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ABSTRACT High duty cycle sonar (HDCS) systems have a high potential for improving tracking perfor-
mance compared to conventional pulsed active sonar systems, but their implementation has been challenging
to achieve. This is because conventional waveform design studies for HDCS systems had focused primarily
on solving direct blast interference problems caused by continuous transmission and reception of pulse
train waveforms. So far, there are no studies for waveform design to improve HDCS tracking performance.
In this paper, we proposed a generalized sinusoidal frequency modulated (GSFM) pulse train waveform
design scheme to improve HDCS tracking performance. The proposed design scheme utilizes the trade-off
relationship between detection performance in a reverberation environment and measurement uncertainty
according to the parameter ρ of the GSFM waveform. To accomplish the goal, we developed a framework
for pulse train waveform design considering HDCS tracking performance. In the framework, the detection
probability and measurement noise covariance matrix of the Kalman filter are calculated based on the
designed GSFM pulse train waveform. Therefore, the pulse train waveform design and HDCS tracking
performance can be associated. The simulation using the HDCS tracking framework demonstrated that
optimal tracking performance was obtained when the parameter ρ was 1.07.

INDEX TERMS Generalized sinusoidal frequencymodulated waveform, high-duty cycle sonar system, high
duty cycle sonar tracking, pulse train waveform design.

I. INTRODUCTION
Over the past few decades, research on active sonar systems
have mainly focused on the pulsed active sonar (PAS) system
which transmits a short pulse-type waveform with a long
waiting interval when considering its maximum detection
range. Due to the long waiting interval, PAS systems suffer
from a low target revisit rate (TRR), which leads to a lack of
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measurements. Consequently, it is difficult to suppress clutter
in shallow water and obtain a high tracking performance for
long-range moving targets [1], [2], [3].

Recently, the hardware of modern sonar systems have been
upgraded enabling a wider dynamic range, and thus solving
the problem of saturation when signals with vastly different
reception levels are received [3], [4]. From a geometrical
perspective, modern sonar technologies show a trend towards
the operation of multiple platforms and long-range detec-
tion; therefore, research on bistatic systems or multistatic
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sonar systems that are operated with separate transmitters and
receivers is being actively conducted [5], [6], [7], [8]. Out of
these research trends, a new concept of high duty cycle sonar
(HDCS) system is emerging [3], [4], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24].

Unlike the PAS system which transmits a short pulse-
type waveform, the HDCS system transmits tens of times
longer pulse train waveform which consists of multiple sub-
pulses and processes of the received signals using a bank of
multiple matched filters in parallel. As each matched filter
can obtain independent measurements from the continuously
received signal, the HDCS system can obtain tens of times
more measurements than the PAS system during the same
observation time. These multiple measurements enable the
HDCS system to have the potential to remarkably improve
the tracking performance [9], [14].

However, achieving high tracking performance of the
HDCS system has been challenging because conventional
studies of pulse train waveform design had mainly focused
on solving the direct blast (DBL) interference problem due
to continuous transmission and reception strategy of the
HDCS system [15]. If DBL interference is not resolved, the
HDCS system cannot operate properly because a small target
echo signal is easily masked by a strong DBL interference.
To avoid DBL interference problems in HDCS systems, the
sub-pulses of the transmit pulse train waveform are designed
to possess orthogonality by adjusting the processing strate-
gies. However, these processing strategies inevitably create
weaknesses (e.g., trade-off between the bandwidth of the sub-
pulses and TRR [9] and independence of measurements [4]).
There is a separate study on maintaining the independence
of measurements while overlapping the bandwidth of sub-
pulses, but which have a drawback of the possibility of lim-
ited performance [14], [21].

However, from the tracking point of view, the designed
pulse train signal should improve the tracking performance
apart from solving the DBL interference problem. There
are several studies for associating the waveform design and
tracking have been conducted. In radar research, the effect of
radar waveform selection and measurement extraction meth-
ods on tracking performance has been studied. In the study,
tracking performance can be improved by joint consideration
of detection and tracking [25]. In the active sonar research,
several waveform fusion schemes have been studied and con-
cluded that waveform fusion improves detection and estima-
tion performance [26]. However, to the author’s knowledge,
the design of pulse train waveforms for improving HDCS
tracking performance has not been conducted yet.

In this paper, we propose a generalized sinusoidal fre-
quency modulated (GSFM) pulse train waveform design
scheme for improving the tracking performance of the HDCS
system by utilizing the trade-off relationship between the
detection performance in reverberation environment and the
measurement uncertainty. This trade-off relationship was
investigated by varying the parameter ρ of the GSFM wave-
form. To associate the pulse train waveform design and

FIGURE 1. Comparison of transmission and reception strategies of PAS
and HDCS system. In the single waveform repetition interval, PAS system
acquires only one measurement but HDCS system can acquire multiple
measurements.

HDCS tracking performance, we developed a framework that
simulates the received beam signal in reverberation environ-
ments and calculates the probability of detection (relative to
detection performance) and the measurement noise covari-
ance matrix (relative to measurement uncertainty) of the
Kalman filter for the designed GSFM pulse train waveform.

The structure of this paper is organized as follows.
In Section II, we present the HDCS system and characteristics
of GSFMwaveform. In Section III, we propose a framework
for pulse-train waveform design considering HDCS tracking
performance. In Section IV, we conduct a simulation anal-
ysis for optimizing ρ of the GSFM pulse train waveform to
improve its tracking performance using the proposed frame-
work. In Section V, we conclude the study with a discussion.

II. PRELIMINARIES
A. OVERVIEW OF HDCS SYSTEM
Fig. 1 shows a comparison of the transmission and reception
strategies of conventional PAS and HDCS systems. Because
the HDCS system transmits long pulse train waveforms to
increase the TRR, the HDCS system acquires tens of times
more measurements per single waveform repetition interval
than the conventional PAS system. Therefore, the HDCS
system has more potential to achieve higher tracking perfor-
mance than the PAS system [9], [11].

The signal model of pulse train waveform of the
HDCS system consists of sub-pulses of length Tsub as
follows [21], [27]:

s(t) =
N∑
n=1

sn(t − (n− 1)Tsub), (1)
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FIGURE 2. Signal processing scheme of the HDCS system. Target echo signal is received along with the DBL interference and beamforming is applied.
After beamforming, beam signal is applied to the matched filter bank which consists of multiple parallel matched filters to detect target. Therefore,
HDCS system can acquire N measurements with interval Tsub. All of N measurements achieved from detection process are used in the tracking process.

whereN is the number of sub-pulses, Tsub is the length of each
sub-pulse, and sn(t) is the nth sub-pulse, which we express as
follows:

sn(t) = w(t)ejϕn(t)ej2π (fc+1fn)t , (2)

where w(t) is the window function, fc is the center frequency
of pulse train waveform, 1fn is the hopping frequency of
the nth sub-pulse, and ϕn(t) is the phase modulation function
which determine the characteristics of nth sub-pulse. The
instantaneous frequency (IF) function of nth sub-pulse fn(t)
is given by

fn(t) =
(

1
2π

)
∂ϕn(t)
∂t

. (3)

Fig. 2 shows the signal processing scheme of the HDCS
system when the pulse train waveform consists of N sub-
pulses of length Tsub. The HDCS system uses a bank of
parallel matched filters to process each sub-pulse of the pulse-
train waveform. Each matched filter in the bank is designed
to handle a corresponding sub-pulse. If the arrival time of the
target echo owing to the first sub-pulse is τe, the arrival time
of the target echo owing to nth sub-pulse is τe + (n− 1)Tsub.
Consequently, the total number of measurements is N and its
interval is Tsub. After the detection process, all N measure-
ments were used in the tracking process. N times more mea-
surements give the tracking process a significant advantage
in improving tracking performance [10], [13], [16].

Theoretically, multiple measurements can be obtained
by using the HDCS system, but many practical problems

are faced in obtaining high tracking performance [3], [10].
Among these, DBL interference is the most problematic [15].
To alleviate the DBL interference, orthogonality is priori-
tized when designing a pulse train waveform. For this rea-
son, it was difficult to consider the detection performance
in the reverberation environment and measurement uncer-
tainty, which plays an important role in conventional active
sonar research, in the previous studies on HDCS pulse-train
design [9], [14], [21].

B. GSFM WAVEFORM AND ITS CHARACTERISTICS
The GSFM waveform introduced in [14] is a waveform orig-
inally developed to modify a sinusoidal frequency modula-
tion (SFM) waveform to obtain thumbtack-ambiguity with
a good range-Doppler resolution at the same time. Because
the GSFM waveform can produce an orthogonal waveform
by altering the parameters, it was used to design pulse train
waveforms for HDCS systems in previous studies [14], [28].
In this study, however, we would like to observe the trade-
off characteristic of the GSFM waveform according to its
parameter ρ (parameter ρ will be covered in (4)). In this
subsection, the signal model of the GSFMwaveform is intro-
duced, followed by the trade-off relationship according to
parameter ρ.

The phase modulation function of the GSFM waveform
can be expreseed as follows:

ϕ(t;α, ρ) =
β

t (ρ−1)
sin
(2παρ

ρ

)
. (4)
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The IF function of the GSFM waveform can be calculated
using (3) as follows:

f (t;α, ρ) = βα
[
cos

(2παtρ
ρ

)
−

(ρ − 1
ρ

)
× sinc

(2παtρ
ρ

)]
, (5)

where β represents the modulation index as β = B/2α and α
is a frequency modulation term that determines the number of
cycles included in the IF function of the GSFM pulse. B is the
pulse bandwidth. The cycle was calculated as C = αT ρ/ρ,
where ρ (≥ 1) is a dimensionless parameter that controls the
shape of the IF function of the GSFM waveform.

In [27], it was mentioned that the trade-off relationship
between the detection performance in reverberation environ-
ment and measurement uncertainty according to the ρ in the
low rangewhere the value approaches one. The reason for this
trade-off is as follows: As ρ is closer to 1, the IF function is
designed to be that of the SFMwaveform, which has superior
detection performance in reverberation. As ρ is further away
from one, conversely, the IF function is designed to be that of
the time-voltage characteristics of LFMwaveform, which has
a high pulse compression gain (see Appendix A for a detailed
review of the trade-off relationship of the GSFM waveform).

Although the trade-off relationship of GSFM waveform
was known, it was regarded as noncommittal because neither
performance was satisfactory and hence did not receive much
attention. In this study, however, we want to utilize this prop-
erty to improve the tracking performance of HDCS system.
In other words, we claim that a GSFM pulse train waveform
with superior tracking performance can be designed using the
trade-off between detection performance and measurement
uncertainty. Before proceeding further, however, a specific
methodology is required that reflects the characteristics of the
GSFM pulse train waveform designed in the HDCS tracking
process.

III. FRAMEWORK DEVELOPMENT FOR PULSE TRAIN
WAVEFORM DESIGN CONSIDERING TRACKING
PERFORMANCE
In this section, we propose the framework for pulse train
waveform design considering HDCS tracking performance.
A similar concept was studied in radar waveform selec-
tion [25] and PAS waveform fusion [26]; however, these
methodologies are not suitable for HDCS tracking assess-
ment. To the best of our knowledge, no studies have con-
sidered tracking performance when designing pulse train
waveforms for HDCS systems.

Fig. 3 shows the scheme of the proposed framework for
pulse train waveform design considering the tracking per-
formance. In the proposed framework, a Kalman filter is
used as the tracking algorithm [29]. The difference of the
Kalman filter used here from an ordinary Kalman filter is that
the measurement noise covariance matrix R (here, it means
measurement uncertainty) and detection probabilityPD (here,
it means detection performance) are computed from outside

the Kalman filter. Looking back along the arrow, it can be
seen that the two values were calculated from the designed
pulse train waveform. Therefore, it is able to implement
our goal of associating waveform design and tracking per-
formance. Now, each part of the framework is explained
individually.

A. WAVEFORM GENERATION
In this part, the time signal of N sub-pulses of GSFM pulse
train waveform are generated using (1) to (5). Each GSFM
sub-pulse was designed to have the same α and ρ. The
generated time signals of the sub-pulses are utilized in the
following process.

B. SIGNAL SYNTHESIS
In this part, the received beam signal is synthesized by
simulating reverberation environments of HDCS system.
The received beam signal of reverberation can be expressed
as [30] and [28]

r(t) =
∑
i

N∑
n=1

aisn(ηi(t − τi)), (6)

where ai is the scattered amplitude of ith scatterer, ηi is
Doppler scaling factor of ith scatterer, and τi is time delay
of ith scatterer. The reverberation signal is generated by sum-
ming the signals of all N sub-pulses, considering the effect
of the continuous transmission and reception scheme of the
HDCS system.

The received beam signal of target echo due to nth sub-
pulse can be expressed as follows:

en(t) = aesn(ηe(t − τe)), (7)

where ae is amplitude of target echo, ηe is Doppler scaling
factor of target echo, and τe is time delay of target echo. Note
that the received beam signal of the target echo is generated
individually for every sub-pulse.

General noise signal except reverberation was modeled as
additive white Gaussian noise (AWGN) ν(t) with zero-mean
and variance of σ 2

N .
Now, we can generate signals of null hypothesis (absent

of target echo) and alternative hypothesis (present of target
echo) by combining r(t), en(t), and ν(t) as follows [31], [32]:{

H0 : x0(t) = r(t)+ ν(t)
H1,n : x1,n(t) = en(t)+ r(t)+ ν(t)

(8)

where H0 is the null hypothesis, (x0(t) is signal of absent
of target echo) and H1,n is the alternative hypothesis of nth

sub-pulse, (x1,n(t) is signal of present target echo with nth

sub-pulse). Note that the alternative hypothesis is generated
individually for every sub-pulse, and these are depicted as
switches in Fig. 3.

The power of each signal could be calculated as follows:
once σ 2

N is set, the power of target signal can be set by
comparing with AWGN noise, signal-to-noise ratio (SNR),
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FIGURE 3. Proposed framework for pulse train waveform design considering tracking performance. In the proposed framework, detection
performance and measurement uncertainty of the designed pulse train waveform is reflected in the tracking process as the probability of
detection PD and measurement noise covariance matrix R of the Kalman filter, respectively. (a) Waveform generation part. In this part, the
time signal of the pulse train waveform is generated. (b) Signal synthesis. In this part, the received beam signal is synthesized by
simulating practical operation environments of the HDCS system. (c) Detection performance analysis. In this part, the ROC curve is
calculated to assess the detection performance of the designed pulse train waveform. (d) Measurement uncertainty analysis. In this part,
the sample measurement noise covariance matrix is calculated to assess the measurement uncertainty of the designed pulse train
waveform. (e) Tracking. In this part, a tracking simulation is conducted using the modified Kalman filter algorithm to reflect the detection
performance and measurement uncertainty of the designed pulse train waveform.

then reverberation power can be set by comparing with the
power of target signal, signal-to-reverberation ratio (SRR).

C. DETECTION PERFORMANCE ANALYSIS
This part evaluates the detection performance of the designed
pulse train waveform in reverberation environments. Detec-
tion performance was assessed using the receiver operating

characteristic (ROC) curve. ROC curve can be calculated
from the matched filter (MF) results of the Monte Carlo
simulation (multiple realizations of the synthesized signal of
the two hypotheses). The MF results for each hypothesis are
expressed as follows.{

H0,n : y0,n(τ, η) =
∫
x0(t) sn(η(t − τ ))dt

H1,n : y1,n(τ, η) =
∫
x1,n(t; τe, ηe)sn(η(t − τ ))dt

(9)
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FIGURE 4. Calculated ROC curve of the GSFM pulse train waveform using the proposed framework with ρ of (a) 1.00, (b) 1.05, (c) 1.07, (d) 1.10,
and (e) 1.13. In (f), the average of the ROC curves of each case of ρ are presented. As ρ increases, it can be seen that the detection performance is
decreased.
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FIGURE 5. Selected probability of detection PD at probability of false
alarm Pfa is 0.01 from ROC curve. Except for cases where the Doppler is
too low to detect (Doppler value of 1.00 m/s), as ρ increases, PD tends to
decrease.

where τ is time delay, η is Doppler scaling factor, and y0,n(τ )
and y1,n(τ ) are MF results of null hypothesis and alternative
hypothesis when nth sub-pulse is used as a replica, respec-
tively. Note that x1,n(t; τe, ηe) means that the target echo has
a time delay of τe and a Doppler of ηe. Although time delay
does not affect detection performance, the Doppler has a
severe effect on detection performance. In other words, the
characteristics of the ROC curve depending on the Doppler of
target echo. Therefore, the ROC curve should be calculated
individually for every sub-pulse and Doppler signal.

The probability of detection PD and the probability of
false alarm Pfa of ROC curve can be calculated numeri-
cally through calculating with varying threshold and can be
depicted as follows [33], [34]:

PD =
NTP
NPos

, (10)

Pfa =
NFP
NNeg

. (11)

FIGURE 6. First and second diagonal elements which mean range
measurement uncertainty and the velocity measurement uncertainty of
calculated sample measurement noise covariance matrix R, respectively.
Both measurement uncertainty is improved as ρ increases.

where NPos is the number of positives (detection cell contain-
ing the target echo), NNeg is number of negatives (detection
cell with no target echo), NTP is number of true positives
(detection cell greater than threshold when it containing the
target echo), and NFP is number of false positives (any detec-
tion cell which is greater than threshold).

D. MEASUREMENT UNCERTAINTY ANALYSIS
This part evaluates the measurement uncertainty of the
designed pulse train waveform by calculating the measure-
ment noise covariance matrix Rn for every nth sub-pulse. Rn
was obtained by calculating the sample covariance matrix of
the error vector wn from the Monte Carlo simulation of MF.
Error vector wn can be expressed as follows:

wn = ztruen − zestn , (12)

where ztruen is true measurement vector and zestn is estimated
measurement vector. ztruen can be expressed as

ztruen =

[
τe
ηe

]
, (13)

where τe and ηe is time delay and Doppler of target echo,
respectively. zestn can be expressed as

zestn = argmaxτ,η
∣∣y1,n(τ, η)∣∣ = [τ̂η̂

]
, (14)

where y1,n(τ, η) is MF results of alternative hypothesis of nth

sub-pulse in (9). τ̂ and η̂ are the estimated time delay and
Doppler scaling factor, respectively. zestn is estimated from the
peak of the MF output. This is possible under the assumption
that only one target echo exists in the region of interest.

Since it is preferable to express the state of the measured
value in terms of distance and velocity in the Kalman filter,
the time delay τ and Doppler scaling factor η are converted
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into distance and velocity using the following relationship:

r = cτ/2, (15)

v = c(η − 1)/2. (16)

Therefore, (13) and (14) are converted as follows:

ztruen =

[
re
ve

]
, (17)

ẑestn =
[
r̂
v̂

]
. (18)

The sample measurement noise covariance matrix of nth

sub-pulse can be calculated as follows:

Rn =
1
M

M∑
i=1

w(i)
n w(i)

i
T
, (19)

where superscript (i) means ith sample of Monte-Carlo simu-
lation andM is the number of Monte-Carlo trial.

E. TRACKING
This part is essential for the proposed framework because the
system performance (tracking performance) obtained from
this part gives the performance metric of the designed pulse
train waveform for the HDCS system. The main tracking
algorithm is implemented by the Kalman filter [29]; however,
its structure differs from that of the ordinary Kalman filter in
the measurement update process.

State equation of the Kalman filter can be expressed as
follows:

x(k + 1) = Fx(k) + v(k), (20)

where x(k) = [r, v]T is a state vector, r is range, v is velocity,
F is transition matrix, and v(k) is process noise vector with
covariance matrix Q = E

[
v(k) vT (k)

]
and zero-mean. The

measurement equation is as follows:

z(k) = Hx(k) + w(k), (21)

where z(k) is measurement vector,H is measurement matrix,
andw(k) is measurement noise vector with covariance matrix
R = E

[
w(k) wT (k)

]
and zero-mean. Also, we have

F =
[
1 1T
0 1

]
, (22)

H =
[
1 0
0 1

]
, (23)

Q =
[
1T 4/4 1T 3/2
1T 3/2 1T 2

]
, (24)

where1T is measurement sampling interval of Kalman filter
and c is speed of sound.

From (20) and (21), Kalman filter algorithm can be
derived [29], however, unlike ordinary Kalman filter, detec-
tion performance and measurement uncertainty of designed
pulse train waveform are reflected as probability of detec-
tion PD (as explained in Sec. III-C) and measurement noise
covariancematrixR (as explained in Sec. III-D), respectively.

These values vary depending on the sub-pulse and target
Doppler, and whenever the Kalman filter is updated accord-
ing to the tracking scenario, pre-calculated values suitable for
the scenario are selected and used.

Prediction process of the Kalman filter algorithm can be
expressed as follows:

x̂(k + 1|k) = Fx̂(k|k), (25)

P(k + 1|k) = FP(k + 1|k)PT +Q, (26)

where x̂(k + 1|k) is predicted state vector and P(k + 1|k) is
noise covariance matrix of the predicted state vector.

After the prediction process, the predicted state vector
in (25) will be updated using the measurement vector z(k+1)
obtained at this update interval. The update process is per-
formed stochastically according to PD which is selected at a
specific Pfa from the calculated ROC curve. The stochasti-
cally measurement update can be implemented by realizing
a random variable u that follows a uniform distribution with
boundaries of 0 to 1.

The update process of the Kalman filter algorithm can be
expressed as follows:

x̂(k + 1|k + 1) = x̂(k + 1|k)+W(k + 1)ν(k + 1), (27)

P(k + 1|k + 1) = [I−W(k + 1)HP(k + 1|k)] . (28)

where x̂(k + 1|k + 1) is the updated state vector, I is identity
matrix, and ν(k + 1) is innovation vector which can be
expressed as follows:

ν(k + 1) = z(k + 1)− ẑ(k + 1|k), (29)

ẑ(k + 1|k) = Hx̂(k + 1|k). (30)

where ẑ(k + 1|k) is the predicted measurement vector and
z(k+1) is the measurement vector which is generated by two-
dimensional Gaussian distribution with true mean according
to the scenario and measurement noise covariance matrix R
according to sub-pulse in (19). W(k + 1) is Kalman gain,
which can be expressed as

W(k + 1) = P(k + 1|k)HTS−1(k + 1). (31)

S(k + 1) = HP(k + 1|k)HT
+ R, (32)

where S(k + 1) is noise covariance matrix of innovation
vector.

After the Monte-Carlo simulation of the tracking process,
root mean square error (RMSE) is calculated for performance
evaluation of HDCS system and defined as follows:

RMSEpos(k) =

√√√√ M∑
i=1

(
ri(k) − resti (k)

)2
M

, (33)

RMSEvel(k) =

√√√√ M∑
i=1

(
vi(k) − vesti (k)

)2
M

, (34)

where ri(k) is true position, which is the first element of the
true state vector xi(k), resti (k) is estimated position which is
the first element of the estimated state vector xesti (k), vi(k) is
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TABLE 1. Summary of the Kalman filter algorithm in the proposed
framework.

true velocity which is the second element of the true state
vector xi(k), and resti (k) is estimated velocity which is the
second element of the estimated state vector xesti (k) at k th

time frame in ith Monte-Carlo trial. M denotes the number
of Monte Carlo trials. We can use the average value of the
RMSE as a metric to compare the superior relationships
for different pulse train waveforms. Table 1 summarizes the
Kalman filtering algorithm used in the proposed framework.

IV. SIMULATION
In this section, we attempt to optimize the ρ parameter of
GSFM pulse train waveform and analyze the results through
the simulation. In the simulation, the center frequency fc,
system bandwidth Bsys of GSFM pulse train waveform, and
length of each sub-pulse Tsub are set to 3 kHz, 1 kHz, and
2 s, respectively. The number of sub-pulses N is set to eight;
therefore, the total length of GSFM pulse train waveform is
16 s. However, we set the waveform repetition interval to
20 s; therefore, a rest time of 4 s existed. Each frequency
band of the sub-pulses is set to separate; consequently, the
bandwidth of the sub-pulse Bsub is set to 125 Hz. The purpose
of the separated-band design is to minimize the effect of DBL
interference and, consequently, to focus on the research on
tracking performance according to ρ. The parameter C of
GSFM waveform was set to 40. This value was designed
considering the null position in the Doppler axis of SFM
waveform.

Simulation parameters of signal synthesis parts are set as
follows: The number of scatterers is set to 300. The time delay
τi of scatterers is set to a uniform distribution, the attenuation
factor ai is set to a normal distribution with a mean of 1 and
a standard deviation of 0.3, and the Doppler factor ηi is set
to a normal distribution with a mean of 0 and a standard
deviation of 3 m/s. The powers of the target and reverberation
signals were synthesized at -3 dB and 10 dB, respectively,
based on the power of AWGN (σ 2

N ). Consequently, the SRR
was set to -13 dB. The target Doppler value is set to 1 m/s
to 3 m/s with 0.5 m/s intervals. The number of Monte Carlo
trials for ROC curve and R is set to 100. The false-alarm rate
Pfa for calculating the detection probability PD was set to
0.1. This is a large value in a general sonar system; however,
when a lower Pfa is applied, the number of Monte Carlo trials
increases rapidly. Because the result would not change even if
Pfa was set to a low value and the purpose of this study was to
compare the system performance of the pulse train waveform,
we set Pfa to 0.1.

In Fig. 4 (a) to (e), show the ROC curve of eight sub-
pulses of GSFM pulse train waveform with ρ of 1.00, 1.05,
1.07, 1.10, and 1.13, respectively, at Doppler of 2.0 m/s. From
these figures, we can interpret that the GSFM pulse train
waveform with low ρ shows superior detection performance,
and it decreases as ρ increases. Fig. 4 (f) shows a comparison
of ROC curves with different ρ values, which accumulates the
effect of all the Doppler cases. This figure clearly shows that
the detection performance of theGSFMpulse-trainwaveform
depends on ρ, as expected from Fig. 4 (a)-(e).

In Fig. 5 shows the probability of detection according to the
parameter ρ at Doppler velocities of 1.0, 1.5, 2.0, 2.5, 3.0 m/s,
respectively, at Pfa of 0.01. The case of the Doppler value
of 1.00 m/s in Fig. 5 (a) shows a low detection probability
close to zero for all ρ values because 1.0 m/s is too low and
is mostly masked by the reverberation spectrum. However,
at Doppler velocities greater than 1.5 m/s, it can be seen
that the detection probability is high at low ρ and decreases
as ρ increases. This is because, as described above, as ρ
increases, it exhibits more properties of the GSFMwaveform,
and the detection performance in reverberation deteriorates.
At 1.5 m/s Doppler, the difference in detection probability
between ρ of 1.00 and 1.13 is 0.487, but as the Doppler
value increases, the difference widens to more than 0.7. This
phenomenon occurs because 3.0 m/s is closer to the null
position of the Q-function of GSFM than Doppler of 1.5 m/s.

Fig. 6 shows the square root of the diagonal terms of the
calculated measurement noise covariance matrixR according
to ρ (which averages the value of all calculated measurement
noise covariance matrices of each sub-pulse and Doppler
case). Therefore, their values are the standard deviations of
the range and velocity estimations, respectively. In the first
figure, as ρ increases, it can be seen that the range uncertainty
decreases as it approaches the GSFM waveform. The second
figure confirms that the uncertainty of the velocity estimation
tends to decrease as ρ increases. From Fig. 5 and Fig. 6,
we can observe the range uncertainty and detection perfor-
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FIGURE 7. Simulation of HDCS tracking process using the proposed frameworks. (a) and (b) present two tracking scenarios with
different maneuvering target. (c) and (d) present the RMSE of tracking process of two tracking scenarios, respectively. In both
scenarios, when ρ is 1.07, it can be seen that the RMSE is lower than the other ρ in the overall duration. (e) and (f) present the average
RMSE of tracking process according to various ρ. The first tracking scenario shows a low average RMSE when ρ is 1.07 and the second
tracking scenario shows a low average RMSE when ρ is 1.07 and 1.09. Therefore, it was confirmed that the tracking performance of the
GSFM pulse train waveform is optimized when ρ is 1.07 using the proposed framework. In other words, a GSFM pulse train waveform
with an ρ of 1.07 provides a good compromise between sensing performance and measurement uncertainty.
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mance in the reverberation trade-off relationship of GSFM
waveform according to parameter ρ.
Since the detection probability and R were calculated, the

tracking process could be performed. The sampling interval
of Kalman filter 1T was set to 2 s, considering the length of
the sub-pulse. Parameter q of the process covariance matrix
Q was set to 0.1. The number of Monte Carlo trials for the
tracking analysis was set to 1000. The initial position was set
to be random with a standard deviation of 100 m and a zero-
mean normal distribution.

In this study, two tracking scenarios were set as shown in
Fig. 7 (a) and (b) to evenly analyze the results for different
maneuvering scenario. The total duration was set to 500 s
and only one-dimensional maneuvers of the target were con-
sidered. In the scenario of Fig. 7 (a), the speed of the target
varies between 0.6 m/s and 3.0 m/s, and the speed change is
set to change irregularly as in the real world. In the scenario
of Fig. 7 (b), the speed of the target varies between 1.0 m/s
and 5.0 m/s, and the speed change is also changed irregularly
as in the real world.

In Fig. 7 (c) shows RMSE results for the tracking scenario
in Fig. 7 (a) for ρ values of 1.00, 1.05, 1.07, 1.10, and 1.13,
respectively. In the position tracking analysis, in the case of
ρ except 1.07, RMSE fluctuates near 100 m, but RMSE of
ρ of the 1.07 case shows a steady decrease. The velocity
tracking analysis of cases where ρ is 1.07 shows the lowest
result among the five cases. Fig. 7 (d) shows RMSE results of
tracking scenario in Fig. 7 (b) for ρ values of 1.00, 1.05, 1.07,
1.10, and 1.13, respectively. Although the detailed trends are
different, it can be seen that similar to the result of the first
scenario in Fig. 7 (c), when ρ is 1.07, it can be seen that the
overall RMSE is low.

Fig. 7 (e) and (f) show the average RMSE of the tracking
results according to the parameter ρ for the final decision on
the optimal value of ρ. In Fig. 7 (e), in the first scenario, when
ρ is 1.07 for both position and velocity, the average RMSE
is the lowest at 54.69 m and 0.53 m/s, respectively, and it
can be seen that other average RMSE values are higher than
when ρ is 1.07. In Fig. 7 (f), the second scenario, when ρ is
1.07 and 1.09, the position average RMSE are 68.60 m and
70.35 m, and the velocity average RMSE are 0.76 m/s and
0.68 m/s, respectively. In the case of other ρ, it can be seen
that the average RMSE is relatively high. From these results,
it can be concluded that the optimal tracking performance
when the HDCS system uses the GSFM pulse train waveform
is when ρ is 1.07 in the current simulation environment. The
reason ρ of 1.07 has the best tracking performance is that the
trade-off relationship between the detection performance and
measurement uncertainty is well-adjusted.

V. CONCLUSION AND FURTHER DISCUSSIONS
A. CONCLUSION
In this study, we propose a generalized sinusoidal frequency
modulated (GSFM) pulse train waveform design considering
HDCS tracking performance. The proposed design scheme
utilizes the trade-off relationship between the detection per-

formance in a reverberation environment and the measure-
ment uncertainty according to the parameter ρ of the GSFM
waveform. We proposed a framework for pulse-train wave-
form design considering the tracking performance. In the
proposed framework, the detection probability PD and mea-
surement noise covariance matrix R of the Kalman filter
are calculated according to the designed GSFM pulse train
waveform and reflected in the tracking process. The average
RMSE of the tracking results was used as the metric. In the
simulation, the average RMSE was evaluated with two track-
ing scenarios, and it was confirmed that 1.07 is the best option
for parameter ρ because the trade-off relationship between
the detection performance and measurement uncertainty was
well adjusted at that value.

For future research, we suggest conducting the follow-
ing studies: First, developing the framework that takes into
account multiple clutter measurements and data association
algorithm similar to a probabilistic data association filter.
In addition, when evaluating the performance, it is necessary
to consider various aspects, such as track initialization or
track loss. Finally, it is necessary to analyze the matched
filter results of the GSFM pulse train waveform for low ρ

using sea experimental data. This is because it is important to
determine whether a sensitive trade-off relationship, such as
a simulation in a real oceanic environment, is satisfied.

APPENDIX A
REVIEW OF TRADE-OFF RELATIONSHIP OF THE GSFM
WAVEFORM
In the Sec. II-B, we claimed that the trade-off relationship
of the GSFM waveform can improve the HDCS tracking
performance. To evaluate whether our claim is theoretically
reasonable, we analyzed the ambiguity function (AF), which
assesses the measurement uncertainty, and the Q-function,
which assesses the detection performance in reverberation
environments [27], [30].

The AF can be expressed as follows:

χ (τ, η) =
√
η

∫
∞

−∞

s(t) s∗
(
η(t + τ )

)
dt, (35)

where s(t) is transmitted waveform, τ is time delay, η is
Doppler scaling factor, and ∗ is conjugation. The maximum
peak value of auto-AF occurs at τ = 0 and η = 1, and
we can analyze the range-Doppler resolution (measurement
uncertainty) using the ambiguity diagram defined by the 3 dB
contour of the main lobe.

The Q-function can be expressed as follows:

Q(η) =
∫
∞

−∞

|χ (τ, η)|dτ. (36)

Q-function is calculated under the assumption that the rever-
beration signal is caused by a fixed uniformly distributed and
uncorrelated scatterers. Therefore, the relative difference in
the Q-function level indicates a difference in the reception
reverberation level for each Doppler.
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FIGURE 8. Comparison of ambiguity function (AF) of the GSFM waveform
with ρ of (a) 1.00, (b) 1.05, and (c) 1.10. The black line is the 3 dB contour
of AF which means a resolution of the waveform. As ρ increases, it can be
seen that the range resolution is improved, but there is no significant
difference in Doppler resolution.

Figs. 8 (a), (b), and (c) depict the AF of GSFM waveform
with a center frequency of 3 kHz, bandwidth of 125 Hz,
length of 2 s, and C 80, when ρ is 1.00, 1.05, and 1.10,
respectively. In the figures, the range resolution (3 dB contour
of AF) is narrower ( better) as ρ increases and vice versa.
Fig. 9 depicts the Q-function of GSFM waveform with the
same specifications when ρ values are 1.00, 1.05, and 1.10,
respectively. In the figure, the Q-function level at Doppler
value of 2.5 m/s increases (worsens) as ρ increases, and
vice versa. In conclusion, GSFM waveform has a trade-off
relationship between measurement uncertainty and detection
performance according to ρ.

FIGURE 9. Analysis on the Q-function of the GSFM waveform with ρ of
1.00, 1.05, and 1.10. Low value of Q-function means low reverberation
power, therefore, it can be used to assess the detection performance in
the reverberation environments for the target of a specific Doppler. As ρ

increases, it can be seen that the detection performance is decreased.
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