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ABSTRACT Recently, graphene has gained a lot of attention in the electronic industry due to its unique prop-
erties and to overcome the limits of miniaturization making way for novel devices in the field of electronics.
Among the synthesizing methods for growing large graphene films, chemical vapour deposition is one of
the promising and common techniques but defects such as cracks, holes, or wrinkles are hard to avoid. The
presence of defects influence the electrical properties of graphene thus the local conductivity distribution
across the surface of the graphene can characterize its electrical behavior. The difference in conductivity
values of the defect and the background can be estimated with electrical impedance tomography. Due to the
very high conductivity of graphene, the reconstructed electrical impedance tomography conductivity images
suffer from poor spatial resolution. Considering the graphene defect conductivity and the number of defects
are known a priori then the unknowns are defect geometry and background conductivity of graphene that are
estimated using hybrid particle swarm optimization - gravitational search algorithm. The defect geometries
are described by truncated Fourier series coefficient which can represent the complex shapes. Numerical
studies are done for graphene characterization with single and multiple defects. Monte Carlo simulations
with 20 runs having different noise seed are carried out to evaluate the robustness of the proposed algorithm.
Statistical analysis is done and the results of the proposed algorithm are compared against the conventional
modified Newton Raphson method and gravitational search algorithm. Experimental studies with graphene
sheet 2.5 cm× 2.5 cmwith defects are performed for shape estimation. The results showed that the proposed
algorithm has a good estimation of background conductivity and defect geometry.

INDEX TERMS Graphene, parameter estimation, EIT, PSOGSA, defect detection.

NOMENCLATURE
ERT Electrical resistance tomography
EIT Electrical impedance tomography
mNR Modified Newton-Rapshon
GSA Gravitational search algorithm
PSO Particle swarm optimization
PSOGSA Particle swarm optimization - Gravitational

search algorithm
Il Current (mA)
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� Domain (object) under study
∂� Boundary of the object
σ ,σ (P) Internal conductivity distribution of the

object (mS), P = (x, y) ∈ �
u(x, y) Calculated voltage (mV)
CEM Control electrode model
el l th electrode, l = (1, 2, · · · ,L)
zl Contact impedance
Vl Measured voltage, (mV)
A Stiffness matrix
B Solution vector
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f Data vector
FEM Finite element method
Dbn(s) Boundary of the nth object, n = (1, 2, · · · ,N )
Fφ Order of Fourier series
φf (s) Basis function
Gamma Shape coefficient
vi(t) Velocity of particle
w Weighting function
ck Weighting factor
ai Acceleration of particle
RMSE Root mean square error
0 Cost function
λ̄ Mean of estimated Fourier series coefficient
¯MAE Mean absolute error
¯MES mean error square
¯RMSE Mean RMSE

Esd Error standard deviation
λt True Fourier series coefficient
λ Estimated Fourier series coefficient
mS MilliSiemens
PMMA Poly methyl- methacrylate

I. INTRODUCTION
For a long time, the semiconductor industry has been domi-
nated by silicon. But the past few years graphene has gained
an enormous scientific interest due to its remarkable elec-
tronic [1] properties. Graphene has overcome the limits of
miniaturization which is in order of 50nm for the elec-
tric channel for silicon-based electronics [2]. Fabrication
of graphene is done with several methods such as exfolia-
tion, colloidal suspension, epitaxial growth, chemical vapour
deposition (CVD) [3], [4], [5], [6]. However, developing
large homogeneous graphene films is very hard and inhomo-
geneities like wrinkles, holes, and cracks are developed [7].

For realizing and developing graphene based devices,
a fast, accurate, nonintrusive method is necessary that can
map conductivity distribution for electrical characteriza-
tion of graphene. Cultera et al. [8] used electrical resis-
tance tomography (ERT) to map the conductivity profile
of large graphene sheet by placing point electrodes over
the boundary and an average gap model is employed as
mathematical model. However, this model with point elec-
trodes and does not consider the contact impedance between
electrodes and graphene sheet. To overcome this situation,
Khambampati et al. [9] used a complete electrode model
with electrical impedance tomography (EIT) for imaging
local conductivity distribution, where EIT is the ac regime
equivalent of the ERT. Graphene has very high conductivity
value thus the electrode contact impedance does effect the
reconstruction performance. Due to ill-posedness, high con-
ductivity of graphene and electrode contact impedance it is
very difficult to obtain absolute reconstructions. Therefore
in [9] linear difference approach is used to reconstruct the
difference estimates. In [10], nonlinear difference imaging
approach is used to reconstruct the initial and difference

estimates at same time. As seen from previous studies [9],
[10], in general, pixel conductivity imaging of graphene suf-
fers from the poor spatial resolution.

The shape estimation is the alternative approach to improve
the spatial resolution. In the shape estimation approach the
number of unknowns to estimate is less when compared to
the conductivity distribution estimation. For this approach
a prior information of the conductivity distribution within
each closed boundary region is assumed to be known. By this
approach we can estimate the shape, size, and location of the
defect in the domain. For EIT, the shape of the defect can
be defined with various methods such as Fourier series [11],
level set [12], front-point [13], B-spline based [14], and super-
shape [15]. The parameters defining the shape of the defect
is estimated by a suitable inverse algorithm. A modified
Newton-Rapshon (mNR) algorithm is one of the most used
conventional inverse algorithm for estimating shape parame-
ters. However, it shows sub-optimal performance when solv-
ing the EIT inverse problem. It heavily depends on the initial
guess and Jacobian matrix [16] to find the optimized solution.
However, when the shape of the target is complex and mNR
tends to produce intersecting boundaries [17]. An algorithm
that can converge fast to the optimum solution without the
need of Jacobian matrix calculation is preferred. A heuris-
tic algorithm is a good candidate to overcome the Jacobian
matrix problem in estimating the complex shape. Particle
swarm optimization (PSO), a heuristic algorithm, showed a
great exploration capability in estimating the boundary of
the elliptic region in EIT domain [18]. Exploitation is the
other main characteristic of the heuristic algorithm and the
gravitational search algorithm (GSA) has a great exploitation
step [19]. GSA estimated the bladder boundary with good
accuracy using EIT in the study conducted by the author
in [11]. Mirjalili and Hashim [20] introduced a hybrid heuris-
tic algorithm Particle swarm optimization - gravitational
search algorithm (PSOGSA) which combined the advantages
of PSO and GSA. This new algorithm PSOGSA outper-
formed the other heuristic algorithms including PSO and
GSA. The evaluation of the algorithm was conducted with
the standard benchmark functions.

During graphene growth the surface conductivity can
change due to operating conditions of CVD process.
Graphene is a very high conductive material where the
graphene sheet/film has homogeneous background enclosed
with defects with very low conductivity value on its sur-
face. If the defects boundary are considered as smooth
the shape and location of defect can be described using
truncated Fourier series coefficients. However, it is known
that defects (inclusions or void) have very low conduc-
tivity value and is used as prior information. In this
study instead of estimating the graphene pixel local
conductivity distribution, defects geometry and average
background conductivity value are estimated. Assuming the
defect conductivity be known a priori, the inverse problem
here is to estimate the Fourier coefficients that define defects
geometry and average background conductivity. In shape
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FIGURE 1. Systematic block diagram of EIT for estimating defect location in graphene.

estimation, for complex boundary, higher order Fourier coef-
ficients are used to describe the geometry. Conventional mod-
ified Newton Raphson method (mNR) produces intersecting
boundaries in case of complex shapes involving higher order
Fourier coefficients. In this work we have used PSO-GSA
heuristic method which is robust to initial guess and has
better estimation performance even with higher order Fourier
coefficients. Moreover, PSO-GSA is computationally less
intensive as compared to traditional mNR method. Numer-
ical simulations and phantom experiments are performed to
estimate the defect boundary and the results are compared
against mNR and GSA methods.

II. METHOD
A. NUMERICAL SOLVER AND PHYSICAL MODEL
EIT is a non-invasive imaging method composed of a
forward and inverse problem [21]. EIT reconstructs the
cross-sectional image of the internal conductivity distribu-
tion of the domain. A systematic block diagram of the
EIT system for estimating the defect boundary is shown in
figure 1. A forward problem in EIT is normally formulated
with the finite element method. In forward problem, a con-
stant amplitude current Il(l = 1, 2, · · · ,L) is applied to
the domain � understudy and voltage u(x, y) is calculated
on the surface electrodes el(l = 1, 2, · · · ,L). The calcu-
lated voltage u(x, y) and the internal conductivity distribu-
tion σ relationship is governed by the Maxwell equation of
electromagnetism [22], [23].

O · σ (P)Ou(P) = 0, P = (x, y) ∈ � (1)

To represent a realistic and accurate physical model, a com-
plete electrode model (CEM) is usually used as it takes to
account the shunting effect and the contact impedance of
the electrodes [24]. Mathematically CEM along with the

FIGURE 2. Fine and course mesh of graphene used in the study. The
boundary electrodes are represented in blue colour attached to the mesh
boundary.

boundary condition is expressed as

u+ zlσ
∂u
∂En
= Vl, (2)∫

el
σ (x, y)

∂u
∂En
dS = Il, (x, y) ∈ el (3)

σ (x, y)
∂u
∂En
= 0, (x, y) ∈ ∂�\

L⋃
l=1

el (4)

where l = (1, 2, · · · ,L), zl is contact impedance between
domain surface and electrodes, En is the outward unit normal,
Vl and Il is the measured voltage and injected current on l th

electrode, respectively. For the existence of a unique solution,
Kirchhoff’s laws on the measured voltages and injected cur-
rents are needed [25], which are defined as

L∑
l=1

Il = 0,
L∑
l=1

Vl = 0 (5)

This section describes the mathematical model used in this
work. The finite element method (FEM) [26], [27] discretizes
the domain into a finite number of triangular elements and
each element is assumed to have a constant conductivity
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inside itself. Governing equation (1) is numerically solved by
FEM. The formulated linear equation of the forward problem
is

AB = f (6)

where A is the stiffness matrix, B is solution vector and f is
data vector. The details of the FEM formulation is defined
in [21].

B. DEFECT BOUNDARY REPRESENTATION
Let us assume the graphene domain � contains a closed and
disjoint region (defects) with a smooth boundary ∂� and is
assumed to be known. If the boundary of the defects are
considered smooth, it can be described by using truncated
Fourier series [28] which is defined as

Dbn(s) =
(
xn(s)
yn(s)

)
=

Fφ∑
f=1

(
λ
xn
f φ

x
f (s)

λ
yn
f φ

y
f (s)

)
(7)

where n = (1, 2, · · · ,N ), Dbn(s) is the boundary of the nth

object, N is the number of disjoint objects in the domain �,
Fφ is the order of the truncated Fourier series and φf (s) is the
basis function which is periodic and represented as

φ
µ
1 (s) = 1 (8)

φ
µ
θ (s) = sin

(
2π
θ

2
s
)
, θ = 2, 4, 6, · · · ,Fφ − 1 (9)

φ
µ
θ (s) = cos

(
2π

(θ − 1)
2

s
)
, θ = 1, 3, 5, · · · ,Fφ (10)

where s ∈ [0, 1] and µ = x or y. The defect boundary can be
expressed as shape coefficients (0) expressed as

0 = (λµ1
1 , · · · , λ

µ1
Fφ , λ

µN
1 , · · · , λ

µN
Fφ )

T (11)

C. HYBRID PSOGSA INVERSE SOLVER
In EIT, the inverse problem is a step to calculate the con-
ductivity distribution based on the measured voltages and
the injected current. In our case, the inverse problem is
the shape estimation and background conductivity of the
graphene sheet. The priori information known is the defect
conductivity. Here PSOGSA is used to estimate the Fourier
series coefficient which defines the defect shape and location
on the graphene and the background conductivity of graphene
itself.

A population-based hybrid algorithm PSOGSA is the com-
bination of particle swarm optimization (PSO) and gravi-
tational search algorithm (GSA). It is a low-level hybrid
algorithm because the functionality of both algorithms i.e.
PSO and GSA are combined to run in parallel. The ability
of social thinking of PSO is combined with the local search
capability of GSA in PSOGSA. To understand the working
principle of proposed algorithm, we first need to understand
PSO and GSA separately.

Particle swarm optimization (PSO) is based on the social
behavior of bird flocking. Each particle (solution candidate)
in PSO flies in the search space adjusting its velocity which

is influenced by its own and companion’s flying experience.
These particles are treated as a volume-less particles in the
search space. The ith agent in D-dimension is represented
in equation (12). The equation also includes the background
conductivity of the graphene sheet.[

0i
σ bi

]
= (λ1i , λ

2
i , · · · , λ

D
i , λ

b
i ) (12)

where σ bi is the background conductivity of the graphene
sheet and one dimension of the particle defines the conduc-
tivity (λbi ). The rate of change of position (velocity) of the
particle i is updated based on the previous position of the
particle i and the position of the best particle among the pop-
ulation. The new position of the particle is according to the
previous position and the new velocity, which are mathemat-
ically expressed as

vi(t) = w× vi(t − 1)

+ c1 × rand × (pbesti −
[
0i(t − 1)
σ bi (t − 1)

]
)

+ c2 × rand × (gbest −
[
0i(t − 1)
σ bi (t − 1)

]
) (13)[

0i(t)
σ bi (t)

]
=

[
0i(t − 1)
σ bi (t − 1)

]
+ vi(t) (14)

where vi(t) is the velocity of ith particle at t time, w is the
weighting function, ck is a weighting factor, rand is random
number [0,1], 0i(t) is the current position of particle i at
iteration t , pbesti is the best particle in that iteration, and
gbest is the best solution till that iteration. More detailed
explanation of PSO can be found in [29].

On the other hand, the gravitational search algorithm
(GSA) is based on the law of gravity [30]. The particle is
considered objects and their masses are used for measuring
their performance. A good particle has a heavier mass and
is moved slower than the other masses. The gravitational
forces are calculated and based on this force, the velocity
acceleration of the particle is updated. The velocity of particle
is calculated as

vi(t) = randi × vi(t − 1)+ ai(t − 1) (15)

where vi(t) is the velocity, ai(t) is the acceleration of ith

particle at t time. The position of the particle is updated using
the equation (14). The detailed explanation can be found
in [19].

The ability of social thinking (gbest) in PSO is combined
with local search capability of GSA to form PSOGSA. Equa-
tion (13) and (15) is combined together to mathematically
define PSOGSA as

vi(t) = w× vi(t − 1)+ C ′1 × rand × ai(t − 1)

+C ′2 × rand × (gbest −
[
0i(t − 1)
σ bi (t − 1)

]
) (16)

where vi(t) is the velocity of particle i at time t , C ′j is a
weighting factor, w is a weighting function, rand is a random
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FIGURE 3. Flowchart of the PSOGSA algorithm for estimating defect
geometry and the background conductivity of the graphene sheet.

number [0,1], ai(t) is the acceleration of particle i at time t ,
and gbest is the best particle so far. This updated velocity is
used for updating the position of particle for PSOGSA which
is defined with equation (14).

The flowchart of PSOGSA for estimating the shape of the
defect on the graphene is presented in figure 3. The solutions
are updated based on the fitness of each particle, also known
as the cost function. The cost function is a function that
measures the discrepancy between measured voltages and
calculated voltages and is defined as

γ (0i, σ bi ) =
||U (0i, σ bi )− V ||

2

2
(17)

where U (0i, σ bi ) is the calculated voltage with FEM which
depends on the estimated Fourier series coefficients and the
background conductivity of the graphene sheet, and V is
the measured voltage recorded from the electrical impedance
system.

III. RESULT AND DISCUSSION
A numerical simulation and experimental studies are pre-
sented in this section in which external defect location and
shape on graphene sheet is estimated with PSOGSA. In this
study, the conductivity of the graphene sheet is also estimated

along with the defect details. The same geometry of the
graphene sheet has been used for the numerical and experi-
mental cases and the preparation of the graphene sheet is also
described later in the experimental study section. As GSA
has good performance in estimating the higher-order Fourier
series coefficients in the complex problem of EIT, hence it is
used to compare the estimated result fromPSOGSA for all the
cases. Also mNR, a conventional reconstruction algorithm,
is compared against the proposed algorithm. EIDORS [31]
framework is used to compute the forward solution of the EIT
in the Matlab software. To avoid the inverse crime, two sepa-
rate mesh is used for the forward and inverse problems which
are presented in figure 2. A mesh configured with 9648 ele-
ments and 5121 nodes is used in the forward problem, while
the mesh in the inverse problem used 2412 elements and
1355 nodes. Both PSOGSA and GSA were configured with
the same search space, number of particles, and run for equal
iterations. The particles are updated per iteration and the best
solution is updated which has a low cost function value.

The robustness of the proposed algorithm is studied with
the help of Monte Carlo simulation. In this, each run of
PSOGSA is assigned with a different set of particles and a
different noise seed. The Monte Carlo simulation is executed
only on numerical study for η = 20 runs for estimating
the Fourier series coefficient. The mean value of the Fourier
series coefficient is used as the estimated value from the algo-
rithm. Mean (λ̄) is one of the statistical parameter analyzed
by Monte Carlo simulation along with mean absolute error
(MAE), mean error square (MES), error standard deviation
(Esd ), and the mean root mean square error (RMSE). MAE
and RMSE provide the magnitude of estimation error for the
corresponding true value. The dispersion of the error (ei) for
estimated parameters is calculated by error standard deviation
(Esd ) and the square of the bias of the error is given byMES.
The mathematical definition of each parameter are defined
below as

λ̄ =
1
η

η∑
i=1

λi (18)

MES =
(
1
η

∑η

i=1
(λtrue − λi)

)2

=

(
1
η

∑η

i=1
ei

)2

= (E[ei])2 = (ē)2 (19)

MAE =
1
η

η∑
i=1

|λtrue − λi| =
1
η

η∑
i=1

|ei| (20)

MSE =
1
η

∑η

i=1
(λtrue − λi)2

=
1
η

∑η

i=1
e2i = E[e2i ] (21)

Esd =

√
1
η

∑η

i=1
(ei − ē)2

=

√
E[e2i ]− (E[ei])2

105748 VOLUME 10, 2022



S. K. Sharma et al.: Hybrid PSO—GSA Based Detection of Graphene Defects With Electrical Impedance Tomography

FIGURE 4. Homogeneous case of graphene sheet. The background
conductivity is presented by colour bar.

=

√
MSE −MES (22)

RMSE =

√
(λ− λt )T (λ− λt )

λTt λt
(23)

RMSE =
1
η

η∑
i=1

RMSEi (24)

where λ and λt are the estimated and true values of the respec-
tive Fourier series coefficients, respectively. The statistical
parameters for the numerical cases which are reported which
are tabled in a later section that provides the information
about the PSOGSA algorithm regarding stability and accu-
racy. For the boundary estimation of the defect the calculated
statistical parameters are λ̄, MAE , MES, and Esd .

A. NUMERICAL STUDY
There are 16 electrodes attached to the boundary of the
graphene sample where each side has four electrodes.
The conductivity of the background and the defect on
the graphene sheet is assumed to be homogeneous and is
used as known priori information for estimating the Fourier
series coefficient. The defects are resistive to the current flow
therefore a very low conductivity value of 5 × 10−9mS is
assumed in numerical simulations and of the background to
be 6.7 × 104mS, respectively. The background conductivity
of the graphene sheet is also estimated along with the Fourier
series coefficients. A 1% relative white Gaussian noise is
added to generated voltage data to account for instrumental
and environmental noise.

Initially, a proposed algorithm PSOGSA is used to esti-
mate a homogeneous graphene sheet case for the numerical
study. The estimated value of the background conductivity
of the graphene sheet is shown figure 4. We can see that
the estimated value of conductivity is very close to the true
value. A homogeneous graphene sheet sample was used for
obtaining the optimum value of contact impedance which has
the lowest RMSE of the voltage reading. To optimize the

parameters of the proposed algorithm, a test case of single
defect on the graphene sheet is considered for estimating
defect boundary and the background conductivity of squared
shaped domain. The test case with a circular defect is esti-
mated by PSOGSA, see figure 5a. The parameters such as
the number of particles is analyzed for both single defect and
two defects on the graphene sheet, however, weighting factors
and the number of iteration are analyzed only for single defect
case using this test case. The weighting factors (C ′j ) different
configuration effect on the performance of the algorithm is
initially analyzed. A total of 11 cases of different weighting
factors configuration are used (figure 5b) and the correspond-
ing RMSE, and cost function are shown in figure 5c. Out
of 11 cases of weighting factors configuration only 3 cases
are preferred which have the lower RMSE and cost function
compared to other configurations. The 7th configuration of
weighting factors gives the low RMSE of a estimated Fourier
series coefficients along with a lower cost function. The
proposed algorithm performance is compared with different
iteration levels. By this analysis, we want to check if there
will be any improvement in the performance of the algorithm
with more number of iterations. Five different cases for the
iteration are presented in the figure 5d. We can see that
in almost all cases the cost function converged before 20th

iteration and there is no future improvement further. Thus,
it is a waste of computational resources to run the PSOGSA
algorithm beyond 25th iteration.
The impact of a different number of particles on the

PSOGSA estimation is also analyzed. The number of par-
ticles is initialized in the range of 20 to 350 with 14 dif-
ferent values. As the number of particles is increased the
cost function decreases but the RMSE values are fluctuating
after the number of particles is increased beyond 40. The
cost function is lower for 5 cases in which the particle size
is from 100 to 200, in which RMSE of the Fourier series
coefficients is low for 175 particle size. The comparison of
the cost function and the RMSE with a different number of
particles for the single defect case are presented in figure 5e.

A single defect in the graphene sheet is defined with six
Fourier series coefficients which represent a simple shape,
i.e., circular and ellipse. Two defects on the graphene sheet
are considered to analyze the proposed algorithm for the
estimation of the defect boundary. The two defects needed
12 coefficients to define their simple geometry. As the
unknowns to be estimated by the proposed algorithm have
also doubled in number, we need to increase the number of
particles of PSOGSA to achieve the lower cost function. For
this two defects scenario, presented in figure 6a, we have
analyzed the proposed algorithmwith a different particle size.
Now the number of particles is in the range of 300 to 1000.
The algorithm configured with 600 and 900 particles have
shown good result with lower RMSE and cost function. The
RMSE of Fourier series coefficient and cost function for the
corresponding number of particles are presented in figure 6b.
From the figure, we can see that the algorithm configured
with 600 particles has a lower cost function and a similar
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FIGURE 5. Numerical case of single defect on graphene sheet for parameter optimization. (a) True defect location along with the estimated
result from PSOGSA. The black circle represent the true and a blue circle represent a estimated location of a defect by PSOGSA.
(b) Weighting factors (C ′j ) combination, (c) RMSE and cost function value for different cases of weighting factor combination, (d) cost
function value for a different level of iteration, (e) RMSE and cost function with a different number of particles in PSOGSA.

RMSE of Fourier series coefficient when compared with
900 particles. Since the algorithm configured with the lower
number of particles required less computational resources,
PSOGSA configured with 600 particles is used to estimate
the two defects on the graphene sheet.

An initial guess is required to estimation the defect bound-
ary. PSOGSA and GSA randomly initialized within the
search space and for defect boundary estimation, particles are
randomly initialized within graphene domain. These particles
presents defect with different size at different location which
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FIGURE 6. Numerical case of two defects on the graphene sheet for parameter optimization. (a) True defect location along with the estimated
result from PSOGSA. The black circle represents the true position of the defect. The estimated location of a defect by PSOGSA is represented by a
blue circle. (b)Corresponding RMSE and cost function with a different number of particles in PSOGSA.

are randomly generated with location in range of 0 to 2.5 in
both axis. On the other hand, mNR initial guess are close to
true boundary which is different for every cases.

A total of 6 cases of a single defect on a graphene sheet
are analyzed for estimation of the defect boundary with
PSOGSA. In the first case, the defect is located in the lower
right corner which is presented in figure 7a. In the figure,
we can see that the PSOGSA has estimated the defect location
and boundary with good accuracy when compared with the
estimation by the GSA and mNR. Similarly in the second
case, the defect is located in the top right corner, however,
the defect width is very thin when compared to the first
case. The second case is presented in figure 7b which also
contains the estimation done by all three algorithms. In this
case, the estimation of GSA deviated from the true defect
location towards the graphene sheet boundary whereas mNR
was close to true location but failed to estimate the shape.
However, we can see that the defect location estimated by
PSOGSA is in close agreement with the true location of the
defect. But all algorithm failed to estimated the shape of the
defect. In case 3 the single defect is a small size defect when
compared with the previous two cases. In this scenario, the
defect is located on the lower part of the graphene sheet
between 14th and 15th electrodes. This small size defect is
harder to estimate but PSOGSA has estimated with a low
error which can be seen in the figure 7c along with the
estimation result from the GSA and mNR. In these three
cases, defects are defined with 6 Fourier series coefficients
due to which the shapes are ellipses.

To evaluate the performance of PSOGSA for more com-
plex shapes, defects were defined with more shape coeffi-
cients. Eight Fourier coefficients were used to define a single
defect on a graphene sheet and were estimated. Cases 4,5, and
6 of single defect with higher Fourier series coefficients are

TABLE 1. RMSE of the estimated Fourier series coefficients by PSOGSA,
GSA, and mNR for single defect cases.

analyzed which are presented in figures 7d, 7e, 7f. We can
see that PSOGSA could estimate the defect geometry with
good accuracy than other two algorithms. However, when
the defect on the graphene sheet is very thin as in figure 7f.
PSOGSA estimated defect boundary has same shape as true
boundary. PSOGSA presents the estimated result with close
location to the true shape whereas estimation done by GSA
and mNR diverted from true location.

All the single defect cases are estimated by the PSOGSA
algorithmwith a low error than the GSA algorithm. ThemNR
algorithm failed to estimate the defect boundary in all the
single defect cases. From the 6 cases of single defect we
can say that the PSOGSA has good performance over the
GSA algorithm with the same parameter configurations. The
RMSE of the estimated Fourier series coefficients from all
three algorithms are presented in table 1. The table of RMSE
for Fourier series coefficients shows that PSOGSA has lower
RMSE value which suggest better estimation performance.

Two defects on the graphene sheet cases were also studied
and the performance of the PSOGSA was evaluated against
GSA and mNR. Three different cases are presented for this
study. Case 7 is the simplest two defects case study where one
defect is on the top left and another one is on the bottom right
corner, respectively. The estimation of the defect boundary
by PSOGSA is in close agreement with the true geometry
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FIGURE 7. Numerical results for cases 1-6,(a-f) with a single defect on graphene surface by PSOGSA, GSA, and mNR. The true location of
defect and the initial guess for mNR are presented by a black and green color and the estimated location of a defect by PSOGSA, GSA, and
mNR is represented by a blue, red, and magenta color, respectively.

when compared with the estimation result from the GSA and
mNR, which is presented in figure 8a. Another two defects
scenario on the graphene sheet is labeled as case 8 in which
both defects are on the left side of the graphene, seen in

figure 8b. In this case, the GSA andmNR estimated the defect
location with poor accuracy when compared with PSOGSA.
We can see that the PSOGSA has estimated both defects
location on the graphene sheet with good accuracy than other
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FIGURE 8. Numerical results for cases 7-9,(a-c) with two defects on
graphene surface by PSOGSA, GSA, and mNR. The true location of defect
and the initial guess for mNR are presented by a black and green color
and the estimated location of a defect by PSOGSA, GSA, and mNR is
represented by a blue, red, and magenta color. Defect 1 and 2 are
represented by single and dashed line, respectively.

algorithms. In both these cases, i.e. cases 7 and 8, each defect
is defined with 6 Fourier series coefficients. To include a
complex-shaped defect in case 9 one defect is defined with

TABLE 2. RMSE of the estimated Fourier series coefficients by PSOGSA,
GSA, and mNR for two defects cases.

6 coefficients but another defect is definedwith 8 coefficients.
In this case, there are now 14 coefficients to be estimated
by the algorithms. The true defect geometry along with the
estimated geometry of the defects are presented in figure 8c.
From the figure, we can see that the PSOGSA could estimate
the location of the defect with good accurate than that of GSA,
however, mNR failed to estimate the defect boundary. The
complex shape of the defect was not estimated with good
accuracy. In all cases of two defects scenarios (case 7, 8,
and 9), PSOGSA could estimate the geometry of the defect
with good accuracy. But GSA failed to estimate the defect
location and shape, on the other hand, mNR overestimated
the boundary size or presented a intersecting boundary.

Table 2 shows RMSE by all 3 algorithms for the two
defects cases. From the table, we can see that in two defects
cases PSOGSA has estimated each defect with good accuracy
than the estimation done by other two algorithms. Thus, in all
9 numerical cases, PSOGSA estimated the defect on the
graphene sheet with good accuracy when compared to GSA
and mNR. The standard deviation error of the Fourier series
coefficients estimated by PSOGSA is plotted in figure 9.
From the figure we can see that it has estimated the coef-
ficients with good accuracy. For most of the cases the first
2 coefficients which defines the location of defect has higher
error than other coefficients. Along with the unknown loca-
tion of the defects in the graphene sheet, the background con-
ductivity is also estimated. The true value of the background
is set to 6.7×104mS and both algorithms estimated the back-
ground conductivity of the graphene sheet. The estimated
background conductivity of graphene sheet by PSOGSA is
presented along with the estimated result.

B. EXPERIMENTAL STUDY
The EIT system setup used for the experiment consists of
a constant current source (Agilent 4284A precision LCR
meter) and a data acquisition system (NI PXI-1042Q) to
measure the resultant voltage readings.

1) PREPARATION OF GRAPHENE SAMPLE
In this section, a graphene sample on the SiO2 substrate
preparation is explained. A CVD processed graphene sample
was purchased from Graphene Square Inc. For a mechan-
ical supporter during the transfer process poly (methyl-
methacrylate) PMMA (950 PMMA A4) was spin-coated
at 300 RPM for 30 seconds on graphene synthesized copper
foil and annealed on a hot plate at 100◦C for 5 minutes.
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FIGURE 9. Standard deviation error (Esd ) of all numerical cases for the estimated Fourier series coefficients by hybrid PSOGSA.

After the supporter is coated, the sample was put into an
ammonium persulfate solution to remove the copper foil.
PMMA/Graphene was cleaned with deionized water and was
later transferred to SiO2/Si wafer, which is the target substrate
used for the experiment, after which PMMA was dissolved
using acetone.

A graphene sample of size 2.5 × 2.5 cm is used in this
study. A total of 16 copper electrodes are coated on the
graphene sample using the sputtering method with a mask
which is designed with the electrode location and shape.
Each side of the graphene sample has 4 electrodes placed
equidistantly and are separated by a gap of 0.5 cm as shown
in figure 10. A gold wire, connecting the EIT measurement
system to the graphene sample, was attached to the elec-
trodes with the help of silver paste. A current of the constant

amplitude of 0.1 mA and frequency of 1KHz is injected
into the graphene sheet using a crossed injection pattern.
For 16 electrodes setup, a total of 128 voltage measurement
reading is obtained from the boundary electrodes.

2) RESULT
Electrode contact impedance can have great influence on
reconstruction performance. Especially, in the graphene
application, the conductivity is very high so the electrode
contact impedance has great effect on measured voltages as
compared to other industrial applications such as two-phase
flows. Experiment with homogeneous graphene without any
defects is carried out and the measured voltages are used
to determine the contact impedance of electrodes. From the
experiment, the contact impedance of electrodes is obtained
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FIGURE 10. Electrode coated graphene sample used for the experimental
study.

FIGURE 11. Experimental study for case 1 with defect identification on
graphene of size 2.5 × 2.5cm. (a) Graphene with a single defect.
(b) Experimental result for defect location on the graphene sheet. The
initial guess for mNR and the estimated location of a defect by PSOGSA,
GSA, and mNR is represented by a green, blue, red, and magenta color,
respectively.

as 2.5E-7. A Case of single defect, defect created with a
pointed knife, on the surface of a graphene sheet is pre-
sented in figure 11a where we can see the defect is located
near 7th electrode. For estimating this single defect scenario,

TABLE 3. Estimated conductivity (mS) of graphene sheet by PSOGSA and
GSA.

PSOGSA is configured with 450 particles and iterated for
25 iterations. Figure 12a presents a true scenario where two
defects are present on a graphene sheet. In this scenario, one
defect is located on the lower right side of the graphene sheet
near the 7th electrode and the second defect is located on the
top side of the sample near 3rd electrode. Both defects are
made with a pointed knife on the surface of the graphene
sheet. The presence of two defects has increased the number
of unknown parameters to be estimated. As the number of
unknowns is increased, thus the number of particles in the
algorithm is increased to 750 for better estimation results.

Figure 11b shows the estimated result of the single defect
location by all algorithms together with the true location.
We can see that the estimated location of the single defect
by PSOGSA is in close agreement with the true location
whereas the estimated location by GSA is far away from the
true location. The estimated location of defects for the second
experiment case of two defects on graphene is presented in
figure 12b. In this, we can see that the PSOGSA has estimated
the location of both defects successfully with good accu-
racy whereas GSA could only estimate one defect location
with good accuracy but failed to estimate the 2nd defect on
graphene. The estimation of defects by mNR in both exper-
imental cases overestimated the defect geometry. The small
size of defect is not estimated by mNR. Also, the background
conductivity of graphene is estimated for both experimental
cases along with defect location. The estimated background
conductivity of the graphene sheet can be seen in table 3. The
mNR algorithm only estimated the Fourier series coefficients
whereas GSA and PSOGSA estimated background conduc-
tivity of graphene sheet along with Fourier series coefficients.

From both the numerical and experimental studies, we see
that the PSOGSA performed better in all the scenarios when
compared with GSA and mNR. The proposed algorithm
PSOGSA estimated conductivity of the graphene sheet along
with the defect geometry. The conductivity of graphene sheet
highly depends defect’s geometry due to which each case has
different background conductivity. Moreover, the proposed
algorithm PSOGSA estimated the parameters of two different
search space, i.e., Fourier series coefficient and background
conductivity but the other inverse algorithm only estimated
in single search space. In the complex situation presented in
all the cases, PSOGSA has a very good estimation result with
good accuracy for estimating the Fourier series coefficients
than GSA. However, for achieving more accurate result the
particle size of the algorithm is increased but this will increase
the computational cost. All the three algorithms have the
computational cost which was studied. We have compared
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FIGURE 12. Experimental study for case 2 with defects identification on
graphene of size 2.5 × 2.5cm. (a) Graphene with two defects.
(b) Experimental result for defect location on the graphene sheet. The
initial guess for mNR and the estimated location of a defect by PSOGSA,
GSA, and mNR is represented by a green, blue, red, and magenta color and
defect 1 and 2 are represented by single and dashed line, respectively.

FIGURE 13. Time required by the algorithms for executing a single
iteration.

the time required by these algorithms for executing a single
iteration. Graph in figure 13 represents the computational
time for single iteration of all algorithms. From the graph we
can see that mNR required more time due to the Jacobian
matrix calculation. GSA and PSOGSA used same particle
size for the computational and we can see PSOGSA takes lit-

tle more time than GSA but the estimation result of PSOGSA
is better. Thus, a trade-off between estimation accuracy and
computational cost is the major factor when tuning the pro-
posed algorithm. To overcome this issue we have checked the
proposed algorithm with different particle size and have used
the minimum particle which gives the lowest RMSE value.

IV. CONCLUSION
In this study, electrical characterization of graphene is
achieved by estimating the defect location and background
conductivity using electrical resistance tomography. The
defect boundaries are assumed to be smooth and are described
using truncated Fourier series coefficients. The unknown
Fourier coefficients and background conductivity are esti-
mated using particle swarm optimization-gravitational search
algorithm (PSOGSA). The performance of PSOGSA is ana-
lyzed with different numerical cases for single and mul-
tiple defects. The effect of different parameter configura-
tions (weighting factors, particle size, and total iteration)
on PSOGSA is analyzed. Based on this analysis the initial
conditions of PSOGSA are configured for better performance
and the iteration size is configured to 25 step. Particle size of
PSOGSA depends on the number of parameters that are to be
estimated. For single defect case, PSOGSAwith 175 particles
has the best reconstruction performance and for two defects,
600 particles are used.

Monte Carlo simulation with different noise seed is done
for analyzing the statistical parameters which verifies the
robustness of the proposed algorithm. Statistical analysis
is carried out for all numerical cases and it is seen that
PSOGSA could estimate Fourier coefficients corresponding
to the shape of the defect with great accuracy as compared to
location. This is reflected by the standard deviation error of
the Fourier coefficients. In all the numerical cases, PSOGSA
estimated background conductivity and defects geometry
with good accuracy. However, in the two defects numerical
cases involving complex defect shape, mNR and GSA failed
to estimate the defect location and shape. In the experimental
study PSOGSA has estimated defect with good accuracy
whereas GSA and mNR failed to estimate the defect loca-
tion. Also, in both experimental cases PSOGSA estimated
graphene sheet conductivity with less error deviation when
compared with GSA.

A better estimation result is obtained from the PSOGSA
because it has the exploration capability from PSO, which
makes it better than GSA. Due to complex Jacobian matrix
calculation in mNR, it tends to produce intersecting bound-
aries for complex defect shape. However, PSOGSA is free
from the Jacobian matrix calculation and is able to estimate
the boundary of a complex shape. Also, PSOGSA estimated
parameters belonging to two separate search space (Fourier
coefficients and background conductivity), however mNR
only estimated parameters of a single search space. GSA was
also used to estimate the parameters of two separate search
space but the estimation error was higher than PSOGSAusing
the same algorithm parameters. The main drawback of the
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PSOGSA is the computational cost which increases with the
increase in the particle size and the number of unknowns.
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