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ABSTRACT In this study, the problem of sparse channel estimation is investigated with the employment
of a fully distributed approach. We exploit the spatially joint sparsity structure of the involved channels to
formulate the channel estimation problem in the angular domain. The devices collaboratively estimate their
channel sparsity support sets before the local estimation of the channel values, assuming the existence of
global and common support subsets. The combination of the proposed distributed scheme with the classical
Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm is calledWeighted Distributed Simultaneous
Orthogonal Matching Pursuit (WDiSOMP). The performance of WDiSOMP is assessed under a multi-task
scheme considering a new weighted voting method. The new mechanism is applied at each support set
index and enhances its estimation accuracy and, thus, the eventual estimation of the overall channel. The
mean squared error (MSE) is utilized to derive the performance bounds and assess the efficacy of the
WDiSOMP estimator. Finally, the performance and the theoretical findings are evaluated via the comparison
of WDiSOMP with Distributed Simultaneous Orthogonal Matching Pursuit (DiSOMP), local SOMP, and a
centralized approach based on Structured SOMP (SSOMP) in terms of the MSE.

INDEX TERMS Compressive sensing, SOMP, distributed estimation, channel estimation, mmWave.

I. INTRODUCTION
The millimeter wave (mmWave) spectrum plays a key role in
the implementation of 5G (and upcoming generations) com-
munication systems. The available bands are between 30GHz
and 300 GHz (i.e., wavelengths between 1 mm to 10 mm),
and the large unoccupied frequencies in these bands can be
exploited to meet the increasing demand for transmission
capacity [1], [2], [3], [4]. However, the transmitting sig-
nals in the mmWave bands confront high penetration loss
and propagation attenuation, restricting the communication
range [4]. Massive Multi-Input, Multi-Output (MIMO) and
directional beamforming (facilitated by the short wavelength
of mmWave signals) have been leveraged in the relevant
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literature to moderate this loss and ensure reliability in com-
munication.

The incorporation of mmWave MIMO antenna systems
in the physical layer of 5G networks [5] has increased their
transmission efficiency (spectral and power), throughput and
network coverage, ensuring the successful support of various
evolving technologies, such as Vehicular-to-Vehicular (V2V)
or Vehicular-to-Everything (V2X), Device-to-Device (D2D),
and Device-to-Everything (D2E) communication systems,
Machine-to-Machine (M2M)/ Internet-of-Things (IoT), Aug-
mented Reality (AR), Virtual Reality (VR), Smart City,
etc. [6]. MmWave is a key technology for the deployment of
Heterogeneous Networks (HetNets) in 5G IoT (such as smart
homes, smart cities, e-health) [7].

To fully exploit the potential of these applications, chan-
nel knowledge is required among all the involved antenna
pairs of the participating devices. In practical scenarios, the
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mmWave (massive) MIMO channel is sparse in the angular
domain due to the narrow-angle spread and limited scatter-
ing in the propagation environment at the base station (BS)
side [8]. Thus, a few significant paths are actually active (and,
essentially, fewer than the number of transmitting/receiving
antennas) and contribute to the transmission. In recent years,
Compressed Sensing (CS) techniques have been widely used
for channel estimation tasks [9], [10]. CS theory can be
leveraged to estimate the channel with reduced training over-
head by identifying the parameters involved in the commonly
adopted geometric channel model (channel gains, Angles of
Departure (AoD) and Angles of Arrival (AoA)), related only
to those paths, rather than estimating the channel matrix.
In the following sections, related works in the domain of
channel estimation with CS-based approaches, themotivation
and the contribution of this research will be described.

A. RELATED WORKS
Numerous state-of-the-art solutions for mmWave channel
estimation are outlined by Hassan et al. in [10]. In the rel-
evant literature, the problem is mainly addressed either in
point-to-point [8], [11], [12], [13] or in point-to-multiple
points frameworks [14]. In addition, the sparse channel recov-
ery approaches [15] can be employed either individually
[11], [16] or centrally (e.g., at the BS) [8], [17], [18]. In the
centralized solutions, the CS algorithms exploit the common
sparsity patterns among the channels of nearby devices that
are manifested in their measurements due to the transmission
environment and, thus, enhance the estimation accuracy or
reduce the training overhead. The downlink pilot training
overhead would be prohibitively in MIMO systems with
large-scale antenna arrays. Exploiting already established CS
techniques and the hidden sparsity in sparse channel matri-
ces, efficient channel estimation can be accomplished with
fewer training symbols and improved performance due to the
limited local scattering at the BS.

More specifically, to further enhance the estimation perfor-
mance and reduce pilot demand, they leverage the so-called
joint sparsity either among devices or among different
sub-carriers of single devices due to the shared transmission
environment. [8] is one of the first works to establish this
property with devices ofmultiple antennas. In [13], [17], [19],
[20], [21], and [22], channel estimation algorithms exploit
common sparsity patterns via a distributed-aided approach
employed over different orthogonal frequency division mul-
tiplexing (OFDM) sub-carriers of single devices. It should
be noted that in previous algorithms for channel estimation,
such as in the Joint Orthogonal Matching Pursuit (J-OMP)
in [8] and the Distributed Sparsity Adaptive Matching Pur-
suit (DSAMP) in [17], the term ‘‘distributed’’ refers to geo-
graphically distributed devices that send their data to a central
node for processing (e.g., the BS), or engage distributed algo-
rithms executed, however, locally over different sub-carriers
of a single device. Here, this term refers to a fully distributed
channel estimation approach in which many devices collabo-
rate and exchange information with their neighborhood.

TABLE 1. Comparison with previous works.

Moreover, in [23], Dai et al. impose a non-uniform size
burst-sparsity structure in the sparse channel without consid-
ering any correlations among the channels of different users.
They propose a generic Sparse Bayesian Learning (SBL)
framework that jointly detects unknown outliers and bursts
and estimates the channel. Furthermore, the authors in [14]
introduce a common sparsity model, where the individual
non-zero values are treated as outliers, and propose an SBL
method that jointly estimates the channel and finds the users’
groups. In [24], the authors exploit common sparsity to build a
sparse Bayes tensor and Direction of Arrival (DoA) tracking-
based channel estimation algorithm for V2X mmWave mas-
sive hybrid MIMO systems.

Recent studies see channel estimation as multi-task, which,
however, is interpreted differently from this study. Specifi-
cally, in [25], the MIMO channel prediction is based on a
multi-task least square support vector machine that exploits
the spatial correlations between the channels of different
antenna pairs instead of predicting the channel per antenna
pair independently. Also, in [26], a joint channel estima-
tion scheme is presented for a reconfigurable intelligent
surface-assisted mmWave communication system. In partic-
ular, it estimates the direct and cascaded channels at the
same coherence time instead of learning them separately.
Different from the above works, in [27], a multi-task deep
learning-based network is proposed to simultaneous design
the hybrid precoding and combining matrices under the geo-
metric mmWave channel model. In Table 1, we demonstrate
a brief comparative description of our work with recent pre-
vious studies. The methods listed in this table are compared,
focusing on some key traits, i.e., the assumed properties of
the channel, whether multi-task is considered from a sparse
representation perspective, the architecture and the type of
processing (centralized, distributed, local).

Moving on to the distributed joint sparsity recovery litera-
ture [10], [28], several algorithms have been developed for the
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joint sparsity models JSM-1 (common support and individual
values) and JSM-2 (common support), and their generaliza-
tions, which, first, were introduced by Baron et al. in [29].
These algorithms either follow a greedy and iterative process
(e.g., OMP) or solve an optimization problem (e.g., Least
absolute shrinkage and selection operator - Lasso) to estimate
the desired sparse vectors or matrices. Here, we will focus on
a greedy method, especially OMP, due to its simplicity, fast
implementation and lower computational complexity than
optimization techniques. However, other sparse coding algo-
rithms can be used, such as matching pursuit (MP) [30]. The
distributed versions of subspace pursuit (SP) and orthogonal
matching pursuit (OMP), the so-called DiSP and DiOMP,
respectively, were first introduced in [31], and they apply to
both JSM-1 and JSM-2 models (assuming a priori knowl-
edge of the sparsity structure). Besides, two versions of
Decentralized and Collaborative Orthogonal Matching Pur-
suit (DC-OMP1, DC-OMP2) for JSM-1 have been suggested
in [32], taking into account some communication constraints.
Compared to DiOMP, DC-OMP 1 recovers the support set
with higher accuracy by utilizing a voting mechanism incor-
porated in the iterations of the OMP. DC-OMP 2 is based on
SOMP and is much more accurate than DC-OMP 1 but at
the cost of a higher communication burden. It is noted that
in the framework of distributed collaborative algorithms, our
recent works [33], [34] constitute state-of-the-art solutions
for a multi-task joint sparse representation model. Compared
to their predecessors, they follow an adaptive process via the
employment of adaptive weights majority voting and only
need to know the total sparsity level.

B. MOTIVATION
The constantly increasing use of smart devices and multi-
media services, as well as the demand for high data rates,
high energy efficiency, low latency and high quality of service
(QoS), havemade fifth-generation (5G) networks and beyond
more imperative than ever. 5G networks address the emerging
challenges by considering i) massive MIMO systems in the
mmWave range, ii) full-duplex (FD) transmissions, iii) D2D
communication protocols and iv) network densification with
heterogeneous networking architectures, where various types
of cells (e.g., small, large) and access technologies are
expected to coexist. In the near future, direct D2D communi-
cation is regarded as an essential and promising technology,
e.g., for extending capacity, enabling scalability and traffic
offloading in various short-range applications, including IoT,
M2M, and emergency networks [35]. In the vision of 5G net-
works, users organized into small groups will exchange infor-
mation, e.g., about the network and channel status, cooperate
in various operations of common interest and employ new
technologies in favour of coordinated communication [36].

A thorough search of relevant literature shows that
the trend toward distributed and cooperative schemes also
emerges in the physical layer, with some indicative, yet
notable, examples being beamforming [37], [38] and spec-
trum sensing [39]. For the first time, the present study focuses

on the problem of fully-distributed channel estimation for
mmWave MIMO systems and proposes novel and efficient
schemes that enable devices to cooperate for estimating the
involved channels.

C. OUR CONTRIBUTION
As observed in Table 1, our method is distinct from
the sparsity-induced multi-task and processing perspectives.
In particular, the main innovations of this research are the
following:
• The measurements model allows the proposed solu-
tion to be directly applicable to scenarios with either
single-antenna devices, following a SingleMeasurement
Vector method, e.g., OMP, or multi-antenna devices,
utilizing a Multiple Measurement Vector method,
e.g., SOMP.

• A multi-task framework is elaborated under which the
mmWave MIMO sparse channel is modeled and esti-
mated, exploiting the joint sparsity among the channels
of proximal devices surrounded by global and some
common scattering clusters.

• A fully distributed cooperative channel estimation algo-
rithm, WDi(S)OMP, is suggested that undertakes the
multi-task commonalities among the sparsity patterns of
adjacent devices in an efficient manner. WDi(S)OMP
remains well-performing even when non-uniform over-
lapping sparsity groups occur in the network. It is
achieved by incorporating a new voting mechanism
which estimates an individual weight per support set
index, not a global one as in our prior scheme [34], and
further improves the channel estimation accuracy and
reduces training time by the BS.

• A performance evaluation of WDi(S)OMP is presented
from various aspects. More specifically:
– The new algorithm requires a low number of iter-

ations, as it properly exploits the channel sparsity
level, which, inmmWave communications, is small.

– The overall complexity is discussed at each stage of
the algorithm per iteration - communication round.

– The associated communication overhead due to
collaboration is analytically captured. Despite the
overhead, the distributed approaches, such as the
one presented here, might be preferable in many
cases encountered in practice (e.g., cases with
low channel sparsity appearing in the mmWave
range and/or multi-antenna end-users) in contrast to
adopting centralized processing at BS.

– A theoretical analysis is conducted where the MSE
is analytically computed assuming an oracle esti-
mator as a benchmark, from which we evaluate in
the experiments how well the suggested estimator
behaves and identify the parameters that most affect
our solution to attain the minimum error values.

The evaluation of the algorithm is demonstrated via sim-
ulations, and it turns out that it performs significantly bet-
ter than the existing ones. Several experiments have been
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conducted based on the elaborated multi-task sparsity model
to evaluate the channel matrix recovery performance in terms
of the number of measurements (i.e., training overhead) and
noise conditions (i.e., Signal-to-Noise-Ratio (SNR)).

The rest of this paper is organized as follows. In Section II,
the data model is described. In Section III, the joint sparse
channel model is elaborated in detail, under which our
estimator will be designed. Then, Section IV presents the
problem formulation for the mmWave channel estimation.
In the following, Section V shows the proposed distributed
MIMO downlink channel estimation algorithm with the aid
of the CS theory. Moreover, Section VI analyzes the proposed
method’s required iterations and computational complexity,
the respective transmission overhead, and the impact of sup-
port set and angular grid resolution on reconstruction quality.
In Section VII, several experiments are presented to verify
the efficiency of the proposed approach, accompanied by the
appropriate discussion. Finally, Section VIII outlines conclu-
sions and future directions of our research.

The following notations are used in this paper. Uppercase
bold letters are matrices, lowercase bold letters are vectors,
letters with a hat are estimations, (·)T denotes the trans-
position, (·)H denotes the complex conjugate transposition,
E[·] means statistical expectation, Tr(.) denotes the trace of
a matrix, I is the identity matrix, λmin(·), λmax(·) are the
minimum and maximum eigenvalue of a matrix; supp(h),
supp(H) are the index set of the non-zero entries of vector h
and the non-zero entries columns of matrix H, respectively;
AS denotes the sub-matrix formed by collecting the columns
of A whose indexes are in set S;‖A‖F , ‖A‖ and ‖a‖ denote
the Frobenius norm, spectrum norm ofA and Euclidean norm
of vector a respectively.

II. THE SYSTEM MODEL
In this paper, we will focus on downlink transmission. BS of
Nt antennas communicates with K devices of Nr antennas
to transmit (broadcasts) T training symbol vectors which are
concatenated inX ∈ CNt×T in T time slots via a narrowband,
block-fading mmWave MIMO channel. Each device receives
the signal

Yk = HkX+ Nk , (1)

where matrix Hk ∈ CNr×Nt captures the mmWave down-
link MIMO channel from the BS to the k-th device. Also,
Yk ∈ CNr×T and Nk ∈ CNr×T denote the concatenated
received signal and additive noise vectors, respectively. The
elements of the latter are modeled as random vectors with
elements being independent and identically distributed (i.i.d.)
and complex Gaussian distribution with zero mean and vari-
ance equal to σ 2.
Since mmWave channels are expected to have limited scat-

tering on the BS side, a geometric channel model is adopted
where each cluster of scatterers is assumed to contribute
multiple propagation paths between the BS and device k .
Under this model, the physical channel matrix H ∈ CNr×Nt

between the BS and each device can be given as [40]

H =

√
NtNr

LAoDLAoA

LAoD∑
p=1

LAoA∑
q=1

αp,qar (θp,q)aHt (φp), (2)

where LAoD represents the number of AoDs, each of which
contributes LAoA arrival paths on the device side, αp,q is the
complex gain of the q-th path on the device side that departs
from the p path on the BS side, φp, θp,q are the p-th AoD
and its corresponding q-th AoA, and at (φp), ar (θp,q) are
the antenna array response vectors at the BS and devices,
respectively. The matrix form of the channel model in (2) can
be written as

H = ArHaAH
t (3)

where At =
[
at (φ1), at (φ2), . . . , at (φLAoD)

]
, Ar =[

ar (θ1), ar (θ2), . . . , ar (θLAoA )
]
, Ha ∈ CLAoA×LAoD is a sparse

matrix whose non-zero complex values are associated with
the channel path gains.

Assuming Uniform Linear Arrays (ULAs), the transmit
response vector at (φp) is defined as

1
√
Nt

[
1 ej

2dπ
λ

cosφp · · · ej
2(Nt−1)dπ

λ
cosφp

]T
, (4)

while the receive response vector ar (θp,q) is given as

1
√
Nr

[
1 ej

2dπ
λ

cos θp,q · · · ej
2(Nr−1)dπ

λ
cos θp,q

]T
, (5)

where λ is the signal wavelength at mmWave frequency and
d the inter-element spacing.
Since the quality of CS-based channel estimation is limited

by the quantization error in the angular domain representa-
tion, the AoDs and AoAs (or the corresponding atoms) are
taken from high-density grids of Gr � LAoA and Gt � LAoD
points, obtaining overcomplete dictionaries Dt ∈ CNt×Gt ,
Dr ∈ CNr×Gr [40], correspondingly. Then, the channel
matrix H can be represented in terms of a non-diagonal
sparse matrix Hv

∈ CGr×Gt , containing the path gains of the
quantized angles, as follows

H = DrHvDH
t . (6)

The representation in (6) constitutes a discretized approx-
imation of the channel matrix that can be exploited to cast
the estimation of H to that of detecting some non-zero coef-
ficients in the sparse channel matrix Hv. Focusing on the
rows of the channel matrix Hv, they will contain only a
few non-zero values corresponding to the AoDs, due to the
sparsity of mmWave channels on the BS side. Notice that the
number of non-zero values in each of those columns is exactly
equal to LAoA.

In the special case of ULAs, with d = λ
2 and quantized

AoDs and AoAs selected from uniform grids of resolution
equal to transmitting and receiving antennas (Gt = Nt and
Gr = Nr ), respectively, the dictionaries Dr ∈ CNr×Nr

and Dt ∈ CNt×Nt result in unitary Discrete Fourier Trans-
form (DFT) matrices. This case is known as the Virtual
Channel Model [41].
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FIGURE 1. Downlink transmission scenario: C1 = {1, 2, 3, 4, 5, 6}, C2 = {5, 6, 7, 8, 9, 10} [33].

III. JOINT SPARSE CHANNEL MODELING
In this section, the adopted joint sparsity model for the
involved channels will be presented. This model captures
the different tasks in the network, which in [42] is called
multi-tasking with overlapping parameters.

A set of K geospatially distributed devices are intercon-
nected by a graph G(V, E), where V = {1, 2, . . . ,K } is the
set of devices (or nodes) and E = {(i, j) : Node i ∈ V is
connected with node j ∈ V}.

As illustrated in Figure 1, the scattering nature of the
transmission environment may lead to the devices grouping
according to the scatterers getting involved in their channels.
As stated in [8], the devices that belong to the same groupmay
face and thus be affected by the same scatterer. It means that
the sparse channel matrices Hv

k share the same sparsity sup-
port set on the BS side, but the corresponding path gains may
differ due to the surrounding area of each device. To improve
the downlink channel estimation performance, we exploit the
previously described relationship on the sparsity support sets
among the involved channels of the devices [8], [17].

More specifically, the scatterers on the BS side can be
clustered into global and common, from now on referred to
as g and cj, which translates the corresponding AoDs into
global to all devices in the network and common to particular
subgroups. From this observation, we conclude that both the
columns (otherwise atoms) of the employed dictionaryDt are
also global and common, respectively. Following [28], the
physical channel matrix structural sparsity is discriminated
into

1) Sparsity Support within Channel Matrix: The rows
within Hv

k usually have the same column sparsity sup-
port, namely there exists support set Sk inHv

k , such that
Sk = supp(Hv

k ), |Sk | = LAoD.
2) Global and Multiple Common Supports between

Different Channel Matrices: The channel matrices

of different devices are correlated, especially when
the devices are physically close to each other. Based
on this condition, different devices and their respec-
tive (sparse) channel matrices tend to share some global
and, partially, common local scatterers on the BS part.

Based on the previously established sparsity cases,
the sparse representation matrix Hv

k of device k can be
written as

Hv
k = Hg

k +
∑
j∈Ik

H
cj
k , (7)

whereHg
k represents the sparse matrix whose row support set

is globally shared among all devices in the network and H
cj
k

captures the sparse matrix whose support set is commonly
shared among different subgroups of devices in the network.
Also, Ik is a set of indices j = {1, 2, . . . , J} indicating
the maximum number of common interest support sets per
device k .
Moreover, it is assumed that the rows of Hg

k and H
cj
k s of

each device k share Lg non-zero columns and Lcj non-zero
columns, respectively. So, the sparsity pattern of a device k
is divided into global and multiple common interest support
sets. The column sparsity is induced by the assumption that
the resolution of the departing angular grid points is much
greater than the number of the active transmission paths,
i.e., LAoD � Gt .

Considering a scenario of multiple devices, the AoDs of
the devices’ channels impacted by the same scattering clus-
ters are similar [8], [14]. It means that they share the same
non-zero columns (i.e., global and common, respectively) in
their sparse channels, as shown in Figure 2, which motivated
us to investigate the channel estimation via a distributed algo-
rithm that estimates the shared support sets in a collaborative
manner. In the following, some definitions will be provided.
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FIGURE 2. Sparse Channel matrices of the sided devices H̄v
1, H̄v

2, H̄v
7, H̄v

8
and devices in the overlapping area H̄v

5, H̄v
6 assuming Nr = 2, Gr = Nr

and Gt = 256 where red, green and blue bins stand for the global and
partially common atoms with total sparsity level LAoD = 6.

� = {1, 2, . . . ,Gt } denotes the set of atom indices (namely,
the number of AoDs) in the overcomplete dictionary Dt .
Definition 1 (Global Interest Support Set): Let the sparse

representation matrixHg
k , whose columns are globally shared

with only Lg nonzero entries. The global interest support set
is defined as

Sg = {i ∈ �, s.t.supp(Hg
m) = supp(Hg

n),∀m, n ∈ V},
(8)

where Sg ⊂ � and |Sg| = Lg (l0 sparsity).
Definition 2 (Common Interest Support Set): Let the

sparse representation matrix H
cj
k with only Lcj nonzero

entries. The common interest support set is defined as

Scj = {i ∈ �, s.t.supp(Hcj
m) = supp(H

cj
n ),∀m, n ∈ Cj},

(9)

where Scj ⊂ �, |Scj | = Lcj (l0 sparsity) and Cj ⊂ V a set of
devices indices that are impacted by the common scattering
cluster cj, for j = 1, 2, . . . , J , and are concerned about Scj .
Based on the previous definitions, the support set Sk of

device k is formulated as Sk = Sg ∪ {Scjk }, for all j ∈ Ik ,
meaning that the joint sparsity LAoD,k ≤ Lg+

∑
j∈Ik Lcj . Here,

despite Sg being globally shared among all devices in the
network orScj being the same among particular devices in the
same subgroup Cj, it doesn’t hold for the respective non-zero
values of Hg

k and H
cj
k which remain individual and possibly

independent among the devices.
Thus, taking into account the aforementioned sharing of

support sets, the channel Hk of device k can be written as

Hk = Dr (H
g
k +

∑
j∈Ik

H
cj
k )D

H
t

= (DrH
g
k +

∑
j∈Ik

DrH
cj
k )D

H
t

= ((H̄g
k )
H
+

∑
j∈Ik

(H̄
cj
k )

H )DH
t

= (H̄v
k )
HDH

t (10)

From (10), we see that the column sparsity in Hv
k translates

into row sparsity in (H̄
v
k )
H
= DrHv

k . According to the
adopted formulation, Dr is hidden in the sparse matrix H̄

v
k

which will be the matrix of interest in the proposed algorithm.
Here, the columns of Dr are fixed to LAoA, i.e., as if we

had the receiver response matrix Ar ∈ CNr×LAoA , and the
joint sparsity is only observed in the AoDs. In summary,
considering (10), our aim is to exploit the joint sparsity sets of
neighboring devices to estimate the sparse channel per device
in a collaborative and distributed manner. Such an approach
will be elaborated on in the following.

IV. MULTI-TASK MMWAVE CHANNEL ESTIMATION
In this section, the problem formulation for the multi-task
mmWave channel estimation will be presented. Given the
geometric channel model representation in (10), the problem
of interest will be addressed as a sparse reconstruction based
on compressed sensing, assuming an overcompleteDt for the
AoDs sparsifying matrix.
Employing per device k the representation (10), we can

rewrite the measurements model in (1), in compact form, as

Ȳk = 8H̄v
k + N̄k , (11)

where Ȳk =
[
ȳk,1|ȳk,2| . . . |ȳk,Nr

]
∈ CT×Nr , 8 = XHDt ∈

CT×Gt and N̄k = (Nk )H . Also, each column of Ȳk , which
constitutes the SingleMeasurement Vectors (SMV) analogue,
is captured by

ȳk,r = 8h̄vk,r + n̄k,r , r = 1, 2, . . . ,Nr . (12)

According to the Multiple Measurement Vectors (MMV)
model [43], in (11), each device k exploits simultaneously
the low dimensional measurement vectors, {ȳk,r }

Nr
r=1, from all

antenna elements, that share the same measurement matrix 8

and sparsity support sets Sk , to recover the high dimensional
Gt × 1 sparse channel vectors between all receiving antennas
and BS.
Let {H̄v

1, H̄
v
2, . . . , H̄

v
K } be the collection of parameter

matrices across the network. Through (11), the objective of
each device k is to determine the sparse AoDs, which is
equivalent to estimating the rows support set of H̄v

k ∈ CGt×Nr .
Each device k , ignoring the joint sparsity channel modelling,
could minimize Jk (H̄v

k ) = ‖Ȳk − 8H̄v
k‖

2
F on its own,

locally (without cooperation) or the aggregated optimization
function

∑K
k=1 Jk (H̄v

k ) could be used in a centralizedmanner,
as in [20]. However, in this paper, we follow a third direction
that leads to a fully distributed approach. More specifically,
by taking into account the joint row sparsity between the
H̄v
ks of different devices, individual but related cost functions

Jk (H̄v
k ) can be adopted, thus, allowing us to formulate the

problem as a multi-task one [42]. The relatedness lies in the
fact that the support set of a device k is Sk = Sg ∪ {Scjk },
e.g. with global and partially common elements. The common
elements with the Sls of its neighborhood Link will be taken
into consideration in the collaboration step of the proposed
approach, where the (joint) support set is estimated through
adaptive weights voting. Hence, the optimization problem
can be formulated locally as

minimize
Sk ,H̄v

k

Jk (H̄v
k ) (13)

subject to Sk ∩ Sl = Sg ∪ Scjk , ∀l ∈ Link (14)
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|Sk | = ‖diag((H̄v
k )
H H̄v

k )‖0 = LAoD (15)

Accurate retrieval of the sparse channel matrix H̄
v
k is only

guaranteed when the measurement matrix 8 satisfies spe-
cific properties from CS like the Restricted Isometry Prop-
erty (RIP) and mutual coherence. As this matrix is dependent
on both the training symbols and the transmit (overcomplete)
sparsifying matrix Dt , the symbols can be properly designed
to acquire a more optimized measurement matrix to ensure
that the channel is reconstructed successfully with a high
probability. Such issues have been addressed, for example,
in [16] and [44], but, here, the symbols are selected randomly,
which still makes the measurement matrix ‘‘well-behaved’’.

V. VOTING-BASED MULTI-TASK DISTRIBUTED SOLUTION
In this section, the main stages of the proposed algorithm,
WDiSOMP, are analysed. Since the dictionary Dt in (10)
is predefined, the channel estimation is equivalent to the
estimation of H̄v

k in (11), assuming, in the transmission envi-
ronment, the existence of sparsity division captured in (7)
or equivalently in (10). More specifically, WDiSOMP was
designed to estimate the sparse channel in a collaborative
distributed manner. The collaboration stage concerns only the
support sets Sks, while the non-zero values of the path gains
are individual and, thus, estimated via Least-Squares (LS)
locally. Our solution employs a weighted majority voting
mechanismwith adaptive weights that can be estimated either
at the support set or index level. With the incorporation of
this step, the proposed algorithm only needs to know the total
number of departing paths or angles LAoD.

A. PROPOSED SOLUTION
The algorithm operates in stages (see Algorithm 1). The first
stage initializes the process, and the second one is executed
iteratively, consisting of a collaborative (through voting) and
a local step (where the SOMP runs to make an individual
estimate of the sparsity support set) and the final one that
concerns channel estimation is executed locally.

In the Initialization stage, the BS, for T time slots, trans-
mits to all devices in the network a number of training sym-
bols, represented by matrix X. Then, each device k collects
all measurements in Yk and executes SOMP (assuming the
overcomplete sparsifying matrix8 and an empty support set)
to get an initial local estimate of its complete support set Ŝk .

In the Iterative stage, each device k , ∀k , transmits its Ŝk
to its neighbors denoted by the set Loutk , and receives the
estimates Ŝl’s from its neighbors, ∀l ∈ Link (communication
step). At iteration i of the algorithm, each device exploits
the received Ŝl’s and engages a weighted majority voting
mechanism to determine the i most voted indices. Then,
SOMP is executed locally to acquire the remaining non-zero
indices, up to LAoD, and again Ŝks are communicated over
the network. These steps are repeated for LAoD iterations.
It is assumed, here, that all devices communicate via a con-
nected network and can exchange their support sets indices by
engaging in a suitable D2D communication protocol [45]).

Each device k exploits the estimated set Ŝk on (11) to
retain only these specific columns of 8, apply LS to find the
associated non-zero values of ˆ̄Hv

k and through (10) its channel
matrix.

The above stages and the corresponding steps are also
illustrated in Figure 3, where the information flow is depicted
per device k . The BS broadcasts the same training data to
all devices in the network. Then, each device exploits the
acquired measurements to initialize the process and itera-
tively (via sharing - collaboration) estimate the desired sup-
port set. Finally, each device k utilizes the estimated support
set to recover the sparse channel representation and, thus, the
channel matrix.

Algorithm 1:WDiSOMP

Result: {Ĥk}

Input:8 = XHDt , Ȳk = (Yk )H ; LAoD, blk,−1 = 0,
∀k ∈ {1, . . . ,K } and l ∈ Link ;
Stage I: Initialization Part
Local step
for k = 1:K do

[Ŝk,0] = SOMP(8, Ȳk ,LAoD,∅);
end
Transmit: Ŝk,0 to all nodes Loutk
Receive: Ŝl,0s from all nodes Link
for k=1:K do

Exploit Ŝl,0s to estimate the weights alk,0
Estimate alk,0 with either (17), (18) or (19), (20),
∀l ∈ Link

end
Stage II: Iterative Part
for i = 1 : LAoD do

for k= 1:K do
Weighted Majority Voting
Ŝk,v = WMVoting({Ŝl,i−1}l∈Lin

k
, i,Gt , alk,i−1);

Local Step
[Ŝk,i] = SOMP(8, Ȳk ,LAoD − i, Ŝk,v);

end
Transmit: Ŝk,i to all nodes Loutk
Receive: Ŝl,is from all nodes Link
Weights alk,i Estimation
for k=1:K do

Estimate alk,i with either (17), (18) or (19), (20),
∀l ∈ Link

end
end
Stage III:Final
LS: ˆ̄Hv

k = 8†(:, Ŝk )Ȳk ;

Ĥk = ( ˆ̄Hv
k )
HDH

t , ∀k = 1, . . . ,K

B. ADAPTIVE WEIGHTS VOTING MECHANISM
The aim of adopting a weighted voting mechanism was to
make the algorithmWDiSOMP robust to different conditions.
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FIGURE 3. Local information sharing and processing per device k .

In particular, this step (step 1 of stage II) was motivated by the
fact that a devicemay not have the same impact on the support
set retrieval, which can happen for several reasons. First, even
if the devices have the same sparsity profile, they may face
different communication conditions (i.e., noise level). Also,
different common support sets among device groups may
exist on the unknown sparsity patterns. Finally, the (hidden)
sparsity order of the support sets and the grouping of devices
are not usually known. For these reasons, two weighting
methods are selected in the majority voting mechanism. The
first method can cope with these cases with satisfactory per-
formance [33] except for a case [34] where part of the support
set of a device in the network is partially shared with different
subgroups of devices, such that all devices’ support sets have
the same cardinality. For this purpose, the second method is
suggested.

Algorithm 2:WMVoting

Result: Ŝk,v
i, {Ŝl,i}, l ∈ Link , zk = 0Gt×1, {alk,i};
for l ∈ Link do

for j ∈ Ŝl,i do
zk (j) = zk (j)+ alk,i(j);

end
end
Ŝk,v = bestindices(zk , i)

More specifically, at each iteration i of the algorithm,
device k employs a zero elements vector zk,i of size Gt and

activates the positions indexed by each received Ŝl,i, adding
the weight alk at the relevant positions for all l ∈ Link . After-
wards, the device k , through function ’bestindices’, finds the
set of indices corresponding to the i largest amplitude compo-
nents of the final zk . These steps are captured in Algorithm 2.
The weights alk may be updated assuming either of the two
following adaptive weights methods similar to the one in [46].

1) WEIGHT METHOD BASED ON SUPPORT SET AS SINGLE
ENTITY
We introduce the instantaneous metric

blk , |Ŝl,i \ Ŝk,i−1| (16)

that measures the number of different elements in the
involved sets. We further smooth the quantity blk,i through
a first-order filter, say,

blk,i = (1− v)blk,i−1 + v|Ŝl,i \ Ŝk,i−1| (17)

where v ∈ (0, 1) is a small positive factor. Then, the combina-
tion weight assigned for each index j by device k to device l
is approximated by

alk,i(j)≈
b−1lk,i∑

m∈Lin
k
b−1mk,i

, l∈Link , k ∈K , ∀j∈ Ŝl . (18)

At this point, it should be noted that the total number of
common indices could be measured to determine the blk,is
and the corresponding weight alk,i. In either case, all indices
of a neighbour are graded with the same weight assigning
the same significance to all indices even if some of them

VOLUME 10, 2022 105239



M. Trigka et al.: Efficient Distributed Multi-Task Schemes for mmWave MIMO Channel Estimation

aren’t included in the device’s support set. This mecha-
nism can efficiently identify devices’ groups with i) similar
sparsity patterns and different noise levels (per group) and
ii) non-overlapping but common sparsity patterns inside the
groups [33]. To manage the existence of overlapping sparsity
profiles, like the one depicted in Figure 1, we assumed a per
index weighting method in the majority voting mechanism.

2) WEIGHT METHOD BASED ON PER-INDEX SUPPORT SET
SIMILARITIES
Here, our aim is to give an individual weight for each index
of the support set (LAoD in number) of all devices. To achieve
this, each device k votes with ’1’ the support set indices
that belong to its neighbor l and its own support set. Then,
a candidate index approved by the majority of neighboring
devices wins. At each iteration i, each device k builds a
matrix Zk ∈ RGt×|Lin

k | (initialized with zero values), which is
updated by ones only in positions dictated by Ŝl,i∩Ŝk,i−1 6= ∅
and fed as input in (19). At iteration i, the weight that device
k assigns to its neighbor l per support set index j is estimated
as follows

blk,i(j) = (1− v)blk,i−1(j)+ vZk (j, l) (19)

alk,i(j) ≈
blk,i(j)∑

m∈Lin
k
bmk,i(j)

(20)

for l ∈ Link , k ∈ K and all j ∈ Ŝk ∩ Ŝl .
The elaborated weight methods are exploited in the voting

mechanism in Algorithm 1 to enhance the channel estimation
performance. In the following section, we will analytically
estimate the error bounds of the proposed estimator.

VI. PERFORMANCE EVALUATION
In this section, we analyze the performance of the proposed
estimator from various aspects. More specifically, the anal-
ysis will concern i) the iterations of the algorithm, ii) the
computational complexity, iii) the communication overhead
of WDiSOMP compared to the rest considered schemes,
iv) the channel estimation error in terms of the support set
reconstruction quality and, finally, v) the impact of angular
grid resolution assuming an overcomplete dictionary to min-
imize the channel quantization error.

A. REQUIRED ITERATIONS BEFORE TERMINATION AND
COMPUTATIONAL COMPLEXITY
In Algorithm 1, the iterations of WDiSOMP are fixed, con-
stant by construction, and equal to LAoD. Also, they show how
many times the devices exchange their support set indices
(communication step) in the network. The communication
step includes local processing, which is highly dependent
on the available energy of the device, especially for devices
with limited resources (e.g., battery-dependent) to run an
energy harvesting process. In this study, we assume that the
devices satisfy the minimum power requirements to solve the
assigned tasks. SOMP is executed locally at each iteration of
WDiSOMP, exploiting the obtained part of the support after

voting to build an estimate of the full support set until its
size is equal to LAoD. The number of internal iterations of
SOMP is exactly LAoD − i (since |Ŝk,voting| = i). As a result,
in WDiSOMP running time, the total iterations of SOMP is∑LAoD

i=1 (LAoD − i) =
LAoD(LAoD−1)

2 .
Moving on to the computational complexity of the pro-

posed algorithm, we consider that operations like addition,
subtraction, division and multiplication of any two numbers
have computational complexity O(1). Also, the complexity
for two matrices multiplication of size M × N and N × P is
O(MPN ).
Let us focus on communication round i. As we see in

Figure 3, the WDiSOMP algorithm executed locally at each
device k has two specific processing steps that actually
contribute to the overall computational complexity. In par-
ticular, first, the complexity of SOMP is on the order of
O(NrGtTsi) [47], where si = LAoD−i is the size of the support
set that is estimated at iteration i. Second, the suggested
voting mechanism contributes a small cost to the complexity
of the algorithm due to the adaptive weights estimate. Both
weighting methods should first compute the involved blk,is.
In the first method, the cost mainly derives from the fact
that each device k should measure the number of different
indices between its support set and one of its neighbors (|Ŝl,i\
Ŝk,i−1|). In the second, per index method, the respective cost
stems from i) the intersection operation (Ŝl,i∩ Ŝk,i−1) among
the support set of device k and its neighbors, and ii) the term
vZk (j, l), j = 1, 2, . . . ,LAoD whose activation depends on the
previous step. In either case, the cost is in the order of the
support set size or, else, sparsity level, i.e., O(LAoD). After
this sub-step, the cost of estimating the desired alk,i for each
one of itsK−1 neighbors (whereK−1 captures the |Link |) and
itself involves simple operations, K − 1 sums (denominator)
and 1 division, thus the cost is O(K ). In the former method,
the weights alk,i are the same for all indices, while the latter
estimates a weight per index.

Having available the weights alk,i, the computational com-
plexity of the majority voting (Algorithm 2) is determined
by: i) the number of additions to the zero-elements vector zk ,
which are equal to LAoD (the support set size or sparsity level)
for each of the K − 1 neighbors and the device itself, or, else,
KLAoD in total, and ii) the sorting method used in the function
’bestindices’ to find the i most voted indices. In our case, the
number of elements to be sorted is small and equal to the
support set level LAoD.

Finally, at Stage III of Algorithm 1, each device k uses
an LS estimator to acquire the non-zero involved coefficients
(i.e., the channel gains). This stage adds a cost which depends
on the computation of the pseudo-inverse of matrix 8, keep-
ing only that columns dictated by Ŝk , i.e. O(LAoDT 2

+L3AoD),
and then by its multiplication with the measurements’ matrix
imposing an additional cost of O(LAoDTNr ).

It is noted here that, apart from the voting mechanism,
the complexity of the other two local processing methods
(namely, SOMP and LS) depends on the adopted algo-
rithms. As this paper aims to study, for the first time,
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a fully-distributed channel estimation algorithm enhanced
by carefully designed voting mechanisms that improve the
cooperation among the devices, two well-known simple algo-
rithms have been chosen. However, it should be clear that
other candidates with lower complexity can also be selected.

Before moving on to the next section, let us compare the
complexity of the proposed algorithm with the ones that
will be compared in the simulations section. WDiSOMP
has a slightly higher complexity than DiSOMP due to the
employed voting mechanism. However, as demonstrated in
the experiments, its performance is greatly improved, while
there is no requirement for knowing beforehand the sparsity
structure of the involved channels. As for the locally executed
SOMP and the centralized SSOMP (namely, the one executed
after all data are collected to a central point), the compu-
tational complexity is on the order of O(NrGtTLAoD) and
O(KNrGtTLAoD), respectively. Again, as it will be demon-
strated, their performance is worse.

B. TRANSMISSION OVERHEAD
In this section, we compare the transmission overhead of the
distributed schemes DiSOMP and WDiSOMP with the cen-
tralized scheme, SSOMP, in terms of the number of transmit-
ted bits, denoted as T d

o and T c
o , respectively. In the distributed

schemes, T d
o captures the amount of information exchanged

between a device k and each neighbor. In the centralized
method, T c

o stands for the communication overhead between
BS and each device k . The transmitted bits are analytically
evaluated for all algorithms, as follows.

In the case of the centralized solution SSOMP, we assume
that each device k transmits to the BS separately the real and
complex part of the measurements in Ȳk ∈ CT×Nr , assigning
q bits per value, which corresponds to 2NrTq bits from each
device to BS. Then the BS, by employing SSOMP, utilizes the
measurements from all devices to estimate the joint support
set, whose indices are fed back to the devices delivering
LAoDdlog2(Gt )e bits. Hence, the total number of bits amounts
to

T c
o = K (2NrTq+ LAoDdlog2(Gt )e). (21)

Moving on to the distributed algorithms, let us, first,
assume a network topology in which each node k transmits
to its Loutk neighbors the LAoD indices of the candidate sup-
port set derived by applying SOMP locally. In (W)DiSOMP,
only LAoD indices from {1, . . . ,Gt } (where Gt denotes the
number of atoms) are transmitted, and each index is sup-
posed to be encoded with dlog2(Gt )e bits, which entails
LAoDdlog2(Gt )e transmitted bits. Each device transmits in
each iteration the full support set to its neighbors, and
this process is repeated LAoD times until the full sparsity
level is achieved. Given that the proposed approach is fully
distributed, |Loutk | = K − 1, the total transferred bits
amount to

T d
o = K (K − 1)dlog2(Gt )eL

2
AoD. (22)

From (22), it is shown that the transmission overhead of the
distributed schemes is a quadratic function of the sparsity
parameter LAoD, considering the rest parameters constant.

TABLE 2. Transmission overhead in Kbits of centralized SSOMP for
K = 10, Gt = 512, T = 30, |Lk | = K − 1, LAoD = 6.

In Table 2, we show the T c
o in terms of the feedback

quantization bits q, for Nr = {1, 2, 4, 8}. It is observed that
the T c

o cost is significantly impacted by the increase in receiv-
ing antennas and feedback quantization bits. In Figure 4,
we capture the impact of training symbols T in the T c

o , T d
o of

SSOMP and WDiSOMP, respectively, assuming devices of
single, two and four antennas. We have set the resolution
of the AoDs dictionary (e.g., the number of atoms) equal to
Gt = 512(� Nt = 128). The communication overhead of the
distributed solutions is independent of the receiving antennas
and thus kept at a constant level. Also, it is observed that the
distributed solutions prevail for Nr > 2. These parameters
only affect the complexity of the centralized solution, mak-
ing the required communication cost prohibitive when the
involved devices have many antenna elements.

TABLE 3. Transmission overhead in Kbits of (W)DiSOMP and centralized
SSOMP for K = 10, Nr = 2, Gt = {256, 512, 1024}, T = 30 |Lout

k | = K − 1,
LAoD = 6.

Moreover, in Table 3, the centralized and distributed solu-
tions are assessed in terms of the atoms Gt for various q.
These outcomes show a subtle increase in the overhead of
SSOMP and a higher increase in the one of (W)DiSOMP.
In Table 4, the overhead of the distributed solutions is eval-
uated in terms of the sparsity level, selecting proper LAoD
compatible for mmWave systems [17], [19], [48] and setting
fixed values at the rest parameters. The same table presents
the performance of the centralized solution. Although the
increase in the number of receiving antennas is accompanied
by an essential increase in T c

o , this isn’t verified with the Gt
and LAoD that are involved in the second term of (21).

From the above, we conclude that the distributed
approaches, such as the one presented here, might be prefer-
able in many cases encountered in practice (e.g., cases with
low sparsity and/or non-single antenna users).

C. IMPACT OF SUPPORT SET ON RECONSTRUCTION
QUALITY
The greedy approaches are based on the LS solution to
estimate the complex values corresponding to the estimated
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FIGURE 4. Transmission overhead in Kbits of SSOMP, (W)DiSOMP for
K = 10, T = [12 : 60], LAoD = 6, Nr = {1, 2, 4}, Gt = 512, q = 32 bits.

TABLE 4. Transmission overhead in Kbits of SSOMP, (W)DiSOMP for
K = 10, T = 30, LAoD = [5 : 10], Nr = 2, Gt = 512, q = 32 bits.

support set. Their accuracy may deteriorate if part of the
support set isn’t correctly identified. To evaluate the pro-
posed CS-based channel estimator and determine a lower
error bound, we formulate the problem for the support set
reconstruction assuming an oracle estimator, which considers
perfect knowledge of the true AoDs.

First, we reform the measurements model assuming (3) to
acquire the following

Ȳk = 8aH̄k
a + N̄k , (23)

with H̄k
a = (ArHk

a)
H
∈ CLAoD×Nr and 8a = XHAt ∈

CT×LAoD the measurement matrix for the Least Squares (LS)
problem. The problem in (23) is similar to the one in (11) if
we keep the LAoD known atoms (or, else, AoDs) involved in
the channel, Dt is reduced to At (response matrix structure).
Each column of (23) is captured by ȳk,r for r = 1, 2, . . . ,Nr
and is written as

ȳk,r = 8ah̄k,ra + n̄k,r , (24)

with h̄k,ra = H̄k
a(:, r) ∈ CLAoD×1, n̄k,r = N̄k (:, r) ∈ CT×1.

Given (24), the oracle LS approach estimates the LAoD entries
of h̄k,ra , requiring 8H

a 8a be full rank, i.e., T ≥ LAoD and
assuming that AoDs are exactly known, by

h̄k,r,oa =
(
8H
a 8a

)−1
8a

H ȳk,r (25)

Then, the oracle estimate of Hk , if in (10) we keep the LAoD
rows of H̄v

k and Dt is substituted by At, is given by

Ho
k =

(
H̄k,o
a

)H
AH
t (26)

with H̄k,o
a = [h̄k,o,1a , h̄k,o,2a , . . . , h̄k,o,Nra ].

An accurate recovery of the LAoD-rowmatrix H̄k
a is equiva-

lent to simultaneously recovering Nr vectors {h̄k,ra }
Nr
r=1. Con-

sidering the oracle estimator, which estimates the channel
gain under the assumption that At is known, the MSE can
be written as

E
[∥∥Hk −Ho

k

∥∥2
F

]
= E

[ Nr∑
r=1

∥∥hk,r − hok,r
∥∥2
2

]

= E

[ Nr∑
r=1

∥∥∥At

(
h̄k,ra − h̄k,o,ra

)∥∥∥2
2

]

=

Nr∑
r=1

E
[∥∥∥At h̄k,re

∥∥∥2
2

]
, (27)

where h̄k,re
1
=h̄k,ra − h̄k,o,ra . Then, keeping the equivalent form

of channel estimation error in (27), the MSE can be written
as

E
[∥∥∥At h̄k,re

∥∥∥2
2

]
≥ λmin

(
AH
t At

)
E
[∥∥∥h̄k,re ∥∥∥2

2

]
(28)

The inequality holds due to the Rayleigh-Ritz ratio [49].
Combining (24) with (25) and assuming thatE

[
n̄k,r n̄Hk,r

]
=

σ 2IT , h̄k,o,ra = h̄k,ra −Qn̄k,r , theE
[∥∥h̄k,re ∥∥2

2

]
can be rewritten

as

E
[∥∥∥h̄k,re ∥∥∥2

2

]
= E

[∥∥Qn̄k,r
∥∥2
2

]
= E

[
Tr
(
Qn̄k,r n̄Hk,rQ

H
)]

= Tr
(
QE

[
n̄k,r n̄Hk,r

]
QH

)
= σ 2Tr

(
QQH

)
(29)

with Q =
(
8H
a 8a

)−1
8H
a . Since QQH

=
(
8H
a 8a

)−1
, the

Tr
(
QQH

)
is further processed, exploiting the arithmetic and

harmonic means [50] and trace properties, as follows

Tr
(
QQH

)
=

LAoD∑
l=1

λl

((
8H
a 8a

)−1)

= LAoD

(
1

LAoD

LAoD∑
l=1

λl

((
8H
a 8a

)−1))

≥
(LAoD)2∑LAoD

l=1 1/λl
((

8H
a 8a

)−1)
=

(LAoD)2∑LAoD
l=1 λl

(
8H
a 8a

)
=

(LAoD)2

Tr
(
8H
a 8a

) (30)

From (27)-(30), we conclude that the MSE is lower-bounded
as

E
[∥∥Hk −Ho

k

∥∥2
F

]
≥ Nrλmin

(
AH
t At

) σ 2L2AoD
Tr
(
8H
a 8a

) . (31)
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Assuming an orthonormal basis, and specifically the DFT
matrix, to construct the AoDs dictionary At in 8a, it holds
that AH

t At = ILAoD and thus λmin
(
AH
t At

)
= 1, simplify-

ing (31) to

E
[∥∥Hk −Ho

k

∥∥2
F

]
≥ Nr

σ 2L2AoD
Tr
(
8H
a 8a

) . (32)

Denominator Tr
(
8H
a 8a

)
is equivalently written as∑LAoD

i=1 λi(8H
a 8a). To attain the lower bound, 8H

a 8a should
be a diagonal matrix with identical diagonal elements. Pre-
vious condition holds if and only if the eigenvalues λi’s are
equal. In particular, if XXH

= T I and exploiting AH
t At =

ILAoD , Tr
(
8H
a 8a

)
= LAoDT and therefore

E
[∥∥Hk −Ho

k

∥∥2
F

]
≥ Nrσ 2 LAoD

T
. (33)

The bound in (33) increases linearly with the sparsity level
LAoD and the receive antennas Nr , while it is inversely pro-
portional to the number of pilots T .
The oracle LS exploits the exact support-AoDs informa-

tion; thus, under the previous conditions, its MSE will be
the lower bound of WDiSOMP and every other estimator,
which ignores the true AoDs and identifies them through a
learning process under noisy conditions. Furthermore, when
part of the estimated support set isn’t correct, there will be
a term in the error that captures the impact of the incorrect
indices. This term is expected to become powerful in high
SNR conditions adding a systematic deviation from the real
support or channel and a respective floor. As part of erroneous
indices is shrunk, the floor will gradually disappear, and the
estimators’ error will tend towards the lower bound. Such an
approach could lead to designing more effective weighting
methods than the ones elaborated here, suitable for multi-task
joint sparsity to correct the imposed error (e.g., due to quanti-
zation). Although this study is out of scope here, it constitutes
a challenging task which would deserve further investigation.

D. IMPACT OF DICTIONARY RESOLUTION
The aim of this subsection is to study the impact of
the dictionary resolution, exploiting its mutual coherence,
which will help us determine an upper bound for the error
of the quantized channel matrixH in (6). The rationale behind
the estimation of the upper-bound is to quantify it based on
the quality of Dt and 8, which depends on the number of
grid points Gt and is measured by the mutual coherence.
Assuming an overcomplete dictionary Dt to minimize the
quantization error, the symbols matrix should be properly
designed to ensure the successful retrieval of the sparse chan-
nel matrix ˆ̄Hv

k by the SOMP (locally).
For this purpose, we exploit (10) to write the error, in an

equivalent form, as follows∥∥∥Ĥk −Hk

∥∥∥2
F
=

∥∥∥∥( ˆ̄Hv
k

)H
DH
t −

(
H̄v
k
)H

DH
t

∥∥∥∥2
F

=

∥∥∥∥(Dt
ˆ̄Hv
k

)H
−
(
DtH̄v

k
)H∥∥∥∥2

F

=

∥∥∥Dt

(
ˆ̄Hv
k − H̄v

k

)∥∥∥2
F

=

Nr∑
r=1

∥∥∥Dt

(
ˆ̄hvk,r − h̄vk,r

)∥∥∥2
2
, (34)

where H̄v
k =

[
h̄vk,1|h̄

v
k,2| . . . |h̄

v
k,Nr

]
.

An upper bound for the quantized channel estimation error
is derived, assuming that the supports of ˆ̄hvk,r and h̄vk,r are
similar. Hence, the channel estimation error in (34), based on
the Cauchy Schwarz inequality, satisfies∥∥∥Ĥk −Hk

∥∥∥2
F
=

Nr∑
r=1

∥∥∥∥(Dt)Sk

((
ˆ̄hvk,r

)
Sk
−
(
h̄vk,r

)
Sk

)∥∥∥∥2
2

≤

Nr∑
r=1

∥∥(Dt)Sk
∥∥2
2

∥∥∥∥( ˆ̄hvk,r)Sk − (h̄vk,r)Sk
∥∥∥∥2
2
.

(35)

First, we will focus to find an upper bound for the term∥∥(Dt)Sk
∥∥2
2. For this purpose, we define GSk

1
=(Dt)

H
Sk (Dt)Sk .

Then, the squared spectral norm satisfies
∥∥(Dt)Sk

∥∥2
2 =

λmax(GSk ). Focusing on matrix GSk , otherwise, it is written
as
(
DH
t Dt

)
Sk and given that Dt =

[
at,1 . . . at,Gt

]
, at,i ∈

CNt×1 with exponential elements as in (4), is equal to

GSk =

 aHt,1at,1 · · · aHt,1at,Gt
... · · ·

...

aHt,Gtat,1 · · · aHt,Gtat,Gt


Sk

=

 1 · · · aHt,1at,Gt
... · · ·

...

aHt,Gtat,1 · · · 1


Sk

(36)

Based on (36), GSk = I+ G̃Sk where

G̃Sk =

 0 · · · aHt,1at,Gt
... · · ·

...

aHt,Gtat,1 · · · 0


Sk

. (37)

Exploiting the properties of the mutual coherence,
µ
(
GSk

)
= µ

(
G̃Sk

)
, thus the off-diagonal entries of G̃Sk

are upper-bounded by µ (Dt). From this observation, all the
off-diagonal entries of G̃Sk can be replaced by the µ (Dt),
constituting G̃′Sk . Then, the Gershgorin circle theorem is

utilized to find an upper-bound of the λmax

(
I+ G̃Sk

)
. In par-

ticular, it holds that λmax(GSk ) ≤ λmax(I + G̃′Sk ) ≤ 1 +
(LAoD − 1)µ (Dt). From this inequality, (35) is rewritten as∥∥∥Ĥk −Hk

∥∥∥2
F
≤

Nr∑
r=1

µ̄ ·

∥∥∥ ˆ̄hvk,r − h̄vk,r
∥∥∥2
2
, (38)

where µ̄ = 1 + (LAoD − 1)µ (Dt). In µ̄, the term
(LAoD − 1)µ (Dt) denotes the imposed overhead in the
sparse channel estimation error due to the discretization
with resolution Gt higher than the transmitter antennas Nt .
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It depends on the mutual coherence of the dictionary Dt ,
which, in turn, depends on the selected resolution Gt . When
Gt = Nt , µ (Dt) = 0, and µ̄ = 1. However, for Gt �
Nt , µ (Dt) attains values close to 1, making µ̄ and thus the
upper bound of the channel error in (38) on the order of LAoD.

In (38), ‖ ˆ̄hvk,r− h̄
v
k,r‖

2
2 represents the sparse channel vector

estimation error of the SMV problem in (12). The proposed
algorithm (WDiSOMP) aims to estimate the MIMO chan-
nel by exploiting the commonalities in the support sets of
the sparse channel matrices of nearby devices. All devices
execute SOMP locally (using the measurements collected
from all antenna elements), exchange the estimated support
sets with their neighbors’ and apply the weighted voting
mechanism to estimate their support set. To ensure sup-
port recovery, the amplitudes of all nonzero elements must
be large enough to overcome the noise. Hence, we define∣∣∣h̄vk,r,min

∣∣∣ = minm∈Sk

∣∣∣h̄vk,r (m)∣∣∣ to derive a condition that the
(S)OMP correctly identifies the support Sk . Suppose that the

event Br =
{

max
1≤m≤Gt

∣∣8H (m) n̄k,r
∣∣ < σ

√
(1+ β) logG2

t
}

(where constant β > 0) occurs simultaneously for all antenna
elements and thus

∣∣∣h̄vk,r,min

∣∣∣ (1 − (
2LAoD − 1

)
µ
(
8
))
≥

2
(
σ

√
(1+ β) logG2

t

)
holds. An upper-bound of this esti-

mation error is derived by considering the Lemma 3 for
OMP performance guarantees in [51]. When the support Sk
is successfully recovered, our estimator operates as the oracle
fromwhich the corresponding complex gains are estimated as(
h̄v,ok,r

)
Sk
= 8

†
Sk ȳk,r and its error is written as∥∥∥∥(h̄v,ok,r)Sk − (h̄vk,r)Sk
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, (39)

where the last inequality is derived by using the defini-

tion of Br and

∥∥∥∥(8H
Sk8Sk

)−1∥∥∥∥2
2
=

1
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(
8H

Sk
8Sk

) ≤

1
(1−(LAoD−1)µ(8))2

by applying the Gershgorin circle theorem

to λmin
(
8H
Sk8Sk

)
. Combining (38) with (39), the upper

bound is as∥∥∥Ĥk −Hk

∥∥∥2
F
≤
NrLAoD (1+ (LAoD − 1) µ (Dt))

(1− (LAoD − 1) µ (8))2

×

(
(1+ β) σ 2 logG2

t

)
(40)

The upper bound of the squared error in (40) shows
that the sparse channel recovery performance is affected by
the mutual coherence of the measurement matrix 8, for
which µ (8) < 1/(2LAoD− 1) should hold in order to ensure
reliable estimation of the support set in noisy conditions. The
upper limit relates to the fact that some of the LAoD involved
AoDs in the channel matrix may occupy off-diagonal entries
of the Gram matrix G̃, with magnitudes, at most, equal
to µ (Dt). Given an overcomplete dictionary, the training
symbols matrix should be properly designed to reduce the
magnitudes of these off-diagonal entries.

Table 5 lists the right term in (40) (upper bound) of the
instantaneous channel error in terms of the mutual coher-
ence µ(8) assuming an overcomplete DFT-based dictionary
and β = 0.5,Nt = 128, LAoD = 6. Assuming that the training
pilots’ design achieves µ(8) = 0.05, the obtained upper
bound is higher in low SNR regimes and decreases linearly
as the noise variance reduces (high SNR). Also, the upper
bound increased by 48%, when the Gt = 256 with µ (Dt) =

0.637 increased to Gt = 512 with µ (Dt) = 0.9. This
bound is maintained at low levels as low as possible, and
close to zero is the µ(8). To attain µ(8) values close to
zero, X should be appropriately constructed, which is out of
scope in this work. In our study, the symbols are designed as
random Gaussian variables, thus ensuring a ‘‘well-behaved’’
measurement matrix and, hence, correct channel reconstruc-
tion with high probability.

TABLE 5. Right term in (40) of the instantaneous channel error.

VII. SIMULATIONS AND DISCUSSION
In this section, the elaborated algorithm is evaluated for the
problem of channel estimation in a ULA mmWave massive
MIMO systemwith fully-digital transmitters and receivers by
employing SOMP locally.

To be more specific, the proposed distributed scheme is
evaluated under two different voting mechanisms in a multi-
tasking scenario. Moreover, its behavior will be compared
to the individual SOMP (which is executed locally by each
device), DiSOMP (which engages a simple majority voting
mechanism) and the Structured SOMP (SSOMP), which is
executed in a centralized manner at the BS. The performance
measure, namely, Normalized Mean Squared Error (NMSE),
is defined as

NMSE =
1
M

M∑
m=1

∑K
k=1‖Hk − Ĥm

k ‖
2
F∑K

k=1‖Hk‖
2
F

(41)
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FIGURE 5. Average NMSE over all nodes for T = [12 : 2 : 40],
SNR = 20 dB.

where Hk , Ĥm
k are the correct and reconstructed channel

vectors of device k at the m-th channel realization. In the
simulations,M = 50000 captures the number ofMonte Carlo
iterations and v = 0.1 (which is utilized in the recursive
equation of the adaptive weighting step in (17), (19)).

In the following, the NMSE behavior of these methods will
be assessed i) in terms of the number of training symbols
T = [12, 40] for a specific Signal-to-Noise-Ratio (SNR)
value, i.e., SNR = 20dB, and ii) for a fixed T = 30 in terms
of SNR in the range [0, 30].

We assume a network of K = 10 devices and a BS with
Nr = 2 and Nt = 128 antenna elements, respectively.
Following the relevant literature, e.g. [20], [40], a DFT-based
overcomplete, predefined dictionary Dt is assumed (due to
the similarity of the array response vectors with its columns)
with resolution Gt = 512 atoms. Note that the AoDs and
AoAs were selected from [0, π], and the AoAs were ran-
domly assigned. We assume that there are Lg = 2 global
interest AoDs that contribute to all devices’ channels and
two different groups of Lc = 4 commonly shared AoDs
(or channel paths) that contribute to devices’ channels 1-5
and 7-10, respectively. Also, 1 out of 10 devices, and specifi-
cally device 6, partially shares its Lc = 4 AoDs with different
subgroups. Table 6 presents the AoDs values that were con-
sidered to create the devices’ channels and the corresponding
grouping. The elements of the training matrixX ∼ CN (0, 1

T )
are i.i.d. random variables [20]. Each device has no prior
knowledge of the sparsity order apart from the total sparsity
level (LAoD = 6), which is similar to all devices.

Figure 5 depicts the average NMSE over all involved
devices. It is noticed thatWDiSOMP1, which assumes voting
on support set level, approaches the behavior of local SOMP.
However, WDiSOMP2 achieves superior performance than
SOMP, and particularly DiSOMP, due to the employment
of the voting method on the index level. For the latter, the
floor in the performance is attained for low values of T
and remains unchanged even when measurements T are high
enough. This behavior is justified by the unknown sparsity

FIGURE 6. NMSE of devices 1-5, devices 7-10 and device 6 for
T = [12 : 2 : 40], SNR = 20 dB.

structure, which WiDSOMP 1, 2 can learn via the suggested
voting mechanisms. Also, WDiSOMP, in either case, attains
the performance of SSOMP (the centralized solution), which,
nonetheless, needs to know the number of global Lg and
common Lc indices in the sparsity pattern division, as in [20].

Figure 6 demonstrates the channel estimation performance
at the two subgroups and device 6, focusing on WDiS-
OMP 1, 2. It is reminded that these subgroups comprise
devices 1-5 and 7-10, respectively, whose support set is not
partially shared and device 6, which shares 4 out of 6 indices
in its support set with the devices from different subgroups.
It is observed that the behavior of the algorithm follows,
as expected, the one observed in Figure 5, namely, follows
the average NMSE. The performance of WDiSOMP2 in
devices 1-5 enhanced slightly, while device 6, which captures
the challenging multi-tasking condition, has considerably
benefited from the new weighting mechanism that operates
at the index level. The same holds for devices 7-10.

Now, we will focus on the second experiment of this study.
In Figure 7, we show the average performance of all methods
in terms of SNR for T = 30. Then, in Figure 8, the perfor-
mance of WDiSOMP1 and WDiSOMP2 for the devices 1-5,
7-10 and 6 is captured. Both in this case, it is verified that
the behavior of the proposed algorithm, under the per-index
weighting method before voting, is superior to exploiting the
support set as a global entity (i.e., not per index).

In Figure 9, we isolate the average behavior of WDiSOMP
and local SOMP in terms of the noise level for T = {30, 60}.
The theoretical lower error bound, presented in Section VI,
is also plotted to validate the performance of the proposed
scheme for the mmWave channel estimation. More specifi-
cally, the lower boundwas derived based on (31). For T = 30,
WDiSOMP1 has a similar performance to SOMP with a
performance gap by WDiSOMP2 for high SNR. When the
available measurements per device were doubled (T = 60),
the two versions of WDiSOMP presented comparable behav-
ior and, in high SNR, were better than SOMP (with a smaller
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TABLE 6. Multitask device grouping according to AoDs sparsity patterns for Lg = 2, Lc = 4.

FIGURE 7. Average NMSE of all devices for SNR = [0 : 5 : 30]dB, T = 30.

FIGURE 8. Average NMSE of devices 1-5, 7-10 and device 6 for
SNR = [0 : 5 : 30]dB, T = 30.

gap in their performances than previously). Also, in high
SNR, the floor in the performance ofWDiSOMP relates to the
reconstruction error imposed by the mistaken support indices
that the devices estimate (to find then the corresponding
AoDs) compared to the oracle LS estimator, which assumes
prior knowledge of them to estimate the channel. This exper-
iment indicated that, in medium-to-high SNR, WDiSOMP
benefited from the per index weighting method when the
number of measurements was not enough. In low SNR, it was
considerably reduced the distance between WDiSOMP1,

FIGURE 9. Average NMSE of all devices for SNR = [0 : 5 : 30],
T = {30, 60}.

WDiSOMP2 and the lower bound. However, they didn’t
approach the lower bound since the matrix X isn’t properly
designed, making the eigenvalues λis of 8H

a 8a different,

even if it still holds that Tr
(
8H
a 8a

)
=
∑LAoD

i=1 λi(8H
a 8a) =

LAoD. As mentioned in Section VI.C, the eigenvalues equality
is a necessary condition to approach the lower bound, which
in our case isn’t satisfied.

From the above simulations, it is noted that WDiSOMP,
with the use of either weighting method, can efficiently
exploit, under different conditions, the inherent common
sparsity structures and its performance is not impacted when
various related device groupings coexist.

VIII. CONCLUSION
In conclusion, the channel estimation problem is addressed
by a distributed approach that exploits the joint spar-
sity among proximal devices’ sparse channel matrices to
estimate the desired parameters collaboratively. The down-
link multi-device MIMO channel estimation is solved via
WDiSOMP, a fully distributed method that exploits a gen-
eralized model for the sparsity support of the involved chan-
nel matrices. The enhanced performance of WDiSOMP has
been evaluated under the per index weighted voting mecha-
nism when the structure of the sparsity support is unknown
and non-uniform under a multi-tasking framework. Also,
the transmission overhead of the proposed algorithm was
investigated and compared to the corresponding cost of the
centralized solution. The outcomes revealed the efficacy of
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the method under specific configurations of the involved
parameters.

A promising future direction is to examine and broaden
the proposed method in hybrid architectures [16], [41] since,
in this work, fully-digital transmitters and receivers are con-
sidered. Furthermore, another goal is to enhance the perfor-
mance of the proposed algorithm by focusing on the proper
training matrix design. This analysis will help to attain the
performance bound of the oracle LS estimator and ensure
reliable channel recovery under the overcomplete dictionary
(as already mentioned in the performance analysis). Another
extension of the study could focus on alternative weighting
methods in the voting process (quantifying the part of the
error related to the deviation of the MSE from the lower
bound) to optimize the mmWave channel estimation perfor-
mance (under such a complicated joint sparsity framework).
Finally, a well-known challenging direction is to reformulate
the suggested fully distributed cooperative approach under a
CS-based federated learning framework in order to benefit
from the advantages and capabilities (such as privacy) that
this technique provides, exploiting the recent research effort
in this field.
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