algorithms
in recent years. Compared with these two algorithms, the
comprehensive performance of the improved algorithm can
be better evaluated. The other parameters for each compared
algorithm are set according to the original paper. The specific
values of the key parameters in the six algorithms are shown
in TABLE 2.

B. EXPERIMENTAL RESULTS OF THE FINAL
NON-DOMINATED FRONT
The comparison between the Pareto front obtained by the
algorithm and the true front can directly reflect the degree of
approximation to the real front and the advantages and disad-
vantages of the distribution of the algorithm. Figure 2 shows
the comparison plot of the Pareto front obtained by the
six algorithms with the true Pareto front. For each test
function, there are six plots: the one on the right is for
IFNS-MOAPO, and the others are for NSGA-II, CMOPSO,
MOAPO, MOEA/D-DAE, and CCMO.

As Figure 2 shows, the improved algorithm proposed
in this paper and the other six algorithms can find the
non-inferior solution set of the test function. The improved
algorithm in this paper can not only find feasible individuals
but also these individuals are very close to or even coincide
with the true Pareto frontier, which meets our expectations.
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FIGURE 2. The comparison plot of the Pareto front is obtained by the six algorithms with the true Pareto front.

C. ALGORITHM EFFICIENCY
The algorithm efficiency can be analyzed from two aspects.
From the theoretical aspect, we can analyze the algorithm’s
time complexity. From the application aspect, we can evaluate
the running time taken by the algorithm. In this paper, the time

complexity of non-dominated solution selection is changed
from O(kN 2) to O(kN logN ) after the improvement of the
traditional MOAPO algorithm [33, 34]. TABLE 3 shows
the average computation time of the algorithm for 30 runs
on the seven test functions.
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TABLE 3. Comparison of the running time of six algorithms on 7 test functions. (NSGA-II, CMOPSO, MOAPO, MOEA/D-DAE, CCMO, and IFNS-MOAPO).

The algorithm runtime result statistics in Table 3 show
that IFNS-MOAPO takes the shortest time on most of the
tested functions and MOEA/D-D-DAE takes the longest
time. Although the MOEA/D-D-DAE and CCMO achieved
good results for both HV and IGD statistics on some
MOP test functions, the MOEA/D-D-DAE and CCMO
were time-consuming compared to IFNS-MOAPO, espe-
cially MOEA/D-D-DAE. Compared with the MOAPO algo-
rithm, the running time of IFNS-MOAPO on the MOP
test function is significantly reduced, which indicates that
the improved fast non-dominated sorting strategy in this
paper is effective. The introduction of the improved fast
non-dominated sorting strategy not only makes the algorithm
time complexity decrease in the theoretical aspect but also
makes the running efficiency of IFNS-MOAPO improve in
the practical application.

D. PERFORMANCE METRICS
The convergence and distribution of the improved algorithm
can be illustrated by scalar values. The common performance
evaluation indexes include GD, SP, HV, and IGD. HV and
IGD are comprehensive performance evaluation indexes. The
calculation of the HV metric strictly follows the Pareto dom-
inance principle, the larger the HV value, the better the algo-
rithm performance. the IGD metric is the reverse mapping of
the GD metric. the smaller the value of the IGD metric, the
better the performance of the algorithm. The calculation of
the HV index value does not need to know the Pareto optimal

surface. HV and IGD are defined as:

HV = λ(U|S|i=1vi) (14)

IGD =

 ∑
j̄∈PF∗

minī∈P
∣∣j̄− ī∣∣

 /n (15)

where S is the nondominant set, vi denotes the supervolume
of reference points and non-dominant individuals, λ is the
Lebesgue measure. n is the number of vectors in the fron-
tier after running the algorithm. minī∈P

∣∣j̄− ī∣∣ denotes the
minimum Euclidean distance from the point j̄ on the Pareto
optimal surface to the individual ī in the optimal solution
set P.

E. EXPERIMENTAL RESULTS ON TEST PROBLEMS
The IFNS-MOAPO algorithm is a random search algorithm.
Due to the randomness of the algorithm, the results of a
single experiment are not representative. Therefore, to avoid
the errors caused by the random search of the algorithm,
TABLE 4 and TABLE 5 show the comparison results of the
mean and standard deviation (mean vs. std) of HV met-
rics and IGD metrics between the IFNS-MOAPO algorithm
and NSGA-II, CMOPSO, MOAPO, MOEA/D-DAE, CCMO
after 30 consecutive independent runs on MOP1-7, respec-
tively, where the best results are shown in bold.

TABLE 4 shows that the improved algorithm IFNS-
MOAPO algorithm performs well on the MOP1, MOP2,
MOP3, MOP4, MOP5, and MOP7, outperforming the

TABLE 4. Comparison of the mean and standard deviation of HV metrics on MOP test functions for six algorithms.
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TABLE 5. Comparison of the mean and standard deviation of IGD metrics on MOP test functions for six algorithms.

TABLE 6. Comparison of the mean and standard deviation of HV metrics on VNT test functions for six algorithms.

TABLE 7. Comparison of the mean and standard deviation of IGD metrics on VNT test functions for six algorithms.

comparison algorithms NSGA-II, CMOPSO, MOAPO,
MOEA/D-DAE, and CCMO. The MOEA/D-DAE and
CCMO outperform the IFNS-MOAPO algorithm on the
test function MOP6. In terms of significant differences,
the NSGA-II does not differ significantly from the
IFNS-MOAPO algorithm on MOP6.

TABLE 5 shows that the improved algorithm IFNS-
MOAPO algorithm has lower mean values of IGD metrics
on the five test functions MOP1, MOP2, MOP3, MOP5, and
MOP7 than the NSGA-II, CMOPSO, MOAPO, MOEA/D-
DAE and CCMO, and the distribution of the obtained test
results is better. In terms of significant differences, the CCMO
outperforms the IFNS-MOAPO algorithm on the test function
MOP6.

TABLE 6 TABLE 4 and TABLE 7 show the comparison
results of the mean and standard deviation (mean vs. std)
of HV metrics and IGD metrics between the IFNS-MOAPO
algorithm and NSGA-II, CMOPSO, MOAPO, MOEA/D-
DAE, CCMO after 30 consecutive independent runs on VNT
series test functions, respectively, where the best results are
shown in bold.

TABLE 6 shows that the improved algorithm performswell
on VNT1 and VNT4 compared to the comparison algorithm.

TABLE 7 shows that the mean values of IGD metrics of the
IFNS-MOAPO algorithm on the VNT series test functions
are lower than those of the comparison algorithm, which
fully illustrates that the IFNS-MOAPO algorithm also has
good distributivity and convergence on the three-objective
test functions.

The conventional MOAPO algorithm has the problem of
partitioning ambiguity in the calculation rules of mass func-
tion and virtual force, which leads to the inferiority of HV and
IGD index values to the IFNS-MOAPO algorithm on most of
the test functions selected in this paper; the CMOPSO also
has the inferior performance to the IFNS-MOAPO algorithm
on the test functions due to its tendency to fall into local
optimum.

The box plots can visually reflect the dispersion of
the sample data as well as the symmetry and tail weight
of the overall distribution. Figure 3 and Figure 4 show
the box plots of HV indicators and IGD indicators for
the six optimization algorithms on the test functions,
where the horizontal coordinates label 1, 2, 3, 4, 5, and
6 correspond to the algorithms as follows: 1-NSGA-II,
2-CMOPSO, 3-MOAPO, 4-MOEA/D-DAE, 5-CCMO, and
6-IFNS-MOAPO.
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FIGURE 3. Box plots of HV value on test functions from the six algorithms in 30 independent runs. 1, 2, 3, 4, 5, and 6 represent NSGA-II,
CMOPSO, MOAPO, MOEA/D-DAE, CCMO, and IFNS-MOAPO.

FIGURE 4. Box plots of IGD value on test functions from the six algorithms in 30 independent runs. 1, 2, 3, 4, 5, and 6 represent NSGA-II,
CMOPSO, MOAPO, MOEA/D-DAE, CCMO, and IFNS-MOAPO.

From Figure 3, we can observe that IFNS-MOAPO has
superiority for the HV statistic followed by CCMO. For
instance, IFNS-MOAPO shows higher HV statistical results
on most of the seven MOP test problems. Compared with
the MOAPO algorithm, the HV statistics of IFNS-MOAPO
are significantly improved, indicating that the strategy of
partitioning to reconstruct the mass function and virtual force
rules is effective.

From Figure 4, we can observe that IFNS-MOAPO has
superiority for the IGD statistic followed by CCMO and
MOEA/D-DAE. The CMOPSO algorithm shows high IGD
statistics on MOP1, MOP6, and MOP7 test problems with
poor distribution. The effectiveness of the improved strategy
in this paper is further illustrated by comparing the IGD
statistics results with those of the traditional MOAPO algo-
rithm. Establishing a direct mapping of the mass function to
the individual ordinal number and reconstructing the virtual
force calculation rules according to the region can signif-
icantly improve the distributivity and convergence of the
IFNS-MOAPO algorithm.

F. APPLICATION ON REAL-WORLD ENGINEERING
OPTIMIZATION
The disc brake design problem is used to further test the
effectiveness of the algorithm in this paper [35]. The problem
has two objectives, which are the weight of the brake and the
stopping time. The problem contains four variables, x1 and x2
denote the diameters of the inner and outer rings of the brake,
x3 denotes the engagement force, and x4 denotes the number
of friction surfaces. The constraints of the problem are the
minimum distance between radii, the maximum length of the
brake, pressure, temperature, and torque limits, respectively.
The specific optimization problem and constraints are shown
in Eq. (16).

Minimize f1(x) = 4.9× 10−5(x22 − x
2
1 )(x4 − 1)

Minimize f2(x) = 9.82× 106(x22 − x
2
1 )/(x3x4(x

3
2 − x

3
1 ))

Subject to g1(x) = (x2 − x1)− 20 ≥ 0

g2(x) = 30− 2.5(x4 + 1) ≥ 0

g3(x) = 0.4− x3/(3.14(x22 − x
2
1 )) ≥ 0
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TABLE 8. Mean and standard deviation of HV results for NSGAII, CMOPSO, MOAPO, MOEADDAE, CCMO, and IFNS-MOAPO on real-world engineering
optimization problem.

FIGURE 5. Pareto front obtained by the six algorithms on disk brake problem.

g4(x) = 1− 2.22× 10−3x3(x32 − x
3
1 )/

(x22 − x
2
1 )

3
≥ 0

g5(x) = 2.66× 10−2x3x4(x32 − x
3
1 )/

(x22 − x
2
1 ) ≥ 0 (16)

where 55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110, 1000 ≤ x3 ≤ 3000,
and 2 ≤ x4 ≤ 20.
Each algorithm was run 30 times independently on this

problem, with the number of function evaluations set to
100000 and population size of 100. We used HV to evaluate
the performance of the IFNS-MOAPO, and the results after
30 runs are summarized in TABLE 8. The Pareto front plots
obtained for the six algorithms are given in Figure 5.

As TABLE 8 shows, the result of IFNS-MOAPO is sig-
nificantly better than the other five algorithms on this real-
world problem in terms of HV metric. CCMO achieves the
second-best result followed by NSGAII and MOEADDAE.
CMOPSO and MOAPO obtain the worst results.

As Figure 5 shows, NSGA-II, MOAPO, MOEADDAE,
and CCMO demonstrate worse performance on distribution
compared to IFNS-MOAPO because the individual distri-
bution at the ends of their approximate PFs is sparse. All
points of CMOPSO cannot converge to the PF, so CMOPSO
is not valid for this practical engineering problem. Therefore,
IFNS-MOAPO achieves the best performance concerning
convergence and distribution compared to the other peer
algorithms.

VI. CONCLUSION AND FUTURE STUDIES
In this paper, we propose a new multi-objective optimiza-
tion algorithm, namely IFNS-MOAPO, for the CMOPs.
The improving fast non-dominated sorting strategy, the con-
ception of partition reconstruction mass function, and the
conception of partition reconstruction virtual force calcu-
lation rules have made the IFNS-MOAPO algorithm more
effective in solving CMOPs. By comparing IFNS-MOAPO
with other optimization algorithms (NSGA-II, CMOPSO,
MOAPO, MOEA/D-DAE, and CCMO), we demonstrate that
our IFNS-MOAPO is efficient in dealing with CMOPs. The
main findings of the paper can be summarized as follows.

(1) On the basis of the traditional APO algorithm, the
improved fast non-dominated ranking strategy can effi-
ciently reduce the run time of our algorithm. For most
of the test functions, the IFNS-MOAPO algorithm has
the fastest running time, although this advantage is very
small.

(2) The mass function of partition reconstruction and the
virtual force calculation method make full use of the
characteristics of the feasible and infeasible domains in
the CMOPs. The improved strategy speeds up the con-
vergence of the algorithm and enhances the diversity of
populations.

The IFNS-MOAPO algorithm is strongly influenced by the
parameters, especially the problem of adjusting the gravita-
tional factor and inertial weights. In our future work, we will
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investigate the parameter setting problem and the computa-
tional complexity of the algorithm. In addition, this paper
is only a theoretical analysis of the IFNS-MOAPO algo-
rithm. In the future, we will use the IFNS-MOAPO algorithm
to solve MOPs in practical engineering, such as engineer-
ing vehicle suspension parameters, robot path planning, and
logistics allocation.
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