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ABSTRACT Background: Radiomical data are redundant but they might serve as a tool for lung quantitative
assessment reflecting disease severity and actual physiological status of COVID-19 patients. Objective: Test
the effectiveness of machine learning in eliminating data redundancy of radiomics and reflecting pathophysi-
ologic changes in patients with COVID-19 pneumonia. Methods: We analyzed 605 cases admitted to Al Ain
Hospital from 24 February to 1 July, 2020. They met the following inclusion criteria: age> 18 years; inpatient
admission; PCR positive for SARS-CoV-2; lung CT available at PACS. We categorized cases into 4 classes:
mild <5% of pulmonary parenchymal involvement, moderate - 5-24%, severe - 25-49%, and critical > 50%.
We used CT scans to build regression models predicting the oxygenation level, respiratory and cardiovascular
functioning. Results: Radiomical findings are a reliable source of information to assess the functional status
of patients with COVID-19. Machine learning models can predict the oxygenation level, respiratory and
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cardiovascular functioning from a set of demographics and radiomics data regardless of the settings of reconstruction
kernels. The regression models can be used for scoring lung impairment and comparing disease severity in follow
up studies. The most accurate prediction we achieved was 6.454+3.715% of mean absolute error/range for all the
features and 7.069+4.17% for radiomics. Conclusion: The models may contribute to the proper risk evaluation and
disease management especially when the oxygen therapy impacts the actual values of the functional findings. Still,
the structural assessment of an acute lung injury reflects the severity of the disease.

INDEX TERMS Blended machine learning model, COVID-19, functional outcomes, lung structural changes,
pneumonia, radiomics, SARC-CoV-2, structure-function association.

ABBREVIATIONS AND ACRONYMS

AUC - area under the curve

CAP - community-acquired pneumonia
CI - confidence interval

con_ - consolidation

COVID-19 - coronavirus disease 2019

CRP - C-reactive protein

CT - computed tomography

eff - pleural effusion

ggo_ - ground glass opacity

GO6PD - glucose-6-phosphate dehydrogenase

HCT - hematocrit

HGB - hemoglobin

IRF - immature reticulocyte fraction

LDH - lactate dehydrogenase

LLL - left lower lobe

LUL - left upper lobe

MCH - mean corpuscular hemoglobin level

MCHC - mean corpuscular hemoglobin
concentration

MCV - mean corpuscular volume

ML - machine learning

MPYV - mean platelet volume

PCR - polymerase chain reaction

PTT - activated partial thromboplastin

_rate - percentage occupied with lesions
of either type in the total lung volume

RBC - red blood cells

RDW-CV - red blood cell distribution width

RLL - right lower lobe

RML - right middle lobe

RUL - right upper lobe

SAP - SARS-CoV-2 associated pneumonia

SARS-CoV-2 - severe acute respiratory
syndrome-related coronavirus 2

_std - standard deviation

WBC - white blood cells

I. INTRODUCTION

Atypical viral pneumonia associated with COVID-19 has
been a significant burden of morbidity and mortality across
the world. The clinical variants of the disease range from
mild forms to severe respiratory failure [1]. Most patients
are diagnosed with mild and moderate forms of COVID-19
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and have a favorable prognosis. The severe course of the
infection can present with secondary hypoxemia and result
in acute respiratory distress syndrome [2], [3], [4], [5].
From the beginning of the pandemic, clinicians started
researching the distinctive features of the disease pathogen-
esis [1] and its course to stratify risks for the optimal case
management [2], [6]. The idea under this was to study patho-
physiology which may have the following application. First,
it will reveal the pathologic processes underlying non-typical
devastation by the disease, i.e. what accounts for the higher
rates of morbidity and mortality compared to those of com-
munity acquired pneumonia (CAP). Second, COVID-19 spe-
cific mechanisms of acute respiratory failure could provide a
clue to optimal therapy.

Physicians found a dissociation between the degree of lung
injury and the severity of the coronavirus disease emerged
in 2019 [7]. To explain this, they proposed to look at
COVID-19 associated pneumonia as an interplay of two
major pathophysiologic mechanisms: an impairment of the
lung parenchyma and disarrangement of metabolism at the
system level. None of them can attribute solely for the pro-
gression specific to the disease. Logically, medical doctors
should consider both the factors while assessing the sever-
ity of a clinical case or reporting the radiologic findings.
Few models provide information on the lung impairment
and pathophysiologic changes during the disease progres-
sion and most of the models are classification algorithms
(see Table 1). The results of correlation analysis and classi-
fication may reflect the disease course inadequately [2], [8],
[91, [10], [11], [12]. Still these methods can be used to model
lifelong dynamics of the studied data.

Bioengineering and data science suggests using the fol-
lowing technical approaches to increase the accuracy of
diagnostics and risk stratification. First, radiomics provides
a quantification of the structural changes from diagnostic
imaging. One may use it for assessing pulmonary compro-
mise on computed tomography (CT) in pneumonia patients.
Second, machine learning (ML) allows us to build multi-
variate models with a set of predictors (e.g., metabolites)
put into a model. With ML a physician may solve a very
challenging task of assessing the examinee’s metabolome.
The approach enables us to quantify the hypermetabolic state
in acute respiratory failure which is a contributing factor to
the extraordinary ventilatory and oxygenation demands in
the infected patients. Finally, applying artificial intelligence
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TABLE 1. Performance of machine learning models in which structural data were used to predict pathologic findings, pneumonia aetiology and outcomes.

N 1S3 N
g L & B =
8 g Z 3 o 5
) 3 5 2 = =
~ Predictors Ground truth < . e < ©
DISEASE PATHOPHYSIOLOGY AND PATHOMORPHOLOGY
[13] | CT images on admission SpO2 < 90% on admission 69 70 69 0.75
[14] | Low-dose CT images Shortness of breath 2.15
[15] | CT images 0.95
[16] | Radiomics 74 83 68 0.84
[17] | Radiomics Clinical severity 0.87
[17] | Radiomics + age, comorbidity 87 100 82 0.92
[18] | Radiomics + CT images 81 88 78 0.86
[19] | Radiomics Opacification type 0.99
L Residual lung lesions
[20] | Radiomics 3 months after discharge 92 83 0.88
OUTCOMES
[19] | Radiomics 0.85
[21] | Radiomics 0.81
[22] | Radiomics Recovery vs death 0.84-087
[23] | Radiomics and clinical features 88 88 89 0.95
[24] | Radiomics + CT images, age, CRP 14 day outcomes 88.8 73.0 0.88
[25] | Radiomics PCR negative status during treatment 60.0 63.0 0.81
[21] | Radiomics - 0.84
[22] | Radiomics ICU admission 081
DIFFERENTIATION BETWEEN COVID-19 AND NON-COVID-19 PNEUMONIA
26] Radiomics + lesion charactetistics, ' COVID- 1.9 vs another type of viral 944 929 971 0.96
lymph nodes enlargement, pleural effusion pneumonia
[27] | Radiomics, volumentric and clinical features 81.6 923 0.93
[28] | Radiomics derived from radiograms Positive vs negative PCR test 85 67 0.87
(29] for COVID-19 8 1.00
[30] Radiomics 852 695 0916 0.88
[31] 1.00
[32] . 0.87
[33] | Radiomics + CT images COVID-19 vs Influenza A pneumonia | —553—¢55—g57 0.96

* All the papers reported findings on radiomics retrieved from lung CT except for [28] where radiograms were used

to the consecutive studies of the laboratory findings and
medical imaging dwells promises to combine the evidence
coming from the diagnostic modalities based on conceptually
different methodologies [34], [35], [36]. This will help to
cover all the known pathophysiologic mechanisms of atypical
pneumonia caused by SARS-CoV-2.

The motivation for the current study was as follows. First,
we tried to fill the gap between the predictive models built
by data scientists and the real needs of clinicians. Most of the
existing ML models for risk stratification in COVID-19 are
not widely used in clinical practice as they predict the disease
outcome but not its progression. The clinical utility of such a
prediction is limited because of the relatively low mortality,
however the number of severe cases still remains high. Our
second motivation was to contribute to the optimal patient
management which is a demanding task for admission, pul-
monology and ICU departments. The essential tool for such
management is a quantitative assessment of individual risks
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on admission. The same quantitative score can be later used
on the follow-up examination to detect disease worsening.
Today’s practice is to quantify structural changes through
radiomics: the radiomics data reflect the lung involvement as
well as background diseases. However, medical doctors have
to deal with a big number of numeric values.

For this reason, the third task was to reduce the number
of analyzed features by providing a summary score for case
assessment. With the ML algorithm based on a combination
of radiomic data and functional parameters of respiratory and
cardiovascular systems one can calculate a single measure of
disease severity and progression, e.g., the oxygen saturation
level.

A. STRUCTURAL CORRELATES OF THE LUNG IN ACUTE
RESPIRATORY FAILURE

Machine learning prognostication in patients with COVID-19
can be improved by combining the clinical variables with
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the initial radiographs [37]. This is because the level of
lung impairment correlates with the outcomes (e.g. risk of
mortality in infected patients, etc.) [38]. A typical approach to
the analysis of radiologic findings is to quantify them. There
are several ways to do this. The easiest one is human-driven
scoring the lesions. When applied into clinical monitoring,
such a system improved prediction of in-hospital mortality in
patients with COVID-19 [38]. However, the most promising
way to quantify radiologic findings is to extract features for
analysis of diagnostic images with radiomics. It provides a
summary of both the studied disease and background condi-
tions (e.g., the level of pulmonary fibrosis, emphysema, the
volume of pulmonary effusion, etc.). Logically, confounders
may change the disease course thus impacting the supposed
outcomes.

The advantages of applying radiomics into practice are
as follows. First, it is a useful tool for quantifying both
normal anatomic structures and lesions. In pulmonology it
assesses the pulmonary functional volume and the level of
lung involvement. Quantifying chest X-ray and lung CT
could be very important in the clinical management of pneu-
monia [39], [40] as radiological imaging plays a crucial
role in evaluating the course of the disease and in choos-
ing the proper therapeutical tactics [41]. Second, radiomics
attracts the attention of radiologists because of its ability to
uncover the characteristics that may have otherwise been mis-
reported [42]. The typical human-driven radiological assess-
ment is subject to bias and interobserver reliability [41].
In contrast to it, Al-assisted tools might be powerful but they
do not substitute the judgment of a clinician [6], [43]. In this
context, radiomics is an objective tool which might serve to
standardise the results of radiological description and turn
them into a measurable outcome.

To use the approach efficiently, researchers have to address
the following issues. The first one is the repeatability and
reproducibility of the radiomics features. A lot of factors may
affect the quality of diagnostic images. The issue becomes
an obstacle because of a variance in the technical parameters
(e.g., tube currents, reconstruction filters, etc.) across clinics.
Presumably, the radiomics approach should also change with
regard to the image acquisition settings [44]. For instance,
there is evidence that the reconstruction kernel, also referred
as the filter, affects the image quality [45], [46]. This is
analogous to the effect of the reconstruction settings on the
human observer’s ability to detect small lesions [47].

The second issue associated with the utility of radiomics is
the necessity to use exclusively valuable features and to avoid
information noise from the useless ones [48].

The last issue to resolve is standardisation of the imaging
features for radiomics analysis. Researchers suggest that gen-
eralization of the prognostic impact of radiomics should be
done cautiously [36], [46]. There are certain considerations
on how to treat the features that are database-dependent.
In a multicenter study on radiomics, the performance was
improved by standardising data from different clinics in
three distinct manners: min-max normalization, z-score

120904

normalization, and whitening from the principle component
analysis. The authors suggested that a conversion of CT num-
bers to electron densities (electron density transformation) is
the crucial feature to standardise as it does not depend on
scanning protocols [42].

B. HYPERMETABOLIC STATE IN ACUTE RESPIRATORY
FAILURE

1) METABOLIC CHANGES IN COMMUNITY ACQUIRED
PNEUMONIA

Studies on community-acquired pneumonia (CAP) revealed
the pathophysiological mechanisms of pulmonary inflam-
matory disease. It manifests with metabolic dysregulation
caused by the systemic inflammatory response to the infec-
tion and detected in the peripheral blood of patients with
CAP [49], [50]. This allows predicting the outcomes of the
pneumonia from ICU scoring systems such as simplified
acute physiology score Il and sequential organ failure assess-
ment score [50]. The predictors that comprise the scoring
systems are functional variables [e.g., the heart rate (HR),
the systolic blood pressure (SBP), blood gas tension, etc.]
along with the biochemical findings (BUN, urine output,
creatinine, sodium, potassium, bicarbonate, bilirubin) and the
hematological estimates (white blood cells, platelets).

By modeling the outcomes, researchers want to improve
early accurate diagnosis and provide timely treatment to
prevent devastating complications. As age is an important
risk factor, these studies have investigated the outcomes of
severe pneumonia predominantly in the elderly, while few
studies concentrate on the altered metabolic profiles that
clearly differentiate the survivors and non-survivors among
young patients with CAP. This is why identification of both
diagnostics markers and prognostics markers of CAP remains
actual with many questions remaining unanswered [49]. For
instance, some cases of CAP are not documented microbio-
logically. Designing a study on specificity of the markers to
etiology of CAP is a challenging task.

2) ML-BASED MODELS OF METABOLIC CHANGES IN
CoVvID-19

Although considerable progress has been made in under-
standing the molecular mechanisms underlying pulmonary
infection, a satisfactory prognosis remains limited [43]. The
laboratory findings may reflect the disease course and mor-
tality. In a previous study we justified threshold values
of biochemical and hematological parameters for proper
in-hospital management of patients with COVID-19 [2].
Some researchers also built univariate predictive models to
forecast the disease severity from the level of D-dimer [51],
lymphocyte count and lactate dehydrogenase (LDH) at pre-
sentation [52]. Other scientists programmed multivariate
models based on the level of serum LDH activity, C-reactive
protein (CRP), the coefficient of variation of red blood cell
(RBC) distribution width (RDW-CV), blood urea nitrogen
(BUN), direct bilirubin, lower albumin and age [53]. As the
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performance of those models remained low (maximum sen-
sitivity 77.5%, specificity 78.4%), our research group trained
a neural network to predict the severe form of COVID-19
which requires a transfer of the patient to the ICU. The
resulting accuracy was admissible in the model with the
top valuable tests (APTT, CRP, and Fibrinogen: AUC 0.86;
CI 0.486 - 0.884) and it improved when all significant lab-
oratory findings were considered (total bilirubin, ALT, AST,
D-dimer, APTT, CK, CRP, LDH, troponin, ferritin, fibrino-
gen; AUC 0.90) [2]. Other authors mentioned a combi-
nation of IL-6 and D-dimer (sensitivity 96.4%, specificity
93.3%) [54] and age (hazard ratio=1.67, p=0.024) [55]
as the predictors of the disease severity. Several studies
revealed the possibility to forecast the COVID-19 mortality
from LDG (odds ratio=6.53), CRP (sensitivity 51%, speci-
ficity 88%) and markers of coagulation system dysfunction:
D-dimer (AUC 0.74) and prothrombine time (AUC 0.64)
[51], [56], [57]. The laboratory and morphological findings
proved to be more predictive if used in combination [37].
To make the predictive models more accurate, in this study
we decided to perform data blending using both radiomics
and laboratory findings as predictors.

Il. OBJECTIVES

Here we aimed to test the effectiveness of machine learning
in eliminating data redundancy of radiomics and reflect-
ing pathophysiologic changes in patients with COVID-19
pneumonia.

Hpypothetically, injury to the lung in pneumonia patients
should correlate with the individual risk factors (particularly
age) and it should accurately depict the disease severity
which is commonly assessed with the laboratory findings
(e.g., system inflammatory markers, etc.). An efficient way
to quantify radiologic findings and measure disease severity
is by extracting radiomics features. Radiomic analysis with
advanced statistical methods could help to compare follow-
up studies, detect diseases worsening and stratify risks thus
improving patient management. As reconstruction kernels
affect the image quality, the settings of the filters may impact
the diagnostic value of CT-scans.

For addressing the research questions, we formulated the
following objectives:

1. To quantify the structural changes in computed tomog-
raphy (CT) images of patients with COVID-19 associ-
ated pneumonia and to study the relationship between
the radiomics features extracted from lung CT images,
demographics and the laboratory markers of disease
severity.

2. To find the radiomics and biochemical features
reflective of the functional changes in patients with
COVID-19.

3. To compare the reconstruction kernels of lung
CT images with regard to the predictive potential
for identifying the values of the clinical severity
markers.
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Ill. MATERIALS AND METHODS

A. STUDY COHORT

We did a retrospective analysis of the data obtained as
a standard of primary and secondary care. The study
cohort included 605 consecutive patients who were treated
from 24 February to 1 July, 2020 in Al Ain Hospital which is
an acute care hospital serving Al Ain city (N 634,000) in the
United Arab Emirates. The inclusion criteria were as follows:
age 18 years or older; inpatient admission; SARS-CoV-2
positive real-time reverse-transcriptase polymerase chain
reaction (PCR) from nasopharyngeal swabs only; computed
tomography (CT) images. At the beginning of the pandemic,
‘National Guidelines for Clinical Management and Treat-
ment of COVID-19’ [58] compelled to hospitalize everybody
tested positive for SARS-CoV-2, disregarding the disease
severity (e.g., the symptoms). This enabled us to explore
a unique dataset of early phase examinations. The patients
presented with all possible disease forms, from mild to critical
(for details see subsection III-B4). As per the Guidelines,
the patients underwent a thorough examination with a set
of functional (cardiorespiratory data), hematological (total
blood count), biochemical (e.g., inflammatory biomarkers
of inflammation, oxydative status, disease severity, etc.) and
radiological (lung CT) data being collected.

B. METHODS USED

1) ACQUIRING HEMATOLOGICAL, BIOCHEMICAL AND
FUNCTIONAL DATA

From the hospital dataset we retrieved the demographic data
(age, sex) and the laboratory findings that were determined
with automatic hematologic and biochemical analyzers. Oxy-
gen saturation (SpO,) was measured with pulse oximetry.
Physiological parameters of cardiovascular function [e.g.,
breath (BR) and heart rate (HR), systolic (SBP) and diastolic
blood pressure (DBP)] were acquired in a typical way at the
time of physical examination of the patient on admission.

2) CT SCANNING

The high-resolution CT scan protocol was as follows: the
tube voltage 120kV, the electric current 195mA, the exposure
time 0.5s and the slice thickness of 1lmm. The scanning
range was from lung apex to diaphragm in the axial plane
taken at the end inspiration. Before acquiring images for the
current study, we checked the Hounsfield unit with a standard
water phantom which is used for the quality assurance of the
computed tomography scanner. The raw data obtained from
each scan were reconstructed with three reconstruction filters
(kernels) that vary in smoothness (B30f, B60f and B80f).

3) IMAGE PREPROCESSING

The first part of the solution is to derive a large number of
features from the medical images. For this we utilized the
U-Net architecture proposed in [59] for segmentation of lung
lobes and lesions (the ground-glass opacity, consolidation,
and pleural effusion). The batch normalization was added
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FIGURE 1. Computational analysis and architecture of U-Net model used to segment anatomic structures and lesions.

after each convolutional layer of the model [60]. For further
details we refer the reader to the original paper of Ron-
neberger et. al. because we did not change the architecture
of the model. The U-Net model is widely used for image
segmentation in medicine [61], [62]. It was also trained to
delineate the lung lobe boarders on the LTRC, lung lesions -
on the COVID-19 CT dataset [63], [64]. We used the models
to produce lobe and lesion segmentation masks for the study
dataset (see Fig.1).

To collect radiomics data for the entire lung and their lobes,
we applied lung masks segmented with the deep learning
U-net model trained on large and diverse dataset as described
in [63]. Ground glass opacity (ggo_), consolidation (con_),
and pleural effusion (eff_) are the most common types of
lung lesions in COVID-19. These lesions were segmented
with CT Thorax Covid-19 model from MedSeg tool [64].
By multiplying the number of voxels in the mask by the voxel
size we received the total lung volume as well as the volumes
of the lung lobes and lesions. Then, we utilized fslstats tool
from FSL framework to report certain summary statistics
for an input 3D/4D image [65]. Specifically, we calculated
the mean density of the lungs and their lobes, the standard
deviation (_std) and entropy of the density (lungs_entropy).
With the same tool we calculated the center of gravity
(center_of_gravity), i.e., the point at which the density is
evenly dispersed and all sides are in balance. The gravity
center has coordinates along x-, y-, and z-axes that corre-
spond to coronal, sagittal and axial reconstruction planes.
The characteristics of the density were given in Hounsfield
units (HU). Finally, all the volume variables were normal-
ized, or expressed as percentages of the total lung volume
(ggo_rate, con_rate, eff_rate). To calculate total lung involve-
ment (pathology_rate) we summed up the percentages of
either type of the lesions. The total number of 186 volumetric
variables and results achieved with the fslstats tool formed
the radiomical findings taken into further analysis. See the
illustration of the proposed framework in Fig. 2.

4) METHODOLOGY OF DATA ANALYSIS

Fig. 3 shows the general idea of the proposed structure-function
association model.
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Working on the first objective, we looked for the radiolog-
ical markers of COVID-19-associated severity. The total CT
involvement score was calculated by summing up the score
for involvement of each lung lobe (1 for < 5%, 2 for 5-25%,
3 for 26-49%, 4 for 50-74%, and 5 for > 75%). Scoring the
severity in this way is convenient in case of visual assessment.
As we did the automatized assessment, we calculated the
proportion of the total involvement to the entire lung vol-
ume. By applying the following criteria, we categorized the
cases into 4 classes: mild <5% of pulmonary parenchymal
involvement, moderate [5%;25%), severe [25%;50%), and
critical > 50%. Then we studied the separability of the
demographics, laboratory findings and radiomics values on
admission to hospital concerning the class of severity. As the
variables of the datasets had the non-normal distribution,
we utilized non-parametric tests for the analysis.

To address the second objective, we categorized the fea-
tures into the robust and redundant ones. To filter the features,
we resorted to several methods. First, we compared all the
variables in the classes with diverse lung impairment. For
this we employed a Kruskal-Wallis test as the features were
non-normally distributed. Second, we assessed the associ-
ation between the features and the disease severity level
with Pearson’s correlation coefficients. Third, we performed
correlation feature selection. For this we ranked all the fea-
tures associated pronouncedly with the oxygen saturation
and anion gap concerning the strength of the association, i.e.
by the value of correlation coefficient r. These steps allowed
us to compute the relevance and redundancy of the features.
Data retrieval (see Section III-B3) followed by reduction of
redundancy resemble a standard two-fold solution which is
typically applied to radiomics [42].

For the third objective, we utilized conventional ML
regression models to predict the values of markers of oxy-
genation, respiratory and cardiovascular function (SpOa,
HCOs3, BR, HR, SBP, DBP, AG, serum potassium and
sodium). We used radiomics data as predictors for building
the conventional model with the following list of regres-
sors: AdaBoost, Extra Trees, Gradient Boosting, K near-
est neighbours, Lasso, Random Forest. Regression models
were trained with the 10-fold cross-validation technique.
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volume rendering of lungs with peripheral lesions.

The default settings were applied to the models. We used
the described pipeline while working with all the samples
of CT images acquired with distinct reconstruction kernels.
To compare the predictive value of the imaging findings,
we evaluated the performance of the models for distinct
reconstruction kernels. The ratio of mean average error to the
range of values was the final performance metric.

C. HARDWARE AND SOFTWARE USED

We used the computational power of the Linux Ubuntu 18.04
Nvidia DGX-1 machine learning server with 40 CPU cores
and 8x NVIDIA Tesla V100 GPU with 32 GB memory
each, accessed with a web-based multi-user concurrent job
scheduling system [66]. The experimental work was con-
ducted using programming language Python and its libraries
for DL, Data Processing, and Data visualization, such as
tensorflow-gpu v.2.3.1, keras v.2.4.3, SciPy v.1.16.4, NumPy,
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Pandas, Matplotlib, Seaborn. To automate the deployment of
the applications within the software containers, we installed
Neurodocker, which wraps up the aforementioned software
in a complete file system [67].

IV. RESULTS

A. ASSOCIATION BETWEEN RADIOMICS FEATURES,
DEMOGRAPHICS AND MARKERS OF DISEASE SEVERITY
The data presented in Tables 2-3 allow comparison of injury
to the lung with demographics, the clinical and laboratory
findings in the patients with COVID-19.

Table 2 shows the results of the physical examination
and the laboratory findings on admission in patients strat-
ified by lung involvement from the mild to critical level.
Table 4 depicts basic radiomics for the entire lung in the
same groups of patients. Correlation coefficients reflect the
strength of association between the severity of the disease and
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TABLE 2. Comparison of patients with regard to severity of COVID-19-associated lung pneumonia: demographics, result of physical examination and

laboratory findings on admission.

Di . Correlation with
1sease severlty .
Total severity level
n=605 mild moderate severe critical .
n1=357(59.01%) 12=215(35.54%)  n3=31(5.12%)  n4=2(0.33%) P14 ! p-value
DEMOGRAPHICS
Age 3978 [31.26-47.38] | 38.28+10.73% 40.91£11.85 47.9+12.23% 61.82£0.54* | 1.03x10—° || 0.146 | 3.07x10—%
18-39 years 341(56.36%) 218(61.06%)* 113(52.56%) 10(32.26%)* 0(0.0%)
40-64 years 253(41.82%) 136(38.1%)* 97(45.12%) 18(58.06%) 2(100.0%)
65+ years 11(1.82%) 3(0.84%) 5(2.33%) 3(9.68%)* 0(0.0%)
Sex 0.83301 0.027 | 0.51458
Male 519(85.79%) 303(84.87%) 187(86.98%) 27(87.1%) 2(100.0%)
Female 86(14.21%) 54(15.13%) 28(13.02%) 4(12.9%) 0(0.0%)
MARKERS OF OXYGENATION, RESPIRATORY AND CARDIOVASCULAR FUNCTION
SpO2 0.99 [0.98-1.0] 0.99+0.01% 0.99+0.01 0.95+0.05* 0.79+0.01% 3.84x10-° [ -0.141 | 0.00049
HCO3 2504 [23.7-26.3] 25.2442.97* 24.91+3.02 23.76+2.46* 22.45+1.15 0.00672 -0.098 | 0.01550
Breath rate 18.26  [18.0-18.0] 17.87+1.01* 18.3+2.04 21.8146.41% 30.5+5.5% 712x10-6 || 0.118 | 0.00361
AG 1731 [165-18.3] 17.23£2.69 17.2922.61 18.19£2.02 17.2520.05 0.14781 0.081 | 0.04513
Potassium 403 [3.8-4.3] 4.0240.36 4.0320.39 4.13£0.36 3.85£0.15 0.42716 0.054 | 0.18226
Sodium 139.36  [138.0-141.0] 139.69+2.24* 139.01+2.75% 138.1623.67 137.5%5.5 0.02901 -0.121 | 0.02941
Heart rate 8547  [76.0-92.0] 83.98+13.79% 87.0£13.95% 91.24+16.45 99.0£19.0 0.01147 0.125 | 0.00211
Systolic blood pressure | 135.83  [124.0-150.0] 137.26£18.9 136.06£25.77 121.67440.19%  75.95£0.85% | 0.00139 -0.062 | 0.12518
Diastolic blood pressure | 81.17  [73.0-92.0] 83.74+13.8* 80.29+19.25 60.41427.01%  37.05£11.65% | 1.28x10~5 || -0.116 | 4.26x10~3
DISEASE SEVERITY MARKERS
CRP 989 [0.8-7.7] 5.6+15.23% 13.2424.03* 36.68£58.39% 5.25+4.65 92410~ 0239 | 2.51x107
D-dimer 0.37  [0.19-0.37] 0.35+0.43* 0.37£0.28 0.63+0.55% 0.37£0.0 2511076 || 0.175 | 1.57x10~>
Ferritin 360.79  [136.0-398.0] | 280.66+296.27%  441.58+£559.44%  728.25+669.03%  284.04208.0 | 1.52x10~6 || 0214 | 1.07x10~7
ENZYMES
LDH 22702 [185.0-236.0] | 211.18+48.92%  244.62+102.65*  285.04%97.44% 263513649 | 7.86x10~° | 0228 | 1.48x10-
Alkaline phosphatase 80.64  [67.0-83.0] 79.49+31.49 82.3255.12 82.2433.12 81.82+1.18 | 0.77191 0.011 | 0.78927
Amylase 79.83  [56.0-87.0] 81.32+60.4 75.9+33.49 88.8+53.5 96.42+16.58 | 0.45871 -0.023 | 0.56666
G6PD 109 [10.9-11.2] 10.942.5 10.9322.12 10.66+1.8 10.940.0 0.63044 -0.041 | 031217
Lipase 4126  [26.0-43.0] 36.29+15.8* 44.76£52.95 70.81486.86*  94.63+£53.37 | 0.00036 0.137 | 7.38x10~4
BIOCHEMICAL SUBSTRATES AND ELECTROLYTES
Total protein 7808  [76.0-80.0] 78 46+4.24% 77.5+4.55% 77.79£2.36 78.08+0.0 0.15004 -0.081 | 0.04534
Albumin 39.94  [39.0-42.0] 40.99+3.26* 38.84:44.8% 35.6+5.64* 37974197 | 4.13x10712|| -0.286 | 8.08x10~13
Creatinine 81.11  [66.0-87.0] 77.14£22.11 81.78+58.52 123.42+139.52 61.0£17.0 0.18894 0.066 | 0.10570
Urea 409 [3.0-4.6] 3.911.67 4.16x2.21 5.6+3.45% 42404 0.00577 0.084 | 0.03808
Uric acid 306.38  [260.0-346.0] | 306.74+78.61 307.78+82.72 295.85+70.29 255.5+13.5 0.41808 -0.021 | 061373
Total bilirubin 899 [6.2-9.7] 9.08+5.01 878411 934477 3.99£0.0 0.85357 0.015 | 0.70453
Direct bilirubin 354 [2.5-3.6] 3.61+4.19 3.4+1.45 3.79+1.53 3.54£0.0 0.50329 0.037 | 0.36959
Glucose random 641  [5.13-6.41] 6.23+2.18% 6.54+2.35% 7.65£3.21% 5.69+0.72 0.00047 0.158 | 9.83x10~°
Calcium 235  [2.29241] 2.36£0.00% 2342011 23120.1% 2.29£0.05 0.00482 0.126 | 0.00196
Magnesium 0.84  [0.8-0.89] 0.84+0.07 0.84+0.08 0.840.06 0.85+0.0 0.99048 -0.000 | 0.99590
Phosphorus 112 [0.97-1.24] 1.13£0.22 1.11£0.23 1.08+0.22 1.15+0.04 0.73054 -0.041 | 0.30984
HEMATOLOGIC FINDINGS
HGB 144.04 [135.0-154.0] | 145.88+14.49% 143.07£17.92 131.19£20.82% 118.5£3.5% 9.47x10-° || -0.103 | 0.01138
HCT 043 [0.41-0.45] 0.43+0.04* 0.42+0.05 0.39+0.06* 0.36£0.01* 1.70x10~5 || -0.124 | 0.02185
RBC 45 [4.5-5.39] 4.49+1.78 4.65+1.57 3.911.8% 0.16+0.05* 0.00288 -0.027 | 0.50686
RDW CV 1.85  [0.12-0.14] 1.7824.61 1.71+4.86 2.5+5.53* 18.4£1.5% 0.00566 0.025 | 0.54592
Reticulocyte count 612  [41.9-72.1] 62.98+27.0% 58.23+25.35% 57.15424.72 125.7464.5 0.07416 -0.097 | 0.01656
Reticulocyte % 0.13  [0.01-0.02] 0.13+0.52 0.11+0.48 0.15£0.45 2.4742.33% 0.07468 -0.008 | 0.84975
IRF 944  [6.0-11.0] 9.3+5.23 9.4+4.84 10.7+4.21 18.22+48.78 | 0.10187 0.053 | 0.19248
MCH 338.14 [331.0-346.0] | 337.91£11.76 338.53+13.42 338.45+9.44 332.544.5 0.52274 0.046 | 0.25972
MCHC 338.14 [331.0-346.0] | 337.91%11.76 338.53+13.42 338.45+9.44 332.544.5 0.52274 0.046 | 0.25972
MCV 83.46  [81.1-86.6] 83.7345.12 83.04+5.97 83.1746.14 84.65+5.35 0.91202 -0.027 | 051216
MPV 1046  [9.8-11.0] 10.43+0.91 10.46+0.89 10.72+1.14 10.55+0.15 0.44909 0.044 | 0.28024
Platelet 260.17  [210.0-299.0] | 259.96£71.73 261.84%80.11 256.74%92.05 171.0£23.0 | 0.26810 20.003 | 093571
WBC 6.87 [5.6-7.9] 6.89+2.03 6.83+1.95 6.811.61 6.87+0.0 0.99653 0.003 | 0.93569
Lymphocyte  €0Unt 217  [1.59-2.66] 2.2620.8% 2.0520.77% 1.8820.82 18202 0.00555 20.137 | 0.00076
ymphoeyte g, 3242 [24.6-39.2] 33.8+10.36* 30.8549.95*% 28.09+11.62* 21.142.7 0.00061 -0.144 | 0.00037
Basophil count 0.03  [0.02-0.04] 0.03%0.02 0.03£0.02 0.03%0.02 0.04%0.0 0.14678 20.083 | 0.04158
% 043  [0.3-0.6] 0.44+0.24* 0.41£0.25% 0.4+0.21 0.5+0.0 0.08453 -0.098 | 0.01541
Eosinophil 0™ 0.17  [0.05-0.21] 0.1750.22 0.18%0.25 0.1550.17 0.3620.11 0.16144 20.049 | 0.22418
; 243 [0.8-3.0] 2424295 2.49+3.07 2.012.13 4.25+1.35 0.19844 -0.051 | 0.21386
Monocyte SOt 059  [0.44-0.7] 0.58£0.22 0.6£0.23 0.580.2 0.7£0.05 0.50062 0.016 | 0.69938
% 877 [6.7-10.2] 8.66+2.68 9.0+3.13 8.53+2.54 8.1+0.5 0.75119 0.031 | 0.45034
Neutrophil €™ 399 [2.79-4.74] 3.92£1.82 4.0622.07 4285163 5.64%04 0.15882 0.043 | 0.29655
9 5594 [48.1-64.5] 54.66+11.58* 57.25+11.49 60.97+13.5% 66.05+3.55 0.00503 0.120 | 0.00313
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1 Step 1. Preparation of SFA model
1

COVID-19 patients admitted to Al Ain Hospital
in 24 February - 1 July 2020

- age 18 years or older

- inpatient admission

- SARS-CoV-2 positive PCR from nasopharyngeal swabs
- full DICOM lung CT examination available at PACS

605 cases of verified COVID-19 cases met the criteria

- collecting markers of
hypoxia and disease
severity from clinical

- segmenting lungs, lung
lobes and lesions with
MedSeg tool

- retrieving radiomics dataset
with FSL package
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. = markers of hypoxia and .
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‘.Illlllllllllllllll* .l-llllllIlIllllllll’,
L PREDICTORS GROUND TRUTH J

- training,
- assessing performance

MODELS OF LUNG STRUCTURE-FUNCTION ASSOCIATION

Step 2. Application of SFA model to clinical practice

Individual case scanned with lung CT

- segmenting lungs, lung lobes and lesions with
MedSeg tool
- retrieving radiomics with FSL package

Prediction of oxygen saturation level
- calculating quantitative metric of lung injury
accurate report of radiological findings

—

- comparing initial findings with results in follow up
examinations

- comparing predicted level of oxygen saturation
with actual findings

assessment of disease progression ‘

assessment of functional reserves ‘

L_,‘

FIGURE 3. Preparation and application of the proposed structure-function association model to clinical practice.

TABLE 3. Comparison of patients with regard to radiomics features calculated for lobes: LLL, LUL, RLL, RML and RUL.

Lung lobes
Mean CI
LLL LUL RLL RML RUL p-value
volume liter 0.67  [0.45-0.84] 0.8+0.25* 0.76+0.3* 0.8+0.32°* 0.31+0.1°* 0.67+0.19* 7.20396 x 10— 29T
% 19.61  [17.18-23.87] 23.7942.51* 21.9243.01* 23.15+3.68* 9.26+1.76* 19.94+2.72%* 0
entropy 0.1  [0.0-0.17] 0.14+0.15%* 0.13£0.16* 0.15+0.17* 0.01+0.0* 0.06+0.1* 2.26539x10~ 170
mean -13.93  [-17.78-8.82] -17.1945.63* -15.25+6.91* -16.18+7.48* -6.83+£2.36* -14.21+4.24* 2.76344x10~ 252
std 101.08  [81.08-119.33] | 115.03£21.37%  104.45+27.37*  107.52+29.12%  73.64+14.33%  104.74£17.65% | 1.21905x10—205

PATHOLOGICAL FINDINGS

pathology_rate 592 [0.08-5.51] 2.34£6.25% 9.75£14.32%* 13.17+16.61* 1.66+5.08%* 2.746.48%* 4.92246x 10162
ggo_lobe_rate 533 [0.06-4.76] 1.93+5.28%* 8.81+12.82% 12.19+15.18%* 1.34+4.14* 2.36+5.58%* 1.03566x 10— 170
ggo_rate 1.06  [0.01-0.97] 0.45+1.15% 1.734£2.4%* 2.48+2.97* 0.11£0.32% 0.51£1.25% 1.57244x 10212
con_lobe_rate 0.59  [0.01-0.23] 0.37£1.39 0.94+2.57* 0.98+3.06* 0.32+1.48% 0.34+1.45% 3.04467x10~ 79
con_rate 0.1  [0.0-0.05] 0.09£0.31 0.17£0.42% 0.17+0.5* 0.02+0.1* 0.07+0.3* 6.44126x10~115

the aforementioned parameters. Table 3 compares radiomics
for distinct lung lobes (LLL, LUL, RLL, RML and RUL) with
regard to the severity level.

Fig. 4 illustrates an evident association between physi-
ological (e.g. breath and heart rate, systolic and diastolic
pressure, etc.) and biochemical markers of oxygenation status
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and disease severity (SpO,, HCOs, potassium, AG). Age as
an individual risk factor of worsening correlates positively
with the level of CRP (r = 0.22; p < 0.05) and the blood
saturation level (r = 0.27; p < 0.05).

A negative correlation (r = —0.23; p < 0.05) between
the levels of oxygen saturation and CRP justifies each of the
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TABLE 4. Comparison of patients with regard to severity of COVID-19-associated lung pneumonia: radiomics features.

Di . Correlation with
isease severity .
Total severity level
n=605 mild moderate severe critical
n1=357(59.01%) n2=215(35.54%) n3=31(5.12%)  n4=2(0.33%) P1-4 r p-value
LUNG INVOLVEMENT
Pathology_rate 671 [0.81-9.24] 1.55+1.39% 10.93+4.95% 33.71+6.46* 56.66+5.63% [ 8.43x10~7 0.843 | 1.8x10~ 167
ggo_rate 543 [0.45-7.87] 1.14+1.21% 9.23+4.52% 26.48+7.21% 35.48+1.96% | 2.04x1094 0.828 | 9.1x10~154
ggo_std 32.07 [13.38-47.59] 17.88+11.14% 49.05+10.49%* 73.95+10.29% 80.95+8.9% 3.09x10~90 0.809 | 2.0x10— 41
con_rate 128  [0.14-1.08] 0.41+0.56* 1.69+1.98% 7.23+7.62% 21.18+3.67% | 4.87x10~%7 0.577 | 6.0x107°°
con_std 489 [1.9-5.82] 3.012.29% 6.31+4.07% 14.8549.53% 33.9744.56% | 4.77x10~40 0.530 | 4.9x10—%°
eff_rate 0.0  [0.0-0.0] 0.0£0.0 0.0£0.0 0.0£0.0 0.00.0 0.975783 -0.001 | 0.98744
CT score 6.77 [5.0-7.0] 5.33+0.6% 8.03+1.54% 13.81%1.75% 18.5+0.5% 1.40x10-97 0.841 9.7x10~163
lungs_entropy 0.71  [0.69-0.74] 0.71£0.03 0.71£0.04 0.71£0.07 0.77+0.06 0.18023 0.061 0.13512
centre_of_gravity_x | 255.71  [255.24-256.09] 255.77+0.89 255.62+0.63 255.64+0.75 255.43+0.39 | 0.47918 -0.053 | 0.19238
centre_of_gravity_y | 256.68  [255.49-257.7] 256.92+2.11% 256.38+1.57* 255.94+1.01%  256.06+1.04 | 0.00151 -0.150 | 0.00021
centre_of_gravity_z | 154.62  [143.66-165.03] 157.69+14.38* 150.51+16.43%  148.18+14.32%  149.28+182 | 4.84x10~7 0227 | 1.64x10—8
VOLUMES OF LUNGS AND THEIR LOBES
Lung volume, liters 34 [2.62-3.96] 3.83+1.04* 2.81+0.7% 2.63+0.68* 2.77+0.17 4.86x10~35 [[ -0.515 [ 3.36x10—*2
LLL_volume 0.8 [0.63-0.94] 0.89+0.24* 0.69+0.2% 0.62+0.21%* 0.59+0.16 1.21x10726 || -0.440 | 4.72x10~30
LUL_volume 0.76  [0.54-0.92] 0.89+0.3% 0.58+0.17* 0.46+0.11%* 0.47+0.02 1.73x10=%% || -0.575 | 1.66x10—5%
RUL_volume 0.67  [0.53-0.78] 0.7240.18* 0.58+0.16* 0.62+0.18 0.60.08 2.60x10~19 || 0362 | 3.19x10—20
RML_volume 031  [0.24-0.37] 0.34+0.1% 0.27+0.08* 0.22+0.08* 0.16+0.04* 5.90x10~20 || 0369 | 6.32x10—2!
RLL_volume 0.8  [0.56-0.98] 0.95+0.31* 0.61+0.18* 0.45+0.14%* 0.56+0.04 1.82x10-°1 || -0.617 | 1.23x10—64
LOBE INVOLVEMENT
LLL_ggo_lobe_rate 1.93  [0.05-1.01] 0.21+0.39% 2.36+3.41% 16.26£10.08%  42.08+15.21* [ 3.94x10—%9 0.703 | 2.07x10~9T
LLL_con_lobe_rate 037  [0.01-0.14] 0.060.16* 0.41+0.93* 2.96+3.98* 11.4320.15% | 1.32x10—43 0.551 3.12x10—%
LUL_ggo_lobe_rate 8.81 [0.61-12.45] 1.78+2.48* 14.87£10.0% 45.41+13.98* 45.44+1.8* 2.74x10~ %% 0.782 | 5.22x10~ 1%
LUL_con_lobe_rate 0.94  [0.04-0.52] 0.19+0.36* 1.18+1.93* 6.96+6.74% 14.75£1.79% | 4.27x1046 0.570 | 2.09x10—°3
RLL_ggo_lobe_rate 12.19  [0.55-19.69] 2.57+3.42% 22.7+12.14% 48.21+12.61% 40.45+6.34% | 5.11x10~3Y 0.807 7.3x10~ 140
RLL_con_lobe_rate 098  [0.01-0.45] 0.15+0.41% 1.28+2.48* 7.26%8.05% 20.57+2.43% | 2.14x10~50 0.599 | 4.60x10—60
RML_ggo_lobe_rate 1.34  [0.0-0.46] 0.13£0.4% 1.53+2.75% 12.67£10.17%  22.21+7.46% | 2.93x10~°0 0.591 3.79x10—°
RML_con_lobe_rate 032 [0.0-0.07] 0.04+0.21% 0.33+0.89* 2.54+4.28% 14.142.93% 3.83x10—39 0.521 2.48x10—43
RUL_ggo_lobe_rate 236 [0.05-1.91] 0.38+0.72% 3.17+3.78% 17.14£11.84% 40.42+1.58% | 1.92x10~%8 0.700 3.10x10~%0
RUL_con_lobe_rate 0.34  [0.01-0.1] 0.05+0.21% 0.38+0.98* 2.5444.35% 12.06+0.85* | 1.30x10—40 0.532 | 1.58x10—4°

variables as functional and biochemical indicators of disease
severity. The physiological markers of COVID-19 severity
(heart and breath rate) were also positively associated with
the CRP level (r = 0.21 and 0.42; p < 0.05).

The percentage of the lung involvement strongly correlated
with the lung CT score (r = 0.97; p < 0.001). Both met-
rics of the lung structural changes are intimately associated
with most of the physiological and biochemical markers of
oxygen deprivation. However, the association of the oxygen
saturation level with the percentage of the lung involvement
was slightly stronger than with the CT score (r = —0.53,
p < 0.001 vs. r = —0.52, p < 0.001).

The total CT score is a semi-quantitative score of pul-
monary involvement. It rates the percentage of each of the five
lobes that is injured: < 5%, 5-25%, 26-49%, 50-75% and >
75% involvement. Its validity for the assessment of COVID-
19 severity has been already shown in previous studies [68].
Meanwhile the parenchymal involvement percentage is a
purely quantitative; it provides a more accurate assessment
of cases. Still, it is less available in real clinical settings
where human-driven visual scoring remains in use due to
its simplicity. The percentage of the pulmonary parenchymal
involvement outperforms the preexisting biomarker of the
lung lesions — the lung CT score — in reflecting pathophys-
iologic changes.
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B. RADIOMICS AND BIOCHEMICAL FEATURES
REFLECTIVE OF FUNCTIONAL CHANGES IN
PATIENTS WITH COVID-19
To build predictive models of functional parameters,
we started from feature selection from the list of physio-
logical, biochemical and radiomics findings. For this we
looked at the separability of classes with regard to the val-
ues of the supposed predictors and analyzed correlations
(Tables 2-3). Fig. 5-6 show correlation feature selection for
predicting AG and blood oxygen saturation from the dataset
of demographics data, laboratory and radiomics findings.
There we ranked all features significantly correlated with the
oxygen saturation and anion gap concerning the strength of
the association, i.e. by the value of correlation coefficient r.
Fig. 5 shows noteworthy (p<0.05) features ranked with
regard to the strength of their association with AG. The
features that are positively correlated with AG attribute to
protein and heme metabolism (total protein, albumin, urea,
creatinine, total and direct bilirubin). Another set of the infor-
mative predictors is reflective of the total count of leuko-
cytes and subtypes (neutrophil, monocytes, lymphocytes).
A single radiomical finding of the lung lobe involvement
(RMO_ggo_lobe_rate) stays in the list of valuable features.
Fig. 6 depicts correlation feature selection for the model
predicting the SpO» level. The information gain of radiomics
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FIGURE 5. Predictors ranked by correlation feature selection method employing 10-fold cross-validation technique to predict AG. Only significant

correlations displayed.

variables into the final prediction is considerably higher in
this model compared to the model for AG. The involvement of
the total lung and its specific lobes correlated negatively with
the oxygen saturation. Contrarily, there is a pronounced pos-
itive correlation between the lung lobes volumes and SpO,.
As in the previous model, the markers of protein metabolism
showed a notable positive association with SpO;. The same
is true for the RBC count, HCT, the level of hemoglobin
and percentage of lymphocytes. The age, the concentration
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of CRP and LDH activity exert negative correlation with the
level of oxygenation.

C. COMPARISON OF RECONSTRUCTION KERNELS BY
PREDICTIVE POTENTIAL TO IDENTIFY CLINICAL SEVERITY
FROM DIAGNOSTIC IMAGES

We studied whether the settings of the reconstruction kernels
influence the radiomical findings in terms of their possibility
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to reflect the clinical status. For each reconstruction kernel
we calculated radiomics and used three sets of radiomical
data to predict the physiological (e.g., SpO2) and biochemical
markers of disease severity. Fig. 7 presents the accuracy
of models built on radiomics for each reconstruction ker-
nel. For most of the models the least accurate prediction is
observed once images are acquired with B60f kernel. The
data suggests employment of B30f kernel for identification
of the clinical status from CT images. However, the accu-
racy differs insignificantly among disparate reconstruction
kernels.

Table 5 shows the performance of distinct regressors used
in Al models predicting the markers of oxygenation and dis-
ease severity from radiomics taken separately and in conjunc-
tion with the clinical features. To calculate radiomics, we used
CT scans reconstructed in B30f, B60f, and B80f kernels. The
most accurate is the prediction made by AdaBoost regressor
from all the features with radiomics based on CT images
acquired with B30f reconstruction kernels (the ratio of MAE
to range of values is 6.454 £ 3.715%). Random Forest regres-
sor demonstrates the top prediction from radiomics features
(7.069+4.17%).

V. DISCUSSION

A. ASSOCIATIONS OF RADIOMICS FEATURES WITH
DEMOGRAPHICS, BIOCHEMICAL AND HEMATOLOGIC
MARKERS OF DISEASE SEVERITY

The CT imaging features of COVID-19 pneumonia resemble
various conditions such as organizing pneumonia or inflam-
matory lung processes [69]. It results in respiratory failure
because of the organized buds of granulation tissue. The tis-
sue obstructs the alveolar lumen and bronchioles thus causing
respiratory failure [70]. Moreover, these pathological find-
ings can be steady and form the so-called secondary organiz-
ing pneumonia which accounts for persistent symptoms even
after an acute phase [71].

1) RADIOMICS

Acute respiratory distress syndrome is a form of hypox-
emic respiratory failure characterized by lung tissue edema
and injury, inflammatory responses and compromised gas
exchange [72]. As seen from our data, blood oxygenation
correlates with the level of lung injury. This justifies that
radiomics approach used in the study assesses patient’s wors-
ening reliably (see Table 4 which reflects an evident asso-
ciation between major radiomical findings and the disease
severity). From Table 3, the injury to the right lower lobe
(both of ground glass opacity and consolidation types) is
prevalent among other parts of the lung. This is compli-
ant with an early study on the chest computed tomography
findings in COVID-19 pneumonia. The study marked the
following common CT features of this type of pneumonia:
the involvement of the lower lobe and multiple types of the
opacity (ground-glass, ground-glass and consolidation, and
consolidation alone) [73]. Interestingly, radiologic features
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of SARS-Cov-2-associated pneumonia resemble settings of
non-viral pneumonia better than the ones for non—-SARS-
CoV-2 viruses [74].

2) EPITHELIAL DESTRUCTION AND PROTEIN METABOLISM
In our study, there was a marked association between the
lung injury and the markers of protein metabolism. This
happens because an increase in protein permeability across
the endothelial and epithelial barriers of the lung is the most
fundamental early physiologic characteristic of acute lung
injury [75]. Macrophage activation, surfactant dysfunction,
and epithelial destruction follow compromised gas exchange.
They result in injury to both the vascular endothelium and the
alveolar epithelium [72].

3) DEMOGRAPHICS, PHYSIOLOGICAL AND BIOCHEMICAL
MARKERS OF DISEASE SEVERITY

From the comparison of patients grouped in four categories
according to the disease severity, there is a pronounced vari-
ability in age, biochemical markers of inflammation and
coagulation (CRP, D-dimer), oxygenation (SpO;, LDH), res-
piratory and cardiovascular function (breath and heart rate,
blood pressure) among the groups (see Table 2).

4) WHITE BLOOD CELLS

In pneumonia, inflammatory cells could be activated to pro-
duce a large number of mediators in the early stage of the
disease [72]. In our study, the percentage of neutrophils
in the total WBC count increases with advancing severity
score. Parallel to this, a low lymphocyte count and percentage
reflect weakening of the immune response with a rise in the
severity level. These findings are compliant with the data
of other authors who have addressed lymphocytopenia as a
marker of the disease severity in COVID-19 [76]. Apart from
marked lymphopenia at admission to hospital, nonsurvivors
developed more severe lymphopenia over time [77]. So, the
hematologic findings worsen parallel to the results of the
radiologic assessment.

5) RED BLOOD CELLS

From our data, a steady decrease in the level of hemoglobin,
hematocrit and RBC count is accompanied by an increase
in the concentration of ferritin while disease worsening.
The prevalence of anemia in a non-severe case of pneumo-
nia is not as well-studied as in severe ones. Research on
community-acquired pneumonia reported anemia increasing
with illness severity and being more common in females,
patients with comorbidities and poor outcomes [78]. Our
findings proved that this is also true for atypical pneumo-
nia caused by SARS-CoV-2. Alternatively, preexisting ane-
mia can be a risk factor of high incidence or severity of
pneumonia. A study that tested the hypothesis did not show
association of the likelihood of developing pneumococcal
pneumonia either with the frequency or with the severity of
anemia [79].
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TABLE 5. Different regressors trained on radiomics and clinical features: model performance in terms of MAE.

~ o
Data Q 8 & Ay & Mean+SD
& & £ & v z g £ a2 a

Clinical features
AdaBoost MAE 0.0118 1.6744 11.1386  0.2768 1.3102 1.3340 1.0784 103752 16.7978  12.3278

MAE/range, % | 5.3600 3.2400  4.8300 11.5300 7.2800  2.7300 3.5900 12.9700  7.8100 9.7800 6.593+3.654
Extra Trees MAE 0.0124 1.6804  8.7902 0.2766 1.3130 1.3384 1.1480 10.7192 16.9672  12.2706

MAE/range, % | 5.6400 3.2500  3.8200 11.5200 72900  2.7400  3.8300 13.4000  7.8900 9.7400 6.598+3.792
Gradient Boosting MAE 0.0128 1.8202  8.5810 0.2852 1.3518 1.4546 12720 10.7980 17.2286 12.6708

MAE/range, % | 5.8200 3.5200  3.7200 11.8800  7.5100  2.9800 4.2400  13.5000  8.0100 10.0600 | 6.798+3.792
K nearest neighbours MAE 0.0126 1.8398  9.1512 0.3088 1.8432 1.4842 1.2022 11.5154 18.5290 13.8730

MAE/range, % | 5.7300  3.5600  3.9700 12.8700  10.2400  3.0400 4.0100  14.3900  8.6200 11.0100 | 7.381+4.303
Lasso MAE 0.0120 1.7200 10.3056  0.2762 1.2650 1.3960 1.1116  10.6014 17.0726  12.8734

MAE/range, % | 5.4500 3.3300  4.4700 11.5100  7.0300  2.8600 3.7100  13.2500  7.9400 10.2200 | 6.61743.695
Random Forest MAE 0.0122  1.8668  9.0690 0.2758 1.3132 1.4840 1.1598 10.4192 16.4254 12.4160

MAE/range, % | 5.5500 3.6100  3.9400 11.4900  7.3000  3.0400 3.8700 13.0200  7.6400 9.8500 6.607+3.605
Radiomics from B80f kernel
AdaBoost MAE 0.0104 1.8154 11.7398  0.2972 1.9506 1.4354  1.0096 11.1048 16.5130 12.6728

MAE/range, % | 4.7300 3.5100  5.1000 12.3800  10.8400 2.9400 3.3700 13.8800  7.6800 10.0600 | 7.159+ 4.211
Extra Trees MAE 0.0108 1.8996 10.3136  0.3034 2.0404 1.5098 1.0656 11.1240 17.1888  12.5274

MAE/range, % | 4.9100 3.6700  4.4300 12.6400  11.3400  3.0900 3.5500 13.9000  7.9900 9.9400 7.286+4.294
Gradient Boosting MAE 0.0110 1.9316 10.6936  0.3172 2.0826 1.5094 1.1440 11.4104 16.7202 13.2366

MAE/range, % | 5.0000 3.7400  4.6400 13.2200  11.5700  3.0900 3.8100 14.2600  7.7800 10.5100 | 7.45744.425
K nearest neighbours MAE 0.0114 2.0114  9.8388 0.3218 2.0548 1.5974 1.1330 11.7048 17.9420 13.7742

MAE/range, % | 5.1800 3.8900  4.2900 13.4100  11.4200 3.2700 3.7800 14.6300  8.3500 10.9300 7.58+4.503
Lasso MAE 0.0116 1.7900 11.1626  0.2830 1.9328 1.3798  1.0232 109810 17.3352  13.0746

MAE/range, % | 52700 3.4600  4.8400 12.0000 10.7400 2.8300 3.4100 13.7300  8.0600 10.3800 | 7.149+4.118
Random Forest MAE 0.0104 1.8734 10.2646  0.2918 1.9284 14554 1.0224 11.0346  16.6922  12.7518

MAE/range, % | 4.7300  3.6200  4.4600 12.1600  10.7100  2.9800 3.4100 13.7900  7.7600 10.1200 7.069+4.17
Clinical features and radiomics from B30f kernel
AdaBoost MAE 0.0102 1.6556 10.8264  0.2790 1.3008 1.3216  1.0296 10.3198 16.4668  12.0938

MAE/range, % | 4.6400 3.2000  4.7000 11.6200  7.2300  2.7100 3.4300 12.9000  7.6600 9.6000 6.454+3.715
Extra Trees MAE 0.0106 1.7096  8.9806 0.2846 1.3400 1.3776  1.0424  10.6966  16.6514  11.9498

MAE/range, % | 4.8200 3.3100  3.9000 11.8600  7.4400  2.8200 3.4700 13.3700  7.7400 9.4800 6.526+3.886
Gradient Boosting MAE 0.0110 1.7794  8.7856 0.2852 1.3778 1.4538 1.1086 11.0134 16.4332  12.6130

MAE/range, % | 5.0000 3.4400  3.8100 11.8800  7.6500  2.9800 3.7000 13.7700  7.6400 10.0100 | 6.6524+3.926
K nearest neighbours MAE 0.0116  1.9962  9.6696 0.3248 2.0858 1.6412  1.1222  12.0806 18.3518  14.1906

MAE/range, % | 52700 3.8600  4.2000 13.5300 11.5900 3.3600 3.7400 15.1000  8.5400 11.2600 | 7.688+4.637
Lasso MAE 0.0112 1.8090 10.8504  0.2822 1.3098 1.3840 1.0376  11.0426 17.2472  13.0260

MAE/range, % | 5.0900 3.5000  4.7100 11.7600  7.2800  2.8400 3.4600  13.8000  8.0200 10.3400 | 6.718+3.877
Random Forest MAE 0.0104 1.8878  8.9728 0.2770 1.3448 1.5350 1.0222 10.6512 16.4722 12.3736

MAE/range, % | 4.7300  3.6500  3.8900 11.5400  7.4700  3.1500 3.4100 13.3100  7.6600 9.8200 6.534+3.757
Clinical features and radiomics from B60f kernel
AdaBoost MAE 0.0108 1.6860 10.7232  0.2838 1.3216 1.3368 1.0626  10.3178 16.4498  12.6708

MAE/range, % | 49100 3.2600  4.6500 11.8200  7.3400  2.7400 3.5400 12.9000  7.6500 10.0600 6.534+3.719
Extra Trees MAE 0.0108 1.7232  8.7964 0.2850 1.3182 1.3818 1.0606 10.8708 16.6854  12.4354

MAE/range, % | 49100 3.3300  3.8200 11.8800  7.3200  2.8300 3.5400 13.5900  7.7600 9.8700 6.553+3.928
Gradient Boosting MAE 0.0110 1.7298  8.4972 0.2924 1.3708 1.4316  1.1400 10.9854 16.2228  12.9434

MAE/range, % | 5.0000 3.3500  3.6900 12.1800  7.6200  2.9300 3.8000 13.7300  7.5500 10.2700 6.65+3.981
K nearest neighbours MAE 0.0114 2.0454  9.4630 0.3236 2.0162 1.5818 1.0914 11.6578 18.0940 13.8334

MAE/range, % | 5.1800 3.9600  4.1100 13.4800 11.2000 3.2400 3.6400 14.5700  8.4200 10.9800 7.533+4.51
Lasso MAE 0.0114 1.8192 10.8782  0.2786 1.3136 1.3828 1.0528 10.8006 17.0136  13.0166

MAE/range, % 5.18 3.52 4.72 11.6100  7.3000 2.83 3.5100 13.5 7.9100 10.33 6.676+3.769
Random Forest MAE 0.0104 1.8864  9.1400 0.2756 1.3392 1.5518 1.0666 10.6008 16.3742  12.5738

MAE/range, % 4.73 3.6500 3.97 11.48 7.4400 3.18 3.56 13.25 7.62 9.98 6.542+3.705
Clinical features and radiomics from B80f kernel
AdaBoost MAE 0.0104 1.6760 10.5908  0.2780 1.3170 1.3284 1.0430 10.3076 16.8334  12.5976

MAE/range, % | 4.7300  3.2400  4.6000 11.5800  7.3200  2.7200 3.4800 12.8800  7.8300 10.0000 | 6.487+3.704
Extra Trees MAE 0.0108 1.7392  9.4302 0.2814 1.3342 1.3752  1.0812 10.8268 16.7208  12.3108

MAE/range, % | 4.9100 3.3600  4.0900 11.7200  7.4100  2.8200 3.6000 13.5300  7.7800 9.7700 6.58+3.86
Gradient Boosting MAE 0.0106 1.7698  9.4862 0.2938 1.3654 1.4730 1.2206  10.6808 17.0070  12.8044

MAE/range, % | 4.8200 3.4200  4.1200 12.2400  7.5900  3.0200 4.0700 13.3500  7.9100 10.1600 6.727+3.85
K nearest neighbours MAE 0.0114 1.9902  9.7950 0.3254 2.0274 1.5434  1.1688 11.8466 18.5750  13.5656

MAE/range, % | 5.1800  3.8500  4.2500 13.5600 11.2600  3.1600  3.9000 14.8100  8.6400 10.7700 | 7.623+4.562
Lasso MAE 0.0108 1.8184 10.8042  0.2818 1.3222 1.3994 1.0620 10.8742 17.1848  12.8760

MAE/range, % | 49100 3.5200  4.6900 11.7400  7.3500  2.8700 3.5400 13.5900  7.9900 10.2200 | 6.689+43.824
Random Forest MAE 0.0102 1.8842  9.2316 0.2788 1.3472 1.5284 1.0748 10.5472 16.4000 12.4992

MAE/range, % | 4.6400 3.6400  4.0100 11.6200  7.4800  3.1300 3.5800 13.1800  7.6300 9.9200 6.546+3.721
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FIGURE 7. Distribution of MAE/range of values on different kernels for AdaBoost ML model trained on clinical features and radiomics jointly.

B. INFORMATION GAIN OF RADIOMICS AND
BIOCHEMICAL FEATURES AS PREDICTORS OF
FUNCTIONAL CHANGES IN COVID-19

ASSOCIATED PNEUMONIA

Researchers resort to various predictors for risk assessment
and management in patients with SARS-CoV-2 pneumonia.
In a study on a predictive model based on laboratory findings,
potassium, chlorine and sodium were markedly higher in
non-survivors group versus discharge group. In that study
the groups differed in many laboratory features. However,
none of the features provided the adequate accuracy in pre-
dicting the outcome of SARS-CoV-2 pneumonia [48]. This
does not justify a low predictive value of laboratory findings.
When analyzed together, they provide a reliable forecast as
shown in our previous study for three top valuable predictors
(the level of CRP, fibrinogen and activated partial throm-
boplastin time) [2]. Other authors showed that the level of
severity correlates with plasma levels of IL-2, IL-7, IL-10,
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G-CSF, IP10, MCP1, MIP1A, and TNF-« [80]. Profiling
serum cytokines in COVID-19 patients reveals IL-6 and
IL-10 as disease severity predictors [81]. IL-8 is among the
top valuable predictors for prognostication of acute lung
injury [82]. Furthermore, avoiding or mitigating the cytokine
storm may be a key treatment for SARS-CoV-2 [83].

In the current study we combined radiomics with humoral
and cellular factors as potential biological markers of acute
lung injury. The idea of blending the data from distinct visual
and laboratory modalities comes from bioinformatics. To elu-
cidate the pathogenesis of lung injury through an unbiased
‘big-picture’ approach, it uses advances in genomics, pro-
teomics, metabolomics, etc. [75].

We put age as a predictor into the blending models as
the informative value of laboratory findings differs among
age groups. Other studies evidence the value of age in
the clinical assessment of the patients infected with SARS-
CoV-2. For instance, the most important laboratory reports
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are normal or temporary elevated CRP, conflicting WBC
count results and procalcitonin in children, lymphopenia,
elevated CRP in adults along with elevated LDH in the
elderly [84]. Supposedly, for this reason, age stays among
strong predictors in the model forecasting oxygen saturation
(see Fig. 6).

While some researchers work with molecular biology,
we resorted to radiomics as it can be retrieved from the
examinations conducted as part of standard care. COVID-19
pneumonia has typical imaging features which can help
screening for highly suspected cases and evaluating the extent
of the disease and its severity. The features are ground glass
opacity or mixed ground glass opacity with consolidation,
vascular enlargement in the lesions, their peripheral distribu-
tion, multifocal and bilateral involvement predominantly in
the lower parts of the lung [85].

To stratify cases by the extent of the disease, we used the
percentage of the total lung involvement as the precise auto-
matic quantification of the lung lesions. Other researchers
employ human-driven assessment of the extent of the dis-
ease. To calculate the CT involvement score, they rate the
percentages of each of the five lobes that are involved. The
CT involvement score reflects the severity and extent of the
disease [85]. There is an ongoing discussion about an optimal
scoring method for scaling the lung involvement by diagnosti-
cians. Some argue towards including of additional qualitative
features of lung involvement: GGO, consolidations, crazy-
paving pattern, character other than enlisted [41]. To meet this
requirement, we utilized a way of automatic segmentation
that assessed common types of lesions separately (GGO,
consolidations, pleural effusion).

It remains unclear if the radiological findings reflect the
clinical status more or less reliably than the laboratory
findings. Concentrating on distinguishing COVID-19 pneu-
monia from other viral pneumonia researchers found out
that the clinical, laboratory, and especially radiological find-
ings may aid in the differential diagnosis of non—SARS-
CoV-2 pathogens from COVID-19 [74]. Unlike other authors,
we put much effort to elucidate the clinical value of radiomics
retrieved from chest CT. Our study gives an insight into
an additive value of the distinct diagnostic modalities while
managing cases of pneumonia. For instance, we ranked all
features significantly correlated with the oxygen saturation
and anion gap concerning the strength of the association,
i.e. by the value of correlation coefficient r (Fig. 5-6)
A single radiomical finding of the lung lobe involvement
(RMO_ggo_lobe_rate) stays in the list of the valuable fea-
tures. Interestingly, the correlation of AG with the laboratory
estimates of the protein and heme metabolism (the level of
total protein, urea, creatinine, albumin, total and direct biliru-
bin) is stronger than with other biochemical findings (e.g.,
glucose level). Some hematologic parameters (the percentage
of neurophils, lymphocytes and monocytes) are also strongly
correlated with AG.

If applied to community-acquired pneumonia, the analy-
sis we did is supposed to provide similar findings. This is
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because chest CT in COVID-19 is more prone to resemble
nonviral cases of pneumonia than viral pneumonia [74].

C. COMPARISON OF RECONSTRUCTION KERNELS BY
PREDICTIVE POTENTIAL TO IDENTIFY THE CLINICAL
SEVERITY FROM DIAGNOSTIC IMAGES

Our study shows that the reconstruction kernel does not affect
the informative value of CT. Notched boxplots in Fig. 7
present the accuracy of regression models predicting markers
of hypoxia and COVID-19 severity. On average, the accuracy
of prediction from either the clinical features or radiomics
is almost equal. Training the models on the full set of data
does not enhance the accuracy. The models for AG and CRP
have the best prediction metrics. This justifies the utility of
AG and CRP for reflecting the clinical status of patients
with COVID-19.

The effects of the reconstruction kernel (also referred to
as algorithms or filters) on image quality is a common issue
in radiology studies [44], [46], [86], [87]. This is because
visual diagnostics depends heavily on the image quality
(e.g., noise and spatial resolution) and the kernel may impact
the quality settings. A kernel should be selected carefully for
an examination. A smoother (lower resolution) kernel gives
a more accurate representation. A sharper (higher resolu-
tion, edge-enhancing) kernel generates images with higher
spatial resolution, but increases the image noise [86]. The
image acquisition settings should correspond to the size and
appearance of the targeted structure and the general back-
ground. For instance, the evaluation of small low-contrast
structures should advance from the application of sharper
high-resolution kernels [88]. In contrast, the ability to detect
small high-contrast lesions improves as the reconstruction
kernel becomes smoother [47]. Sharp image reconstruction
kernels result in higher CT measurements of emphysema
than smooth kernels [89]. Supposedly, the tendencies are true
for the human-driven visual diagnostics. Our study does not
justify this for computer-aided diagnostics. When done in an
automatic way, the assessment of the disease severity and the
predictive value of the radiomical findings retrieved from the
images do not depend heavily on the kernel settings.

VI. LIMITATIONS OF THE STUDY

The study has some weaknesses as well as strengths. A known
limitation of our study is that we worked specifically with
the CT scans acquired right on admission to hospital when
patients were hospitalized within a day or two after the dis-
ease emerged and they tested positive. As the radiological
findings vary across the disease phases, the models we built
were not trained to work with the data typical for the interme-
diate and late phases of the illness. Future studies are required
to extend the utility of the ML algorithms by applying them
to the results of the follow-up studies. One more limitation
of the current study is that we tested patients exceptionally
for SARS-CoV-2. However, coinfections may occur, and this
should be considered [74].
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Studies on distinguishing COVID-19 pneumonia from
other viral pneumonia with chest CT showed that, surpris-
ingly, COVID-19 is more prone to resemble nonviral cases
of pneumonia than viral pneumonia [74]. The positive side
of the statement is that, supposedly, the models we built
can be transferable from COVID-19 cases exceptionally to
CAP patients. The negative side is that a non—SARS-CoV-2
pathogen does not exclude accompanying COVID-19. This
may account for false predictions. Such a limitation is typical
for the majority of COVID-19 studies.

The future research will overcome the limitations of the
current study by training the models on the follow-up exami-
nations of the patients tested for the most common respiratory
viruses including SARS-CoV-2. This will validate such a
method for the quantitative assessment of the disease progres-
sion, which can aid clinical practice in the following ways.
First, it will help physicians to adjust risk from admission
to discharge thus optimizing individual case management.
Second, an accurate marker of pneumonia severity will help
the practitioners to perform clinical trials of the effectiveness
of therapy.

A strength of the study is that the constructed models allow
us to reduce the number of radiomical features which should
be analyzed for the comprehensive assessment of COVID-19
cases considerably. This can simplify the routine patient man-
agement and decision-making by physicians in real clinical
settings. Another strength of the study is that the comparison
of the predicted and actual levels of oxygen saturation may
reflect functional reserves in COVID-19 patients. To justify
this, new studies should be conducted.

VIi. CONCLUSION

o Pulmonology needs a reliable tool for quantitative
assessment of the lung involvement in COVID-19
on admission and follow-up examination. An optimal
biomarker should reflect disease severity and the actual
physiological status of the patient. Radiomical findings
might serve as the marker, but they are redundant and
hard to deal with. We eliminated data redundancy with
a machine learning model that accurately predicts the
functional and biochemical markers of hypoxia. The
model outcomes can serve as a single measure of the
structural changes in the lungs due to COVID-19 thus
substituting a big number of radiomical data. Physi-
cians can compare the values calculated with the model
from radiomical data to assess the disease severity and
progression. The computations can be automatized and
implemented into real clinical settings.

o The study proposed an efficient way of automatizing
lung injury assessment in pneumonia and measuring
disease severity. To model pathophysiologic change in
the lung of patients with COVID-19, we built regression
models predicting the oxygenation level, respiratory and
cardiovascular functioning from the extracted radiomics
features. The analysis of radiomics with advanced sta-
tistical methods helps to compare follow-up studies,
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detects diseases worsening and stratifies risks thus
improving patient management. We also compared the
reconstruction kernels of lung CT images with regard to
the predictive potential for reflecting the clinical severity
markers.

« Radiomics aids in prediction of the oxygenation level,
respiratory and cardiovascular functioning from a set
of demographics data, biochemical and hematologic
findings. The average accuracy (MAE/range, %) of the
models based on radiomics is 7.069+4.17, on the clin-
ical features - 6.59343.654 and on their combination -
6.454£3.715.

o The features which are positively correlated with anion
gap (AQG) attribute to protein and heme metabolism (total
protein, albumin, urea, creatinine, total and direct biliru-
bin), total count of leukocytes and subtypes (neutrophils,
monocytes, lymphocytes) and the involvement of the
right middle lobe.

o The information gain of radiomics is significantly higher
in the model predicting SpO,. The oxygen saturation
level correlates negatively with the involvement of the
total lung and its specific lobes, CRP and LDH activ-
ity and positively - with lung lobes volumes, markers
of protein metabolism, RBC count, HCT, the level of
hemoglobin and percentage of lymphocytes.

o The settings of the reconstruction kernels do not impact
the capacity of radiomics data to reflect the clinical
status. The least accurate prediction is observed once
images are acquired with BO0f kernel, the most accu-
rate - with B30f kernel. However, the accuracy differs
insignificantly among disparate reconstruction kernels.
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