
Received 16 September 2022, accepted 27 September 2022, date of publication 30 September 2022,
date of current version 10 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3211072

Virtual LiDAR Simulation as a High Performance
Computing Challenge: Toward HPC HELIOS++
ALBERTO M. ESMORÍS 1, MIGUEL YERMO 1, HANNAH WEISER2, LUKAS WINIWARTER 2,3,
BERNHARD HÖFLE 2,4, AND FRANCISCO F. RIVERA 1
1Centro Singular de Investigación en Tecnoloxías Intelixentes, CiTIUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
23DGeo Research Group, Institute of Geography, Heidelberg University, 69120 Heidelberg, Germany
3Integrated Remote Sensing Studio (IRSS), Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
4Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69117 Heidelberg, Germany

Corresponding author: Alberto M. Esmorís (alberto.esmoris.pena@usc.es)

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG), German Research Foundation, in the frame of the
projects SYSSIFOSS, under Grant 411263134; in part by VirtuaLearn3D under Grant 496418931; in part by the Ministerio de Ciencia e
Innovación, Spain, under Project PID2019-104834GB-I00; and in part by the Consellería de Cultura, Educación e Ordenación
Universitaria of Xunta de Galicia (accr. 2019–2022 and reference competitive group 2019–2021) under Grant ED431G 2019/04
and Grant ED431C 2018/19 and 2022/16.

ABSTRACT The software HELIOS++ simulates the laser scanning of a given virtual scene that can be
composed of different spatial primitives and 3D meshes with distinct granularity. The high computational
cost of this type of simulation software demands efficient computational solutions. Classical solutions based
on GPU are not well suited when irregular geometries compose the scene combining different primitives
and physics models because they lead to different computation branches. In this paper, we explore the usage
of parallelization strategies based on static and dynamic workload balancing and heuristic optimization
strategies to speed up the ray tracing process based on a k-dimensional tree (KDT). Using HELIOS++
as our case study, we analyze the performance of our algorithms on different parallel computers, including
the CESGA FinisTerrae-II supercomputer. There is a significant performance boost in all cases, with the
decrease in computation time ranging from 89.5% to 99.4%. Our results show that the proposed algorithms
can boost the performance of any software that relies heavily on a KDT or a similar data structure, as well as
those that spend most of the time computing with only a few synchronization barriers. Hence, the algorithms
presented in this paper improve performance, whether computed on personal computers or supercomputers.

INDEX TERMS HELIOS++, HPC, KDTree, LiDAR simulation, parallel computing, ray tracing.

I. INTRODUCTION
HELIOS++ is an open source software written in C++11
that computes virtual point clouds by simulating LiDAR
(Light Detection and Ranging) scanning [1]. For this pur-
pose, a scanner is virtually mounted either on a static or a
dynamic platform. The typical static platform is a tripod,
and supported dynamic platforms are ground vehicles, aerial
vehicles, or simple linear trajectories. The mounted virtual
scanner is used to simulate the sensing of a given geometry
by ray-tracing, thus generating an output 3D point cloud.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

Scanning a virtual geometry defined by a set of primitives
requires computing a huge number of ray intersection checks.
Failing to handle this procedure appropriately will lead to
a prohibitive computational cost. For this, a k-dimensional
tree data structure (KDT) is used to speed up data access
and computations [2]. The KDT is a type of binary tree that
exploits the idea of binary space partition and can be used
to speed up spatial queries. In doing so, a partition axis is
chosen at each tree node to determine its best split position.
Afterward, the set of objects is split into two children nodes.
On the one hand, objects at the left of the split position belong
to the left node. On the other hand, objects at the right of the
split position belong to the right node. For instance, finding
the nearest neighbor with brute force presents an average

105052 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4445-7320
https://orcid.org/0000-0002-1042-5999
https://orcid.org/0000-0001-8229-1160
https://orcid.org/0000-0001-5849-1461
https://orcid.org/0000-0002-6728-9350
https://orcid.org/0000-0002-3360-9440

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

complexity of O(n) while using a KDT leads to an average
complexity of O(log n).
Since 3D simulation software, such as HELIOS++,

strongly depends on spatial queries to perform necessary
ray tracing operations, it benefits from using an adequately
built KDT. In fact, without a KDT or a similar data struc-
ture to speed up spatial computations, the simulation prob-
lems solved by HELIOS++would be intractable. Therefore,
improving the efficiency of the KDT should lead to a signif-
icant improvement in performance.

In this paper, we suggest combining two solutions to
improve the efficiency of the KDT. The first is using heuris-
tic strategies to reduce the computational cost of traversing
the KDT. The second is the implementation of tree-building
algorithms based on parallel computing techniques for both
shared and distributed memory systems [3]. One typical third
approach to the ray tracing problem is the implementation of
GPU accelerated ray tracing algorithms. However, this case
was not studied for two main reasons. The first one is that
HELIOS++ is built as a very flexible simulator that supports
different input geometries ranging from point clouds and
detailed voxels (voxels with associated physical properties)
to digital terrain models and classical Wavefront OBJ files.
This input is translated to a different set of primitives with no
significant constraints. Thus, it is possible to have primitives
with very different sizes within the same scene and even
typical plane primitives such as triangles combined with vol-
umetric primitives such as voxels, with each subset of voxels
performing a different physical calculus on ray intersection
depending on its physical properties and operating mode.
The aforementioned concerns make it difficult to implement
a GPU-based ray tracing algorithm that works well for the
general case because it is not trivial to properly balance the
workload among warps of threads when the scene can present
an extremely diverse composition. The second reason is that
HELIOS++ is expected to run as a general-purpose tool on
a typical CPU without requiring a GPU.

For the heuristic KDT building strategy, two greedy algo-
rithms based on the Surface Area Heuristic (SAH) are pro-
posed and parallelized. Both require a single user-specified
argument defining the number of iterations to approximate
the optimum split position. The algorithms themselves are
well suited for the general case. When tested on different
scenes with different sizes and types of primitives (voxels
and triangles), they offered a significant improvement for all
cases. When working with the new KDT implementations,
the simulations showed low efficiency with a speedup of
less than one when using a one task per thread strategy.
Consequently, three alternative parallelization strategies are
proposed and analyzed on shared memory computers. All of
them are based on building chunks of tasks and distributing
them among available threads, achieving shorter simulation
times compared with the baseline implementation based on
the one task per thread paradigm.

The proposed improvements lead to a significant boost
in performance. Nonetheless, performance varies depending

on the scene characteristics, the survey configuration, and
the selected strategy. Some configurations can work well
with big scenes but worse with smaller ones and vice versa.
Specific survey settings, such as pulse frequency and leg
characteristics, determine the computational burden of each
simulation stage. Therefore, they also have a considerable
impact on strategy selection.

In summary, we explore the application of well-known
heuristics to optimize ray tracing algorithms based on
advanced data structures from computer graphics and other
domains. There is enough empirical evidence in the literature
showing that these heuristics work well with regular meshes
whose primitives are of the same type and solve physical
models with uniform workload (e.g., standard lighting mod-
els), but this is not the case with HELIOS++ because it com-
bines different input types with potentially different physical
models. We also provide a theoretical justification for the
heuristics’ increased performance and application indepen-
dence under mild assumptions on the distribution of rays.
Besides, we explore the application of high-performance
computing (HPC) techniques to our case study because they
allow us to design load-balancing algorithms that work well
for irregular and varying workloads.

The paper is organized into five sections after this intro-
duction. First, we discuss the different strategies for KDT
building in section II. Second, we present the parallelization
of the KDT building process in section III. Then, we describe
the parallelization of the simulation itself in section IV.
In section V, we study the performance of the different
strategies and algorithms, providing detailed results for all
of our experiments. Afterward, in section VI we discuss
under which conditions our algorithms are well suited for
other related LiDAR simulators, further application scopes
for our proposals outside laser scanning simulation, and the
different workswe are considering for the near future. Finally,
we concisely present the main conclusions in section VII.

II. K-DIMENSIONAL TREE STRATEGIES
Standard KDT building procedures are based on taking a
different axis at each depth and splitting it at the median
point. More formally, let d be the current tree depth during
the KDT building process and n the dimensionality of the
space, so each point belongs toRn. The split axis φ is selected
in a round-robin fashion, but then it can be expressed as a
function of the tree’s depth simply by φ ≡ d mod n. Let the
set of objects (geometrical primitives) be O = {o1, . . . , om}.
Besides, consider ai ∈ Rn as the minimum vertex of the
object’s axis-aligned bounding box and bi ∈ Rn as the maxi-
mum vertex. Thus, the split position is denoted as pφ such that
the left and right partition subsets of O can be respectively
defined as L =

{
oi : aiφ ≤ pφ

}
and R =

{
oi : biφ ≥ pφ

}
.

When pφ is the median of the number of objects, the KDT
building strategy is illustrated in Figure 1 and will be men-
tioned from now on as the Simple KDT.

Splitting at the object median point has been a widely used
approach, as can be seen in Heckbert’s work on color image

VOLUME 10, 2022 105053

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 1. KDT splitting at object median with r > 0.5.

FIGURE 2. KDT splitting at spatial median with r = 0.5.

quantization, which proposes a median cut algorithm that
creates a KDT as an alternative for the well-known former
algorithm [4]. Alternatively, the spatial median can be used
instead, leading to a split position as shown in Figure 2. The
latter would be the case of Glassner’s work [5], where the
amount of ray intersection checks is reduced using an octree
that divides the objects into compartments. The octree can be
seen as a KDT using the spatial median as splitting criteria.
The main difference would be that each octree partition splits
into eight nodes while each KDT partition splits just into
two. According to Samet, the KDT is an improved quadtree
because it leads to a smaller branching factor. Thus, it can
also be seen as an improved octree [6]. Therefore, it is easy
to notice that the spatial median criteria of the octree can
be efficiently applied to the KDT as it is significantly faster
to compute than the object median. The reason is that the
former implies computing the mean between min and max
vertices, while the latter requires either sorting primitives or
a histogram-based computation.

The reason why the spatial median criteria can lead to
a similar efficiency as the object median is very intuitive
if left and right partitions are similar for both cases. First,
assume a uniform ray distribution [7]. Then, for the sake of
simplicity, assume a unitary size bounding box too. Thus, the
split position matches the space distribution ratio 0 ≤ r ≤ 1.
For a given number of rays k , the cost of ray intersection
checks for the general case can be expressed as k[r|L|+ (1−
r)|R|]. Ceteris paribus and ignoring the problem of straddling
objects (those whose surface lies at both extremes of the
split), it can be proven that both cases lead to the same cost.
First, consider the spatial median case where r = 1/2, for
which the cost is k (|L| + |R|) /2. Now, consider the object
median scenario which cost is k|L| because |L| = |R|, but
then k|L| = k (|L| + |L|) /2 = k (|L| + |R|) /2 which is the
same cost than for the spatial median case.

FIGURE 3. Surface area heuristic-based splitting in red color. Blue and
green dashed lines represent the spatial and object median splits,
respectively.

A. THE SURFACE AREA HEURISTIC
Although changing the object median based implementa-
tion by a spatial median one decreases KDT building time,
it does not reduce the computational burden of ray intersec-
tion checks. A surface area heuristic (SAH) based approach
is proposed to deal with this issue. The SAH is a heuristic
based on the observation that, when using a KDT for ray
tracing, most of the workload comes from tree usage, while
building cost tends to be insignificant in comparison. The idea
was introduced by MacDonald and Booth, who suggested
governing the KDT construction by the costs of traversing
the internal nodes and computing the intersection checks on
leaf nodes [7].

SAH can be understood considering Figure 3 as an exam-
ple. If the split position based on SAH is compared with the
split position based on the spatial median, then the left and
right partitions have the same number of primitives. However,
the SAH-based split implies that the partition with fewer
primitives occupies more space than it would if using the
spatial median split criteria instead, as shown in Figure 2.
Without loss of generality, assume |L| < |R|. If it is not
possible to avoid |L| = |R| because of primitives distribution,
then there is no benefit from using a SAH-based approach.
But this is an uncommon scenario. In consequence, proving
that SAH split is better than both, object and spatial median
splits, requires showing k[r|L| + (1 − r)|R|] < k(|L| +
|R|)/2 from |L| < |R| and r > 1 − r . It is easy to see
that previous inequality is equivalent to (r − 1/2)|L| <
(r − 1/2)|R|. Moreover, as r > 1 − r then r − 1/2 > 0.
Therefore, it is possible to divide both sides of the inequality
by r − 1/2 without changing its sign, leading to |L| < |R|,
which is already known to be true. Notice the same process
could be applied for the case where |L| > |R| which implies
r < (1−r) and recall it was shown before that spatial median
and object median criteria have equivalent costs, so the proof
is completed.

The SAH implementation uses the cost function defined
in (1), where Ci, Cl , and Co are the costs of traversing
an interior node, traversing a leaf node, and performing a
ray-object intersection check, respectively. Also, Ni and Nl
are the number of interior and leaf nodes, while No(l) is the
number of objects in the l-th leaf node. Finally, S(i) is the
surface area of the i-th interior node, S(l) is the surface area

105054 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

of the l-th leaf node, and S(R) is the surface area of the root
node.

CT =
1

S(R)

Ci Ni∑
j=1

S(j)+ Cl
Nl∑
j=1

S(j)

+ Co

Nl∑
j=1

S(j)No(j)

 (1)

Let r be the normalized position of the splitting hyperplane
for any node N . Therefore, r = 0 is the lower limit, r = 1 is
the upper limit, and r = 1

2 is the spatial median. Moreover,
let Lr and Rr be the left and right parts for the r split position
and No(Lr) and No(Rr) the number of objects at the left and
right splits, respectively. In consequence, the loss function
L(r) arises as in (2).

L(r) = S(Lr)No(Lr)+ S(Rr)No(Rr)− S(N)No(N) (2)

Consider the term −S(N)No(N) as the amount of work
saved by making the node an interior one. Hence, it can
be treated as a constant, and thus, the loss function can be
simplified as shown in (3).

L(r) = S(Lr)No(Lr)+ S(Rr)No(Rr)

= rS(N)No(Lr)+ (1− r)S(N)No(Rr)

= S(N) [rNo(Lr)+ (1− r)No(Rr)] (3)

HELIOS++ implements the SAH as a greedy algorithm
used at each node to evaluate the split decision based on local
information. Thus, exploiting the fact that S(N) is constant
when working at the node level, a computationally simpler
version of the loss function can be used, as introduced in (4).

L2(r) = rNo(Lr)+ (1− r)No(Rr) (4)

Note that the loss function involves No(Lr) and No(Rr),
which are both discontinuous functions of r . MacDonald and
Booth proposed a smart analysis noticing that the number of
objects in the left partition cannot decrease as r increases [7],
because of that ∀r ∈ [0, 1], d

drNo(Lr) > 0. Thus, considering
No(Rr) = No(N)− No(Lr), the loss function can be differen-
tiated with respect to r as shown in (5).

dL
dr
= [2No(Lr)− No(N)]

d
dr
S(Lr)

+ [S(Lr)− S(Rr)]
d
dr
No(Lr) (5)

First, assume that the object median lies somewhere sat-
isfying r < 1/2. Therefore, at the left of the object median
dL
dr < 0 because No(Lr) < No(N)/2 and S(Lr) < S(Rr).
Also, at the right side of the spatial median dL

dr > 0 because
No(Lr) > No(N)/2 and S(Lr) > S(Rr). In consequence,
when the object median is to the left of the spatial median, the
minimum must be somewhere between the object and spatial
medians. Note that a similar argument applies for the case
where the object median is to the right of the spatial median,
which implies the optimum split position must lie between
the object and spatial medians for any case.

Once the optimal split position is known to be inside
[µ,ω], where µ denotes the spatial median and ω the object
median, it is possible to define an iterative process to approx-
imate it accurately. Before describing the process, note that
the optimal split position might lie inside [ω,µ] instead.
Nevertheless, this case will be omitted for simplicity, as it is
very straightforward to figure out one from another since it is
only necessary to swap start and end points.

Let a and b be the minimum and maximum vertices of
the current KDT node, and let n be the number of itera-
tions so t ∈ [1, n]. While µ ∈ [a, b] is always satisfied,
it might happen that ω /∈ [a, b] because primitives can be
only partially contained in the node. In this case, force either
ω = a or ω = b depending on which limit is exceeded.
Afterwards, define the normalized spatial and object medians
as µ̂ = (µ − a)(b − a)−1 and ω̂ = (ω − a)(b − a)−1. Also,
let φ1 = µ̂ be the first tested split position in the iterative
process. Considering the function shown in (6), it is possible
to define the optimum split position approximation process
as depicted in (7) so φn will be the best found split position,
where n is the iteration index. Note that the unnormalized split
position can be obtained as φn(b− a)+ a. Finally, notice that
r = φn and thus, the greedy SAH algorithm approximates the
optimum r .

ϕ(t) = µ̂+ t
ω̂ − µ̂

n− 1
(6)

φt>1 =

{
ϕ(t), L2 [ϕ(t)] < L2(φt−1)
φt−1, L2 [ϕ(t)] ≥ L2(φt−1)

(7)

Here proposed greedy algorithm based on SAH requires
one input argument n, the number of iterations to approximate
the optimum split position. However, the problem of building
an optimum SAH for the general case cannot be reduced to
one simple argument, as more variables could be modified,
such as the split axis. For instance, it is easy to see that
an aerial scanning of a big mass of land would have more
primitives along the ground plane, let us say the one defined
by x and y axes, than in the orthonormal direction of the
ground plane, let us say z axis. Hence, distributing more
splits on the x and y axes than on the z axis could lead
to a more efficient space partition in this particular case.
Furthermore, expected scenes from LiDAR sensing can be of
very different types. For instance, works using HELIOS++
(or its predecessor HELIOS for Java) range from industrial
applications [8] to forestry applications [9]. Scenarios of real
laser scanning range from mobile laser scanning (MLS) for
autonomous driving [10] or indoor mapping [11], to large-
scale airborne laser scanning [12]. Laser scanning can also
be used in rural and urban environments such as [13] and [14]
who used terrestrial laser scanning (TLS) and MLS, respec-
tively, or even in industrial facilities [15].

Due to the various possible characteristics of different
scenes, there is no evident constraint shared by different
surveys that can be used to improve the performance of the
greedy SAH algorithm in the general case. That is why the

VOLUME 10, 2022 105055

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 4. Min-max histograms population. Dotted lines connect the
minimum and maximum vertices of each primitive with the histogram of
minimums H∗ and the histogram of maximums H∗, respectively.

number of nodes is left as an input argument. Because it is
simple and flexible and allows the control of the compromise
between precision and building time.

B. THE FAST SURFACE AREA HEURISTIC
While the SAH improves the efficiency of the simulation,
it also implies a higher KDT building time. Therefore, in cer-
tain use cases, the increase in building time might overpass
the decrease in simulation time coming from reducing the
number of needed ray intersection checks. But even if the
building time does not exceed the decrease in simulation time,
it is still possible to reduce the total time by decreasing the
building time even more. This is what the fast surface area
heuristic (FSAH) does at the expense of precision.

A strategy based on min-max histograms similar to the one
proposed in [16] is used to achieve the aforementioned goal.
Let us start by defining H∗ as the histogram of minimums
and H∗ as the histogram of maximums, with both having the
same bin limits. If ai is understood as the start point of the i-th
bin and bi as its end point, then the set of histogram intervals
would be {[a1, b1), . . . , [am−1, bm−1), [am, bm]}. Notice that
the last interval is closed because histograms divide node
space among partition axis in m bins, so the upper limit must
be inside boundaries too. Once the histograms are built from
a priori node information, the set of primitives is analyzed
one time to populate both histograms as in Figure 4. Thus,
the sorting stage required by the SAH implementation with
a O(n log n) computational complexity is substituted by a
histogram-based implementation withO(n) complexity. Note
that minimum and maximum vertices will belong to the min-
imum and maximum histograms, respectively. Thus, H∗ can
be seen as the set of minimum vertices while H∗ would be
the set of maximum vertices.

Once these histograms are known, the SAH approximation
becomes a simple minimization problem. For this purpose,
let L(i) = |{x ∈ H∗ : x < bi}| be the number of primitives
on left partition if split is placed on i-th bin and R(i) =
|{x ∈ H∗ : x ≥ bi}| its analogous for right partition. Now,
finding the approximated optimum split position ropt can be
done by solving (8). This computation hasO(m) complexity.
The FSAH offers good results for the general case when using
m = 32, which is the same number of bins that Shevtsov
et al. suggest using at any level [16]. There is also evidence
that using 32 bins is a good choice when using a pigeonhole

sorting algorithm based on histograms to approximate the
optimum split position [17]. However, switching to exact
SAH when the number of primitives is No(N) ≤ m did not
bring any significant improvement for HELIOS++, unlike in
the work of Shevtsov et al. [16]. Instead, it is a good choice
to use a fixed minimum number of primitives such that a
KDT node is only split when reached. Although considering
a greater m leads to a more accurate search of the optimum
split position, it significantly increases computational cost.
Additionally, a fine grain search does not offer a proportional
improvement in the cost of KDT queries, while the computa-
tional burden of the building does. That is why using a higher
value such as m > 100 is strongly discouraged, at least for
the general case.

ropt = argmin
i

i
m
L(i)+

(
1−

i
m

)
R(i) (8)

C. THE ILOT: INTERNAL LEAF OBJECT TOTAL CACHE
STRATEGY
Both SAH and FSAH strategies benefit from a new cache
technique called the Internal Leaf Object Total (ILOT) cache.
Recall that SAH is based on the idea of governing the KDT
construction through the cost function shown in (1). However,
directly computing CT at each split leads to an intractable
problem because it requires traversing the partially built tree
for each split decision. To address this problem, let us define
t0 as the KDT initial state composed only by the root node.
But then, it is also possible to define a time-based version of
the cost function in such a way that the initial cost is as shown
in (9). Let us also define a speculative cost function like the
one in (10) that computes the cost of the KDT after splitting
the root node. The idea behind the speculative cost function is
to compute the new cost by removing the cost of the current
node as a leaf node and aggregating the cost of the current
node as an interior node. In addition, the expected new cost
considers the two children nodes as leaves. IfCS (0) ≥ CT (0),
then the root node will not be split because the cost would
increase, and the KDT construction finishes. Otherwise, the
KDT root node will be split.

CT (0) =
1

S(R)

[
ClS(R)+ CoS(R)No(R)

]
(9)

CS (0) =
1

S(R)

[
CiS(R)+ Cl

2∑
j=1

S(j)

+ Co
2∑
j=1

S(j)No(j)
]

(10)

Once the initial state is established, the evolution of the
cost function can be modeled for any integer t > 0. For
the sake of understanding, let us use the expressions defined
in (11). Notice that the three can be computed at the node
level, so there is no need to traverse the tree, and thus, the
computational cost of the greedy algorithm is not signifi-
cantly increased. Also, let the internal, leaf and object cached

105056 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

costs for any t > 0 be CI (t) = Ci
∑Ni

j=1 S(j), CL(t) =

Cl
∑Nl

j=1 S(j) and CO(t) = Co
∑Nl

j=1 S(j)No(j). Hence, the
speculative function to be applied after the initial state is the
one shown in (12). If CS (t) < CT (t−1) the node will be split
and the newKDT cost will beCT (t) = CS (t). In consequence,
caches can be updated with no need of traversing the whole
tree, so CI (t) = CI (t − 1) + k1, CL(t) = CL(t1) + k2 and
CO(t) = CO(t−1)+k3. Using an incremental implementation
to minimize the computational burden of calculating the tree
cost function was also proposed in other works [18].

k1 = CiSA(N)

k2 = Cl [S(Lr)+ S(Rr)]− ClS(N)

k3 = Co [S(Lr)No(Lr)+ S(Rr)No(Rr)]

− CoS(N)No(N) (11)

CS (t) =
1

S(R)

[
CI (t − 1)+ k1

+ CL(t − 1)+ k2

+ CO(t − 1)+ k3

]
(12)

The ILOT cache is used together with the minimum num-
ber of required primitives to split. Both criteria must be satis-
fied for a KDT node to be split. Otherwise, the branch stops at
the current node. First, the KDT cost function based on ILOT
cache prevents splitting nodes that will increase tree cost, thus
effectively governing KDT construction by (1), as suggested
by MacDonald and Booth. Second, the constraint on the
minimum number of primitives prevents splitting nodes that,
despite decreasing KDT cost, increase tree depth and thus
memory consumption without significantly improving per-
formance. In such cases, the cost decrease is often relatively
small compared to the decrease at lesser tree depth. Finally,
a global representation of the ILOT cache logic is provided
in Figure 5.

D. COMPLEXITY ANALYSIS
The computational complexity analysis of the different algo-
rithms to govern the construction of the KDT is reduced to
the complexity analysis of finding the split position. Any
KDT building algorithm must iterate over primitives, instan-
tiate nodes, and compute a few similar boilerplate opera-
tions. However, considering these operations does not help
to compare our algorithms because all strategies share them.
It makes more sense to study the complexity of the decision
on whether to place the split position because it is the main
difference between the different proposals.

For the object median split case, it is necessary to sort
the primitives to find the exact object median. This sort
process presents a computational complexityO(m log(m)) for
m primitives. For the spatial median split case, it is enough
to compute the mid-range. Consequently, it is necessary to
iterate one time over the primitives to find the minimum
and maximum vertices and then compute one addition and
one division, leading to a complexity O(m + 2). Since this

FIGURE 5. ILOT cache logic.

complexity is dominated by the linear term m, it is a linear
complexity O(m).

The SAH computation requires a sorting process like the
object median with complexityO(m log(m)) and the calculus
of the mid-range like the spatial median with complexity
O(m). It also requires the computation of an iterative process
of n iterations with linear complexity O(n). Thus, the final
complexity to compute the SAH isO(m log(m)+m+n). This
complexity is dominated by the termm log(m). Neglecting the
other terms leads to a simplified complexity of O(m log(m)).
As stated in previous subsections, the FSAH strategy approx-
imates the SAH with a reduced computational complexity
because it uses histograms built in linear time instead of a
sorting process. The complexity of the FSAH is O(2m + n),
where 2m comes from computing two histograms in linear
time each and n comes from the iterative process to approxi-
mate the optimal split position. Considering the complexity of
the FSAH is dominated by the variable m (which is expected
to be greater than n), neglecting the other terms leads to a
simplified complexity of O(m).

Two main questions arise from the previous complexity
analysis. The first is deciding between FSAH-based and
spatial median split criteria, given that both have linear com-
plexity. Recall that the cost of building the KDT is signifi-
cantly smaller than the cost of the ray tracing process. The
idea of using heuristics tries to exploit this fact to build a
KDT that allows for faster ray tracing. If the complexity
of building the KDT is the same, the FSAH-based heuristic
must be preferred because it will reduce the cost of using the
KDT for ray tracing purposes more than the spatial median.
The second question is whether the reduced complexity of
the FSAH approach comes at the expense of performance
during ray tracing or not. We studied this second question
thoroughly and found that for simulationswith a large number
of primitives, the FSAH approach preserves the performance
of the SAH strategy while having a smaller building time.
Different experiments were performed on personal computers
and supercomputers and in different operating systems. They
are explained in detail in section V.

III. PARALLEL K-DIMENSIONAL TREE BUILDING
KDT is a data structure with a vast set of possible
applications. In consequence, several different parallelization
proposals for its construction already exist. For instance,

VOLUME 10, 2022 105057

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 6. Parallel decorators for KDT factories.

a parallelization in two stages where a global binning is per-
formed in the first stage to approximate medians quickly such
that, in the second stage, it is possible to build a local KDT
on each thread [16]. Concerning the streaming construction of
KDT, it has been proposed to build a subtree in each different
processor. This method exploits the fact that multiprocessor
contexts have a separated cache for each processor, leading to
fewermemory conflicts [18]. Other methods propose to apply
geometry-level parallelism on upper nodes, and node-level
parallelism on lower nodes because upper nodes contain a
significant number of primitives, while lower nodes contain a
smaller number. Alternatively, it is possible to use an in-place
algorithm to minimize data movement by tracking at which
tree depth primitives belong to [19]. There are also works
using GPU versions of radix sort specifically designed to dis-
tribute data among threads. This approach prevents the typical
unbalancing coming from large data chunks in upper tree
levels and small data chunks in lower tree levels [20]. Other
proposals focus on hybrid parallelization algorithms which
can scale up to 50,000 cores building a large KDT through
global redistribution of points among tree nodes. Then, data-
level parallelism is exploited in each of these nodes until there
are enough branches (generally at least ten times the number
of threads) to proceed with thread-level parallelism, where
each thread creates its local KDT from non-overlapping sets
of points [21].

A. RECURSIVE PARALLELISM
In this work, a design inspired by the factory pattern is used
to handle the building of different KDTs. Thus, the Simple
KDT has its own factory while the SAH and FSAH each
have their own factory too. A solution based on a balance
between software design and HPC is proposed. Thus, only a
single layer of parallelism is needed for the recursive building
of the KDT. It is known from previous literature that this
strategy might be improved by applying a geometry-level
parallelization on the upper nodes. Instead, only a node-level
parallelization is applied so it can be implemented through a
simple decorator pattern, as shown in Figure 6
The SAH KDT extends the Simple KDT and replaces

the median criteria with the SAH criteria for determining
split position. The FSAH KDT implementation proposed
in this work extends the SAH KDT and replaces the SAH
computation with a faster histogram-based approximation.

Axis SAH is an experimental implementation to analyze the
impact of combining the SAH strategy with a better parti-
tion axis selection method. Each implementation that extends
from a KDT factory also overwrites some methods invoked
by the build recursive function. They are not detailed in
Figure 6 for simplicity. The multi-thread KDT factory wraps
the recursive building function of the decorated KDT factory
to support parallelism. First, the main thread builds the first
node. Then, the building of both splits is posted to a thread
pool in a non-blocking way. If there are available threads,
they will handle posted tasks. Otherwise, the caller thread
continues the non-blocking recursively building of the KDT.
Each thread replicates this behavior until the building process
has concluded. If a thread finishes its job before the KDT has
been built, it becomes available again so other threads can
delegate their work to it. This building process is illustrated
in Figure 7, where the blue color represents the main thread,
and green and red colors the two secondary threads. The
execution order is not deterministic, so only one possible
execution is represented in the figure. To conclude, a hard
constraint of 32 primitives is imposed such that in those cases
where the current node has a smaller number of primitives,
it will assume the whole workload. This approach is due to
the overhead of thread context operations that might easily
exceed the benefits of distributing workload at such a fine
grain level.

B. PARALLEL ILOT CACHE
Using a multi-thread SAH KDT factory implies using a
multi-thread KDT factory but extending the parallelization
mechanism to handle concurrent access to the ILOT cache.
The pseudo-code of concurrent access logic is shown in
Algorithm 1, where N denotes the node being built, and P
is the set of primitives. Besides, τ is the minimum number
of primitives required to split, and M is the mutex to rule
concurrent access to ILOT, the latter being used through init
and speculate functions. Also, NL denotes the left partition
of node N , while NR denotes its right partition. Analogously,
PL is the subset of primitives for the left partition, while PR
is the subset for the right partition. Moreover, CT and CS are
the total tree and speculative costs as defined in (1) and (12),
respectively.

The ILOT is initialized at the first KDT level. At this step,
there is no need to handle concurrent accesses to neither ILOT
nor costs because only the main thread is accessing them.
After this, all threads share the same behavior, whether they
are a secondary thread or themain one. If there are not enough
primitives to split, then the node is considered a leaf, and
no further branching is required. Otherwise, it is necessary
to lock access to ILOT and costs to decide whether the split
reduces the KDT cost or not. In the first case, CT is updated
with the speculated cost, and the mutex is released. Later,
the recursive building of left and right nodes is posted to the
thread pool, if necessary. When there are enough available
threads, the entire workload is delegated. Otherwise, either
only the left split will be delegated or none at all. In the

105058 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 7. Example of parallel recursive building of a KDT.

Algorithm 1 KDT Building With Concurrent ILOT Access
function buildRecursive(N ,P)

if N is parent then
CT ← initILOT(N)

end if
if |P| ≥ τ then

lock(M)
CS ← speculateILOT(N)
if CS < CT then

CT ← CS
unlock(M)
NL ←buildRecursive(NL ,PL)
NR←buildRecursive(NR,PR)

else
unlock(M)
makeLeaf(N)

end if
else

makeLeaf(N)
end if

end function

last case, the current thread will handle the building of both
partitions.

IV. PARALLELIZATION OF THE SIMULATION
Three strategies are proposed based on distributing chunks of
tasks among the thread pool. They lead to a positive speedup
using new KDT heuristics and improved performance using
the Simple KDT. All the proposed workload distribution
strategies can be run in shared memory and distributed shared
memory contexts. Currently, HELIOS++ is not supporting
multiprocessor architectures with pure distributed memory.
In consequence, all the strategies described in this section
have been tested and implemented in shared memory con-
texts.

First, the one task per thread baseline strategy is described.
Second, a static chunk size strategy is proposed. It is based
on dividing the workload into chunks with a fixed number
of tasks each. Then, a dynamic chunk size strategy is pre-
sented. It divides the workload into chunks whose size varies
during simulation depending on measured idle times. Last,
a warehouse of chunks that allows secondary threads to get

their work from a warehouse-like data structure is explained.
In consequence, the main thread is more decoupled to aux-
iliary threads. It can focus on fulfilling the warehouse, and
once it is full, it can compute some workload on its own. The
improvement of each strategy was measured considering the
simulation times of SCALED_COG and FIXED_250 scenes
described in Table 1 and Table 2 at Section V.

A. ONE TASK PER THREAD
The baseline parallelization is a naive one task per thread
algorithm. Initially, it builds a pool of threads either with
a user-given number of threads or with as many threads as
available in the system by default. Then, once the simulation
starts, the main thread posts each pulse computation task to
the thread pool, where the task is assigned to a single thread.
The main thread itself does not compute any task.

The first drawback of this strategy is the significant over-
head of posting tasks to the thread pool one by one. While the
number of tasks per simulation stage can vary, even in orders
of magnitude, depending on the scanner configuration and
trajectory length, they can easily reach 106 for a single simu-
lation stage. This fact implies spending a significant amount
of time in communications between the main thread and the
worker threads. Parallelization strategies that reduce these
communications can increase the time each thread spends
computing. Another major inconvenience is that one thread
is always either managing the posting of tasks to the thread
pool or waiting for them to be completed.

This parallelization strategy is adequate for problems with
only a few tasks, ideally with as many tasks as the number
of threads. Besides, the workload for each task should be
as uniform as possible. So the one task per thread proposal
should only be considered for either testing purposes or very
concrete use cases.

For the sake of understanding, assume the example prob-
lem of computing an affine transformation over a set P of m
points, such that ∀p ∈ P,p ∈ R4. Suppose that there are
4 available threads. As the affine transformation is known to
be applied to points in R4, it can be defined as p′ = c + Ap
where A is a 4 × 4 matrix and c is a column vector as a
4 × 1 matrix. Thus, the entire work can be divided into m
tasks having m/4 different points each. The one task per
thread paradigm fits this example because it satisfies the two
constraints. First, it can be divided into as many tasks as
threads. Second, all tasks have the same workload since they
all require the execution of one matrix multiplication and one
vector addition for m/4 input points.

B. A STATIC CHUNK SIZE STRATEGY
Using a static chunk size to define workload distribution
is one of the most simple yet effective techniques, with
low overhead. It divides the set of tasks into subsets of
approximately the same given size. This approach is easy to
understand, debug, and manipulate. The main cons are that
it is necessary to provide a good chunk size to maximize
its efficiency and also that, when the task itself presents a

VOLUME 10, 2022 105059

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 8. Static chunk size logic.

varying workload, it cannot adapt. In consequence, for the
typical HELIOS++ use case, it might be efficient at certain
time intervals during the execution but inefficient at others.

The static chunk size strategy is implemented in a non-
blocking scheme. The main thread starts by posting chunks
into the thread pool until all threads have work to do. When
the main thread tries to post a chunk, but all other threads
are already working, it computes one task from the chunk.
Afterward, the chunk is replenished if there are more tasks to
be computed. The aforementioned process is repeated up to
the end when no chunks remain in the pool. If there are no
more tasks for the current simulation stage, the main thread
computes the chunk and waits for other threads to finish.
Thread synchronization occurs at the end of each leg before
proceeding to the next. The workflow of this proposal is
depicted in Figure 8.
In order to implement this technique, a task dropper class is

introduced. It is basedmainly on two attributes, the maximum
number of tasks m, and the set of tasks T . The task dropper
imitates a typical dropper to handle chunk manipulation.
A dropper is submerged into a liquid, and when the bulb is
relaxed, the solution is drawn up inside a tube which then
can be released in a different place. Analogously, the main
thread uses the task dropper to ‘‘submerge’’ into the leg and
draws up a piece of the remaining work. Afterward, this work
is dropped into the thread pool, as explained before. More
specifically, releasing the chunk of tasks into the thread pool
occurs when the task dropper notifies the main thread that
|T | = m. This process is illustrated in the sequence diagram
of Figure 9. Once a task dropper has dropped its workload
on the thread pool, it creates a new instance from itself, and
then it is deleted while the main thread’s dropper reference
is updated. Task dropper class is later extended to exploit
its instance renewal mechanism to provide adaptive behavior
when using dynamic chunk size.

This parallelization strategy suits well problems that
present a uniform workload during the entire execution and
where an adequate chunk size can be a priori determined.

FIGURE 9. Static chunk size sequence diagram.

Nonetheless, the problem must also require a significant
number of tasks. Otherwise, the one task per thread strategy
should be preferred.

One example of use case would be the computation of a
filter (for instance, a typical Gaussian smoothing) over a set of
m images I = {I1, . . . , Im} for which ∀i, Ii ∈ Rh×w. In other
words, any image is a matrix of h× w pixels.
When m is much greater than the number of threads, it is

justified to prefer a chunk size strategy over one task per
thread since a large number of tasks implies a significant
communication overhead. The number of communication
operations, y, scales linearly with the number of tasks having
a unitary slope, so y = m. This expression can be seen
as a particular case of y = k−1m when k = 1, where k
represents the chunk size (the number of tasks per chunk).
Considering that k must be a positive integer, it is known that
k ≥ 1 ⇐⇒ k−1 ≤ 1 and thus, the greater k is, the smaller
k−1 is, hence the smaller the slope of the linear relationship
and the less the number of communication operations.

The workload will be constant during the entire execution
because all input images are an array of h × w real scalars.
An adequate chunk size k must be determined to apply the
static strategy efficiently. Note that the greater k , the smaller
the number of communication operations. Despite this, hav-
ing k = m would lead to a case with no parallelism because
one single thread will compute the entire chunk of tasks. But
having k equal to m divided by the number of threads would
lead to the minimum number of communication operations,
with each thread computing a similar workload. Note that for
more practical use cases, having k equal to m divided by a
small multiple of the number of threads would be enough.

C. A DYNAMIC CHUNK SIZE STRATEGY
Load balance is one of the main performance issues of the
previous approaches. More specifically, two of the main

105060 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

drawbacks of the static chunk size strategy can be addressed
using a dynamic chunk size approach. First, using a rea-
sonable starting size is enough to allow the algorithm to
increase or decrease this size during execution to adapt to the
workload. Hence, there is no need for the user to successfully
speculate the best chunk size beforehand, as in the static
case. Almost any initial size will lead to a good performance
because of the adaptive nature of the algorithm. Note that
the only problem is to specify very low initial values or very
high ones (≥ 105). In such cases, the initial behavior might
have stiffness problems and fail or take too long to adapt to
the workload. Second, the dynamic chunk size approach can
adapt to varying workloads during execution. Note that this
situation is likely to happen in many practical cases.

The dynamic chunk size strategy needs an accurate and
fast way to measure performance without a significant neg-
ative impact on simulation throughput. For this purpose,
a timestamp t0 is registered as soon as the first thread in the
thread pool becomes idle. Later, a second timestamp t1 is
registered when the main thread fails to post to the thread
pool because it is fully occupied. Thus, an elapsed idle time
tb = t1 − t0 is defined. Let us introduce the dynamic task
dropper that can use idle time measurements to adapt to the
current workload. Note that it extends the static task dropper
by considering new attributes such as a minimum magnitude
ε, a significance threshold τ , the initial additive transform
magnitude10, the current additive transform magnitude11,
the update step for additive transform magnitude12, and the
sign s (i.e., either −1 or 1) of the additive transform. Note
that both 10 and 12 are the same for any descendant of
the first dynamic task dropper, no matter what is currently
happening.

From now on, let Ba be the parent dynamic task dropper
and Bb be the child dynamic task dropper. Also, assume that
the prime variables correspond to the child dropper Bb and
the other ones to the parent dropper Ba. Then, let us define
the reproduction function r as in (14). Where the definition
of the δ function is shown in (14). A task dropper governed
by these equations increases its additive transformmagnitude
11 at each successive reproduction that preserves the sign,
which can be understood as the evolutionary sense of the
algorithm. In the case of a change of sign, it starts again from
the original additive transform magnitude 10, but with the
opposite sign. It is worth mentioning that the implementation
has a hard constraint. Thus, if the logic leads to m < 1,
it will be forced to be m = 1. In other words, no sub-unit
chunk sizes are allowed. Using high values of ε and τ resulted
in an undesired loss of information because acceptable idle
times were discarded. Moreover, using small values leads
to very sensitive criteria which could not filter noisy mea-
surements. Values of 0.1 milliseconds were appropriate for
the different studied cases. Notwithstanding, these thresholds
are significantly dependent on the application and computer
traits. Hence, old and future computers with substantially
better components and clocks than nowadays might need to
update these thresholds to decrease or increase one order of

magnitude to 1 and 0.01 milliseconds, respectively.

r(Ba, s′) =

 m′

1′1
s′

 (13)

{
m′ = max

{
1,m+ s′δ

(
11, s, s′

)}
1′1 = δ

(
11, s, s′

)
δ
(
11, s, s′

)
=

{
11 +12, s = s′

10, s 6= s′
(14)

It is possible to define a child dropper Bb from its parent
Ba as depicted in (15). This expression can be understood
as an evolution-like adaptive algorithm because the child is
expected to adapt better than the parent to the work context
based on the information transmitted during evolution. In this
equation, the ‘‘approximately equal to’’ is used because Bb
is not exactly Ba when tb < τ . All attributes match the
parent ones, except the task set T that initially is the empty
set. Therefore the children will never inherit tasks from the
parent. In other words, any set of tasks will be computed once
and only by a unique task dropper. Besides, each consecutive
task dropper should adapt better to the current workload
through the reproduction function r(Ba, s′). Thus, satisfying
the condition tb < τ means that the idle time is too small
to be considered, while satisfying tb ≥ τ means the idle
time brings useful information. Also, satisfying |ta − tb| > ε

means the difference between parent and child is significant
enough to change the adaptive sense. Finally, a situation in
which |ta− tb| ≤ ε means the difference is not big enough to
motivate a change of sign.

Bb ≈

Ba, tb < τ

r (Ba, sgn(ta − tb)s) , tb ≥ τ ∧ |ta − tb| > ε

r (Ba, s) , tb ≥ τ ∧ |ta − tb| ≤ ε
(15)

An example of the behavior of the dynamic chunk size
algorithm in HELIOS++ is shown in Figure 10. In this plot,
the evolution of chunk size m is measured for a forestry
simulation [9]. On the one hand, the static method maintains
the same chunk size during the entire simulation. On the other
hand, the dynamic approach varies its chunk size depend-
ing on the workload. Adapting the chunk size also updates
the workload distribution to fit different simulation stages.
Furthermore, the first half of the simulation benefits from a
smaller chunk size, while the second half wasmore efficiently
handled with a greater one. Looking at computation times in
Table 3, the static chunk size leads to an execution time of
89 seconds, and the dynamic algorithm leads to an execution
time of 80 seconds. It means that, for this particular case, there
is a speedup of around 12% with respect to the static method
when using the dynamic one.

The typical use case for dynamic chunk size also requires
that the problem presents a significant number of tasks like
the static chunk size. Although it differs from the latter in
two points, it is not necessary to determine an adequate chunk

VOLUME 10, 2022 105061

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 10. Dynamic chunk-size behavior.

size, and the workload does not need to be uniform during the
entire execution. The dynamic chunk size proposal is well
suited for cases where the workload varies over time, causing
the optimal chunk size to change as well.

Considering the use case example for the static chunk
size strategy, suppose that the set of images now satisfies
∀i, Ii ∈ Rhi×wi . In other words, every image has its own
dimensions, so each one is now composed of a different
number of hi × wi scalars. Consider, for example, that the
images come from an online data stream that is not entirely
known a priori. Alternatively, instead of images, the elements
of our set could be more complex data structures leading to
more complex tasks whose workload cannot be efficiently
estimated beforehand.

In the above case, it is clear that a static chunk strategy
is not the best method because the workload is not uniform
during the entire execution, and it is not possible to estimate
an optimal constant chunk size beforehand. For these cases,
the dynamic chunk size constitutes a worthy alternative.

D. A STRATEGY BASED ON A WAREHOUSE OF CHUNKS
Storing tasks in a warehouse is proposed as the third strategy.
In this approach, the main thread pushes chunks of tasks into
a warehouse, so secondary threads can take them and proceed
with their computation. Once the warehouse is full, the main
thread takes a chunk and solves it. With this method, the
main thread takes care of an entire chunk before inserting
a new one, reducing the overhead from handling chunks
between the computation of single tasks (as in the previous
algorithms). When there are no more tasks for the current
leg, the main thread behaves as a secondary thread and takes
chunks from the warehouse until it gets empty. This strategy
is illustrated in Figure 11. It is necessary to prevent secondary
threads from going idle while themain thread is computing its
chunk of tasks. To do so, a warehouse factor input argument
f is used such that the warehouse size (i.e., the number of
chunks it can store before being full) is f × n, being n the
number of threads. In consequence, secondary threads will
have enough pending chunks to handle when using a high

enough warehouse factor while the main thread is computing.
Of course, selecting an optimum f is not straightforward
because it depends on both the scene and the computer. Thus,
a chunk of tasks can be computed in a smaller order of
magnitude time than another. Besides, it is important to avoid
a chunk size that is either too small, leading to excessive
fragmentation of tasks, or too high, delaying the start of
computations for each leg and increasing required memory.
Despite this, a priori finding a sub-optimal but good enough
warehouse factor is not too complicated for the general case.
Empirical evidence from Section V-A and Section V-C shows
that f ∈ [4, 8] andm ∈ [32, 64] are good choices for different
scenes.

It is worth noticing in Figure 11 that the thread pool and
the main thread have each their execution flow. Therefore,
the thread pool is constantly taking tasks from the ware-
house. When it cannot because it is empty, then it waits for a
notify signal that must be triggered by the main thread when
inserting a new chunk into the warehouse. In consequence,
the starting point of this diagram is the main thread grab-
bing tasks from the leg. Once the threads at the thread pool
are running, they will continue to execute their logic until
entering the wait stage. Anytime that secondary threads are
awakened by a notify signal, they stay executing on their
own. Afterward, they wait either until the insertion of a new
chunk or until the leg computation finishes. In essence, the
proposal is similar to the typical consumer-producer problem
introduced together with semaphores [22]. However, it uses
wait and notify signals.

One paradigmatic type of use case that can benefit from
our proposal is the family of algorithms based on multiple ray
tracing operations, especially those involving a complex ray
tracingmodel. Themost typical ray tracing algorithms consist
of a set of primitives S defining a scene such that for any
primitive p ∈ S its vertices, normal vector, and any relevant
physical property are known. Note that any ray can be defined
as r = {o,u} where o is the origin point and u is the normal-
ized vector specifying the ray’s direction. Now, the basis of
each ray tracing operation is to find the first intersection point
q ∈ S ∩ r in time t ∈ R between the ray starting at o and the
closest primitive in the scene p ∈ S through direction u, if any.
This case is illustrated through the particular minimization
problem shown in (16). Then, a simple model based on a
function f (p, r) of the normal vector of the primitive, some
of its physical properties, and the ray itself is computed. One
well-known example is Phong’s lighting model that considers
the ambient, diffuse, and specular light coefficients defining
the scene and the material of the object where the primitive
belongs to [23].

min t

s.t. o+ tu = q

t > 0 (16)

Traditional lighting models that use typical ray tracing
algorithms might be better suited for static or dynamic chunk

105062 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 11. Warehouse logic.

strategies. On the one hand, if the scene is composed of
similar primitives of the same type and the lighting model
leads to a uniform computational cost for each task, then a
static chunk size strategy is enough. For instance, a simple
lighting model based on ray tracing applied to a regular
triangular mesh is well suited to be divided into chunks
with similar computational costs. Thus, it can be efficiently
computed in a GPU because the workload can be uniformly
distributed amongwarps of threads. On the other hand, amore
irregular problem that computes a complex model on ray
intersections and whose workload might vary depending on
intermediary results, or a problem that deals with irregular
meshes, might not be so well suited to be decomposed into
uniform chunks. Suppose that the workload can be divided
into different stages, with each stage having a similar burden
per task. A dynamic strategy that automatically fits the chunk
size could be enough for these cases. However, it might be
that the problem does not even have such a coarse grain
regularity to exploit. Then, the warehouse of chunks strategy
must be preferred because it can improve the performance
with respect to the dynamic chunk size strategy due to its
uncoupled nature.

Moving aside from typical lighting models to more com-
plex simulation models, the function f (p, r) can be a com-
plicated piecewise function that behaves differently depend-
ing on the primitive type, some stochastic process, or even
different types of rays. One particular case is HELIOS++,
for which the function f (p, r) might lead to tasks requiring
a different number of ray tracing operations. It is the case
of transmittive detailed voxels for which it is possible to
calculate an extinction coefficient needed to solve a simple
stochastic computation based on a random uniform distribu-
tion, inspired by previous work from North [24]. Depending
on this computation, either the intersection will be the last
one or the ray will be allowed to pass through the intersection
point, leading to at least one more ray tracing computation.
These transmittive detailed voxels can be combined with
other types of detailed voxels and different triangular meshes
in the same scene, which will cause the workload to be very

irregular. In consequence, this case is more adequate for the
warehouse of chunks strategy than any previous ones.

V. PERFORMANCE ANALYSIS ON HELIOS++

All implementations described in previous sections have been
thoroughly measured and compared through different operat-
ing systems and computers. For this purpose, an Intel Core i7-
4930K at 3.40GHzwith 6 physical cores and 32GiB ofDDR3
1600 MHz RAM computer with a GNU g++ 7.5.0 compiler
has been used for Linux PC measurements, while an AMD
Ryzen Threadripper 3970X at 3.70 GHz with 32 physical
cores and 256GiB of DDR4 3000 MHz RAM computer with
an MSVC v142 compiler has been used for Windows PC
measurements. Finally, multiple scenes were tested at the
CESGA FinisTerrae-II supercomputer using a node from its
thinnodes partition with a GNU g++ 6.4.0 compiler. This
node consists of 2 Haswell 2680v3 processors at 2.50 GHz
with 12 physical cores each and 128 GiB of DDR4 2133MHz
RAM.

The data set of 5 different surveys summarized in Table 1
has been used for the performance analysis. For each scene,
the number of primitives and the number of legs or simulation
stages are specified. The volume of the bounding box contain-
ing the scene is also given, together with the serialized scene
size in mebibytes. Note that the scan frequency (the number
of scan lines per second) and the pulse repetition frequency
(the number of laser pulses per second) are also specified.
A summary of the qualitative features of different scenes
is available in Table 2. The HAMMERLE survey comes
from a work comparing different TLS and ULS (unmanned
laser scanning) configurations. More concretely, the selected
survey comes from a set of ULS configurations analyzed in
terms of how accurately understory vegetation is represented
in the point clouds [25]. The data is publicly available [26].
Furthermore, the DIWANG survey comes from a work that
simulates TLS point clouds to build a high-quality synthetic
data set to assess single tree isolation and leaf-wood classifi-
cation through super point graphs [27]. The FIXED_250 and
SCALED_COG surveys were used to investigate tree mod-
eling for forestry purposes [9]. Finally, the ARBORETUM
scene also comes from forestry-related projects. An example
of what a simulated LiDAR point cloud looks like can be
seen in Figure 12, which corresponds to the SCALED_COG
scene.

A. PERFORMANCE ON LINUX PC
The execution time for the baseline HELIOS++ implemen-
tation is shown in Table 3 under the name of BL_Simple
(baseline simple). In the same table, the behavior for the base-
line implementation extended with FSAH is included under
the name BL_FSAH. Both BLI_Simple (baseline improved
simple) and BLI_FSAH (baseline improved fast surface area
heuristic) entries represent a new version of the one task per
thread paradigm with improved concurrency handling. This
improvement was based on updating the software design to
minimize the time spent in critical regions. The modification

VOLUME 10, 2022 105063

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 12. Virtual point cloud from SCALED_COG scene. Each point is
colored depending on the object it belongs to.

FIGURE 13. HELIOS++ performance comparison on Linux PC.

did not even half the sum of building and simulation times,
which justified the three new strategies for parallel simulation
introduced in this paper. They appear in the table as FSAH
static 32, FSAH dynamic 32, and FSAH warehouse 32 × 4
(FSAH warehouse with chunk size 32 and warehouse factor
4). The three correspond with the FSAH heuristic because
it has been the one that leads to the best execution times on
Linux PC for both SCALED_COG and FIXED_250 surveys.
A graphical comparison of the aforementionedmeasurements
is shown in Figure 13. All executions were made using the
6 physical cores and the mean of 5 different runs.

Comparing BL_Simple and BL_FSAH implementations,
there is a speedup of 1.81 in the KDT building. With both
of these implementations, there is no parallel KDT building.
Thus, the speedup is obtained only because of the fast approx-
imation of SAH. The speedup of 2.18 in the simulation time is
due to the improvement in ray intersection checks explained
by governing the KDT construction with the FSAH. Updating
from baseline (BL) to improved baseline (BLI) results in
a total speedup of 1.31 for the simple case and 1.81 for
the FSAH cases. The most significant benefit comes from
the parallelization of the KDT building. When analyzing the
impact of going from the one task per thread approach to the
three new strategies, there are speedups of 2.16, 2.42, and
2.67 in simulation time for static, dynamic, and warehouse
methods, respectively. With the new strategies, the simula-
tions can run more than twice as fast.

To have a global perspective of the performance improve-
ment, we compare the best strategy (FSAHwarehouse 32×4)
with the starting baseline (BL_Simple). In terms of KDT
building time, there is a speedup of 5.21. For the simulation
time, the speedup is 9.80. The total speedup is 8.64 for the
SCALED_COG scene, while the FIXED_250 scene brings
a total speedup of 5.5. These results imply that HELIOS++
is now between 5 and 8 times faster than the baseline imple-
mentation on a Linux PC. The distribution, type (FIXED_250
mixes voxels with triangles while SCALED_COG uses only
triangles), serialized size, and the number of primitives in the
scene, explain this variability.

B. PERFORMANCE ON WINDOWS PC
Regarding the execution on a Windows platform, we want
to compare the performance using the case studies in
Section V-C. Several executions took more than 24 hours to
complete, so only a single measurement was taken per case
study, i.e., one execution per number of cores and paralleliza-
tion strategy. Each of the KDT building strategies was tested
with each parallelization strategy listed in Section IV. The
best configurations per scene are listed in Table 4, which
contains the best case based on the total execution time and
not on the speedup. The analysis of the speedup for every case
in each scene is shown in Figure 14.

Regarding the SCALED_COG scene, the Simple KDT,
together with a dynamic chunk size of 16 tasks, lead to the
best execution time (131.6 s) using 32 cores. In Figure 14a,
it can be observed that the speedup still has a positive slope,
suggesting that increasing the number of available cores
could lead to even lower execution times. Regarding SAH
and FSAH, the speedup remains constant when using 7 or
more cores. Regarding the execution times, even though the
speedup is higher in the Simple Dynamic Case, the global
execution times are lower when using 19 or fewer cores,
so the FSAH strategy should be chosen in those cases for
maximizing performance. When comparing the best case
with the sequential execution time, the achieved time reduc-
tion is 93.05% in terms of full-time.

For the FIXED_250 scene, the Simple KDT heuristic
yields the best execution time, 89.94 s, using a Dynamic
chunk size configurationwith an initial size of 32 tasks. In this
case, the top performance is achieved at 16 cores, yielding a
time reduction of 92.60% in full time. Looking to Figure 14b,
the behavior of the three shown strategies is similar: there
is an increasing speedup with fewer cores, but it becomes
constant when more are available. In the case of SAH and
FSAH, the speedup stops growing at around 5 cores. Before
that point, speedups are similar for both strategies. Beyond
that point, the speedup for FSAH is slightly higher because
the full simulation time is lower for the sequential execution.

Concerning the HAMMERLE scene, using the FSAH
heuristic and the warehouse-based parallelization led to a
total simulation time of 71.22 s. It supposes a reduction of
99.15% compared to the sequential execution. The best result
is achieved by configuring the warehouse with 32 tasks per

105064 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

TABLE 1. Quantitative characteristics of the surveys used to measure HELIOS++ performance.

TABLE 2. Qualitative characteristics of the surveys used to measure HELIOS++ performance.

TABLE 3. Execution times for the SCALED_COG scene on the Linux PC.

chunk and with as many chunks as 8 times the number of
threads. The best performance with this configuration was
obtained with 32 cores, suggesting that increasing the avail-
able cores would produce even faster simulations. Looking at
the HAMMERLE speedups in Figure 14c, we see that there
is room for lower execution times, even when the slope of the
speedup is close to being flat. In the same figure, note that
the speedup for the Simple Static 64 case is remarkably higher
than the chosen strategy. Despite this fact, the execution times
are higher in that case. The better speedup is explained by the
very high simulation time in the Simple Static 64 sequential
case.

Regarding the DIWANG scene, the best full simulation
time was obtained when combining the SAH heuristic with
a static parallelization strategy of 64 chunks. In this case, the
total simulation time is 808.71 s. The speedup behavior can
be observed in Figure 14d. The SAH and FSAH speedups are
parallel along the figure. The lightly higher speedup of the
SAH Static 64 strategy is due to the higher simulation time in
the sequential case. In any case, the performance of both the
SAH and FSAH are pretty similar. For all three strategies,
the speedup slope at 32 cores is positive, which suggests
that the speedup would continue to grow if more cores were
available. Finally, the time reduction achieved with the best
parallelization strategy is 98.99%.

Concerning the ARBORETUM scene, the best execution
time was obtained when using the Simple KDT heuristic,
combined with a warehouse parallelization with 64 tasks
chunks and maximum storage of as many chunks as 8 times

the number of available threads. The best time (212.31 s) was
achieved using 21 cores. In Figure 14e, it can be observed
that the speedup remains constant from there. The same
behavior is observed in the SAH Dynamic and FSAH Static
cases, where the constant speedup starts at 6 cores. With the
Simple Warehouse strategy, the speedup is higher than the
other cases, and the execution time outperforms the SAH
and FSAH heuristics from 10 cores onward. In this case, the
achieved reduction is 89.51% in terms of full-time.

For any survey, the average reduction with the best strat-
egy in terms of simulation time, compared to the baseline,
is 90.23%, more than enough to justify the implementation
of the parallelization strategies.

C. PERFORMANCE ON SUPERCOMPUTER
The data set introduced in Table 1 has been used to measure
the performance of HELIOS++ in the CESGA FinisTerrae-
II supercomputer. This benchmark has a single measure-
ment for each case instead of a mean of measurements
because some executions took more than 24 hours. For
the SCALED_COG and FIXED_250 scenes, we executed
all combinations between the three different KDT building
algorithms (Simple, SAH, and FSAH) and the 3 different
parallelization strategies (Static, Dynamic, Warehouse), from
1 core to 24 cores. We consider the Simple and FSAH KDT
combined with the three different parallelization strategies
for the remaining surveys. The former is justified because
previous executions proved that the FSAH heuristic is faster
than the SAH heuristic at building time without losing effi-
ciency at simulation time. The best combination of KDT
building strategy, parallelization strategy, and the number of
cores for each survey is shown in Table 5. Execution times
and speedups of the best parallelization strategy for each
of the KDT building methods are depicted in Figure 15,
with continuous and dashed lines, respectively. Besides, since
we combined different heuristic approaches with multiple
parallelization strategies, we propose a global speedup metric
that considers both improvements in (17). Here, Tbest stands
for the execution time obtained with the best strategy, while

VOLUME 10, 2022 105065

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

TABLE 4. Best execution times and configuration by scene at Windows PC.

Tsimple stands for the sequential execution time of the survey
using a simple KDT. The time reduction percentage can be
obtained from global speedup as indicated in (18). All global
speedups are introduced in Table 6.

Sglobal =
Tbest
Tsimple

(17)

Treduction = 1−
1

Sglobal
(18)

For the SCALED_COG scene, the best execution time was
obtained with the FSAH heuristic using a warehouse-based
parallelization with chunks of 64 tasks and maximum storage
of as many chunks as 4 times the number of available threads.
The best performance was obtained using 9 cores, showing
that using more cores did not lead to shorter execution times.
Looking at Figure 15a, it can be seen that the SAH strategy
presents an execution time that is very close to the FSAH
one. Both heuristics lead to a simulation time of 64 seconds.
Despite this, building the KDT took 79.28 seconds for the
SAH heuristic but only 28.96 seconds for the FSAH heuris-
tic, which explains why the latter is preferred. While the
Simple KDT presents a more significant speedup, it is not
enough to compensate for its inefficiency as a KDT building
strategy concerning SAH-based approaches. Compared with
the sequential execution time using a simple KDT, the time
reduction brought by the best strategy is around 96.95% in
terms of full-time.

For the FIXED_250 scene, the best execution time was
obtained with the Simple heuristic using a warehouse-based
parallelization with chunks of 64 tasks and maximum storage
of as many chunks as 8 times the number of available threads.
We obtained the best performance using 24 cores, suggesting
that more available cores would reduce the execution time
even more. Nevertheless, looking at Figure 15b, the speedup
for the Simple KDT is starting to decelerate, which means
adding more cores is not enough to reduce its execution time.
The FSAH heuristic is the way to go with fewer cores because
it significantly reduces the execution time with just 10 cores.
It is worth mentioning that SAH and FSAH heuristics lead
to 63 and 62 seconds of simulation time. They also lead to
32.23 and 10.74 seconds of KDT building time, respectively.
The Simple KDT overcomes them despite its higher simu-
lation time of 67 seconds because it presents a significantly
lower KDT building time of 3.62 seconds. Even so, the
difference in total execution time between Simple and FSAH
algorithms is bare of 2.12 seconds. If we compare it with
the sequential execution time using a Simple KDT, the time

reduction brought by the best strategy is around 91.47% in
terms of full-time.

Considering the HAMMERLE scene, the best execution
time was obtained with the FSAH heuristic using a dynamic
chunk size with an initial size of 32 tasks. The best perfor-
mance was obtained using 24 cores, suggesting that, with
more available cores, it could be possible to reduce execution
time even more. As in the FIXED_250 scene, the speedup at
Figure 15c shows a significant deceleration, which means the
scalability is low, and it is not possible to achieve an important
reduction of execution time simply by increasing available
cores. Compared with the sequential execution time using a
simple KDT, the time reduction brought by the best strategy
is around 99.10% in terms of full-time.

Concerning the DIWANG scene, the best execution
time was obtained with the FSAH heuristic using a
warehouse-based parallelization with chunks of 64 tasks and
maximum storage of as many chunks as 8 times the number
of available threads. The best performance was obtained
using 24 cores, suggesting high scalability. Thus, with more
available cores, it should be possible to reduce the execution
time accordingly. From Figure 15d, it can be seen that the
speedup for the FSAH KDT is starting to decelerate, so the
reduction of execution time will not hold for many more
cores. Compared with the sequential execution time using a
simple KDT, the time reduction brought by the best strategy
is around 99.40% in terms of full-time.

For the ARBORETUM scene, the best execution time was
obtained with the FSAH heuristic using a warehouse-based
parallelization with chunks of 64 tasks and maximum storage
of as many chunks as 8 times the number of available threads.
The best performance was obtained using 14 cores, show-
ing that more cores did not lead to shorter execution times.
According to Figure 15e, it can be seen that the FSAH-based
approach reaches a near-constant speedup at around 10 cores.
Compared with the sequential execution time using a simple
KDT, the time reduction brought by the best strategy is
around 95.25% in terms of full-time.

On the one hand, there are scenes such as SCALED_COG
and ARBORETUM, where the FSAH reaches its best per-
formance and then enters a near-constant speedup stage.
On the other hand, there are scenes like HAMMERLE
and DIWANG where the FSAH presents a decelerated but
increasing speedup. However, the FSAH KDT often needs
fewer cores than the Simple KDT to reach its highest effi-
ciency. Also, warehouse-based parallelization strategies often
achieve the best performance or are close to the best one.

105066 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 14. Relationship between the execution time and the number of cores at Windows PC. The best simulation strategy is considered for each
analyzed KDT building strategy. The solid lines represent the execution times, and the dashed lines the speedups.

VOLUME 10, 2022 105067

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

FIGURE 15. Relationship between the execution time and the number of cores at CESGA FinisTerrae-II. The best simulation strategy is considered for
each analyzed KDT building strategy. The solid lines represent the execution times, and the dashed lines the speedups.

105068 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

TABLE 5. Best execution times and configuration by scene at CESGA FinisTerrae-II.

TABLE 6. Global speedups between best strategy and simple sequential at CESGA FinisTerrae-II.

FIGURE 16. Global speedups between best strategy and simple
sequential.

As stated in Section IV-D, the warehouse parallelization strat-
egy significantly improves when using 4 and 8 warehouse
factors with a chunk size of 64.

Finally, a comparison in terms of global speedup is avail-
able in Figure 16. Considering the entire execution, the
surveys with higher simulation times and fewer legs show
the most significant improvement. There are two reasons
for this. The first one is that a higher simulation time
implies that the parallelization strategy for the simulation
has more influence in the full time. The second one is that
the greater the number of legs, the more the synchroniza-
tion barriers between computational intensive intervals. Thus,
HAMMERLE and DIWANG surveys have bigger blocks
of pure computing while SCALED_COG, FIXED_250, and
ARBORETUM require more synchronization stages where
parallel computing stops to end the current leg and prepare
the next one.

VI. DISCUSSION AND RELATED WORK
In this section, we discuss our proposals from three dif-
ferent perspectives. First, we investigate how our proposed
algorithms can benefit other LiDAR simulators. Second,
we analyze the application scope of our algorithms apart from
LiDAR simulation. Finally, we highlight the various future
lines of work that will be made possible by the performance

improvements of HELIOS++ through the application of
HPC techniques.

A. RELATED SIMULATORS
There are various approaches to LiDAR simulation in the
literature. A direct comparison between these models is not
always possible because of their different nature. Some pro-
posals cover only certain types of platforms, such as the
work of Hodge on simulating TLS to study the relationship
between the scanned surface and the scanner concerning
errors in point clouds [28]. Some proposals use stochastic
methods, such as the Monte Carlo-based model by North to
study the relationship between the waveform and vegetation
canopies [29]. Others propose analytical modeling of the
waveform, such as Tulldahl’s simulation study on the impact
of objects on the seabed [30]. It is also important to differ-
entiate general scope simulators, such as the one proposed
by Lohani to study ALS with different terrains, sensors, and
platforms [31], from specific purpose simulators such as
the one of Ranson that aims to study multiple returns in
canopies [32]. A more thorough discussion of the different
LiDAR simulators is available in the work of Schlager from
the perspective of driver assistance systems [33] as well as
in our previous paper introducing HELIOS++ [1].

Concerning the computational relationship between the
different simulators and the improvements proposed in this
paper, we think that the KDT building heuristics could benefit
most simulators that use a ray tracing algorithm. For example,
Wang proposed a TLS simulation method based on ray trac-
ing over bounding boxes [34]. We think this proposal could
benefit from using a KDT and governing its building with
SAH-based heuristics. The only cases that would not benefit
from the heuristics are simulators with a small computational
burden related to ray intersection checks because the cost
increase of building the KDT might exceed the cost decrease
in the ray tracing method.

Our parallelization strategies are only suitable for specific
frameworks. HELIOS++ is a general-purpose LiDAR simu-
lator that supports flexible modeling. For instance, the scenes

VOLUME 10, 2022 105069

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

can be composed of different primitives, with some leading
to a single hit ray casting process and others leading to a
more complex ray tracing process supporting recursive hits.
This flexibility of HELIOS++ comes at the expense of com-
plicating GPU implementations. Simulators using complex
scenes composed of different primitivesmay therefore benefit
from our parallelization strategies. However, we strongly
suggest that less flexible models working with one type of
primitive, having regular spatial distributions, and solving the
same physical model for each primitive, use a classical GPU
approach.

B. WIDER APPLICATION SCOPE
The parallelization strategies proposed in this paper should
work in any application scope as long as two conditions are
satisfied. The first one is that the computational burden must
be considerable. Otherwise, the thread handling overhead
will exceed the time reduction from parallel computing. This
condition means that our algorithms are not expected to be
efficient when applied to small problems. The second one is
that the computations must be divisible into blocks of tasks
with no internal dependencies such that each block has a
significant computational burden. Otherwise, those blocks
with a reduced computational burden will lead to an overhead
that exceeds the benefits. This condition means that our algo-
rithms are not expected to be efficient for cases with frequent
synchronization barriers.

To explore the scope of our algorithms, we first consider a
simple general use case and then move on to a more compli-
cated one.

For the simple general case, we consider the Seek_Approval
relation as defined by Rajkumar and Sandhu [35]. This
relation is a subset of the cartesian product of the admin-
istrative user AU seeking approval, the set of relations
{RL} that will change after approval, the user U affected
by the updated relations, and the set of co-administrators
CAU whose approval is requested. Formally speaking, the
definition is Seek_Approval ⊆ AU × {RL} × U × {CAU}.
Suppose we have many access control operations divided into
blocks B1, . . . ,Bn. Let us assume that the operations for any
i-th block do not share dependencies. Let us also assume that
executing the operations from block Bi+1 is only allowed
after all operations from block Bi have finished because
operations from Bi+1 depend on the result of operations from
Bi. In our simple case, the execution of the blocks will not
start until all necessary Seek_Approval are confirmed. This
particular condition is not limited to the POSTER access
control model [35]. It is similar to handling concurrent
transactions on a database, where a set of operations must be
effective only if previous dependent transactions have been
successfully committed [36].

Thus, our parallel algorithms can be applied to these use
cases as long as each block implies a big computational
burden. Besides, if the operations defining each block present
a varying workload, then the dynamic chunk size and the
warehouse of chunks are the preferable strategies. We think

FIGURE 17. Representation of the toy game. The blue balls are the
players, the green balls are the untouched balls, and the red balls are the
touched balls. The number inside the blue balls represents the number of
balls touched by that player.

the algorithms presented in this paper are well suited because
we have already tested them with the simulation software
HELIOS++. In this software, computations are divided into
legs such that the i-th leg must finish before proceeding to the
(i+1)-th leg. There is a clear equivalence between the blocks
of independent access control operations and the legs of
HELIOS++ simulations. Both are the main synchronization
barriers.

To study a more intricate use case, we consider
Pre_UCONA the pre-authorization sub-model of the
UCONABC usage control model [37]. The UCONABC is a
unified model to handle the security requirements of infor-
mation systems [38]. According to Rajkumar and Sandhu,
it is possible to abstract the usage control scheme to a
toy game example involving balls [37]. In this toy game,
the object schema contains the count attribute with values
from {0, 1, 2, 3} and the color attribute with values from
{red, green, blue}. The usage commands are associated to the
functions touch(a, b), shoot(a, b), and spawn(a, b), where a
and b can be any pair of balls in the game. The set of rights
is considered by the usage commands to decide whether to
compute one of the previous functions or not.

In the toy game, the blue balls are the players. Conse-
quently, the first condition that any usage command will
check is that a.color = blue. Then, depending on the usage
command, it is necessary to check some additional condi-
tions. If awants to touch a ball b, it is necessary that b.color =
green.When satisfying these conditions, the color of bwill be
updated to red. At the same time, the count of touched balls
for a will be increased by 1 up to a maximum of 3. If a wants
to shoot a ball b, it is necessary that a.count = 3 but also
that b.color 6= blue because both red and green balls can
be shot but blue balls (players) cannot. If a wants to spawn
a new blue ball b, it can do it anytime because there are no
additional conditions. The spawned ball will have its count of
touched balls initialized to 0, such that b.count = 0. Figure 17
illustrates the mechanics of this toy game.

The first thing to note is that non-uniform workloads can
be a frequent scenario since each block of operations is
composed of the player’s arbitrary decisions. In consequence,
the static chunk size is not well suited for this toy game.
Nonetheless, the dynamic chunk size and the warehouse of
chunks might be efficient as long as synchronization barriers
are not too frequent. If the frequency of synchronization

105070 VOLUME 10, 2022

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

barriers prevents the grouping of tasks into blocks with a
substantial workload, then no performance improvement can
be expected from our algorithms. For example, if there is one
ball and many players, but only the first player to reach the
ball can interact with it at a given time, then there is one task
per synchronization barrier. If the frequency of synchroniza-
tion barriers does not prevent the formation of blocks with
a significant workload, our algorithms might improve the
performance. For example, if there are multiple players and
balls, having multiple parallel ball-player interactions, there
are many tasks per synchronization barrier. To summarize,
our algorithms can efficiently parallelize multiple simultane-
ous ball games but not a single ball game.

Finally, we discuss the benefits of using a KDT for a
variant of this toy game. Assuming the toy game uses a
KDT to account for the position of the balls and to com-
pute a ray tracing algorithm to find the closest intersection
in a straight line (for instance, the closest player in terms
of euclidean distance), our proposals to improve the KDT
should be considered. The first benefit of using the FSAH
KDT is the reduction of building time, and the second is a
more efficient ray tracing. These improvements are adequate
for any software that computes a ray tracing algorithm in
Euclidean space.

C. FUTURE WORK
General purpose simulation is quite a broad topic, even when
restricted to a specific domain, such as virtual point cloud
generation from laser scanning simulation. Hence, there are
many different branches of future work. The performance
improvements achieved with the techniques explained in this
paper make it possible to extend HELIOS++ to even more
applications.

First, it is possible to integrate HELIOS++ in a cloud
computing environment over a Software as a Service (SaaS)
paradigm. Since all the parallel strategies are implemented
in a shared memory context, deploying HELIOS++ in the
cloud is straightforward because complicated multiprocess-
ing concerns are out of the question. As most standard cloud
platforms already handle the life cycle of shared memory
nodes with many cores, the only remaining tasks are creating
a minimal framework for handling executions and providing
a web interface. We think this would make the software more
accessible to the entire scientific community, bringing many
benefits in terms of transparency, replicability, and accessi-
bility.

Second, we are interested in studying the idea of dynamic
simulations. By this, we mean simulations where at least
one component in the scene updates its state during the
simulation. There are different types of dynamism. The more
complicated type is the one that implies frequent spatial mod-
ifications because they make it necessary to design efficient
algorithms to update the ray tracing related data structures
(i.e., the KDT) as well as computing frequent transforma-
tions on the dynamic objects. While there is a rich literature
on dynamic scenes, the problem is more complicated for

HELIOS++ for two reasons. First, we are not simply ren-
dering a scene but computing a laser scanning model. Thus,
we must implement an extremely efficient method because
the computational cost can easily become prohibitive. The
second one is that we want to keep the philosophy of
HELIOS++ as a flexible simulator. In consequence, we can-
not resort to typical GPU solutions because they will not be
efficient for the different scenes supported by the simulator.

Next, we are planning on supporting multichannel scan-
ners. Thanks to the performance improvements, we expect
that computing a simulation with a dual channel scanner
will take less time than computing a single channel scan-
ner before the improvements. Until now, the simulation of
a multichannel scanner on HELIOS++ requires computing
multiple simulations changing the scanner configuration for
each case, andmerging themmanually. Thismanual approach
can be a cumbersome procedure, especially for cases where
the number of channels is high (e.g., the Velodyne Puck
with 16 channels). We will also explore the feasibility of an
algorithm to reach a sublinear scale in the computational cost
with respect to the number of channels.

Finally, we think HELIOS++ has the potential to be
used as a virtual ground-truth generator so that the output
point clouds are well suited for training artificial intelli-
gence models. We want to explore this issue in depth to
advance research in point clouds because the lack of large
amounts of consistent ground truth data is one of the main
problems in the field, especially when compared with the
available ground truth data in research fields such as image
processing.

VII. CONCLUSION
The main conclusion from this work is that the use of HPC
techniques and advanced tree-like data structures is adequate
to improve the performance of complex and irregular sim-
ulations. This conclusion holds even for those cases which
are not embarrassingly parallel because of the large number
of potential workflow branches the execution might take.
However, integrating the different HPC algorithms makes
the software design more complex. Consequently, increased
development and software maintenance costs must be
considered.

A. KDT BUILDING ALGORITHMS
The SAH enhancement leads to a significant improvement
of HELIOS++ performance. We showed that our FSAH
version of the SAH (or any other accurate yet fast approx-
imation of the heuristic) improves the performance even
more because it preserves the efficiency of the KDT with a
lower building cost. This conclusion is shared by the multi-
ple works that used SAH-based implementations in the last
three decades. However, most of these works are related to
regular triangular meshes, one of the most common data
structures in simulations, computer-generated graphics, video
games, and 3D inventories. In addition, our work shows
that the performance improvement of SAH-inspired solu-

VOLUME 10, 2022 105071

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

tions applies to more complex scenes with different types
of primitives and irregular meshes with different granularity.
Our simple algorithm to pick the best partition axis at each
depth did not lead to an improved simulation performance in
our case.

B. PARALLELIZATION STRATEGIES
Among the parallelization strategies proposed in this work,
the warehouse of chunks is the most efficient for the general
case. Simpler strategies sometimes result in slightly better
execution times for the simplest surveys with low execution
times. Nonetheless, even here, the warehouse strategy offers
significant improvements. Thereby, among the studied par-
allelization strategies, the warehouse of chunks with a size
that is a small multiple of the number of available threads
is the best approach to deal with complex simulations that
can present irregular and varying workloads during their
execution. It is expected that this strategy works better than
the static and dynamic ones for any software that deals with
big and irregular problems, whether they are simulations or
not.

C. BEST CONFIGURATION
For the particular case of HELIOS++, it is possible to define
a configuration for the general case that leads to a significant
performance improvement. Our experiments show that using
an FSAH with 32 bins to govern the KDT building together
with a warehouse parallelization strategy with a chunk size
of either 32 chunks or 64 chunks and a warehouse factor
of either 4 or 8, boosts performance for any case. Even for
those cases where other KDT building strategies bring similar
improvements, the FSAH strategy is recommended because
it is likely to offer the same performance with fewer cores.
The benefits of testing different execution configurations to
improve this general case configuration are not expected to
be big enough to compensate for the extra effort.

ACKNOWLEDGMENT
Performance measurements on the FinisTerrae-II supercom-
puter were possible thanks to the CESGA (Galician super-
computing center).

REFERENCES
[1] L. Winiwarter, A. M. Esmorís Pena, H. Weiser, K. Anders, J. Martínez

Sánchez, M. Searle, and B. Höfle, ‘‘Virtual laser scanning with
HELIOS++: A novel take on ray tracing-based simulation of topographic
full-waveform 3D laser scanning,’’ Remote Sens. Environ., vol. 269,
Feb. 2022, Art. no. 112772.

[2] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[3] L. H. Ceze, Shared-MemoryMultiprocessors. Boston,MA,USA: Springer,
2011, pp. 1810–1812.

[4] P. Heckbert, ‘‘Color image quantization for frame buffer display,’’ ACM
SIGGRAPH Comput. Graph., vol. 16, no. 3, pp. 297–307, Jul. 1982.

[5] A. S. Glassner, ‘‘Space subdivision for fast ray tracing,’’ IEEE Comput.
Graph. Appl., vol. CGA-4, no. 10, pp. 15–24, Oct. 1984.

[6] H. Samet, ‘‘The quadtree and related hierarchical data structures,’’ ACM
Comput. Surv., vol. 16, no. 2, pp. 187–260, Jun. 1984.

[7] J. D. MacDonald and K. S. Booth, ‘‘Heuristics for ray tracing using space
subdivision,’’ Vis. Comput., vol. 6, no. 3, pp. 153–166, May 1990.

[8] F. Noichl, A. Braun, and A. Borrmann, ‘‘‘BIM-to-scan’ for scan-to-BIM:
Generating realistic synthetic ground truth point clouds based on industrial
3D models,’’ in Proc. Eur. Conf. Comput. Construct. Comput. Construct.,
vol. 2, 2021, pp. 164–172.

[9] H. Weiser, L. Winiwarter, K. Anders, F. E. Fassnacht, and B. Höfle,
‘‘Opaque voxel-based tree models for virtual laser scanning in
forestry applications,’’ Remote Sens. Environ., vol. 265, Nov. 2021,
Art. no. 112641.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics:
The KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

[11] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,
and S. Savarese, ‘‘3D semantic parsing of large-scale indoor spaces,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1534–1543.

[12] N. M. Singer and V. K. Asari, ‘‘DALES objects: A large scale benchmark
dataset for instance segmentation in aerial LiDAR,’’ IEEE Access, vol. 9,
pp. 97495–97504, 2021.

[13] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and
M. Pollefeys, ‘‘Semantic3D.Net: A new large-scale point cloud classifi-
cation benchmark,’’ ISPRS Ann. Photogramm., Remote Sens. Spatial Inf.
Sci., vol. IV-1/W1, pp. 91–98, May 2017.

[14] X. Roynard, J.-E. Deschaud, and F. Goulette, ‘‘Paris-Lille-3D: A large and
high-quality ground-truth urban point cloud dataset for automatic segmen-
tation and classification,’’ Int. J. Robot Res., vol. 37, no. 6, pp. 545–557,
2018.

[15] E. Agapaki, A. Glyn-Davies, S. Mandoki, and I. Brilakis, ‘‘CLOI: A shape
classification benchmark dataset for industrial facilities,’’ in Proc. Comput.
Civil Eng., Jun. 2019, pp. 66–73.

[16] M. Shevtsov, A. Soupikov, and A. Kapustin, ‘‘Highly parallel fast KD-
tree construction for interactive ray tracing of dynamic scenes,’’ Comput.
Graph. Forum, vol. 26, no. 3, pp. 395–404, Sep. 2007.

[17] J. Hurley, E. Kapustin, E. Reshetov, and A. Soupikov, ‘‘Fast ray tracing for
modern general purpose CPU,’’ in Proc. Graphicon, Jan. 2002, pp. 1–8.

[18] S. Popov, J. Gunther, H.-P. Seidel, and P. Slusallek, ‘‘Experiences with
streaming construction of SAH KD-trees,’’ in Proc. IEEE Symp. Interact.
Ray Tracing, Sep. 2006, pp. 89–94.

[19] B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino, S. V. Adve,
and J. C. Hart, ‘‘Parallel SAH k-D tree construction,’’ in Proc. Conf. High
Perform. Graph. (HPG), 2010, pp. 77–86.

[20] D. Wehr and R. Radkowski, ‘‘Parallel kd-tree construction on the GPU
with an adaptive split and sort strategy,’’ Int. J. Parallel Program., vol. 46,
no. 6, pp. 1139–1156, Dec. 2018.

[21] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Liu, P. Sadowski,
E. Racah, S. Byna, C. Tull, W. Bhimji, Prabhat, and P. Dubey, ‘‘PANDA:
Extreme scale parallel K-Nearest neighbor on distributed architectures,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016,
pp. 494–503.

[22] E. W. Dijkstra, ‘‘Cooperating sequential processes,’’ Eindhoven Univ.
Technol., Eindhoven, The Netherlands, Tech. Rep. EWD-123, 1965.

[23] B. T. Phong, ‘‘Illumination for computer generated pictures,’’ Commun.
ACM, vol. 18, no. 6, pp. 311–317, Jun. 1975.

[24] P. R. J. North, ‘‘Three-dimensional forest light interaction model using a
Monte Carlo method,’’ IEEE Trans. Geosci. Remote Sens., vol. 34, no. 4,
pp. 946–956, Jul. 1996.

[25] M. Hämmerle, N. Lukač, K.-C. Chen, Z. Koma, C.-K. Wang, K. Anders,
and B. Höfle, ‘‘Simulating various terrestrial and UAV LiDAR scanning
configurations for understory forest structure modelling,’’ ISPRS Ann.
Photogramm., Remote Sens. Spatial Inf. Sci., vol. IV-2/W4, pp. 59–65,
Sep. 2017.

[26] M. Hämmerle, N. Lukac, K.-C. Chen, Z. Koma, C.-K. Wang, K. Anders,
and B. Höfle, ‘‘HELIOS full-waveform laser scanning simulation frame-
work. Source code, precompiled version, example files for study of under-
story tree height scanning and respective output,’’ Version V1, heiDATA,
Geographisches Institut Heidelberg, Heidelberg, Germany, 2017, doi:
10.11588/data/10101.

[27] D. Wang, ‘‘Unsupervised semantic and instance segmentation of forest
point clouds,’’ ISPRS J. Photogramm. Remote Sens., vol. 165, pp. 86–97,
Jul. 2020.

[28] R. A. Hodge, ‘‘Using simulated terrestrial laser scanning to analyse errors
in high-resolution scan data of irregular surfaces,’’ ISPRS J. Photogramm.
Remote Sens., vol. 65, no. 2, pp. 227–240, Mar. 2010.

105072 VOLUME 10, 2022

http://dx.doi.org/10.11588/data/10101

A. M. Esmorís et al.: Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++

[29] P. R. J. North, J. A. B. Rosette, J. C. Suárez, and S. O. Los, ‘‘AMonte Carlo
radiative transfer model of satellite waveform LiDAR,’’ Int. J. Remote
Sens., vol. 31, no. 5, pp. 1343–1358, Mar. 2010.

[30] H. M. Tulldahl and K. O. Steinvall, ‘‘Analytical waveform generation from
small objects in LiDAR bathymetry,’’ Appl. Opt., vol. 38, pp. 1021–1039,
Feb. 1999.

[31] B. Lohani and R. Mishra, ‘‘Generating LiDAR data in laboratory: LiDAR
simulator,’’ Int. Arch. Photogramm. Remote Sens., vol. 52, no. 1, pp. 1–6,
2007.

[32] G. Sun andK. J. Ranson, ‘‘Modeling LiDAR returns from forest canopies,’’
IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2617–2626,
Nov. 2000.

[33] B. Schlager, S. Muckenhuber, S. Schmidt, H. Holzer, R. Rott, F. M. Maier,
K. Saad, M. Kirchengast, G. Stettinger, D. Watzenig, and J. Ruebsam,
‘‘State-of-the-art sensor models for virtual testing of advanced driver
assistance systems/autonomous driving functions,’’ SAE Int. J. Connected
Automated Vehicles, vol. 3, no. 3, pp. 233–261, Oct. 2020.

[34] Y.Wang, D. Xie, G. Yan, W. Zhang, and X. Mu, ‘‘Analysis on the inversion
accuracy of LAI based on simulated point clouds of terrestrial LiDAR of
tree by ray tracing algorithm,’’ in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2013, pp. 532–535.

[35] R. P. V. and R. Sandhu, ‘‘POSTER: Security enhanced administrative
role based access control models,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 1802–1804.

[36] A. Silberschatz, H. Korth, and S. Sudarshan, Database System Concepts.
New York, NY, USA: McGraw-Hill, 2006.

[37] P. V. Rajkumar and R. Sandhu, ‘‘Safety decidability for pre-authorization
usage control with identifier attribute domains,’’ IEEE Trans. Depend.
Secure Comput., vol. 17, no. 3, pp. 465–478, May 2018.

[38] J. Park and R. Sandhu, ‘‘The uconabc usage control model,’’ ACM Trans.
Inf. Syst. Secur., vol. 7, pp. 128–174, Feb. 2004.

ALBERTO M. ESMORÍS was born in Santiago
de Compostela, in February 1993. He received the
bachelor’s degree in computer engineering from
the Universitat Oberta de Catalunya, in 2018, and
the master’s degree in high performance com-
puting from the Universidade de Santiago de
Compostela and Universidade da Coruña. He is
currently pursuing the Ph.D. degree in high per-
formance computing and artificial intelligence
with the Universidade de Santiago de Compostela,

Spain.
He is also working as a Researcher with the Centro Singular de Inves-

tigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago
de Compostela. His research interests include theoretical computer science,
high performance computing, artificial intelligence, and point clouds. The
main focus of his work is the development of algorithms to process real and
virtual LiDAR point clouds.

MIGUEL YERMO was born in Corcubión,
in November 1990. He received the B.S. degree
in physics and the M.S. degree in applied mathe-
matics from theUniversidade de Santiago de Com-
postela, Spain, in 2015 and 2017, respectively,
where he is currently pursuing the Ph.D. degree in
high performance computing.

In 2017, he worked as a Research Assistant
with the Faculty of Mathematics, Universidade
de Santiago de Compostela, developing magnetic

equivalent circuits to speedup FEM simulations of a novel electric generator,
where he has been working as a Research Assistant with the Centro Singular
de Investigación en Tecnoloxías Intelixentes (CiTIUS), since 2018. His
research interests include high performance computing, embedded systems,
remote sensing, and developing rule based classifiers for 3D point clouds.
Most of his work is focused on developing algorithms to process real airborne
LiDAR point clouds.

HANNAH WEISER received the B.S. degree
(Hons.) in geography from Heidelberg University,
Germany, in 2020, where she is currently pursuing
the M.S. degree in geography with a focus on
geoinformatics.

Since October 2018, she has been a Student
Research Assistant with the 3DGeo Research
Group, Institute of Geography, Heidelberg Uni-
versity. Her research interests include virtual laser
scanning and 3D/4D point cloud analysis in the

context of forestry and horticulture.

LUKAS WINIWARTER received the B.Sc. and
M.Sc. degrees (Hons.) in geodesy and geoin-
formatics from TU Wien, Vienna, Austria, in
2016 and 2018, respectively, and the Ph.D. degree
(Hons.) in geoinformatics at Heidelberg Univer-
sity, Germany, in March 2022.

Until May 2022, he was worked as a Research
Assistant with Heidelberg University. Since then,
he has been working as a Visiting Postdoctoral
Fellow with The University of British Columbia,

Vancouver, Canada, funded by an Erwin-Schrödinger-Fellowship. He is also
investigating the role of uncertainty in forest remote sensing using LiDAR.
His research interests include application of machine learning on 3D point
clouds and uncertainty for geospatial analyses.

BERNHARD HÖFLE received the Ph.D. degree
(Hons.) in geoinformatics and physical geogra-
phy from the University of Innsbruck, Austria,
in 2007.

He was a Junior Professor of GIScience and
3D spatial data processing with the Institute
of Geography, Heidelberg University, Germany,
from 2011 to 2017. In 2017, he became a Full
Professor of 3D spatial data processing with the
Institute of Geography and the Head of the Inter-

disciplinary Center for Scientific Computing, 3DGeo Research Group,
Heidelberg University. His research interests include development of compu-
tational methods for 3D geospatial data processing and extraction of geoin-
formation from 3D/4D point clouds acquired by different sensor systems and
platforms.

FRANCISCO F. RIVERA is currently a Full Pro-
fessor with the University of Santiago de Com-
postela, Spain. Throughout his career, he has
supervised researches and published extensively in
the areas of computer-based applications, parallel
processing, and computer architecture. His current
research interests include compilation of irregu-
lar codes for parallel and distributed systems; the
analysis and prediction of performance on paral-
lel systems and the design of parallel algorithms;

and memory hierarchy optimisations, GIS, image processing, and 3D point
clouds computing.

VOLUME 10, 2022 105073

