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ABSTRACT Permanent magnet synchronous motors (PMSMs) are increasingly used in industrial drive
applications. However, these motors can also undergo various failures, causing production line downtime
and resulting in economic loss. Modern diagnostic systems allow the analysis of technical conditions based
on a dataset containing fault symptoms. In most cases, the development of diagnostic patterns indicates the
necessity for interference in motor mechanical construction. This fact speaks to the use of mathematical
models, particularly those based on finite-element methods. This study investigated the possibility of fault
classification using self-organizing Kohonen maps and a multilayer perceptron, based on training with
data from a field-circuit model. The objective of this study is to demonstrate that such neural systems
can detect and classify real motor faults under different operating conditions. Research has focused on
stator-winding faults, demagnetization, and mixed faults. Experimental tests demonstrated the impressive
diagnostic capability of the shallow neural networks developed for diagnostic tasks.

INDEX TERMS Demagnetization, faults diagnosis, finite element method, interturn short-circuits, multi-

layer perceptron, permanent magnet machines, self-organizing feature maps, spectral analysis.

I. INTRODUCTION
Currently, one of the main factors determining the produc-
tivity of industrial drive systems is their reliability, and it
is possible to continuously monitor the state of machines in
real time. Currently, industrial drive management systems
must ensure a high production efficiency, rapid response
to failures, and easy and effective operation of the entire
production line. Combined with the idea of Industry 4.0,
in which we register a number of parameters related to the
technological sequence, this leads to an increasing emphasis
on diagnostic applications for electric drive systems.
Induction motors and permanent magnet synchronous
motors (PMSM) are becoming increasingly popular
machines used in industrial drive systems, as well as in
commercial applications [1]. Despite the many similarities
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between electrical circuits and mechanical constructions, it is
not possible to use diagnostic patterns (symptoms) directly
from one machine to another. Currently, the development
of modern diagnostic applications includes the use of artifi-
cial intelligence techniques based on information regarding
the diagnostic patterns. Only correctly selected diagnostic
symptoms allowed for correct assessment of the technical
conditions of the machine. However, the extraction of uni-
versal fault symptoms that can be implemented in diagnostic
applications of different AC motors remains an unrecognized
field of study.

The search for individual symptoms of electric motor dam-
age is mostly connected to two methods: physical modeling
of the fault on the real object and mathematical modeling of
the machine with the included defect. However, the physical
modeling of machine failures through the degradation of indi-
vidual components is relatively simple in practical execution;
it does not allow one to understand the exact mechanisms of
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defect formation. The physical failure of a machine to create
a comparison pattern also involves generating costs as well
as the resulting pattern degradation with subsequent testing
of the machine. To eliminate these limitations, mathematical
models of electric machines are typically used [2]. They pro-
vided key information regarding the phenomena that occur in
the tested object without interfering with the electromechan-
ical system. This solution also applies to approaches used in
the diagnosis of PMSM drives [3].

The mathematical models of PMSM discussed in the litera-
ture can be divided into two main groups: circuit models that
include the equivalent circuit analysis of the motor [4], [5],
[6], [7], [8] and models based on computationally more com-
plicated finite element methods (FEM) [9], [10], [11]. This
classification shows two directions for modeling phenomena
that occur in electrical machines. The first approach is based
on the electrical equivalent circuit of the motor windings,
considering the constant lumped parameters consistent with
the simplifying assumptions used. However, because of the
simplifications made at the stage of formulating this model,
itdoes not reflect all the phenomena occurring in the machine,
particularly the electromagnetic phenomena. As a result, the
circuit model does not require long computation time and is
perfect for testing drive systems for which a large number of
simulations are performed.

The second approach is based on algorithms for deter-
mining the electromagnetic field distribution in the machine,
which makes it possible to calculate the sources of electromo-
tive forces, considering the nonlinear phenomena occurring in
the magnetic circuit. The FEM is currently the most advanced
technique for modeling electrical machines that require high
computing power. The combination of the precision of the
FEM model to solve magnetic field equations and the sim-
plicity of the concept of a circuit model have been used in
field-circuit modeling methods [12], [13].

In diagnostic applications, FEM models are used only as
reference points for methods that are based on the measured
signal of the tested object. These techniques are based on the
residual between the model and response of an object that is
not resistant to enhanced amplitudes of noise, imperfections
in mathematical modeling, and small changes in the parame-
ters of the object during operation.

Owing to the differences in the values of damage symp-
toms between the FEM model and real objects, which result
in difficulties in assessing motor technical conditions, neural
networks can be used. To the best of our knowledge, solutions
using FEM models for PMSM fault pattern acquisition are
rare.

Furthermore, examples of the implementation of FEM-
based fault symptoms as a neural network (NN) training
data packet and validation of a real object presented thus far
in the literature do not provide satisfactory results. As pre-
sented in [14], fault features extracted by analytical methods
such as spectral analysis cannot be used for fault diagno-
sis, particularly in the case of incorrectly modeled motor
geometry.
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This fact is related to the task that the NN must perform:
the data approximator [15], [16] or the classification system
[13], [17], [18], [19], which is related to the proper choice of
the neural structure. However, the selection of the type of NN
structure also depends on many factors related to the practical
implementation of the diagnostic application, such as the
diagnostic function, computing capacity, and motor oper-
ating conditions [15]. These parameters have a significant
influence on the precision of the decision-making processes
and the dynamics of the training process. Furthermore, the
dynamics of the network training process are closely related
to the appropriate selection of training data.

In the practical implementation of an NN-based fault detec-
tion system, methods based on the application of training
data from a mathematical model for both training and vali-
dation are often used [20], [21]. However, such an approach
is characterized by a very high training accuracy and high
dynamics of the training process but relatively low effec-
tiveness when testing the network on a real object. This
phenomenon is observed especially in the case of significant
differences in data between models and real measurements,
for example, owing to measurement noise or imperfections in
the model. A common technique is to use data derived from
measurements of a real object in both teaching and testing
NN [14], [15], [16], [19], [22], [23], [24], [25], [26], [27].
Therefore, during the training process, the NN acquires the
ability to generalize, which gives the precision of the network
for the analyzed object a very high value. The disadvantage
of this method is the need to complete the process in the
case of an analysis of a new type of damage. In addition, this
method causes physical damage to a real object to obtain new
diagnostic patterns. It should be emphasized that the idea of
physical modeling of damage, unlike the use of mathematical
models, does not allow one to recognize the initial stages of
damage.

Based on the limitations mentioned in the PMSM diagnos-
tic system based on the FEM model and shallow NN [14], this
study demonstrates the possibility of using FEM combined
with circuit modeling of the PMSM with stator winding and
permanent magnet (PM) faults for the preparation of fault
signature datasets. Damage symptoms constitute elements of
the input vectors of the self-organizing Kohonen maps and the
multilayer perceptron classifier. It should be emphasized that
the field-circuit model of the PMSM was used only for the
preparation of training vectors for the analyzed NNs. Testing
of the developed neural fault detectors and classifiers was
carried out by experimental verification of a real drive system.
During the studies, three types of PMSM motor damage were
analyzed: interturn short- circuits (ITSC), demagnetization,
and mixed defects. Experimental verification of the proposed
NN-based diagnostic applications was carried out on a spe-
cially designed laboratory stand with a 2.5 kW PMSM.

This study is divided into five sections. In the second
section, an analysis of the PMSM mathematical model and
its experimental verification are presented. The analysis of
the FEM-circuit model and the concept of modeling the stator
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and rotor faults are described. Furthermore, an experimental
verification based on the motoring and generation modes
of the developed model was presented. The high precision
of the PMSM modeling was confirmed by comparison with
measurements performed on a real object. The third Section
describes the extraction of fault symptoms based on the fast
Fourier transform of the stator current signal obtained from
the field-circuit modeling of the PMSM drive and experimen-
tal tests. The experimental tests are presented for comparison.
The spectrum analysis was performed under different PMSM
operating conditions. The amplitudes of the stator current
spectrum obtained from FEM-circuit modeling constitute the
elements of the NN input vectors, as described in the next
section. The concept of a fault classification system based on
self-organizing Kohonen maps and a multilayer perceptron is
discussed in two separate parts of the fourth section. In this
section, which constitutes the main part of this article, the
training process of two different types of shallow NN based
on information from PMSM modeling and subsequent tests
on the real object are presented. The precision of the NN-
based PMSM diagnostic system can be classified into two
categories: fault detection and damage classification. The
article is completed with a summary of the experimental
results of the proposed diagnostic application based on an
FEM-circuit model supported by shallow neural networks.

Il. PMSM FAULT MODELING BASED ON THE FEM AND
CIRCUIT-BASED SIMULATION

A. DESCRIPTION OF THE PMSM MODEL

Currently, motor modeling is based on the use of the FEM
approach, which allows high-precision representation of the
phenomena that occur in real machines. The PMSM model
was constructed using the ANSYS Maxwell environment.
The geometry of the tested device was split into disjoint and
non-overlapping components of a simple geometry called
finite elements, where electromagnetic circuit calculations
were performed at each grid point. Calculations based on the
analysis of the FEM model make it possible to determine the
distribution of the magnetic field in the individual parts of
the machine. The data generated consider the properties of
the materials used to build the machine, and the considera-
tion of multiple factors makes it possible for this approach
to provides an accurate and complete description of the
electric motor. Simulations were performed in co-simulation
mode with a field-oriented control (FOC) structure taken into
account. The concept of coupling variables between FEM and
circuit models is presented in Fig. 1.

The entire simulation was executed with a calculation
step of le-4 s, and the controller parameters were set to
the same value as that of the Lenze voltage inverters used
in the research. The sampling frequency of the FEM-circuit
model was 8192 (2!3) Hz, which made it possible to compare
the simulation results with the results obtained on a real
object and the preparation of training and testing data for the
analyzed neural networks.
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FIGURE 1. Schematic co-simulation diagram of PMSM drive with
field-circuit model considering stator winding and rotor demagnetization

faults in FOC structure.
VeriStand
LENZE
ENGINERE

SYMBOL DESCRIPTION
A Lenze 14H15 — tested motor
B Lenze 14H32 — loading motor
C Inverter Drives 8400 TopLine C
D LEM LA 25-NP — measurement transducer
E NI PXI 8186 Industrial computer

FIGURE 2. Experimental setup: schematic diagram of connections.

B. EXPERIMENTAL VERIFICATION OF THE PMSM
SIMULATION MODEL

The simulation model was developed for a real 2.5 kW
PMSM by Lenze with the specifications listed in Table 1.
A schematic of the experimental test stand is shown in
Fig. 2. The tested and loaded motors were powered by Lenze
industrial voltage inverters operating in closed loops. The
measurement data acquisition system was implemented using
a DAQ NI PXI-4472 measurement card installed on an NI
PXI 8186 industrial computer.

Motor failure analysis was performed using a specially
designed test stand with a PMSM. Physical models of the sta-
tor and rotor faults are shown in Fig. 3. The modified PMSM
design allowed physical modeling of ITSCs in phase B of
the stator winding in the range of one to three shorted turns.
The motor shown in Fig. 3a was used in the experimental
tests. The leads of the individual coils of the PMSM stator
winding and an example of ITSC fault realization in the form
of three short turns are shown in Fig. 3b. Moreover, it was
possible to change the rotor of the PMSM to model the partial
demagnetization and mixed damage. Rotor failure is realized
by removing a magnet fragment from a pair of permanent
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FIGURE 3. Experimental setup and real failure models for the
investigated faults: (a), (b) PMSM with a special stator winding connector
to model ITSCs; (c), (d) rotor with partial demagnetization.

magnets. The side and front views of the rotor with the parts
of the removed magnet are presented in Figs. 3c and d.

The results of the mathematical modeling were compared
with the experimental results to prove the correctness of
the developed field-circuit model of the PMSM. NN-based
fault detectors and classifiers trained using simulation data
were also tested on the measurement data obtained from the
experimental setup.

The parameters and mapped geometry of the stator and
rotor of the analyzed PMSM were used to build the FEM
model. The data obtained from the simulation model were
compared with those obtained from measurements in a real
drive system. A comparison of the static characteristics of the
phase currents and phase-to-phase voltages versus the load
torque (77) from the FEM-circuit model and measurements
of the experimental motor is illustrated in Fig. 4. The pre-
sented results show the difference in the respective signals
during the change in load torque in the range of 0 to 120%
Trn - The relative error between the model and the real object
was estimated to be in the range of 1% to 6% for phase
currents, whereas for phase-to-phase voltages, the error was
in the range of 2% to 8%. Thus, it was assumed that the
developed PMSM model was sufficiently accurate to reflect
the physical phenomena of the real motor. The basic model
demonstrated here was modified to allow the modeling of the
analyzed PMSM faults.

C. MODELING OF THE INTERTURN SHORT-CIRCUIT IN
STATOR WINDINGS

The proposed PMSM model includes stator-winding failures.
In Fig. 5, the B phase of the stator winding, where motor fail-
ures occur, is brightened. The fault was realized in phase B on
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FIGURE 4. Static characteristics of PMSM obtained with experimental
tests and simulation model for fs = 100 Hz: (a) phase current versus load
torque and (b) phase-to-phase voltage versus load torque.

specially prepared leads from the stator coils. The simulation
faults correspond to the analysis of the damaged object (with
an incipient fault, Ny, of 1-3 shorted turns).

FIGURE 5. Cross-section of the analyzed motor, including the stator
winding fault, FEM model allowing damage to Ny, = 1, 2, and 3 in the

test phase.

An example of a short circuit model is shown in Fig.6. The
tested motor circuit model can be divided into a mechanical
part (blue box) and electrical part (green box). A section
of the coils (Ny;, = 1,2,3) was extracted from the stator
winding in Phase B, through which the coil short circuits were
modeled. In the undamaged state, only the operating current
I flows through the motor windings, whereas an additional
fault circuit is created in the faulty state. The Modeling of the
stator winding damage was implemented with an additional
resistance Ry, changing the value from 10 MQ to 1 mS.
The Ry values correspond to the insulation resistance values
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FIGURE 6. Model of PMSM in ANSYS Electronics with marked mechanical
parts (blue box) and electrical parts (green box).

for an undamaged winding and ITSC fault, respectively. The
modeling method presented here is similar to that used in
other research centers [28].
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FIGURE 7. Instantaneous values of the stator phase-current waveforms in
the case of a healthy winding and with three short-circuited turns of
phase B: fs = 100 Hz, T; = T, : blue line - unfaulty state, red line - faulty
state.

The ITSC fault results in asymmetry in the stator wind-
ing of the PMSM. This asymmetry was observed in the
phase currents, as shown in Fig. 7. A comparison of the
undamaged motor case and the motor with three shorted
turns clearly showed an increase in the current amplitude
(approximately 4%).

D. MODELING OF THE PM DEMAGNETIZATION
A PMSM rotor is typically demagnetized because it exceeds
the allowable operating temperature of the machine associ-
ated with the applied PMs (Curie temperature). This phe-
nomenon is observed during high-overload motor operations
as well as during ITSC. Additionally, damage to magnets can
occur when they fail as a result of mechanical impact.
Regardless of the type of failure in the magnets, the
strength of the electromagnetic field decreased at the moment
of the fault. The failure case of one pair of PMs mounted
on the rotor of the tested PMSM is illustrated in Fig. 8.
The percentage of damage to the magnets corresponds to
the color scale presented in Fig. 8, and the percentage value
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FIGURE 8. Cross-section of analyzed motor considering demagnetization
fault. The percentage of the PM area removed is indicated by the color
legend.

corresponds to the volume reduction related to one magnet.
The effect of demagnetization is clearly visible in the back
electromotive force (BEMF) generated when the PMSM
operates in generating mode. A comparison of the simulation
and experimental results for the PM fault in the tested PMSM
is shown in Figure 9. The generated electromotive force
corresponded to the removal of approximately 25% of the PM
area from one pair of magnets.
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FIGURE 9. Electromotive force generated by the PMSM for permanent
magnet damage during simulation and under experimental conditions for
Neesf = 1500 rpm.

The simulated waveforms of BEMF are shown in Fig. 10.
Failures to PMs in the range of 0-50% are visible on the
waveforms of the generated voltages. Typical deformations
caused by the failure of the PMs, periodically repeated in each
phase of the generated voltage, are marked and magnified in
Fig. 10b.
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FIGURE 10. BEMF waveforms for the motor with a demagnetization fault calculated under simulation conditions depending on the percentage of

PM damage: (a) BEMF transients for n,os = 1500 rpm and (b) zooms.
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FIGURE 11. Simulated transients of the stator phase current in the case
of partial 6% demagnetization: fs = 100 Hz, T, = T : blue line, unfaulty
state; red line, faulty state.

The characteristic deformations of the electromotive force
observed in the simulation correspond to the experimental
results. Based on these results, it can be concluded that
the developed field-circuit model correctly reproduced the
phenomena observed in a real motor. A comparison of the
simulated stator current signals for an undamaged and a
partially demagnetized motor is shown in Fig. 11.

E. SIMULTANEOUS FAULTS TO STATOR WINDING AND PM
Another analyzed fault state was the simultaneous damage to
the stator winding and the magnets of the PMSM drive. The
occurrence of mixed faults leads to the appearance of fault
symptoms visible in the motor current, which are specific
to demagnetization and ITSC. In Fig. 12, a cross section of
the motor in the FEM model considering the simultaneous
failures of the stator and rotor is presented. The analysis of
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FIGURE 12. The cross-section of the motor was analyzed considering the
simultaneous fault of the PMSM stator windings and PM
demagnetization; Ng, = 1, 2, 3, and demagnetization at a level of 6%.

mixed-fault operation is important because the development
of winding short circuits causes local temperature changes,
which, combined with operation under full-load conditions,
leads to a widening of the demagnetization. On the other
hand, the development of the demagnetization level causes
a change in the generated BEMF and causes the motor to
operate with the same load torque as in the case of the
undamaged motor. It is necessary to force a larger phase
current, which leads to an increase in the temperature of the
entire motor winding.

In Fig. 13, the waveforms of the phase currents for a
PMSM with mixed faults are presented. The superposition
of many faults is unfavorable and can cause problems in
the interpretation and diagnosis of failures. The appear-
ance of an ITSC and demagnetization cause an increase in
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FIGURE 13. Waveforms of the stator phase current in the case of
simultaneous partial demagnetization and short circuits of three turns in
phase B; fs = 100 Hz, T; = T;y; blue line: unfaulty state; red line: faulty
state.

the instantaneous values of the stator current amplitudes,
particularly in the faulty phase, and its distortion, analo-
gous to the BEMF waveforms. This asymmetry indicates the
appearance of additional harmonics in the phase currents.

Ill. EXTRACTION OF PMSM DAMAGE SYMPTOMS BASED
ON THE FEM-CIRCUIT MODEL

The basic idea of electrical machine diagnostic systems is
related to the continuous observation of changes in measured
signals and evaluation of the trends of these changes. This
approach requires a deep understanding of the impact of
faults on diagnostic signals and extraction of fault indicators.
Among all the known damage symptom extraction tech-
niques, the fast Fourier transform (FFT) is still the most
widely used [29]. This is due to the fact that FFT is a com-
promise between the precision of failure symptom assess-
ment and computational complexity. In further parts of this
research, FFT analysis will be used to extract failure symp-
toms from simulated current waveforms, which are elements
of the SOM and MLP input vectors.

To demonstrate that the symptoms obtained from the field-
circuit modeling of the analyzed damage can be used to
develop neural fault detectors, they were compared with
the symptoms obtained from the measurements of a real
motor with the same damage performed on a laboratory stand
described in the previous section.

Spectral analysis of the stator current enables the assess-
ment of the technical condition of PMSM stator windings
based on information regarding the amplitude values of the
characteristic spectrum components (harmonics and subhar-
monics of the measured signal).

The degree of damage to the ITSC affects the amplitude
at frequencies that are odd multiples of the fundamental
frequency of supply voltage. In addition, changes in spectral
amplitudes were observed at the frequencies described by the
following equation:

2k + 1
fshzfs<—+ im), 60
Db
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where:

fs— fundamental frequency of the supply voltage,

p» —number of pairs of poles,

k=1,2,3,...,

m=1,3,5,...,2pp-1.

The demagnetization fault causes harmonics related to the
rotational frequency to appear, which in the PMSM motor is
the multiplicity of the supply frequency.

k
fa =fs (1i—> =fs L kfr, @)
Po
where:
[ —rotational frequency,
k=1,2,3,....

The content of additional harmonics and sub-harmonics
was determined by comparing the spectra of the phase cur-
rents for the state of damage (red line) and its absence (blue
line). The analysis was performed for both the field-circuit
model, which is the signal pattern source for NN training,
and based on the measurements of a real object, which will
be used further for testing the developed neural fault detectors
and classifiers.

A comparison of the results of the spectral analysis pre-
sented in Fig. 14 directly shows the features of the considered
PMSM defects. The analysis of Fig. 14a shows that the
symptoms of stator damage are related to the third harmonic
of the fundamental frequency (1) for both the signals com-
ing from the model and those measured on the real object.
Furthermore, the occurrence of the three ITSCs caused an
increase in the amplitude of the mentioned component of
the current spectrum by approximately 30 dB. In the spec-
trum of the measured signals shown in Fig. 14b, the effect
of the three ITSCs resulted in an increase in the ampli-
tude of the third harmonic of the fundamental frequency of
approximately 6 dB.

The next step in the FFT analysis was to determine the
characteristics of the signal related to the demagnetization.
According to Equation (2), the symptoms of PM failure are
primarily related to the rotational frequency and its mul-
tiples, as shown in Figs. 14b and 14c. The occurrence of
demagnetization causes an increase in the amplitude of the
phase-current spectrum components. Therefore, it should be
noted that demagnetization does not significantly affect the
amplitude of the third harmonic of the supply voltage, which
is a symptom of stator-winding faults.

Analysis of the spectrum during mixed damage (Fig. 14e,f)
confirms the possibility of selecting fault symptoms that are
partially independent of each other.

However, the clear influence of damage to the PM on the
spectrum of the phase currents makes it difficult to assess
the technical conditions of stator windings. This was because
of the small quantitative changes in the currents caused
by the ITSC, especially in the initial stage. Therefore, the
diagnosis of PMSM damage based only on FFT analysis is
difficult, particularly during the operation of the drive sys-
tem under variable loads and for different rotational speeds.
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FIGURE 14. Spectral analysis of stator phase current obtained from FEM-circuit model (a, ¢, e) and a real PMSM drive (b, d, f): stator winding fault (a, b),
6% partial demagnetization (c, d), mixed faults (e, f); fs = 100 Hz, T, = T, : blue line-unfaulty state and red line-faulty state.

To partially automate the decision-making process, specific
damage symptoms were further analyzed using NN-based
detectors and classifiers.

The neural detectors developed in this study were con-
structed using MATLAB software, where data normalization,
neural calculations, and an inference stage were performed.

IV. PMSM FAULT CLASSIFIERS BASED ON SHALLOW
NEURAL NETWORKS

The use of classic neural structures, the training process
of which is based on the results of mathematical modeling
while verification takes place on a real PMSM, is rarely
described in the literature [30], [31], [32]. This results from
the difficulties in the development of NN input vectors that
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are resistant to motor operating conditions and measurement
noise. In most cases, these systems include only PMSM dam-
age detection [31], [32] without fault classification. Further-
more, the analyses presented in the literature mainly cover
cases of very serious failures that, in practice, result in the
shutdown of PMSM [30], for example, phase failure [31] or
phase-to-phase short circuits [32]. The stator winding damage
presented in [30] results in an almost 50% increase in the
phase current, which, from a practical standpoint, is useless
owing to the earlier tripping of the motor overcurrent fuse.
The following examples of the use of SOM and MLP in
diagnostic systems, presented in this article, focus on both
the detection of damage and the classification of its type.
Furthermore, owing to the experimental verification of the
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systems presented in the literature, based on a small number
of examples [30], [31], [32], it was decided to show the
operation of the developed NN-based systems for many more
cases when the PMSM operating conditions changed.

Based on the author’s experience with the application of
shallow NN in the diagnosis of different AC motor winding
faults [15], [16], [33], [34], we decided to use shallow neural
structures in the form of SOM and MLP. In this study, particu-
lar attention was paid to the possibility of fault classification
using the aforementioned NN structures, based on training
with data from the field-circuit model.

A. THE IDEA OF FAULT CLASSIFIER BASED ON
SELF-ORGANIZING KOHONEN MAPS

The primary function of SOM in diagnostic applications is
to distinguish subsets of data with the same properties in a
heterogeneous set of units. Determining clusters of units with
similar characteristics allows for clear separation of subsets
of the entire dataset.

The SOM consists of two layers: the input layer, which
is composed of a vector of input data, and the output layer,
which comprises neurons distributed in the network nodes.

During the studies, a map structure with dimensions of
20 x 20 and a rectangular topology was used. The SOM
input vector contained normalized amplitudes in the range of
0—1 of the current spectrum components with frequencies f;,
3fs, fs + 2fr, fs + 10f.. The training process was performed
based on 288 training samples covering four categories nec-
essary for detection: unfaulty state, stator winding damage
(initial ITSC: 1-3 shorted turns), demagnetization, and mixed
damage (simultaneous fault of the permanent magnet and
1-3 shorted turns). Furthermore, the training vector con-
tained samples for different values of the load torque (77, =
(0-1)Trn with 0.2Ty step) and the frequency of the supply
voltage (rotational speed (w, = (0.5-1) w,n with 0.1w,y
steps)). The parameters of the SOM structure and training
process are listed in Table 1.

TABLE 1. Parameters of self-organizing Kohonen maps.

Name of parameter Value
Structure (number of neurons in axis X and Y) 20 x 20
Input vector size 1 x4
Input vector normalization [0,1]
Topology Hexagonal
Training algorithm WTM
Number of training epochs 1000
Initial neighbourhood radius 10
Neighbourhood function Gaussian
Initial learning coefficient 0.7
Training data (simulation) packet size 288
Testing data (real measurements) packet size 288
Number of considered fault categories 8

The SOM training process was conducted for 1000 learn-
ing epochs and began by assigning random initial values to
the weighting factors. The radius of the neighborhood used
during the learning process was gradually reduced from an
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initial value of 20. The process of adapting the weights of
the neurons according to the winner takes the most (WTM)
learning method as follows:

Wik + 1) = wa(k) + n(k)G(R, d(c, m)[x(k) — win(k)],
3

where:

R=0,1,2...—neighbourhood radius,

d(c, m) is the distance between winning neuron ¢ and
neuron m in the Kohonen map.

n-learning coefficient in the range (0—1)

G — neighbourhood gaussian function,

X — input vector,

w—weight vector.

A schematic of the proposed SOM-based
fault-classification system is shown in Fig. 15. It should be
emphasized that during the training process of the network,
only the symptoms derived from the mathematical modeling
of the PMSM were used, whereas the verification data were
obtained during the measurements of the real object for
different values of the load torque and rotational speed.

FEM model of PMSM stator current
PMSM measurement

| !

FFT analysis ] FFT analysis ]

v _ v

Input vector Input vector J
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calculation J
Tt

|

Weight
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FIGURE 15. Schematic of SOM-based PMSM fault diagnostic system
trained with simulation patterns and tested with experimental patterns.
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After the training process, the vector of the obtained
SOM weighting factor is used in the verification process.
In this case, only symptoms derived from measurements of
the real object were used. Consequently, it is possible to
accurately determine the suitability of the Kohonen network
structure designed based on the simulation patterns in the real
drive-fault classification process in terms of future practical
implementation.

B. THE EXPERIMENTAL VERYFICATION OF THE
SOM-BASED DIAGNOSTIC SYSTEM

The development of a classification system based on the
self-organizing Kohonen network involves determining the
characteristic zones of the map that are related to the class
under consideration. This process is not automatic and forces
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the empirical elaboration of the zones of Kohonen’s map.
In the application presented herein, the average value of
the Euclidean distance measures between the samples of the
training set based on the field-circuit model and network
neurons was used to develop the Kohonen map areas. The
Euclidean distance matrix obtained for each damage category
was normalized using the hyperbolic tangent function. After
normalization, the zone characteristics of the Kohonen map
for the individual damage categories were plotted automati-
cally, as shown in Fig. 16.
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FIGURE 16. SOM area characteristics of the considered PMSM damage
categories obtained during the training process with the simulation
dataset: (a) unfaulty motor, (b) demagnetization, (c) stator winding fault,

(d) mixed damages: T; = var (0—T,, with a step of 0.1T; ), fs = var (50—
100 Hz with a step of 10 Hz).

The dark zones of the map observed in Fig. 16 correspond
to the smallest value of the Euclidean distance measure, that
is, to the places where neurons belonging to the appropriate
class are activated.

Experimental tests were performed for the results of mea-
surements (testing data vector) on the real PMSM drive for
variable load torque conditions and the frequency of the
supply voltage, different from those used in the training
process, according to the methodology presented in Fig. 15.
The results of the damage classification using the developed
SOM are shown in Fig. 17.

The analysis of SOM responses in the form of active
neurons presented in Fig. 17 shows a clear separation of areas
characteristic of individual categories. The map area assigned
to the undamaged state (blue) is located at the center of the
map and is the reference point for the remaining categories.
As shown in Figs. 17a and 17c, owing to the increase in the
degree of damage to the stator windings, neurons located fur-
ther from the area characteristic of the unfaulty state (moving
away from the zone marked in blue) were activated. This
phenomenon is observed for both the training and testing data
(Fig. 16¢.,d and Fig. 17b,c), and may indicate the possibility
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FIGURE 17. Classification of PMSM fault based on SOM for testing
(measurement-based) data: (a) demagnetization, (b) stator winding fault,

(c) mixed damage: T; = var (0T, with a step of 0.1T; ), fs = var (50—
100 Hz with a step of 10 Hz).

of both stator winding damage detection and an approximate
assessment of the degree of damage. However, it should be
noted that the effectiveness of assessing the degree of damage
to the stator windings will strongly depend on the actual
value of the load torque and the frequency of the supply
voltage, which is particularly noticeable in the experimental
tests conducted for a real motor or in the results of FEM-
circuit modeling. This influence was also observed for the
simplified circuit model in the case of the most sensitive fault
amplitude of the 3f; harmonics, as presented in [8].

PM damage is characterized by clear changes in the wave-
forms of the phase currents, and thus, significant changes in
the values of the elements of the SOM input vector. Therefore,
the separation of the area characteristic of demagnetization
from the state of no damage was more significant (Fig. 17a).
In addition, the areas characteristic of demagnetization and
damage to the stator windings are located in the extreme
parts of the map. This is undoubtedly advantageous in terms
of recognizing the type of defect and limiting the risk of
incorrect classifications.

Simultaneous damage to the rotor magnet and stator wind-
ings results in the activation of neurons in an area that does
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not belong to any of the considered -categories
(Figs. 16d and 17c). As in the case of ITSCs (Figs. 16c and
17b), along with an increase in the number of shorted turns,
distancing of the active neurons from the zone characteristic
of demagnetization is observed. Therefore, it is possible to
approximate the degree of stator damage even in the case of
simultaneous PM failure.

The analysis of active neurons shows that an increase in
the degree of the defect, regardless of the type of damage,
results in moving away from the zone characteristic of an
unfaulty state towards the outer boundaries of the Koho-
nen map. This trend was evident for both training and test
samples. Moreover, as shown in Fig. 17, the Kohonen maps
did not visually reflect the 288 test samples used during the
experimental verification. This is related to the overlap of the
active neurons of the Kohonen map in the case of a slight
difference in the network input vector. Such a situation is
observed inter alia in the case of similar operating conditions
fs=50HzT;, =0.8 Ty and f; = 60 Hz, T;, = 0.6 T n, where
the differences in the amplitudes constituting the elements
of the input vector are almost identical. The phenomenon
of Kohonen map overlapping neurons was discussed in
detail in [16].

Furthermore, it should be highlighted that the experimental
verification confirmed the high efficiency of PMSM damage
classification by SOM based on training data from mathemat-
ical modeling, even for incipient faults, which is the original
result presented in this article.

C. THE IDEA OF NEURAL CLASSIFIER BASED ON
MULTILAYER PERCEPTRON

Multilayer perceptron (MLP) is one of the most widely used
neural structures in the diagnostics of electrical machines.
This is because of its popularity as a simple mathematical
description, easy practical implementation, and the ability to
approximate any function. However, ensuring the high pre-
cision of MLP-based diagnostic systems requires the devel-
opment of input vectors, whose elements can be assigned to
one of the considered groups. The current approach to the
implementation of MLP in diagnostics is based on the use
of data from the same test object in the form of a real or
mathematical model in both training and testing processes.
The use of data from mathematical modeling in the training
process and verification in a real motor drive results in many
difficulties owing to the measurement noise and inaccuracy of
the mathematical models [14]. However, only this approach
makes sense for practical implementation of neural struc-
tures, as explained in the Introduction. It should be noted that
the presence of measurement disturbances and small errors in
the data acquisition should not significantly affect the oper-
ation of the system. Therefore, it is important to develop an
NN structure in which there is a trade-off between precision
and generalization. To show the approximation ability of the
MLP acquired in the training process based on a simulation
dataset for unknown data from a real object, the research was
conducted according to the idea presented in Fig. 18.
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FIGURE 18. Schematic of MLP-based PMSM fault diagnosis system
trained using simulation patterns and tested with experimental patterns.

The training and verification processes of the MLP-based
PMSM damage classifier were divided into two stages in a
manner similar to that presented for the SOM. In the training
process, data from the PMSM modeling were used. The
input vector of the network contained the amplitudes of the
phase-current spectrum at the frequencies f, fs, 3fs + 2f;,
and 3f;. The input vectors of the network were selected based
on many simulation studies for various operating conditions
of the PMSM (Tp, = (0-1)Try with 02Ty step, fs =
(0.5-1)fsy with 0.1f;y step). It should be emphasized that
extracting symptoms from a diagnostic signal requires precise
knowledge of the nature of the damage and its influence on
the diagnostic signal. In the absence of visible changes in
the signal, the development of a neural structure is extremely
difficult in practical applications. The course of the MLP
learning process takes place through the presentation of the
NN of all input vectors and the corresponding system reac-
tions. The parameters of the multilayer perceptron and the
training process are listed in Table 2.

TABLE 2. Parameters of multilayer perceptron.

Name of parameter Value
{43-{43-{6}-{1}

Structure (number of neurons in layers)

Input vector size 1 x4
Input vector normalization [-1,1]
Activation function Hyperbolic tangent
Training algorithm Levenberg-Marquardt
Number of training epochs 700
Training data (simulation) packet size 288
Testing data (real measurements) packet size 288
Number of considered fault categories 4

In the course of simulation studies carried out for more
than 200 different neural structures, an MLP network con-
taining two hidden layers with four and six neurons and
an activation function in the form of a hyperbolic tangent
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was selected. The output layer of the network contained
one neuron whose activation state corresponded to each of
the four damage categories considered. During the training
process, the weighting factors of all the layers were subjected
to adaptation according to a specific algorithm. The use of a
differentiable activation function, the Levenberg-Marquardt
algorithm was used for 700 training epochs, owing to the
use of a differentiable activation function. After the train-
ing process, the structure of the network with appropriately
selected weighting factors constitutes a part of the neural fault
classifier that works with the measurement data from the real
object.

D. THE EXPERIMENTAL VERYFICATION OF THE
MLP-BASED DIAGNOSTIC SYSTEM

The effectiveness of the MLP-based diagnostic system was
verified during laboratory tests on a stand with a PMSM
operating under various load and rotational speed conditions,
which were different from those under the training process.
The tests were divided into eight stages, depending on the
type of physically modeled PMSM damage: unfaulty motor
(Nsi, = 0, Ngern = 0), incipient ITSC (Ng, = 1,2,3, Ngem =
0), demagnetization (Ng;, = 0, N = 1), and mixed damage
(Ngi, = 1,2,3, Ngemy = 1). Each stage contained 36 samples for
different machine operating conditions in the stator frequency
and load torque ranges of f; = (50-100) Hz (with steps of
10 Hz) and T, = (0-1)Tyy (with steps of 0.2T7y). The
effectiveness of the diagnostic system was evaluated in two
categories: damage-detection precision, which is the ability to
recognize the failure state and its absence, and classification
precision, which is the ability to determine the type of failure.
A summary of the neural network responses to data obtained
from a real object is shown in Fig. 19.
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FIGURE 19. Experimental verification of the MLP-based PMSM fault
diagnostic system: T; = var (0—T; with steps of 0.1T;y), fs = var
(50— 100 Hz with steps of 10 Hz).

An analysis of the results of the experimental studies
presented in Fig. 19 confirmed the correctness of the pro-
posed diagnostic approach. The detection efficiency of the
MLP-based system was determined to be 96.9%. The neural
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network correctly classified the type of damage in more
than 88.6% of cases. As shown in Fig. 19, the misinfor-
mation regarding the PMSM condition consisted mainly of
distinguishing between one shorted turn (Ng, = 1) and no
damage to the stator windings (N, = 0). This phenomenon
was observed in cases of single and mixed damage. However,
it should be noted that the state of one shorted turn is par-
ticularly difficult to recognize because of slight changes in
the diagnostic signal (stator current) compared to the healthy
state of the motor.

In addition, demagnetization has a much greater impact
on the elements of the input vector, which makes it difficult
to recognize the initial degree of ITSCs when the magnet
is damaged. An in-depth analysis of the test results allowed
us to observe the lack of influence of machine operating
conditions on the accuracy of the diagnostic system, which
is a significant advantage of the proposed approach. Despite
the occurrence of single classification errors, the proposed
structure is characterized by excellent classification and gen-
eralization capabilities.

The possibility of performing the training process on the
mathematical model while simultaneously maintaining high
precision for a real object is an unquestionable advantage
of the proposed approach concerning diagnostic applications
described in the literature. However, it should be noted
that the FEM model requires a long computational time,
which significantly extends the time required to implement
diagnostic applications. Moreover, the extraction of fault
symptoms based on spectral analysis can only be used in
steady-state machine operating conditions. It is possible
to omit this limitation by using high-order signal analysis
methods, such as the Hilbert-Huang transform or wavelet
transform [3].

The fault detection system presented in this article is based
on a multilayer perceptron that ensures full automation of
the diagnostic process. In the case of self-organizing maps,
the system response is difficult to analyze because of the
type of NN output information (active neurons on Koho-
nen maps). In future work, the authors will propose the
cascade-connected NN structure based on SOM and MLP to
fully automate the developed diagnostic system (trained with
simulation data — transferred to real object data), similarly as
it was done in for classical approach (trained and tested with
real object data) [33].

V. CONCLUSION

This article presents the practical application of a shallow
NN-based fault detector and classifier trained with sample
patterns obtained by FEM-circuit simulation in the PMSM
fault detection process. The use of information from mathe-
matical models is advantageous in terms of generating diag-
nostic patterns for any machine operating condition. The
possibilities offered by the FEM-circuit calculations can also
be used to map the physical phenomena occurring at the
time of motor defects. In addition, the use of mathematical
models allows for obtaining symptoms and abandoning the
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physical modeling of damages to the analyzed object, which,
especially in the case of higher-power motors, could be
expensive and dangerous.

The results of the simulation tests obtained based on the
FEM-circuit model corresponded to the situation in which the
drive operated under ideal conditions. These models ignore
the influence of measurement disturbances, sensor errors,
and the electrical and mechanical asymmetry of the machines.
The influence of external conditions is visible in the FFT
spectra of the measured stator current in the form of an
increased level of measurement noise (Section II). However,
they did not influence the quality of the damage symptoms.
Including these phenomena in the mathematical model is
possible, but the time required for the FEM calculations
would be much longer.

The application of the SOM Kohonen network taught
based on the results of the simulation studies presented in
this article was characterized by the very high efficiency of
the PMSM damage classification. In addition, SOM analysis
provides automation of the motor technical condition assess-
ment process, characterized by a very simple mathematical
description and a small amount of training data that ensures
very high classification precision. The possibility of using
Euclidean distance to develop the areas of Kohonen map
characteristics for the considered fault categories allows one
to fully automate the diagnostic process and accelerate the
NN implementation process.

The diagnostic application based on MLP is characterized
by the simplicity of its implementation in programmable
systems, as well as the mapping capabilities of any function.
The MLP network approximates the learning data and the
learning process involves minimizing a suitable cost function.
In connection with the idea of the MLP operation, the NN
structure requires well-chosen signals in terms of changes
owing to damage (preferably linear changes). During the
experimental tests, the MLP-based diagnostic system was
characterized by a correct assessment of the degree of failure
in more than 88.6% of the cases, whereas the fault detection
accuracy exceeded 96.9%. It should be emphasized that the
experimental verification of the MLP and SOM structures
was performed under various PMSM operating conditions in
contrast to the simulation-based training process.

The results of the experimental research presented in this
article confirm the possibility of practical implementation
of the proposed diagnostic methodology for PMSM drives.
Furthermore, the possibility of using the field-circuit model
as a source of diagnostic patterns applied during the NN
training process constitutes a definitive advantage of the
proposed method.

The proposed NN-based fault detection system was imple-
mented with the cooperation of VeriStand and MATLAB
programming environments. Nevertheless, future research
will focus on the implementation of the measurement and
diagnostic system in the form of a separate device based
on the generally available (low-cost) industrial processor
advanced RISC machines (ARM).
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APPENDIX

TABLE 3. Parameters of PMSM motors lenze 14H15.

Name of parameter Symbol Value Units
Power Py 2500 \
Torque Tv 16 Nm
Speed ny 1500 r/min
Stator phase voltage U 325 v
Stator current Iy 6.6 A
Frequency fov 100 Hz
Pole pairs number Pp 4 -
Number of stator winding turns N 2x125 -
Inertia J 1.42 kg cm’
Remanent magnetization B, 1,27 T
Stator resistance R 1.206 Q
Stator inductance L, 7.02 mH
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