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ABSTRACT In an attempt to improve the prediction accuracy for a time series, a new one-step-ahead hybrid
model is proposed in this paper that combines empirical mode decomposition (EMD) with the DBN-AR
model and back propagation (BP). The proposed approach first uses EMD, which can be used to decompose
the complicated original time series data into several intrinsic mode functions (IMFs) and a residue. The IMF
components and residue are then modelled and forecasted using the DBN-AR model. Finally, the predicted
results for all IMFs and a residue are combined by a BP neural network to obtain an aggregated output for
the time series data. To evaluate the performance of the proposed hybrid model, Beijing PM2.5 level time
series data and the weekly rates of British Pound/US dollar (GBP/USD) exchange rate data are used as an
illustrative example. Experimental results demonstrate the attractiveness of the proposed hybrid model based
on both the prediction accuracy and efficiency compared with other methods.

INDEX TERMS Time series forecasting, EMD, deep belief network, hybrid method, decomposition and
ensemble framework.

I. INTRODUCTION
In recent years, time series prediction has become a very
hot research topic. The analysis of a time series is mean-
ingful for research. The prediction of traffic conditions can
help one to arrange travel. Mankind can avoid disasters
by predicting disasters in advance. However, different time
series data contain different characteristics [1]. Some data
are highly volatile, for example, wind speed data series, and
some data are less volatile, such as annual rainfall [1]. Some
data are linear in nature, such as human beings, but most
data series are nonlinear in nature [1]. For research into time
series, several challenges still need to be addressed, includ-
ing prediction accuracy for time series. Historical obser-
vations of the same variable are analysed to establish a
model to describe a potential relationship by the time series
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prediction method. However, it is difficult to use the same
model to predict different time series [2]. Many prediction
models or methods have been proposed in the literature for
time series forecasting, which can be classified into three
categories: statistical models, artificial intelligence (AI) mod-
els and hybrid modes [3]. In the first category, the widely
used models mainly include autoregressive (AR), autoregres-
sive moving average (ARMA), and autoregressive integrated
moving average (ARIMA) models. In [4], an AR model is
used to predict the daily 10.7 cm solar radio flux, and the
experimental results show that the AR model performs well.
Zhang et al. [5] predicted particulate matter time series in
Taiyuan, China by using ARIMA and ARMA models. The
results show that the traditional ARMA/ARIMA can reduce
the forecasting error. In fact, real-world time series data are
often nonlinear, therefore, it is inappropriate to use such
linear prediction models when the original time series data is
nonlinear.
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In the second category, many AI models have been pro-
posed to predict time series, such as artificial neural networks
(ANNs), support vector machines (SVMs) and deep belief
networks (DBNs). For example. Khaniani et al. [6] used
a neural network model to predict rainfall, and the results
showed that the ANN is highly efficient. In [7], a SVM is used
to predict financial series, and the experiments show that the
SVM is a useful prediction model. Hu et al. [8] predicted the
remaining useful life based on a DBN, and the experiment
showed that the DBN model is effective and superior. Shan
et al. [9] proposed a new neural network model for mathe-
matical expression recognition. Xun et al. [10] proposed a
dynamic ANN model called the meta-ANN for forecasting
short-term grid loads, and a numerical study showed that the
proposed model can be used to obtain more accurate and
robust predictions for grid loads.

However, the original data series predicted by traditional
single prediction models cannot be used to describe the
complicated relations existing in the data series. Therefore,
many hybrid models have been proposed by researchers. For
example, in [11], a hybrid local linear neuro-fuzzy model
is proposed, and used for nonlinear time series forecast-
ing. A comparison of the results shows the superiority and
promising performance of the proposed hybrid approach.
Diao et al. [12] proposed a hybrid model for short-term traffic
volume prediction, and the simulation results demonstrate
that their hybrid model can be used to obtain better pre-
diction accuracy. In [13], neural network and multiobjective
optimization combined with a novel hybrid model was used
to predict effective load data series, and the experimental
results showed that the hybrid model can outperform baseline
models.

There is also a special hybrid model, and different
data decomposition techniques can be used to predict time
series data before forecasting [14], [15]. For example,
Wang et al. [16] proposed a hybrid model based on a two-
layer decomposition technique and a BP neural network for
multistep ahead electricity price forecasting, and the exper-
iment demonstrated that the proposed model has superior
electricity price performance. In [17], Qiu et al. proposed a
hybrid approach composed of a discrete wavelet transform
(DWT), empirical mode decomposition (EMD) and random
vector functional link network (RVFL) for short-term electric
load forecasting, and the experiment verified the effectiveness
of the proposed method.

The aim of this paper is to develop an EMD-based DBN-
AR model and BP neural network to predict time series with
high accuracy. EMD can be used to analyze the nonlinear
and non-stationary properties of time series. EMD is used to
decompose the original time series into several modes [18].
The obtained time series for each decomposed mode is pre-
dicted by the DBN-ARmodel, and then the prediction results
for all intrinsic mode functions (IMFs) and a residue are
combined by a BP neural network to obtain an aggregated
output for the time series data. The prediction results of this
paper have demonstrated that the proposed hybrid model

outperforms the singel model for the PM2.5 time series and
the weekly rates of British Pound/US dollar (GBP/USD)
exchange rate data.

The rest of this paper is organized as follows:
Section 2 briefly introduces the EMD. The nonlinear DBN-
AR model is listed in Section 3. The basic framework of the
proposed hybrid model is given in Section 4. Section 5 gives
evaluation indicators. The experimental prediction results
for the PM2.5 time series dataset and the weekly rates of
British Pound/US dollar (GBP/USD) exchange rate data are
demonstrated in Section 6. Finally, conclusions are stated
in Section 7.

II. EMPIRICAL MODE DECOMPOSITION
In 1998, Huang et al. proposed the empirical mode decom-
position (EMD) method, which decomposes the original data
series into several intrinsic mode functions (IMFs) and a
residue [18]. Instantaneous frequency data from nonstation-
ary and nonlinear data series can be obtained by the EMD
method. Two criteria must be satisfied by each IMF com-
ponent, one is that the difference between the number of
crossings times and the number of local extreme values is
at most one; the other is that the mean value of the upper
and lower envelopes of an IMF is zero at any time, which is
identified by local maxima and minima. For a given original
data series υ (t), the decomposition steps for EMD are given
as follows:

(1) For a given original data series υ (t), a cubic-spline
interpolation of the local minima andmaxima is used to create
the lower and upper envelopes for the data series.

(2) The value m1(t) is the mean of the upper and lower
envelopes.

(3) The value of meanm1(t) is subtracted from the original
data series υ (t), to obtain a removed low frequency data
series. After subtracting the value of the mean from the value
of the original data, a removed low-frequency time series is
obtained h1 (t) = υ (t)− m1 (t).

(4) Suppose h1(t) is an IMF; then, h1(t) is the first compo-
nent of the original data series υ (t), and steps (1) to (3) are
repeated until the stopping criteria are satisfied. Therefore,
the first IMF component c1(t) is obtained c1(t) = h1(t).

(5) The original data series υ (t) is subtracted from the
first component c1(t), and the residue signal is computed by
r1 (t) = υ (t)− c1 (t).
(6) The obtained residual signal r1(t) is used as a new

original data series υ (t) to find the next IMF. Steps (1) to (5)
are repeated until the last residual data series becomes a
monotonic function.
Finally, the original data series signal υ (t) is decomposed

as follows

υ (t) =
n∑
i=1

ci (t)+$n (t) (1)

where n is the number of IMFs, ci(t) is the IMFs and $n (t)
is the symbolized residue.

105170 VOLUME 10, 2022



H. Hu, W. Xu: Time Series Forecasting Based on EMD and the Varying-Coefficient DBN-AR Model

III. DEEP BELIEF NETWORK-BASED
VARYING-COEFFICIENT AUTOREGRESSIVE MODEL
A. STRUCTURE OF THE DBN-AR MODEL
A DBN is stacked by several restricted Boltzmann machines
(RBMs) as proposed by Hinton [19]. For each RBM, each
subnetwork’s hidden layer is the visible layer for the next
RBM. Finally, a logistic regression is added to the top of the
stack [20]. A schematic of a DBN is given in Fig. 1. The input-
output relationship for the DBN model is shown in Eq. 2.

ϑ (2(t − 1)) = ϕ
(
w(Nr )1 h(Nr−1) (t)+ b(Nr )1

)
h(`) (t) =

(
h(`)1 (t) , h(`)2 (t) , · · · , h(`)Q` (t)

)T
,

` ∈ {1, 2, · · · ,Nr − 1}

h(`)n` (t) = ϕ
(
w(`)n` h

(`−1) (t)+ b(`)n`

)
,

n` ∈ {1, 2, · · · ,Q`}

w(`)n` =
(
w(`)n`,1 ,w

(`)
n`,2 , · · · ,w

(`)
n`,Q`−1

)
,

Q0 = ny
h(0) (t) = 2(t − 1)

(2)

where w(`)
n` is the parameter weight between the `-th

layer and the (` − 1)-th layer in the single DBN model,(
b(`)1 , b

(`)
2 , · · · , b

(`)
Q`

)
is the bias in layer `, ny is the output

lag, and Q` represents the number of nodes on layer ` · Nr
represents the total number of layers, h(`)(t) represents the
output of the `-th layer, ϑ(2(t − 1)) represents the output
of the single DBN model, ϕ(x) = 1/

(
1+ e−x

)
is a sigmoid

function, and 2(t − 1) is the input state vector of the DBN
model.

In general, when a nonlinear system is considered, Eq. 3 is
used to describe the nonlinear system:

y (t) = f
(
y (t − 1) , y (t − 2) , . . . , y

(
t − ny

))
+ ε (t)

(3)

where f (•) represents a nonlinear map, y(t) ∈ R is the output,
ny is the output lag, and ε(t) ∈ R denotes the noise.

In this paper, a state-dependent autoregressive (SD-AR)
model is used to approximate the nonlinear mapping f (•) in
Eq. (3), which gives the following expression:

y(t) = γ0 (2(t − 1))+
ny∑
m=1

γy,m (2(t − 1)) y(t − m)+ ξ (t)

(4)

where γ0(2(t − 1)) and γy,m(2(t − 1))(m=1, . . . , ny−1, ny)
are the state-dependent function type coefficients of the
SD-AR model (4). 2(t − 1) = y (t − 1) , y (t − 2) , . . . ,
y
(
t − ny

)
represents the state vector at time t , which is the

variable used to change the system’s working point with time;
in some cases, this can be the output data series and/or the
input data series.

A set of DBNs are used to approximate the function-type
coefficients of the SD-AR model (4), and then the DBN-
AR model is obtained [2]. The input-output relationship
for the DBN-AR model can be described as in Eq. (5),
shown at the bottom of the page. The DBN-AR model (5)
is used to predict each IMF components and residue in
this paper. It also can be seen from Eq. (5) that the DBN-
AR model (5) is built as a global model, and it can be
chosen as a locally linear AR model when 2 (t − 1) in
Eq. (5) is fixed at time t . Furthermore, the complexity of
the model (5) can be partially dispersed into the AR part

of the model, where w(
`j)

n(j)`j
,j
represents a weight matrix con-

necting layer `j and layer `j − 1 in the j-th DBN module,
Q(j)`j denotes the number of nodes on layer `j in the j-th

DBN module, h(
`j)
j (t) denotes the output of the `j-th hidden

layer in the j-th DBN module,

(
b(
`j)
1,j , b

(`j)
2,j , · · · , b

(`j)

Q(j)`j
,j

)
are



y(t) = γ0 (2(t − 1))+
ny∑
m=1

γy,m (2(t − 1)) y(t − m)+ ξ (t)

γ0 (2(t − 1)) = ϕ

(
u

(
N (0)r

)
1,0 (t)

)
= ϕ

(
w

(
N (0)r

)
1,0 h

(
N (0)r −1

)
0 (t)+ b

(
N (0)r

)
1,0

)

γy,m (2(t − 1)) = ϕ

(
u

(
N (m)r

)
1,m (t)

)
= ϕ

(
w

(
N (m)r

)
1,m h

(
N (m)r −1

)
m (t)+ b

(
N (m)r

)
1,m

)
, m ∈

{
1, 2, · · · , ny

}
h(
`j)
j (t) =

(
h(
`j)
1,j (t) , h

(`j)
2,j (t) , · · · , h

(`j)

Q(j)`j
,j
(t)

)T

, `j∈
{
1, 2, · · · ,N (j)r −1

}
, j∈

{
0, 1, 2, · · · , ny

}
h(
`j)

n(j)`j
,j
(t) = ϕ

(
u(
`j)

n(j)`j
,j
(t)

)
= ϕ

(
w(

`j)

n(j)`j
,j
h(
`j−1)
j (t)+ b(

`j)

n(j)`j
,j

)
, n(j)`j ∈

{
1, 2, · · · ,Q(j)`j

}
w(

`j)

n(j)`j
,j
=

(
w(
`j)

n(j)`j
,1,j
,w(

`j)

n(j)`j
,2,j
, · · · ,w(

`j)

n(j)`j
,Q(j)`j−1

,j

)
, Q(j)0 = ny

h(0)j (t) = 2(t − 1) =
(
y (t − 1) , y (t − 2) , . . . , y

(
t − ny

))T
=
(
κ1, κ2, · · · , κnw

)T
(5)
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the biases of the `j-th hidden layer in the j-th DBN mod-
ule, and γ0 (2(t − 1)) , γy,m (2(t − 1)) ,

(
m = 1, 2, · · · , ny

)
is the output of each DBNmodule in the DBN-ARmodel (5),
which corresponds to the state-dependent function-type coef-
ficients.

(
κ1, κ2, · · · , κnw

)T denotes the input vector, and nw
is the dimension of 2 (t − 1).

FIGURE 1. Structure of a single DBN model.

B. ESTIMATION OF THE DBN-AR MODEL
First, the original data series y (t) is normalized to y◦ (t) =

y(t)−min(y(t))
max(y(t))−min(y(t)) , and the value of y◦ (t) is scaled between
0 and 1. Then the reference output data series for
γ0 (2(t − 1)) and γy,m (2(t − 1))

(
m = 1, 2, · · · , ny

)
are

assigned for each DBN module in the DBN-AR model (5)
based on the pseudo inverse matrix and the least squares solu-
tion. For the normalized data series {y◦ (i) , y◦ (i+ 1) , · · · ,
y◦
(
ny + i

)
}, i ∈

{
1, 2, · · · ,N − ny

}
, according to the DBN-

AR model (5) based on using the least squares solu-
tion the reference outputs of

{
γ0(2(t − 1)), γy,1(2(t − 1)),

γy,2(2(t − 1)), · · · , γy,ny (2(t − 1))
}
in the DBNmodules at

sample instant ny + i − 1 are calculated. Eq. (6) is used to
calculate the output of the DBN-AR model (5):

y◦(ny + i) =Mny+i−18ny+i−1, i ∈
{
1, 2, · · · ,N − ny

}
(6)

where, as shown in the equation at the bottom of the page,
8ny+i−1 represents the reference output of the DBNmodules,
andMny+i−1 is the coefficient in model (6) at time ny+ i−1.
The target value of the DBN modules in the DBN-AR model

(6) can be calculated from

8ny+i−1 =M+ny+i−1y
◦(ny + i) (7)

where M+ny+i−1 denotes the pseudo inverse matrix of
Mny+i−1. Next, the parameters for each DBN module are
trained by the deep learning algorithm using the reference
output from the DBN modules computed by (7) in this pre-
training stage. After this pretraining, the prediction output of
the DBN-AR model (5) is calculated using Eq. (8) in this
pretraining stage.

_y(t) = γ̂0 (2(t − 1))+
ny∑
m=1

γ̂y,m (2(t − 1)) y◦(t − m),

t = ny + 1, ny + 2, · · · ,N (8)

where _y(t) is the predicted output value of the DBN-
AR model (5) in the pretraining stage, and the output
values,

(
γ̂0 (2(t − 1)) , γ̂y,m (2(t − 1)) (m = 1, 2, · · · , ny)

)
,

of each DBN module are also obtained from model (6) after
pretraining.

Finally, an especially designed back propagation (BP)
algorithm (see Appendix) is used to fine tune the parameters
of the DBN-AR model (6). After pretraining, the modelling
error of the DBN-AR model (6) can be calculated as follows:

ξ (t) = y◦(t)− _y(t), t = ny + 1, ny + 2, · · · ,N (9)

In this stage, the objective function for the parameter opti-
mization of the DBN-AR model (6) is given as follows

E(t) =
1
2
ξ2(t) =

1
2

(
y◦(t)− _y(t)

)2
=

1
2

(
y◦(t)− γ̂0 (2(t − 1))

−

ny∑
m=1

γ̂y,m (2(t − 1)) y◦(t − m)

)2

,

t = ny + 1, ny + 2, · · · ,N (10)

where y◦(t) is the actual value and _y(t) is the predicted value.
Using the normalized training data {y◦(t), t = 1,

2, · · · ,N }, all parameters of model (5) are fine-tuned by
Eq. (A.20) (see Appendix). The predicted value from the
DBN-AR model (5) in the fine-tuning stage is recalculated
according to the following equation:

ỹr (t) = γ̃0 (2(t − 1))+
ny∑
m=1

γ̃y,m (2(t − 1)) y◦(t − m)

(11)


Mny+i−1 =

(
1, y◦(ny + i− 1), y◦(ny + i− 2), · · · , y◦(i)

)
8ny+i−1 =

(
γ0
(
2(ny + i− 1)

)
, γy,1

(
2(ny + i− 1)

)
,

γy,2
(
2(ny + i− 1)

)
, · · · , γy,ny

(
2(ny + i− 1)

) )T
,
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The parameter fine tuning process will not stop
until the value of the mean square error, MSE =

1
N−ny

N∑
t=ny+1

(y◦ (t)− ỹr (t))
2 is smaller than a given value.

Otherwise, the fine-tuning process will continue. After fine
tuning stage, the final predicted value, ỹr (t), is denormalized
to obtain the predicted output from the DBN-AR model (5),
which is ỹ (t), using the denormalization formula, ỹ (t) =
min (y (t))+ ỹr (t) ∗ (max (y (t))−min (y (t))).

IV. THE HYBRID PREDICTION MODEL
In this section, the proposed hybrid predictionmodel based on
the EMD, DBN-AR model and BP neural network is used to
forecast the time series data in this paper. The main structure
of the hybrid prediction model is based on decomposition
and ensemble, which is given in Fig. 2. The methods used
in the proposed hybrid model are briefly introduced in the
following.

FIGURE 2. Schematic diagram of the proposed prediction model.

(1) Firstly, EMD is used to decompose the original time
series into IMF components and one residual component.

(2) Secondly, use the DBN-AR model (5) to develop a
prediction model for each extracted IMF component and the
residual component, and then corresponding predictions are
obtained for each component.

(3) Finally, the prediction results of all extracted IMFs
and residual componets are obtained by DBN-AR model (5),
and all the prediction results are combined to generate an
output by a BP neural network, which can be used as the final
prediction result for the original data series.

V. EVALUATION INDICATORS
To evaluate the efficiency of the hybridmodel proposed in this
paper, three evaluation indicators: the root mean square error
(RMSE), the normalized mean squared error (NMSE) and the
mean absolute percentage error (MAPE) are used, which are
expressed as follows.

RMSE =

√√√√√ N∑
t=ny

(c (t)− c̆ (t))2

N
(12)

NMSE =

N∑
t=ny

(c (t)− c̆ (t))2

N∑
t=ny

(c (t)− c̄ (t))2
(13)

MAPE =
1

N − ny

N∑
t=ny+1

∣∣∣∣c (t)− c̆ (t)c (t)
× 100%

∣∣∣∣ (14)

where c (t), c̆ (t) and c̄ (t) is the actual value, predicted value
and mean of the actual value, respectively. N is the length of
the actual data series.

VI. EMPIRICAL STUDY
The validity of the proposed hybrid model is verified in
this section, and a comprehensive experimental evaluation
is proposed for the prediction model. Modelling problems
for the PM2.5 levels in Beijing and and the weekly rates
of British Pound/US dollar (GBP/USD) exchange rate data
series are studied in this section, and the modelling results
are obtained using a PC with an Intel(R) Core (TM) i7-9700
CPU @ 3.00GHz and MATLAB 2010b.

FIGURE 3. PM2.5 data series.

A. PM2.5 DATA SERIES
According to the PM2.5 meteorological records, the serious-
ness of PM2.5 in Beijing has attracted much attention [21],
and many prediction methods have been proposed to pre-
dict the value of PM2.5 [22], [23], [24]. In this subsection,
by learning the PM2.5 meteorological hour records from
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FIGURE 4. The decomposed series of PM2.5 using EMD.

1/1/2010 to 3/26/2010, we use the historical data series for
PM2.5 concentrations (µg/m^3) to predict the future value of
PM2.5 [25]. To facilitate PM2.5 data analysis, some abnormal
values were removed. Therefore, a total of 2023 data series
are obtained, as shown in Fig. 3.

The PM2.5 data series is a high-volatility and uncertain
time series. Therefore, EMD is first used to decompose the
original PM2.5 series, and the decomposition results are
given in Fig. 4. In this paper, the original PM2.5 series is
decomposed into 10 components in total, which are named
IMF1, IMF2, . . . , IMF9, residuals. Every subseries of the data
series is composed of two sections: the first 1500 data points
are used as training datasets, and the remaining 523 data
points are used as testing datasets. To clearly demonstrate
the prediction process for the proposed hybrid method, the
single step ahead for forecasting is taken as an example in
this section.

After the original PM2.5 data series are decomposed, the
DBN-ARmodel is used to predict each IMF and residual. The
input order for the DBN-AR model is chosen as ny = 5, i.e.,
every five successive PM2.5 data series are applied to predict
the sixth series using rolling technology. The number of iter-
ations for each DBN module is 1000 in the pretraining stage,
and the number of iterations of the DBN-ARmodel is chosen
to be 2000 in the fine-tuning stage. The structure of each
DBN module is chosen as N (j)r = 2;Q(j)0 = 5;Q(j)1 = 15;

Q(j)2 = 1; (j = 0, 1, · · · , 5). Based on these parameter set-
tings, the DBN-AR model is used to predict each IMF com-
ponent and the residue component. The constructed DBN-AR
model is given in Eq. (15), as shown at the bottom of the
next page. Figs. 5 and 6 show a comparison of the real values
and predicted data for the training and testing dataset series,
respectively. It can be observed from Figs. 5 and 6 that the
predicted values for each IMF and the residue are almost
consistent with the real values.

Next, the predicted results for all IMFs and a residue are
combined by a BP neural network to obtain an output for the
PM2.5 data series. The input value for the BP neural network
is composed of all the IMFs and a residue, and the output
value of the BP neural network is the PM2.5. Therefore, the
numbers of input and output nodes are selected to be 10 and 1,
respectively. After a series of experiments, the number of
hidden nodes in this experiment was chosen to be 15. Finally,
the predicted result for the proposed hybrid method is shown
in Fig. 7 for the testing data series. It can be observed from
Fig. 7 that the curves for the forecast value are very similar to
the real value.

To verify the effectiveness of the proposed hybrid method
for one-step ahead PM2.5 data series forecasting. The predic-
tion results for the traditional AR model, DBN-AR model,
EMD and DBN-AR method, and proposed hybrid method
are given in Table 1 for comparison. In addition, two criteria,
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FIGURE 5. The predicted data and the real data for each IMF and a residue from the PM2.5 data series for the training data.

RMSE and NMSE, are employed to evaluate the performance
of all prediction models. It can be observed from Table 1 that
both the RMSE and NMSE values for the proposed hybrid
method are small compared with all the other models, which
confirms that the proposedmethod has better prediction accu-
racy than the other models.

B. FOREIGN CURRENCY EXCHANGE RATE DATA SERIES
The weekly rates of British Pound/US dollar (GBP/USD)
exchange rate data are used to further verify the superiority
of the proposed hybrid model. Data set contains 937 obser-
vations from the beginning of 1976 to the end of 1993 that is
divided into 885 training data and 52 testing data sets.


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FIGURE 6. The predicted data and the real data for each IMF and a residue from the PM2.5 data series for the testing data.

FIGURE 7. PM2.5 data forecasting results for the proposed method.

As done in [2] and [26], the input order of the proposed
hybrid model is six. These data are obtained from the the
database retrieval system of ‘‘Pacific Exchange Rate Ser-
vice’’ (http://fx.sauder.ubc.ca/data.html) [26]. The modeling
results of the proposed hybrid model and many other models
from other literatures [2], [26] for the testing data are also
given in Table 2. RMSE and MAPE values obtained from
all testing data are given in Table 2. It can be seen from

TABLE 1. Comparison of forecasting accuracy for testing data for
different models.

TABLE 2. Prediction results for weekly GB/USD exchange rate data.

Table 2 that the prediction accuracy of the proposed hybrid
model is better than that of the other models. Therefore, this
a novel prediction model can provide an effective reference
for the time series forecasting.

VII. CONCLUSION
In this paper, we propose a hybrid model for time series fore-
casting composed of EMD, DBN-AR and BP. The original
time series signal is first decomposed into several IMFs and
a residue by EMD, followed by a DBN-AR model which is
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used to model each extracted IMF and residue. Finally, the
prediction results for all IMFs and a residue are combined by
a BP to obtain an aggregated output for the time series data.
Case studies indicate that the proposed hybrid model can be
used to obtain better modelling accuracy compared to single
and hybrid models.

APPENDIX
FINE TUNING PROCESS OF THE NONLINEAR
DBN-AR MODEL [2]
Using formula (9), the objective function in the fine-tuning
stage can be designed as follows

E(t) =
1
2
ξ2(t) =

1
2

(
y◦(t)− _y(t)

)2
=

1
2

(
y◦(t)− γ̂0 (2(t − 1))

−

ny∑
m=1

γ̂y,m (2(t − 1)) y◦(t − m)

)2

t = ny + 1, ny + 2, · · · ,N (A.1)

where y◦(t) is the actual value and _y(t) is the prediction value
of the DBN-AR model.

All the parameters in the DBN-AR model are fine tuned
by the specially designed gradient descent method. For the
neuron in the last output layer, which is the N (j)r -th layer,
Eq. (10) is used to update the gradient for the parameter.
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where

a (t − j) = y◦(t − j), j = 1, 2, · · · , ny; a (t) = 1

c (t − j) = −ξ (t) a (t − j) , j = 0, 1, 2, · · · , ny
and ϕ′ (u) represents the derivative of ϕ (u) with respect to u.
Let
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which is the local gradient with respect to neuron of the last
layer in the j-th DBN module. Therefore, Eq. (A.2) can be
rewritten as
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Similarly, one can obtain
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For neuron n(j)
N (j)r −1

∈

{
1, 2, · · · ,Q(j)

N (j)r −1

}
in the

(N (j)r − 1)-th layer, Eq. (A.6) is used to update the gradient
for the parameter, (A.6), as shown at the bottom of the page.
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Then, Eq. (A.6) becomes
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Similarly, one can obtain, (A.9), as shown at the previous
page.
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th layer, Eq. (A.10) can be used to update the gradient for the
parameter, (A.10), as shown at the previous page.
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Then, Eq. (A.10) becomes
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Similarly, the following equation can be obtained as in
(A.13), shown at the bottom of the page.

Therefore, the local gradient for each neuron of layer `j
in the j-th DBN module can be obtained by the derivation
process detailed above and computed using the following
equation:

δ
(`j)

n(j)`j
,j
(t) =

Q(j)`j+1∑
v=1

ϕ′

(
u(
`j)

n(j)`j
,j

)
w(
`j+1)

v,n(j)`j
,j
δ
(`j+1)
v,j (t),

`j ∈
{
1, 2, · · · ,N (j)r − 2

}
(A.14)

∂E(t)

∂b

(
N (j)r −2

)
n(j)
N (j)r −2

,j

=
∂E(t)
∂ξ (t)

∂ξ (t)

∂
_y(t)

∂
_y(t)

∂γ̂y,m(t)



∂γ̂y,m(t)

∂h

(
N (j)r −1

)
1,j (t)

∂h

(
N (j)r −1

)
1,j (t)

∂h

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂h

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂u

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂u

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂b

(
N (j)r −2

)
n(j)

N (j)r −2
,j

+
∂γ̂y,m(t)

∂h

(
N (j)r −1

)
2,j (t)

∂h

(
N (j)r −1

)
2,j (t)

∂h

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂h

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂uN
j
r−2

n(j)

N (j)r −2
,j
(t)

∂u

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂b

(
N (j)r −2

)
n(j)

N (j)r −2
,j

+ · · ·

+
∂γ̂y,m(t)

∂h

(
N (j)r −1

)
Q(j)

N (j)r −1
,j
(t)

∂h

(
N (j)r −1

)
Q(j)

N (j)r −1
,j
(t)

∂h

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂h

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂u

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂u

(
N (j)r −2

)
n(j)

N (j)r −2
,j
(t)

∂b

(
N (j)r −2

)
n(j)

N (j)r −2
,j



= −ξ (t)a (t − j)



ϕ′

(
u

(
N (j)r

)
1,j

)
w

(
N (j)r

)
1,1,j ϕ

′

(
u

(
N (j)r −1

)
1,j

)
w

(
N (j)r −1

)
1,n(j)

N (j)r −2
,j
ϕ′

(
u

(
N (j)r −2

)
n(j)
N (j)r −2

,j

)

+ϕ′

(
u

(
N (j)r

)
1,j

)
w

(
N (j)r

)
1,2,j ϕ

′

(
u

(
N (j)r −1

)
2,j

)
w

(
N (j)r −1

)
2,n(j)

N (j)r −2
,j
ϕ′

(
u

(
N (j)r −2

)
n(j)
N (j)r −2

,j

)
+ · · ·

+ϕ′

(
u

(
N (j)r

)
1,j

)
w

(
N (j)r

)
1,Q(j)

N (j)r −1
,j
ϕ′

(
u

(
N (j)r −1

)
Q(j)
N (j)r −1

,j

)
w

(
N (j)r −1

)
Q(j)
N (j)r −1

,n(j)
N (j)r −2

,j
ϕ′

(
u

(
N (j)r −2

)
n(j)
N (j)r −2

,j

)



=

Q(j)
N (j)r −1∑
v=1

ϕ′

(
u

(
N (j)r −2

)
n(j)
N (j)r −2

,j

)
w

(
N (j)r −1

)
v,n(j)

N (j)r −2
,j
ϕ′

(
u

(
N (j)r −1

)
v,j

)
w

(
N (j)r

)
1,v,j ϕ

′

(
u

(
N (j)r

)
1,j

)
c (t − j)

=

Q(j)
N (j)r −1∑
v=1

ϕ′

(
u

(
N (j)r −2

)
n(j)
N (j)r −2

,j

)
w

(
N (j)r −1

)
v,n(j)

N (j)r −2
,j
δ

(
N (j)r −1

)
v,j (t)

= δ

(
N (j)r −2

)
n(j)
N (j)r −2

,j
(t) (A.13)

VOLUME 10, 2022 105179



H. Hu, W. Xu: Time Series Forecasting Based on EMD and the Varying-Coefficient DBN-AR Model
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and the gradients to the connection weight and bias can be
calculated using Eqs. (A. 15) and (A. 16), respectively.
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When all the gradients are calculated by using
Eqs. (A.3-A.5), (A.7-A.9), and (A.11-A.16), the following
parameter updating values are obtained
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(A.18)

where L ∈
{
1, 2, · · · ,N (j)r − 1,N (j)r

}
and η > 0 is the pre-

determined learning rate. Then, the parameters are updated
using w(L)

n(j)L ,n
(j)
L−1,j
⇐ w(L)

n(j)L ,n
(j)
L−1,j
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+1b(L)
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(A.19)

where the initial values of w(L)
n(j)L ,n

(j)
L−1,j

and b(L)
n(j)L ,j

are calculated

in the pretraining stage of the DBN-AR model estimation.
Furthermore, to avoid parameter oscillation in the fine-tuning
process and to slow down the convergence rate, the momen-
tum term is added to the final parameter updating rule as
in (A.20), shown at the top of the page, where k denotes
the number of parameter updating, iterations and α ∈ [0, 1)
represents the predetermined momentum factor.
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