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ABSTRACT This paper aims to predict the severity of solid particle contaminants present in the lubricant
in a Spur Gearbox using Vibration, Acoustic Emission, and Sound Signature features. Sensor signatures are
acquired at various contaminant conditions of lubricant with different speed and load conditions. Statistical
Features are extracted in the time domain, and feature ranking is carried out using the analysis of variance
approach. Statistical models are developed using the selected features of Sound, Acoustic Emission, and
vibration separately and fusing the features in the feature level. Decision Trees and Support Vector Machine
algorithms are used in this study to build statistical models. AE features have a good correlationwith lubricant
conditions compared to sound and vibration features. The feature-level fusion approach predicts the lubricant
conditions with more than 99% accuracy. The feature-level fusion models built using dominant features are
computationally efficient without compromising the prediction ability.

INDEX TERMS Condition monitoring, machine learning, acoustic emission, vibration signature analysis,
feature level fusion, lubricant solid particle contamination.

I. INTRODUCTION
Proper lubricant and lubricant methods reduce friction, wear,
and contact fatigue and improve the mechanical system’s
efficiency and durability [1]. Lubricant oil contamination is
one of the critical causes of equipment failure and machine
downtime. Lubricant oil contamination is influenced mainly
due to external and internal factors [2]. External factors
include the presence of dust and moisture in the external envi-
ronment. The change of lubricant or poor condition of joints
and seals causes the external agents, namely dirt, dust, metal
oxide particles, sand particles, fibers, and water molecules,
to access the lubricant, leading to deteriorating the condition
of the lubricant. External factors are common issues and can
be controlled. In rotating machines, due to wear and tear,
solid particles enter the lubrication system and cause severe
damage to the lubricant condition over a period. The size
and concentration of the solid particles play a crucial role
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in affecting the performance of the mechanical system. In a
mechanical system, typical machine elements such as gears,
bearings, engine pistons, seals, etc., are subjected to severe
abrasive wear, surface fatigue, noise, and vibration due to
solid particle contamination, which results in loss of relia-
bility, breakdowns, and reduction in service life [3], [4], [5].

In the gearbox, lubricant plays a vital role, acts as a film-
like layer, and reduces the friction between the gear teeth.
The change in the lubricant’s viscosity affects the thickness
of the layer between the gear teeth, resulting in the devel-
opment of stress concentration in the gear tooth [6], [7].
The molecular structure of the gear is getting distorted due
to stress concentration and initiates wear and sub-surface
cracks which lead to spalling and pitting in gear. Due to
wear and tear, the shredded metallic particles are mixed
with the lubricants and get contaminated. The contaminants
in the lubricant pass through the gear teeth and influence
the wear in the gear tooth. Lubricant contamination is one
of the major causes of the failure of the gearbox. The
progress of the defect due to lubricant contamination in the
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mechanical system leads to catastrophic failure of the rotating
machinery.

It is essential in critical operations to monitor the con-
ditions of crucial parameters of the lubricant; thereby,
condition-based maintenance can be carried out to avoid any
catastrophic failures, which result in savings in terms of
time and money. Faults or defects in a gearbox are predicted
using the level of vibration, noise, oil analysis, and visual
inspection. Condition Monitoring (CM) systems are highly
reliable and collect information continuously about the con-
dition of the rotating machinery components such as gears,
bearings, couplings, etc. Many CM approaches utilize sensor
information to identify the fault conditions of mechanical
parts. Sensors, namely accelerometers, microphones, piezo-
electric, optical, and dynamometers, are used to determine
fault conditions [8]. This study focuses on identifying the
lubricant conditions in a typical spur gearbox. It is expected
that gearboxes are subjected to breakdown due to lubrication
and operational issues. Lubrication issues include inadequate
lubrication, solid particle contamination, increased lubricant
temperature, and the presence of sludge. Operational prob-
lems are due to higher load and speed conditions, inadequate
maintenance, shaft and gear misalignments, and installation
issues. Among these issues, lubrication contamination plays
a significant part in the failure of the gearbox. Lubricant in
a gearbox should be monitored periodically for the healthy
operation of the gearbox. This research focuses on predicting
solid particle contamination in a spur gearbox. Solid par-
ticle contamination is intentionally added to the lubricant,
and the gearbox is made to run at different load and speed
conditions. This study uses Decision Trees (DT) and Support
Vector Machine (SVM) algorithms to predict the lubricant
conditions using vibration, AE, and sound sensor signatures.

The novelty of the proposed work includes a) use of multi-
ple sensors, namely microphone, accelerometer, and piezo-
electric AE sensors, to predict the lubricant conditions in
a spur gearbox, b) Adopting feature-level fusion methodol-
ogy to improve the classification ability of machine learning
algorithms, and c) 44 lubricant conditions are established by
varying the particle size, concentration, gearbox speed, and
load. Sensor signature features are extracted, dominant fea-
tures are chosen, and statistical models are developed using
machine learning algorithms to predict all 44 conditions of
the lubricant.

II. LITERATURE REVIEW
Lubricant ConditionMonitoring (LCB) is an important activ-
ity in rotating machines to ensure the quality of lubricant
and timely replacement of the lubricant before the lubricant
losses its property. A review of lubricant condition moni-
toring has been presented by Wakiru et al. [9]. Lubricant
degradation factors, namely water contamination, particle
contamination, and oxidation for various applications such
as gearbox, hydraulic systems, engines, compressors, and
turbines, were reviewed in their study. The review high-
lighted the effectiveness of statistical, artificial intelligence,

model-based, and hybrid approaches for lubricant condition
monitoring. Different types of sensors used to monitor the
lubricating oil conditions, namely Gill, MetalSCAN, induc-
tive pulse, bulk capacitance, ultrasonic, and active pixel sen-
sors, are reviewed in [10]. It is highlighted in their study that
particle contamination in lubricants is the primary cause of
failure of mechanical systems. A detailed review of online
monitoring of oil debris in rotating machinery has been car-
ried out in [11]. The review has been done by classifying
the sensors based on their operating principle, viz. a) Mag-
netic, b) Electrical, c) Optical, and d) Acoustics. Myshkin
and Markova [12] concluded in their extensive study that
sensors integrated with Artificial Intelligence (AI) methods
would improve the accuracy and reliability of diagnosing and
predicting lubricant conditions.

Solid particle contamination in lubricants is one of the
severe contamination forms in a lubricant used in rotating
machinery. Solid particles in lubricants damage the contact
surfaces through abrasion, erosion, and fatigue wear mecha-
nisms. Solid particles of various sizes and shapes are inducted
into lubricant as a) debris during maintenance, b) dust or soot
from the environment, and c) metal particles due to wear
mechanism. Solid particle contamination in a journal bearing
has been investigated by Boucherit et al. [13]. It is under-
stood from their study that solid particle contamination has a
substantial impact on friction, surface deformation, and flow
rate of the lubricant. Shan and Hirani [7] observed that the
degradation of lubricant quality is an indicator of the health
of the gearbox. The experimental studies concluded that solid
particles in a lubricant increase the wear and fatigue in the
tooth of the gear in a gearbox. It is also observed that lubricant
contamination increases the temperature of the lubricant and
the mechanical system’s vibration amplitude [3], [14].

Vibration-based methods have a good correspondence in
identifying faults in bearings and gearboxes due to the degra-
dation of lubricants and solid particle contamination. Faults
developed in the gearbox are typically diagnosed by moni-
toring the condition of the lubricant, wear debris, and vibra-
tion level [15]. Wear debris analysis is an offline method,
and laboratory analysis is required to identify the lubricant
condition [16]. Zhu et al. [17] developed a wear debris sensor
prototype for real-time lubricant condition monitoring. Wear
particles of size 50 microns were detected by the sensor.
A detailed wear debris morphological study has been con-
ducted and presented in [18]. It was found that an increase
in the number of wear particles and average wear mass influ-
ences the gear tooth surface damage. Lubricant monitoring
is an offline process that involves laboratory analysis to test
the physical and chemical properties of the lubricant. The
maintenance cost of machinery can be reduced by 30% by
effectively monitoring the lubricant and timely replacement
[19]. Unscheduled machinery downtime is also minimized
by effective monitoring of the lubricant conditions. A 3D-
Hall effect sensor identifies the metallic solid particle in a
lubricant used in gearbox application [20], [21] for condition-
based maintenance.
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Lubricant contamination influences the vibration levels of
the system. Off-late, sensor-based lubricant condition moni-
toring systems are used to identify the lubricant conditions in
real time. The time and frequency spectrum of the vibration
data is often used for fault identification and diagnostics.
Fault conditions in a spur gearbox have been investigated by
Ebersbach et al. [15] using vibration and wear debris analy-
sis. The vibration approach effectively predicts the fault con-
ditions, and wear debris analysis identifies the wear modes.
Loutas et al. [22] studied the health condition of the gearbox
by integrating vibration, AE, and oil debris data. Their study
implemented a data fusion approach, and the gearbox’s health
conditions were assessed in time, frequency, and wavelet
domains.

Feng et al. [23] proposed a reliable gear wear prediction
model using a vibration-based approach. It is observed from
their study that the wear process in a spur gear can be
effectively monitored using vibration parameters on a real-
time basis. Using the proposed approach remaining use-
ful life of the gear can be identified. The vibration-based
model proposed by the authors predicts the failure modes
in the spur gear with reasonable accuracy. Feng et al. [24]
reviewed gear wear monitoring and prediction techniques
focusing on vibration-based approaches. It was indicated in
their research that much of the current research in vibration-
based monitoring concentrates on identifying abrasive wear-
induced profile change. It is also suggested in their study that
abrasive wear, fatigue pitting, and adhesive wear also need to
be addressed in developing models for predicting the failure
modes and remaining useful life of the gearbox system. It can
be concluded that sensors such as accelerometers precisely
capture the gear wear conditions. The abrasive wear, local-
ized fatigue, pitting in gear, and solid particle contaminants
influence subsurface damages in the lubricant. Monitoring
the lubricant using sensors-based approaches helps identify
the conditions of the lubricant in real-time, replace the lubri-
cant at the right time, and avoid the catastrophic failures of
mechanical elements in a gearbox.

Along with the vibration approach using accelerometers to
sense the vibration levels, piezoelectric and current sensors
were also used to identify the fault condition in a gear-
box [25]. Experimental studies have been carried out, and a
statistical correlation has been established between the pitting
state of the gear tooth and features of current, vibration,
and AE signatures. KNN classifiers trained with features of
vibration and AE signatures predict the pitting and good con-
dition of the gearbox with an accuracy of 94%. Yao et al. [26]
proposed an AE-based fault detection in a planetary gear-
box. It was found that the fault detection ability of AE is
better compared to vibration signatures in extracting weak
fault features. A review on AE-based gear fault diagnosis
is presented in [27]. AE-based diagnostic methods are also
effective in tool condition monitoring and rotary machine
fault diagnostics [28], [29]

The Remaining Useful Life (RUL) of the lubricating oils
considering solid particles in the oil, has been studied by

Valis et al. [30]. A meta-model was developed using Neural
Network (NN) and Fuzzy Inference Systems (FIS) to predict
the level of particle contamination lubricant. Pan et al. [31]
recently proposed an integrated data and knowledge-based
system using the NN model for predicting oil conditions.
Their study considered randomness and uncertainty in the
input data. The oil’s viscosity, Total Base Number (TBN), and
solid particles viz. Zn, Fe, andCuwere considered parameters
for studying oil degradation. The change in the health state
of the planetary gearbox has been studied with wear debris
present in the lubricant using image analysis [32].

To improve models’ reliability and prediction ability,
AI approaches are increasingly used in the field of con-
dition monitoring. In the AI paradigm, Machine Learning
(ML) methods are becoming popular since the algorithm
learns, makes, and improves decisions based on experi-
ence. There are two types of machine learning: super-
vised learning and unsupervised learning. The model must
be trained in supervised learning with the known input
and output response. Once the model is trained, repose
for the input conditions can be predicted. There are many
supervised learning methods implemented to lubrication
health monitoring, such as a) Logistic Regression [9], [33],
[34], [35], [36], b) Decision Tree [37], [38], c) Neural Net-
work [39], [40], [36], [41], [42], [43], [44], and d) Support
Vector Machines [36], [45]. In unsupervised learning, the
input data doesn’t have a response. These data are fed into the
machine learning algorithm to train the model. The trained
model predicts the response for the given input data. Some
of the important unsupervised learningmethods implemented
in lubricant health monitoring problems include a) Principal
Component Analysis [46], [47], [48] and b) Cluster Analysis
[49], [50], [51], [52].

Three important lubrication oil degradation feature
includes a) water contamination, b) solid particle contam-
ination, and c) oxidation. This paper focuses mainly on
lubricant contamination due to solid particles. Solid particle
contamination is primarily due to metal debris formation
because of friction and wear in mechanical elements. The
presence of solid particle contaminants in the lubricants
significantly influences friction. The friction between solid
particles with the rotating gear tooth results in abrasive wear,
indentation, and pitting. Abrasive wear results in scratches
and sharpening of the gear tooth. Indentation is due to the
hard particles in the lubricant rolled over by the contacting
gear surface. Indentation results in plastic deformation in
a localized area. Pitting is a surface fatigue phenomenon
due to rolling and sliding contacts. Abrasive solid particle
contaminants in the lubricant aggravate the pitting process.
The increased concentration of solid particles results in an
increased wear rate. The flow rate of the solid particles varies
from tooth to tooth leading to the source of vibration. The size
and concentration of the solid particles in lubricant, load, and
gear operation speed significantly influence the life of the
gearbox. By identifying the condition of the lubricant, it is
possible to predict the health state of the gearbox. Lubricant
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oil analysis and wear debris analysis are popular methods to
identify the condition of the lubricant. But these methods
are offline approaches, and it is difficult to determine the
conditions of the lubricating oil in real time.

Over the years, researchers have developed sensors-based
methods to monitor the lubricant’s condition, which has led
to the development of real-time monitoring systems. Sen-
sor signatures such as vibration, AE, sound, temperature,
current and voltage, and force are being used in condition
monitoring of rotating machinery. Vibration-based analysis
of lubricant conditions is one of the widespread methods.
AI models built with machine learning algorithms predict
the fault conditions in rotating machines with good accuracy
and reliability. Research on predicting solid particle con-
tamination using AI-based ML approaches may lead to the
developing of online lubricant condition monitoring systems.
Literature focussing on developingMLmodels using features
extracted from vibration and AE signatures to identify the
lubricant conditions is limited. The present study focuses on
developing statistical models using ML algorithms to predict
lubricant conditions with varying sizes and concentrations of
solid particles.

III. OBJECTIVES AND METHODOLOGY
A. OBJECTIVES
The main objective of this study is to predict the lubricant
conditions in a spur gearbox. A sensors-based approach is
followed in this study. Vibration, AE, and sound sensors
are used to acquire the signatures from the gearbox. Sensor
signatures are captured under good lubricant conditions and
lubricant with solid particle contamination. Various lubricant
conditions are established by varying the size of the solid par-
ticle and its concentration. Experiments were carried out, and
sensor signatures were captured at different load and speed
conditions. The acquired sensor signatures are processed fur-
ther in the time domain, and statistical features are extracted.
The feature selection is carried out using univariate analysis.
The extracted features of vibration, AE, and sound are used
to train the machine learning algorithms. This study uses two
ML algorithms, namely CART and Support Vector Machines
(SVM), to predict the lubricant conditions. ML algorithms
are trained separately using the features of sound, AE, and
vibration, and feature level fusion is also carried out to train
the ML algorithms to improve the classification accuracy.

B. METHODOLOGY
The proposed experimental setup and methodology adopted
in this study to meet the objectives are illustrated in Fig.1.
Schematic diagram of the experimental setup is shown in
Fig. 2. The proposed methodology involves the following
steps:
Step 1: Establishing experimental setup consisting of spur

gearbox, Machine Control Unit (MCU), drive for the gear-
box, transmission system, couplings, bearings, torque con-
troller and dynamometer, tri-axial accelerometer for sensing

vibrations, piezoelectric sensors for acquiring AE signals,
microphone for sensing sound signature, Data Acquisition
System (DAS) for AE, vibration and sound signatures, and
signal processing software and hardware.
Step 2: Sensors are calibrated as per the standards to

acquire the signature of vibration, AE, and sound.
Step 3: Establish lubricant conditions. A total of 44 lubri-

cant conditions are established with varied particle size, the
concentration of solid particles, gearbox load, and speed of
operation.
Step 4:Conduct experiments with good lubricant free from

solid particle contamination and acquire the signatures of
vibration, AE, and sound.
Step 5: Conduct experiments with lubricant added with

solid particles of varied size and concentration and acquired
the signatures of vibration, AE, and sound.
Step 6: Convert the analog signatures of vibration, AE, and

sound signatures into digital using relevant DAS and signal
processing hardware and software.
Step 7: Extract statistical features from the time domain

sound, vibration, and AE signatures.
Step 8: Select dominant features using univariate analysis

and rank the features.
Step 9: Choose suitable ML algorithms to build statistical

models to predict the lubricant conditions. CART and SVM
algorithms are used in this study to build the classifiers.
Step 10: Train the CART and SVM Classifiers separately

using the statistical features extracted from sound, vibration,
and AE signatures.
Step 11: Adopt a feature-level fusion approach and train

the CART and SVM Classifiers using fused sound, vibration,
and AE features.
Step 12: Test the CART and SVM algorithms trained with

features of sound, vibration, and AE separately and fused
features. Confusion Matrix is constructed, and the prediction
ability of the classifier is tested using well-known measures.

The major components of the experimental setup fabri-
cated in this study are the gearbox, transmission system, sen-
sors, and signal processing hardware and software. A gearbox
has been designed and fabricated for the variable speed AC
drive of 1.5 kW. The gearbox comprises a pair of healthy spur
gears arranged in parallel consisting of 36 nos. teeth, 2.5mm
module, and 20◦ pressure angle. A variable speed AC motor
is coupled with the gearbox through a driving shaft. The
motor speed is varied through Motor Control Unit (MCU).
The experiments were conducted by fixing the drive speed at
800 rpm and 1300 rpm, respectively. The motor and the driv-
ing shaft are connected through flexible coupling to reduce
misalignment and power loss. An eddy current dynamometer
is coupled with the driven shaft of the gearbox through a rigid
coupling to induce loads on the gearbox. Experiments were
carried out at different load settings of 5 N-m and 7 N-m,
respectively. Loads are generated by adjusting the current
flow using a torque controller. The dip typemethod is used for
lubricating a pair of gears under different gearbox speed and
load conditions. Key joints are used in the gearbox system to
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FIGURE 1. Photograph of the experimental setup and methodology.

develop a relative rotation between the two parts and enable
torque transmission.

The scope of this work is limited to establishing a sta-
tistical correlation between sensor signature features and
lubricant conditions. For every lubricant condition, healthy
spur gears are considered, and it is ensured that there is no
gear defect while acquiring the sensor signature. The solid
particle contamination in the lubricant may lead to wear,

localized fatigue, and pitting in the gear tooth throughout the
gearbox’s operation. In this study, we have not allowed the
experiments for a longer duration to induce measurable wear
or any other defect in the gear tooth or other components of
the gearbox. If the gears are faulty, faulty gear condition sig-
nature features must be considered to develop the statistical
model; thereby, lubricant and defective gear conditions can be
predicted.
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FIGURE 2. Schematic diagram of experimental setup.

C. SENSORS AND DATA ACQUISITION
Three different types of sensors were used in this study, viz. a)
accelerometer for acquiring vibration signals, b) piezoelectric
sensors for acquiring AE signals, and c) microphone for
acquiring sound signatures. Sound, vibration, and AE data
points are acquired from a total of 44 experimental conditions
in this study for developing machine learning models by
conducting experiments for 100 sec for every condition.

A dytran 3273A2 triaxial accelerometer with the frequency
range of 42 Hz to 10000 Hz is used in this study to acquire the
vibration signature of various lubrication conditions. A sam-
pling rate of 8192 kHz is used in this study to collect the
vibration data. The duration allowed for sampling the vibra-
tion data is 100 sec. Since there are 44 test cases, the total no.
of vibration data points acquired by using vibration sensors
during the experiments is 36,044,800 [8192 × 100 × 44].
The ‘GRAS 40PH Free-field Array microphone, which

has a frequency range of 5kHz to 20kHz, is used for sound
signature acquisition. A sampling rate of 8,192 kHz is used
in this study to collect the sound data. The duration allowed
for sampling the sound data is 100 sec. Since there are 44 test
cases, the total no. of data points acquired by using AE sen-
sors during the experiments is 36,044,800 [8192× 100× 44].
For data acquisition, a 4- channel ‘m+p VibPlot’ hardware is
used for vibration and sound data conversion and analysis.

A ‘Micro 30D’ differential AE sensor is used in this study
to capture AE signals generated during the gearbox operation
at various lubrication conditions. The frequency range of the
sensor varies from 10 kHz to 400 kHz. The sampling rate
used for collecting the AE data is 1 MHz. The AE mea-
surement chain consists of preamplifiers, Data Acquisition
System (DAS), and ‘AEWin’ software for signal processing.
The duration allowed for sampling the AE data is 100 sec.
Since there are 44 test cases, the total no. of data points
acquired by using the AE sensor during the experiments is
45,056,000 [10240 × 100 × 44].

IV. LUBRICANT CONDITIONS
Experiments were carried out by considering varied particle
sizes and concentrations. For every concentration level and
particle size, two levels of experiments were carried out by
varying load and speed of rotation. The gear was made of
Grey Cast Iron material. Grey Cast Iron consists of other
alloying materials, namely Si, Mn, P, and S, along with Fe
and C. Contaminant in lubrication oil is primarily due to the
wear of the gear material. The contaminant’s size and concen-
tration increase will deteriorate the gearbox’s condition [2].

In this study, Fe and SiC particles are added as a contam-
inant in the lubricant. The remaining materials, such as Mn,
P, and S, are at meager levels in grey CI, so it is neglected in
the analysis. The particle sizes (in microns) used to establish
lubricant conditions are 5, 37, 74, 100, and 149 microns.
Based on the gear material’s chemical composition, the pro-
portion of the solid particle contaminants (weight %) was
chosen considering 93% of Fe and 7% SiC. Two levels of
concentrations (C1: 8 grams and C2: 16 grams) of solid par-
ticles are considered for every particle size. The concentration
level C1 consists of 7.44 g of Fe and 0.56 g of SiC. The
concentration level C2 consists of 14.88 g of Fe and 1.12 g of
SiC. The size of the SiC particles considered in this study is
10 microns.

The particle size considered in this study is based on
the investigation made by Boucherit et al. [13]. It was found
that the particle average size of 75 microns influences the
wear over the gear tooth surface. The wear also accelerates
when the mass of the solid particles increases. Experiments
are conducted with two-speed conditions at 800 rpm and
1300 rpm, respectively, and two load conditions at 5 N-m
and 7 N-m, respectively. Experiments were also performed
without adding solid particles in lubricant by varying the load
and speed. The experimental design is shown in Table 1.
Experiments are carried out for all conditions, and sensor data
is acquired for 100s. The gearboxwas filled with the lubricant
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TABLE 1. Lubricant conditions – experimental design.

TABLE 2. Lubricant specification.

of two liters, and experiments were conducted without adding
solid particle contaminants under two different speeds and
load conditions. Later, lubricant was drained, contaminants as
per the details given in Table 1 were added to fresh lubricant
for every experiment, and corresponding sensor signatures
were captured. The specification of the lubricant used in this
study is given in Table 2.

V. FEATURE EXTRACTION AND FEATURE SELECTION
A. FEATURE EXTRACTION
The traditional statistical method has been employed to
extract the features from the time domain signatures of sound,

FIGURE 3. Methodology of feature extraction for AE signature.

FIGURE 4. Methodology of feature extraction for sound and vibration
signatures.

vibration, and AE [53]. Vibration signals are acquired using a
triaxial accelerometer with a sampling rate of 8192Hz. Sound
signals are acquired using a ‘GRAS- 40PH’ microphone with
a sampling rate of 8192 Hz. AE signals are captured using
a piezoelectric sensor with a sampling rate of 1 MHz. The
analog signals are converted into digital signals for feature
extraction. The data acquisitionmethodology forAE is shown
in Fig.3. Fig.4 shows the methodology adopted for acquiring
sound and vibration signatures.

The time-domain sound and vibration features extracted
from the time domain signal are mean, sum, median, mode,
min., max., variance, RMS, kurtosis, skewness, and std. devi-
ation. A total of 13 AE features extracted in this study are avg.
rise time, count, amplitude, avg. frequency, RMS, avg. signal
level, counts to peak, reverberation frequency, initial fre-
quency, signal strength, absolute energy, frequency centroid,
and peak frequency. A typical AE wave and its significant
parameters are shown in Fig.5. Details of AE measurements
and important AE feature parameters are presented in [54].

B. FEATURE SELECTION
The feature selection process weighs the extracted fea-
tures concerning the data points of all the conditions to
reduce the computational cost and improve the model per-
formance [55], [56]. A detailed survey on feature selection
methods is presented by Chandrashekar and Shahin [57].
Important techniques in feature selection in supervised learn-
ing include intrinsic methods using decision trees, wrapper
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FIGURE 5. Typical AE wave and major AE parameters.

approach, filter method, and embedded method. Filter meth-
ods are implemented for many practical applications due to
their simplicity. For selecting dominant features, filter-based
techniques use statistical measures to assess correlations
or dependencies between input variables. Feature selection
guidelines based on input and output variable is given by
Butcher and Smith [58]. For a numerical input variable and
categorical output variable, correlation-based approaches are
used.

One-way analysis of variance (ANOVA) is used in this
study to validate feature importance. It examines the relation-
ship between a categorical predictor and continuous numer-
ical data. Feature importance is accomplished by comparing
the mean of each predictor category in a feature population
and determining the degree of differentiability between them.
The One-way ANOVAmethod tests null hypotheses on equal
means. It uses the ‘F’ statistic, a between-group and within-
group variability ratio. The value of the ‘F’ statistic becomes
roughly equal to 1 under the null hypothesis. ‘F’ statistic
follows an F-distribution when the null hypothesis is true,
and the obtained value must exceed the critical value to reject
the hypothesis. F-distribution with α = 0.05 is typically
considered, and the feature’s F-value is compared with the F-
critical value. The F-value should be greater than F-critical,
and the p-value should be the least to get the best feature to
compute the future score. Based on the feature score, feature
raking is carried out.

Selected features from the sound signal features are stan-
dard deviation and skewness. From vibration signature, std.
deviation, min., mode, max., sum, mean, median, and RMS
features are selected. In the case of AE signature, RMS, ASL,
count, A-Frequency, signal strength, amplitude, and absolute
energy are chosen. The selected set of features is used to train
the machine learning algorithms.

VI. LUBRICATION CONDITION PREDICTION USING
MACHINE LEARNING ALGORITHMS
Two machine learning approaches, namely Classification
and Regression Tree (CART) and Support Vector Machine

(SVM), are used to predict the lubricant conditions. CART
algorithms are implemented with split criteria viz., gini,
twoing and maximum deviance. SVM algorithms are imple-
mented with linear and nonlinear kernel functions. Machine
learning models are built with features of vibration, sound,
and AE separately and fused features of vibration, sound, and
AE. Well-known performance measures are used to evaluate
the prediction ability of the models developed in this study.

CART and SVM algorithms list in one of the top
10 machine learning algorithms identified by the IEEE Inter-
national Conference on Data Mining (ICDM,
http://www.cs.uvm.edu/∼icdm/). Breiman et al. [59] pro-
posed a CART algorithm for solving classification and
Regression problems. CART application exists in almost
all fields, such as electrical engineering, biology, medical
research, sociology, condition monitoring, etc. [60]. Advan-
tages of CART include a) can handle missing data, b) training
the algorithm with lesser computational cost, and c) con-
structing features dynamically. The authors of this research
also implemented this algorithm for weld quality monitoring
and grinding wheel condition monitoring problems [61], [62]
and found that CART is one of the competitive algorithms for
classification problems. The good performance of the CART
algorithm motivated the authors to attempt to implement it in
this research.

The SVM algorithm proposed by Vapnik [63] is one of the
most robust and accurate methods for classification. SVMs
are originally proposed for constructing linear classifiers.
Off late, SVM uses a variety of kernel functions to model
higher dimensional nonlinear models to classify the data.
Data that cannot be classified by linear SVM can be trans-
formed into higher dimensional space to find the optimal
separating hyperplane using kernel functions. A detailed
review has been done by Cervantes et al. [64], focusing on
the types and applications of SVM for classification. In this
study, 44 classes of lubricant conditions were established, and
corresponding sound, vibration, and AE signature features
were used to build the statistical models. SVM algorithms can
use kernel tricking to classify the data that are not linearly
separable. Kernel functions in this study transform the data
into higher dimensional space and classify the raw data,
which are not linearly separable. In this study, linear and
nonlinear kernels, such as quadratic, cubic, and gaussian
(Radial Basis Functions (RBF), are implemented to compute
the classification accuracies of classifiers.

A. TRAINING AND TESTING OF MACHINE LEARNING
ALGORITHMS
Machine learning algorithms were implemented in the MAT-
LAB environment. Features of all 44 classes are combined
into a single data set to train different classification models.
The ‘K’ fold cross-validation method is used for testing and
training purposes. This method divides the initial population
into ‘k’ subsets. This method is an iterative process; in each
iteration, one of the subsets is taken for testing purposes,
and the remaining is used for training. Unlike the holdout
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FIGURE 6. k-fold cross-validation (k=5).

method, every data point in the initial population gets trained.
As shown in Fig.6, there will be a total of ‘k’ iterations. Here
in this study, a 10-fold cross-validation method is used.

B. PERFORMANCE MEASURES
The confusionmatrix is the key to evaluating the performance
of the classifier, and it works based on the values of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) concerning each class. A 10-fold cross-
validation technique is used to trainmachine learningmodels.
Some important performance measures used to test the ML
algorithms are accuracy, misclassification rate, kappa statis-
tics, precision, recall, F-measure, and Mathews Correlation
Coefficient (MCC). Various measures for assessing the qual-
ity of classifiers are presented in [65] and [66].

Accuracy: Percentage measure of correctly classified
instances for all instances, and it’s calculated using the equa-
tion (1):

Accuracy = (TP+ TN)/(n+ + n−) (1)

where n+ indicates the sum of true positive and false nega-
tives (TP + FN) and n− indicates the sum of true negative
and false positive ( TN + FP) instances.
The possibility of misclassification occurs between the

classes, and the misclassification rate is one of the important
factors in acquiring the best classification performance, and
it is obtained using the equation (2):

Misclassification rate = (FP+ FN)/(n+ + n−) (2)

Kappa statistics: It measures inter-rater agreement of the
instances [67]. A kappa coefficient value ranges from −1
to +1. A kappa value of ‘1’ indicates the classifiers are in
complete agreement, and the value ‘0’ shows no agreement.
Kappa statistics are computed using the equation (3).

Kappa value, k =
(Pr (A)− Pr (E))

(1− Pr (E))
(3)

where Pr (A) is the actual observed agreement and Pr (E) is
the expected agreement.

Precision: It classifies the correct instances among the
instances that are classified as positive, and it is calculated
using the equation (4):

Precision = (TP)/(TP+ FP) (4)

Recall: It measures the true positive of correctly classified
instances, and it is the percentage of relevant information, and
it is computed using the equation (5):

Recall = (TP)/(TP+ FN) (5)

F-measure: It shows the rate of the robustness of the classifier
by using precision and recall values. F-measure is calculated
by using the equation (6):

F−Measure =
(2× Precision× Recall)
(Precision+ Recall)

(6)

MCC (Matthews Correlation Coefficient): It is a more reli-
able statistical rate and produces a high score only if the pre-
diction obtained good results in all the four confusion matrix
categories (true positives, false negatives, true negatives, and
false positives). MCC is computed using equation (7), as
shown at the bottom of the next page. MCC coefficient value
ranges from [−1, +1], and the highest value of ‘1’ indicates
the classifier as perfect.

VII. LUBRICATION CONDITION PREDICTION USING THE
CART ALGORITHM
Classification and Regression Tree (CART) is the simplest
machine learning algorithm used for prediction in classifica-
tion or regression type problems [59]. A decision tree consists
of three types of nodes a) root node, b) decision node, and
c) leaf node. The root node is the initial node from which
the splitting of the data points starts, and further branching
or splitting takes place at decision nodes. Leaf nodes are
the final nodes where further splitting is not possible. Each
node is split based on the best feature, which can give the
most homogeneous child nodes. The practice of dividing a
node into several sub-nodes to create relatively pure nodes
is known as node splitting or simply splitting. The splitting
criterion decides when to split and where to split nodes.
There are several approaches: gini impurity, twoing rule, and
Maximum Deviance Reduction (MDR).

Gini impurity: This metric indicates how frequently pieces
of data are classified wrongly. Equation (8) can be used to
compute the gini index value.

G(i) = 1−
∑

p(i)2 (8)

p(i) is a ‘n’ observed portion of classes at ‘‘i.’’
Maximum deviance reduction: The CART tree measures

the impurity of the node and splits the tree. It can be computed
using equation (9).

MD (i) = −
∑

p (i)× log2p (i) (9)

Twoing rule: Twoing criterion splits the classes into two
superclasses to find the best Gini split to optimize the impu-
rities in the overall classes. It is computed by using equa-
tion (10)

T (i) = p(L)× p(R)×
(∑
|L(i)− R(i)|

)2
(10)

L(i) and R(i) indicate the portion of representatives of the
class ‘‘i’’ on the left and right of the tree after the node split.
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TABLE 3. Performance measures of CART algorithm trained using sound
signature features.

TABLE 4. Performance measures of CART algorithm trained using
vibration signature features.

A. PERFORMANCE OF CART ALGORITHM
The CART algorithm is trained using the three splitting crite-
ria separately, and the performance measures are obtained.
The results obtained from CART using different splitting
criteria, with and without feature selection, are presented in
Table 3-5 for sound, vibration, and AE signatures, respec-
tively. The performance measures are computed using the
confusion matrix derived from the trained model.

It is found that the CART model trained using the AE
feature can predict the lubricant conditions with an accu-
racy of around 83%. The CART algorithm trained using
vibration features predicts the lubricant condition with an
accuracy of about 65%. The CART model trained with
selected sound features using the one-way ANOVA method
produces an accuracy of 65%. It was noticed that in the
case of CART models developed with sound features, feature
selection improves the classification accuracy. In the CART
model trained with vibration features, feature selection does
not improve the classification accuracy. In the case of the

TABLE 5. Performance measures of CART algorithm trained using AE
signature features.

CART model trained with AE features, the feature selection
doesn’t influence the models’ prediction ability. Twoing and
maximum deviance criteria have improved the performance
of the CARTmodels compared to the gini criterion only in the
case of the model trained with AE features. Overall, models
trained using AE features predict the lubricant conditions
better than models trained with sound and vibration features.
Other measures such as MCC, Kappa, and F-measure also
indicate better performance of CARTmodels trained with AE
features.

VIII. LUBRICATION CONDITION PREDICTION USING
SUPPORT VECTOR MACHINE (SVM) ALGORITHMS
A. BINARY SVM CLASSIFIER
The Support Vector Machine (SVM) is a popular supervised
learning technique [63]. SVMs are used to solve both lin-
ear and nonlinear classification problems. The main aim of
the SVM classifier is to optimally split the n-dimensional
space (formed by the predictor variables) using linear or
nonlinear boundaries so that future data points can be cor-
rectly placed in their respective category. A hyperplane is a
name for the optimal choice boundary, and the nearest data
points to the hyperplane are called support vectors. Initially,
the input datasets with ‘n’ predictors are represented in an
n-dimensional space. Then divide this space into different
classes using hyperplanes. For the selection of optimal hyper-
plane, the distance between the considered plane and the
nearest data points (support vectors) are considered. This
distance is known as the margin. The maximum margin will
ensure the increased robustness of the model. The plane with
the maximum margin is selected as an optimum hyperplane.
SVM approaches this as an optimization problem for maxi-
mummargin andminimummisclassification. A typical linear
binary classifier indicating margin and support vectors is
shown in Fig.7.

MCC =
(TP× TN)−(FP× FN)

√
(TP+ FP)× (TP+ FN )× (TN + FP)× ((TN + FN )

(7)
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FIGURE 7. SVM linear binary classifier.

In most cases, the linear boundary will not be able to
classify the data efficiently. In such cases, kernel functions
are used. However, the kernel function transforms data into a
higher dimensional space where linear separation is possible.

B. WORKING OF MULTICLASS SVM
Support Vector Machines (SVM) doesn’t support multiclass
classification natively. SVM supports binary classification
and distinguishing data points into two classes. The same
principle is utilized for multiclass classification after break-
ing down the multiclassification problem into multiple binary
classification problems [68]

Two approaches, namely ‘one to one’ and ‘one to rest’ or
‘one to all’, are used to construct multiclass prediction mod-
els. Hyperplanes are constructed between every two classes
in the ‘one-to-one’ approach. For example, for a 3-class
problem, separate SVMs are used to classify data belonging
to a) class 1 and class 2, b) class 1 and class 3, and c)
class 2 and 3 separately. The no. of SVMs constructed using
this procedure is (N(N-1)) / (2), where ‘N’ is the total no.
of classes. In this study, the One-to-Rest approach is used to
classify the data belonging to every test case., A hyperplane
is generated to separate data points belonging to a particular
class and all other data points belonging to different classes at
once. The classification process incorporates all data points
(feature values) into account andmakes them into two groups.
One group belongs to data points of a particular class, and
another belongs to data points of the remaining classes. No.
of classifiers built in the ‘one to rest’ approach is equal to
no. of classes. Compared to ‘one to one’, the computational
complexity of the ‘one-to-rest’ approach is less.

For example, as shown in Fig.8 (three class problems), the
dark blue line (hyperplane) tries to maximize the separation
between blue points (class 1) and all other points at once (red
points – class 2 and green points - class 3). The procedure is
repeated by constructing hyperplanes separately, maximizing

FIGURE 8. Working of muti-class SVM (One to rest).

the separation between a) green points (Class 3) and other
classes (blue points – class1 and red points -class 2) and b)
red points (Class 2) and other classes (blue points – class1
and green points -class 3).

The problem considered in this study consists of 44 classes
of data acquired using sensors corresponding to lubricant
conditions. Using the ‘one to rest’ approach, the classifier
uses 44 SVMs, and each SVMpredicts themembership in one
of the 44 classes. Different Kernel functions other than linear
such as quadratic, cubic, and Radial Basis Function (RBF)
kernel functions, are implemented in this study to compute
their classification accuracy. Implementation of Muti-Class
SVM has been carried out in Matlab Environment Perfor-
mance of classifiers is compared by building ML models
considering a) all feature data points of a sensor separately,
b) selected feature data points using a one-way ANOVA
approach, and c) fused feature data set.

C. SVM PARAMETER SETTTING
Models are built using the functions available in Classifier
Matlab Toolbox. Some of the critical parameters influencing
the results are a) box constraint parameter value, b) kernel
function, c) kernel scale parameter, and d) multiclass SVM
model building approaches.

Box Constraint: Box constraint parameter controls the
maximum penalty imposed on margin-violating observations
and aids in preventing overfitting. Increasing the box con-
straint leads to assigning fewer support vectors, tighter mar-
gins, minimizing the no. of misclassifications, and increased
training times. Decreasing the box constraint parameter
allows more constraint violations [69]. The typical value of
the box constraint level is in the range [0.001,1000]. The
value of the box constraint parameter is varied, with a min-
imum value of 0.001 and a maximum of 1000. Experiments
are conducted with values 0.001, 0.01, 1, 10, 100 and 1000.
Experimental trials were conducted to fix the box constraint
parameter using a specific case data set acquired using an AE
sensor. The misclassification rate of algorithms is recorded
for different kernel functions chosen in this study. While
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TABLE 6. Box contraint parameter setting.

training, the model kernel scale mode was chosen as ‘Auto’.
The ‘Auto’ option in theMatlab-Classifier toolbox utilizes the
heuristic program to fine-tune the kernel scale parameter for
all the kernel functions chosen in this study. The ‘one to all’
multiclass method was selected for model construction for all
kernel functions used in this work. A 10-fold cross-validation
method is used to train and test data. The misclassification
rate of the SVM algorithm with different kernel functions
is shown in Table 6. It is observed from the results that the
box-constraint parameter value of ‘1’ predicted the lubricant
conditions with good accuracy for SVM models built using
kernel functions, namely linear, cubic and RBF. It is also
observed that increasing the box-constraint value increases
the training time required for most models. For all SVM
models built using AE, vibration, and sound features, the box
constraint parameter value of ‘1’ is chosen in this study.

Kernel functions, namely linear, quadratic, cubic, and
gaussian (Radial Basis Function), were used to build the
models for predicting the 44 lubricant conditions. The exact
relationship ( linear or nonlinear) between the observed and
labeled data is not known initially. To deal with this, along
with linear kernel, nonlinear quadratic, cubic, and gaussian
kernel functions are used in this study.

Kernel scale: Kernel scale is a scaling parameter for the
input data. The input data is recommended to be scaled with
respect to a feature before being applied to the Kernel func-
tion. When the absolute values of some features range widely
or can be large, their inner product can be dominant in the
Kernel calculation. Shin et al. [70] studied optimizing Kernel
scale parameters for training Machine Learning Classifiers
for a user authentication system. It was found in their research
that for linear, cubic, and gaussian models, a heuristic proce-
dure (Grid Search) implemented in Matlab provides a good
prediction ability of their models. We have also implemented
a similar procedure to choose the kernel scaling parameters.
Details of the parameter setting are shown in Table 7.

D. PERFORMANCE OF SVM ALGORITHMS
SVM is trained with linear and nonlinear kernel functions
with and without feature selection using sound, vibration,
and AE feature data. Details of the results are given in

TABLE 7. SVM parameter setting.

TABLE 8. Performance measures of SVM algorithm trained using sound
signature features.

TABLE 9. Performance measures of SVM algorithm trained using
vibration signature features.

Tables 8-10. In the case of models trained with sound sig-
nature futures, SVM models with quadratic, cubic, and RBF
are better at predicting the lubricant conditions than the linear
kernel function model. There is not much difference in the
performance measures of the models trained with all the
features and dominant features. In the models developed
using vibration features, performance is better for models
trained with all the features than those trained with dominant
features. Classification accuracy of around 96% is achieved
by the SVMmodels trained with AE features. Similar perfor-
mance is noticed for all the models trained with all features
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TABLE 10. Performance measures of SVM algorithm trained using AE
signature features.

and dominant features. Kernel functions also do not influence
much in classifying the lubricant conditions.

IX. FEATURE LEVEL FUSION OF SOUND, AE, AND
VIBRATION
In the feature level fusion method, features of ‘sound’, ‘vibra-
tion’, and ’acoustic emission’ sensors are pooled into a single
set. The combined data set is fed to the classifiers for sig-
nature analysis. Individual classifiers will have larger input
data space, affecting classification accuracy. Feature level
fusion gives advantages-like redundancy and complementari-
ness [71]. Statistical features of sound, vibration and AE
in the time domain are fused in feature levels. The fusion
methodology adopted in this study is shown in Fig.9.

The algorithms employed are the CART decision tree with
split criteria, namely gini, twoing, and maximum deviation,
and Support Vector Machines with linear, quadratic, cubic,
and Radial Basis Function.

A. PERFORMANCE OF CART ALGORITHM
CART algorithms are trained with all 37 fused sound, vibra-
tion, and AE features. The performance was also tested with
fused dominant features. The performance of the CART
algorithm is shown in Table 11. It is observed that twoing
and maximum deviance criterions trained with fused features
predict the lubricant conditions with an accuracy of around
92%. The model trained with dominant features doesn’t have
a significant impact on improving the classification accuracy.
It is to be noted that feature reduction significantly reduces
the computation time complexity in the training and testing
of the algorithms. The maximum deviance criterion achieves
maximum classification accuracy of 93% with the CART
model trained with all or dominant features. There is a reduc-
tion of 40% in time observed in the case of models trained
with dominant features selected using the one-way ANOVA
approach.

B. PERFORMANCE OF SVM ALGORITHM
SVM algorithms are trained with all 37 fused sound, vibra-
tion, and AE features. The performance was also tested

TABLE 11. Performance measures of CART algorithm trained using fused
signature features.

TABLE 12. Performance measures of SVM algorithm trained using fused
signature features.

with fused dominant features. Four different Kernel func-
tions, namely linear, quadratic, cubic, and RBF, are used
to construct the model. It is observed that all SVM mod-
els trained with fused features are predicting the lubricant
conditions with an accuracy of around 99%. Details are
shown in Table 12. The other performance measures, namely
F-measure, Kappa, and MCC, also prove the better perfor-
mance of SVMalgorithms than CART algorithms. Themodel
trained with dominant features doesn’t have a significant
impact on improving the classification accuracy. It is to be
noted that feature reduction significantly reduces the com-
putation time complexity in the training and testing of the
algorithms.

X. RESULTS AND DISCUSSIONS
The overall comparison of results given by the CART and
SVM algorithms is shown in Fig.10 for models trained with
all features and dominant features. The comparison is based
on the classification accuracy of algorithms. It is clear from
the comparison that algorithms trained with fused features
of sound, vibration, and AE are predicting the lubricant
conditions with reasonable accuracy. When signature fea-
tures are considered separately, AE based model outperforms
models developed with sound and vibration features. From
an algorithm point of view, SVM algorithms predict lubri-
cant conditions better than decision tree algorithms. All the
SVM models trained with fused sound, vibration, and AE
achieve a classification accuracy of 99%. It is also noted
that SVM algorithms trained with the AE feature exhibit
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FIGURE 9. Feature level fusion methodology.

FIGURE 10. Comparative performance measures of CART and SVM algorithms.

good performance and predict the lubricant conditions with
an accuracy of around 96%. It can be concluded that the
excellent performance of the machine learning algorithm is
due to the valuable information available in the AE signa-
ture pertaining to the conditions of the lubricant. AE sen-
sor precisely captures a slight variation in the lubricant
condition.

CART algorithms with twoing and maximum deviance
criteria can classify the lubricant conditions with 91% and
93% accuracy, respectively. The feature selection does not
impact the classification accuracy of CART and SVM algo-
rithms considering AE features separately and fused features
of sound, vibration, and AE. Compared to models trained
with AE features, the prediction ability of models trained
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FIGURE 11. Computational time (sec) comparison.

TABLE 13. Confusion matrix - SVM algorithm (quadratic kernel function).

with sound and vibrations is inferior. The reason may be the
influence of external disturbances in the sound and vibration
data. The significant reasons for better performance of mod-
els developed with AE features are a) Acoustic Emissions
are produced at a microscopic level, which makes it highly
sensitive and will offer initial stage fault detection b) AE sen-
sor is insensitive to background noises as it operates in high-
frequency range compared to vibration and sound sensors.

The One-Way ANOVA method introduced in this study is
to reduce the algorithm’s training and testing time complex-
ity. The computational time for learning has been recorded
for the fused models of both CART and SVM with selected

features using the One-Way ANOVA method. It is observed
that around 40% reduction in computation time to train the
CART algorithms. Similarly, about 20% of computational
time is reduced in the training of SVM algorithms using fused
sound, vibration, and AE features. It is noted that a reduction
in computational time does not result in the deterioration of
the prediction ability of the algorithm. Algorithms trained
with all features and dominant features have almost similar
prediction abilities. It is concluded that feature reduction
reduces the training time of the algorithmswithout sacrificing
the solution quality. Computational time comparisons for
CART and SVM algorithms are shown in Fig.11.
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The confusion matrix of the best performing machine
learning algorithm – Quadratic SVM, is shown in Table 13.
For every condition, 1000 feature data points are given as
input to train and test the SVM algorithm. The correctly
classified instances are given in the diagonal of the confusion
matrix. It is seen that lubricant condition no. 8 and condi-
tion no. 22 are predicted with 100% classification accuracy.
It is to be noted that there are 44 conditions of lubricants
with varying concentration, particle size, speed, and load
conditions. Overall, it is observed that SVM is predicting all
lubricant conditions with an accuracy of 99%, considering all
44 states. It is concluded that the proposed machine learning
models predict the lubricant condition with good accuracy.
Feature level fusion of sound, vibration, and AE improves
the algorithms’ prediction ability compared to models trained
separately using sound, vibration, and AE signature features.
Among the sound, vibration, and AE signature, AE signature
features have better information content about the conditions
of the lubricants.

XI. CONCLUSION
Sound, vibration, and AE signatures were acquired for 44
experimental circumstances representing various lubricant
conditions involving varied particle sizes, particle concentra-
tions, speeds, and loads in a spur gearbox. Statistical features
extracted from the signatures are trained by considering fea-
tures separately and fusing the signature in the feature level
using CART and SVM algorithms. Feature selection was
made using the one-way ANOVA approach, and dominant
features were identified. The performances of the algorithms
are compared by training algorithms using all features and
dominant features. Pertaining to the CART algorithm, algo-
rithms trained with AE feature data considering twoing and
maximum deviance split criteria can achieve an accuracy
of 83%. The prediction ability of the CART algorithms is
improved by training the algorithm with fused sound, vibra-
tion, and AE features. The CART algorithm’s maximum
accuracy of 93.5% is achieved by considering the maximum
deviance criterion.

Maximum classification accuracy of 99 % is achieved
by all the variants of the SVM algorithm trained with
fused sound, vibration, and AE features. Compared to
CART algorithms, computational complexity is higher for
SVM algorithms. Among sound, vibration, and AE features,
AE features strongly correlate with the lubricant conditions.
The One-Way ANOVA feature selection method reduces the
computational complexity by around 25% without scarifying
the classification accuracy.

Recommendation for future work:
a) It is observed that machine learning algorithms can

predict lubricant conditions with reasonable accuracy; further
study could be extended to develop a real-time lubricant
condition monitoring system.

b) The present study used time domain statistical features
for developing machine learning models. Further, frequency
domain and time-frequency (wavelet) domain features may

be used to develop the models for predicting the lubricant
conditions.

c) It is also noticed that the prediction ability of models
developed using sound and vibration is less than AE-based
models. Implementing suitable filtering techniques reduces
external disturbances while acquiring sound and vibration
sensor signals to improve the prediction ability of the models.

d) Identifying the remaining useful life of lubricants using
a sensor-based approach is an important area to be researched
further.

e) This study does not address gear tooth failure modes and
other failure conditions of mechanical parts in a gearbox due
to lubricant contamination. Further studies in this direction
will help identify the remaining useful life of the gearbox.
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