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ABSTRACT Wireless mesh networks are popular due to their adaptability, easy-setup, flexibility, cost, and
transmission time-reductions. The routing algorithm plays a vital role in transferring the data between the
nodes. The network’s performance is significantly impacted by the route opted by the algorithm. The router
takes the decision to send the packet to the next router as per the policy of that algorithm. So even though
that decision does not favor the right path selection, the router tends to follow its policy. This can be avoided
by having intelligent routers that can make routing decisions on the fly. This paper presents the QL-Feed
Forward routing algorithm (QFFR), a new generation of routing algorithms that combines reinforcement
learning based on the Q-learning algorithm with a Feed Forward neural network. This algorithm (QFFR)
can learn from the network environment and make routing decisions based on the algorithm’s learnings.
The AI agent’s ability to select the fastest path, which enhances the efficiency of the routing operation,
is demonstrated by the working of the suggested QFFR algorithm. This paper also evaluates the performance
of traditional algorithms, namely, Ad-hoc On-Demand Distance-Vector, Optimized-Link-State-routing,
Destination-Sequenced Distance-Vector and Distance Source routing. The evaluation parameters include
throughput, packet delivery ratio, and delay. The parameters are the outcomes of the time the information
takes to reach from source to destination. This analysis highlights the improvement in the routing decision
ability of a router. As per analysis, Ad hoc On-Demand Distance Vector Algorithm outperforms with
throughput 723.13 Kbps, delay 343.73 ns. Q-learning agent identifies the route and reaches the destination
in average of 3.7s in non-grid architecture. The Q-learning agent takes 0.49sec with a grid size ten by ten and
0.53sec in three by four grid size. The suggested QFFR takes 7.62s score-over time with stable, consistent
performance.

INDEX TERMS Deep Learning, reinforcement learning, Q-learning, Markov decision process, Routing
Algorithms, Wireless Mesh Networks.

I. INTRODUCTION
During this era of digital development, networks play a
critical role. Figure 1 shows Wireless Mesh Networks with a
mesh architecture. Wireless mesh networks’ key advantages
are their versatility and customizing capabilities. Any future
modifications would be simple to accommodate, resulting in
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lower expenses and upkeep of the network. Wireless mesh
networking is a recent development that emerged from a
decade of Ad-hoc networking development [1]. A wireless
mesh network (WMN) is a decentralized network system
built on existing wireless technology, namely the 802.11 stan-
dards, that works on an Ad-hoc communication mode
[2], [3]. The wireless mesh network is ideal for next-
generation communication with its flexibility and extensive
coverage. Multi-radio mesh routers and single-radio mesh
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FIGURE 1. Wireless mesh network.

clients formWirelessMeshNetworks(WMN) [4]. As a result,
such networks are developed by connecting wireless access
points at each network client’s location [5], [6]. Mesh nodes
are radio transmitters that are modest in size. They behave
in the same way as a wireless router does. The software
deployed on these nodes guarantees that they communicate
with one another through the network and governs how they
interact [7]. The nodes determine the fastest and safest path
in a dynamic routing mechanism. Mesh routers (MRs), Mesh
clients (MCs), and gateways are integral parts of the wireless
mesh network [8]. The wireless mesh backbone is formed
by MRs, enabling multi-hop connection for mobile MCs,
enabling end-users to communicate with others or the Internet
via access points (APs) [6], [8]. In the current scenario,
Internet application services, such as Voice-over-IP (VoIP),
video streaming, audio streaming, and online games, are in
high demand. Because of the COVID spread, there has been
significant growth in online transactions in the last two years
[9], [10]. Multimedia services account for more than half
of all current Internet traffic. As a result, network providers
must undergo monitoring and maintenance duties to guar-
antee that end-user Quality-of-Experience is adequate [11].
The routing algorithm is one of the most important aspects
directly impacting the network’s performance. On the other
hand, traditional routing algorithms do not contemplate the
network data history, such as equipment failures and over-
crowded paths, which have affected the earlier communica-
tion. Routing techniques based on machine learning intend to
benefit when leveraging network data. With people’s rising
need for communication, technologies and processes must
be constantly improved to guarantee the user’s experience
[12], [13]. Traditional Ad-hoc network routing algorithms,
such as Optimized Link State Routing (OLSR), Ad-hoc

On-Demand Distance Vector (AODV), and others, cannot
know or learn from suspicious network incidences or events
that have taken place various times in the past. As a result,
these algorithms can opt for a route with typical faults in
the past [11]. Routing strategies that adapt to changes in
traffic trends, traffic load levels, and network topologies
are required to route information packets in continuously
varying communication networks effectively. These short-
est path-based approaches provide reduced network latency
when the amount of data is small. However, many routers
selected by several pathways may experience severe traffic
congestion when the volume of network data traffic mul-
tiplies. The network will become congested when the data
volume exceeds the buffer capacity of the chosen routers,
reducing network throughput and increasing network
delay.To put it another way, conventional routing protocols
cannot adapt their transmission techniques in response to
changing network conditions [14], [15]. Machine Learn-
ing algorithms have been working in diverse applications
in recent years. Similarly, Machine Learning algorithms
can effectively route control protocols since Reinforcement
Learning (RL) is increasingly used to tackle many complex
challenges [16]. In Reinforcement Learning, an agent must be
able to learn how to act in a dynamic environment iteratively.
For example, an agent who makes a decision is rewarded or
punished depending on whether the decision was Good or
No [17]. The Reinforcement Learning (RL) approach can
improve the nodes’ ability in the decision-making process
of route choice, resulting in increased network performance.
As a result, improved metrics such as improved throughput
decreased delay and, eventually, the application services
and user experience [14]. The fundamental idea behind this
method is to decide whether or not to transfer a packet with a
specific destination address to an intermediate node based on
the current estimation values of a group of neighbours. The
estimation values are dynamically updated by rewards, which
are feedback values for the chosen action - a packet forward
event to a particular neighbour [12], [18]. According to the
literature, the traditional algorithms which are widespread in
use, it is evident that each of them has some merits in specific
situations. For example, OLSR works better than AODV in
all aspects except delay when there are more than fifty nodes
in a mobile network. Even though OLSR performs better in
mobile conditions than AODV and DSDV, AODV possesses
high throughput in static conditions [19]. However, under
some circumstances, AODV exhibits better latency than
DSDV, DSR, and OLSR [20]. The suggested algorithm uses
well-known artificial intelligence techniques. So, it becomes
an essential task to measure its performance against the
traditional benchmarked algorithms. Based on assessment
metrics such as packet loss, receiving rate, delay, and through-
put, this paper appraises the performance of traditional
techniques, namely, Optimized Link State Routing (OLSR),
Ad hoc On-Demand Distance Vector (AODV), Destination-
Sequenced Distance-Vector (DSDV) and Distance Source
Routing (DSR). This complete analysis shows that RL-based
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algorithms can be applied as anAdaptive Strategy for enhanc-
ing network performance. This paper presents the QL-Feed
Forward Routing algorithm (QFFR), a millennial age routing
algorithm that combines Q-learning, one of the efficient rein-
forcement learning algorithms, and a Feed-Forward Neural
Network, again a very well-known deep learning network.
The suggested QL-Feed forward Routing algorithm (QFFR)
model has a continuous auto-learning capability from the
network environment with which it interacts and can make
routing decisions based on the AI agent’s gained experience.
This paper includes an environment produced by a three-
by-four grid. This grid architecture is synonymous with
the ‘‘Taxi-V3’’ environment from the well-known ‘‘open
AI Gym’’. This suggested algorithm’s performance is also
evaluated in a network environment built by producing a
random mesh of nodes to simulate a real-world situation.
Both of these approaches ensure the novelty in implementing
Reinforcement learning to identify the best route faster.
Young researchers in this field would also benefit from this
paper, shedding light on the modern reinforcement learning
techniques. Additionally, very little noteworthy research or
analysis was conducted for fast determining the shortest
path, which improves the performance of the Wireless Mesh
Networks. All of these emphasize the novelty and room for
developing the suggested algorithm.

The following are the significant contributions made by
this paper:

1) Q-learning Feed forward Routing algorithm (QFFR),
a hybrid algorithm, is suggested for selecting the best
path to send the information from source to destination
for aWirelessMeshNetwork. This algorithm combines
Q-learning, one of the efficient reinforcement learning
algorithms, and a Feed forward neural network, a well-
known deep learning network.

2) Based on performance parameters such as packet
loss, receiving rate, delay, and throughput, this
paper appraises the performance of traditional algo-
rithms, namely, Ad hoc On-Demand Distance Vec-
tor (AODV), Optimized Link State Routing (OLSR),
Destination-Sequenced Distance-Vector(DSDV) and
Distance Source Routing(DSR).

3) This paper compares the performance of the suggested
QL-Feed forward Routing algorithm (QFFR)s with the
well-known traditional algorithms, as well as the Rein-
forcement Learning algorithm Q-learning applied for
selecting the route in a wireless mesh network.

4) This paper describes the best ways for tuning the
important hyper-parameters of reinforcement learning
algorithms (e.g., learning rates, discount factor) for
improved self-learning and interacting with the under-
lying network environment for more optimum routing
decisions.

The following is the outline for the paper: An overview
of previous work in this field is presented in Section 2.
The conventional routing algorithms are described in

Section 3. Section 4 delves into the machine learning-
based state-of-the-art analysis methodologies used for rout-
ing. Section 5 presents and analyzes the obtained results,
while Section 6 shows the conclusion of the findings.

II. OVERVIEW OF RELATED WORK
Routing is a fundamental component of network deploy-
ment to maintain and enhance system performance. Given
the rapid requirements among several wireless applications,
accuracy(lossless), latency, and effectiveness are significant
challenges in next-generation communication [1]. According
to Ruijin Ding et al., conventional routing protocols such
as OSPF, IS-IS, RIP, and EIGRP are becoming increasingly
inadequate for networks with large amounts of data, high
data rates, and low latency requirements [14]. The implied
reason is that these protocols calculate the shortest path from
a source router to its destination without considering actual
network variables like each router’s remaining buffer size
or failed router’s current status [14]. The nodes or links in
wireless mesh networks vary over time, and each wireless
link between two nodes is established or broken regularly.
This challenge is based on network conditions, which mainly
include the variation in the received signal intensity while
on the journey to the destination. This situation worsens
when a significant distance disperses nodes. A wireless node
powered by a battery will fail when the battery runs out,
or the node overheats and shuts down. As a result, the net-
work’s topology constantly changes, making routing more
difficult. [3]. Information is sent to distant nodes in com-
munication networks in packets. Routing strategies are vital
in delivering these packets to their intended destinations to
decrease delay and reduce the congestion occurring due to
increased numbers of packets travelling on the network. Rout-
ing strategies should be able to respond to changes in network
conditions, which are the results of traffic load, traffic pat-
terns, and network topology [21]. Wireless Mesh Networks
are becoming increasingly prevalent in current situations due
to their infrastructure and well-organized design. An Ad-hoc
network incorporates a group of nodes that connect with-
out a centralized infrastructure. This kind of network can
self-organize and reconfigure itself when a node connects or
departs from the network. Fixed and movable nodes are the
two types of nodes involved in wireless mesh networks [22].
Although ad hoc networks do not require a precise struc-
ture, they need a standard communication and management
method. A convention, such as an ad hoc routing protocol,
is necessary for mobile ad hoc network nodes to decide the
route the packets must travel to reach the specified destina-
tion. Furthermore, because the nodes in an ad hoc network are
oblivious of each other initially, theymust discover each other
by broadcasting their presence to neighbouring nodes [21].
AS per Sidoine D et al., when the basic routing algorithms
Ad hoc On-Demand Distance Vector (AODV), Optimized
Link State routing(OLSR), Destination-Sequenced Distance-
Vector (DSDV) and Distance Source Routing (DSR) were
compared on threemetrics: packet loss, routing overhead, and

VOLUME 10, 2022 107963



S. Mahajan et al.: Adaptive Routing in Wireless Mesh Networks Using Hybrid Reinforcement Learning Algorithm

route length, DSR and AODV beat DSDV [22], [23]. When
comparing the energy consumption of the Optimized Link
State Routing Protocol (OLSR) with DSR, it was observed
that DSR uses its routing policy when the traffic rate is
low. However, OLSR performs better when the traffic rate is
higher [22]. In particular, conventional routing protocols such
as OSPF, IS-IS, RIP, and EIGRP are becoming increasingly
inadequate for networks with large amounts of data, high
data rates, and low latency requirements. The fundamental
reason is that these protocols compute the shortest path from
a source router to its destination without assessing actual net-
work variables like each router’s remaining buffer size [14].
Machine Learning is a hot technology that has succeeded
in diverse fields, including image processing, text mining,
natural language processing, and agent systems. Because of
its intelligence, ML is also adaptable to network architecture
for WMN. Understanding and predicting network conditions
are necessary and helpful, and ML can do it efficiently
and accurately [12]. Machine learning has recently found
widespread use in wireless communications routing tasks.
[24]. Q-learning, a model-free method, has been recognized
as a promising approach, mainly when applied to intri-
cate decision-making procedures. Q-learning offers several
benefits, including excellent learning capabilities, effective
results, and the capacity to integrate with other models s [25].
As per Rujin Ding et al., the fifth generation (5G) of cellular
mobile communications is characterized by high data rates,
ultra-low latency, high energy efficiency, and widespread
device connectivity [14]. Qion Gxiao fu et al. stated that
the ideal selection policy is centralized and necessitates local
channel state information (CSI) for all hops, resulting in
considerable computing complexity and signalling overhead.
They have proposed modeling the multi-hop relay selection
problem as a Markov decision process (MDP) and solving
it by applying a decentralized Q-learning approach [24].
Khamxay Leevangtou et al. suggested a reinforcement learn-
ing approach to improve the controller performance in
software-defined wireless mesh networks (SDWMN) for
dynamic changes in network topology with link or node fail-
ures [3]. Using Deep Q-learning and the Convolution Neural
Network (CNN)method, Hyansu Bae et al. suggested a noble
multi-robot path planning system. According to them, Deep
Q-learning strengthens the learning algorithm and is inte-
grated with the CNN algorithm to study the environment [26].
According to Duonga et al., wireless mesh networks are
becomingmore commonly used as traffic demand grows. Due
to this, traditional routing systems face a substantial barrier
in monitoring and evaluating Service. This paper presents
a QoS-assured intelligent routing system for WMNs with
high traffic loads that use reinforcement learning to improve
performance [27]. As per Saeed Kaviani et al., DeepCQ+
routing, which combines emerging multi-agent deep rein-
forcement learning (MADRL) in a novel way, achieves per-
sistently higher performance across a wide range of MANET
architectures while training only on a limited range of net-
work parameters and conditions [28]. In a fully decentralized

environment, Xinyu You et al. developed a unique packet
routing framework based on multi-agent deep reinforcement
learning. In this framework, each router has its own inde-
pendent long short-term memory (LSTM), a recurrent neu-
ral network(RNN) for training and decision making [29].
A Case of VoIP Service Using Enhanced Routing Algo-
rithm Based on Reinforcement Machine Learning is intro-
duced by Davi Ribeiro Militani et al. Using energy as the
significant selection parameter [11]. Zahoor Ali Khan et al.
demonstrated the performance of a Q-learning-based energy-
efficient routing algorithm for underwater acoustic sensor
networks [30]. According to Gerard George et al., an AI
agent aims to optimize routing decisions. The Route Bricks
architecture is a revolutionary network design that processes
packets in software running on a cluster of general-purpose
PC hardware [10]. Due to their inability to adjust to the over-
whelming dynamics of underwater settings, routing systems
for multi-hop underwater wireless sensor networks suffer
significantly from performance loss. Valerio Di Valerio et al.
provide a brand-new data forwarding strategy where relay
selection quickly adjusts to the changing underwater chan-
nel conditions to address this issue. The proposed protocol
’CARMA’, for Channel-aware Reinforcement learning based
Multi-path Adaptive routing. They suggested adaptively
switching between single-path and multi-path routing under
the path of a distributed reinforcement learning framework
that simultaneously optimizes route-long energy consump-
tion and packet delivery ratio [31]. Recently, energy-based
systems have substantially improved because of machine
learning and wireless sensor networks (WSN) integration.
However, some challenging issues need innovative analytic
approaches with low energy use. Additionally, the environ-
ment in which WSN operations occur is risky and impossible
to forecast. Multiple network threats can compromise the
accuracy and security of data collecting. Therefore, protect-
ing low-power sensors from these threats should be a primary
focus. Saba et al. have thus presented an autonomous IoT
Security strategy based on machine learning to achieve the
best feasible levels of energy economy and dependable trans-
missions [32]. A unique multi-hop multi-frequency mesh
design based on Software Defined Networking (SDN) has
been introduced by Abdollahi et al. Here, Off-the-shelf WiFi
chips are modified and integrated into a novel, light hardware
architecture to enable Adaptive routing and frequency selec-
tion. The well-known Dijkstra algorithm has been enlarged
to fit the new multi-hop multi-frequency platform [33].
A robust and reliable system for IoT -based mobile mesh
networks, which ensures reliable routing, data confidentiality,
and integrity (RTS), was put forth byK. Habib et al.. Based on
wireless channel measurement and network parameters, the
suggested method enables dependable data routing between
mobile mesh clients, routers, and gateway devices [34].

It is worth noting that work on decision-making for select-
ing a route to destination intelligently in wireless mesh
networks has rarely focused on intelligent traffic routing,
which can be employed to enhance network performance.
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Furthermore, a standard publication presenting all existing
machine learning and deep learning approaches could benefit
budding investigators. Again, there is little prominent work
applying routing strategies to modern trends, particularly
Artificial Intelligence tools andmethodologies. These aspects
emphasize the need for this research effort and the room for
development.

III. ROUTING ALGORITHMS IN WIRELESS
MESH NETWORKS
Routing is a fundamental component of networking deploy-
ment to keep and enhance system performance [8]. Packet
loss, receiving rate, delay, and throughput are essential ele-
ments in determining the network’s quality of Service (QoS).
The network and MAC layers are responsible for identifying
the route for which the routing protocols are used. As per the
routing algorithms’ strategy, the routes are identified, over
which the packets transverse towards the destination [35].
Routing Protocols explore the routes for packet transmis-
sion and deliver packets to a source’s desired destination.
Routing algorithms are used to find the best path for data
communication between nodes in a network. Proactive Pro-
tocols (Table Driven), Reactive Protocols (On-Demand), and
Hybrid Protocols are the three types of protocols [36].

A. AD HOC ON-DEMAND DISTANCE VECTOR(AODV)
Reactive routing algorithms wait for demand before finding
a route to a packet’s destination. AODV is by far the most
widespread reactive routing protocol. This protocol provides
the foundation for several reactive routing algorithms. The
network architecture constantly fluctuates since nodes are
movable; AODV leases nodes to receive routes to new desti-
nations quickly [7]. During this procedure, a packet contain-
ing a route request RREQ is flooded from the source node.
Each node that gets this packet passes it on to other nodes till
the packet reaches its destination [37]. During the first stage,
all intermediate nodes contemplate the route to the source
as per the RREQ packet’s information about the route to the
source. This node delivers a route reply RREP packet when
it reaches the destination. This packet follows the RREQ’s
course in reverse. RREP stipulates a path to the destination
to all transitional nodes on the way back to the source. When
RREP reaches the source, the discovery procedure is com-
plete. The packet transmission process can now begin. Each
intermediary node knows towhich neighbour it should deliver
the packets to reach the source or destination [38], [39].

B. OPTIMIZED LINK STATE ROUTING (OLSR)
The proactive routing protocols do not wait for a request to
find a route to a destination; instead, they maintain a table
for this purpose [40]. So, they are recognized as table-driven
routing protocols. Maintaining a routing table at each node
establishes the route in advance for data transfer [41]. OLSR
applies the mechanisms that include link sensing for exam-
ining the connectivity of nodes. It is performed by sending

periodic HELLO messages via the interfaces used to check
connectivity. For each interface,

1) A special HELLO message is generated.
2) Neighbor detection: In a network with single interface

nodes, the set of neighbour nodes can be inferred from
the information transmitted as part of link sensing. One
of a node’s single interfaces serves as its address. The
number of interfaces per node affects this process of
node detection.

3) MPRSelection andMPRSignaling: Each node chooses
a group of its neighbours to act as multi-point relays
(MPRs). Only those MPRs will re-transmit broadcast
messages to receive them by all nodes two hops away.

4) Topology Control Message Diffusion: Topology con-
trol is used to build the routing table at each node using
Topology Control (TC) packets, which MPR exclu-
sively carries.

5) Route Calculation: For route calculation, each node’s
routing table, which has adequate link-action informa-
tion, will be employed [42].

C. DESTINATION-SEQUENCED DISTANCE VECTOR
ROUTING (DSDV)
Destination-Sequenced Distance Vector Routing (DSDV) is
a table-driven routing algorithm for ad hoc mobile networks
based on the Bellman-Ford algorithm. In this algorithm,
a sequence number is designated to each entry in the routing
table, usually, an even number if a connection is established;
otherwise, an odd number is assigned [43]. The destination
generates a number, which the emitter must include in the
next update. Complete dumps are delivered infrequently to
send routing information between nodes, but minor incre-
mental changes are sent more frequently. The most recent
sequence number is used when a router receives new data.
The route with the best metric is selected if the sequence
number matches one already in the table. Entries in the table
that have not been changed in a long time are considered
expired or stale. Such entries are removed, as these routes
would otherwise use those nodes as future hop. Such entries
and routes that leverage those nodes as future hops are elim-
inated [44].

D. DYNAMIC SOURCE ROUTING(DSR)
The source routing strategy is used in this protocol, which
means that almost all path information is stored (and updated)
at mobile nodes. The only two critical processes are Route
Discovery and Route Maintenance. A Route Reply RREP
is generated only if the message has reached its intended
destination node (route record which is initially contained
in Route Request would be inserted into the Route Reply
RREP) [45]. To return the Route Reply, RREP, the destination
node must have a route to the source node. If the route is in
the destination node’s route cache, that route will be used.
Else, the node will reverse the route depending on the route
record in the Route Request RREQ message header [46].
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TABLE 1. Summary of traditional algorithms.

All these algorithms have some specific characteristics or
features.Table 1 provides an overview of the aforementioned
algorithms.

E. REINFORCEMENT LEARNING BASED
ROUTING PROTOCOLS
Reinforcement learning is training machine learning mod-
els to make a series of decisions in a specific order. In an

FIGURE 2. Working of reinforcement learning [49].

uncertain, potentially complex environment, the agent learns
to achieve a goal [48]. The working of RL interaction is
depicted in Figure 2, where an agent has a set of actions’
A’ to choose from and interact with the given environment.
The environment reacts to the agent’s action in the form of
a reward, reinforcing the agent with more knowledge about
itself. The agent subsequently uses this new information to
alter the future selection of actions in response to environ-
mental conditions, which is usually regulated by the intro-
duced estimation value Q [48]. The RL optimization process
may be described theoretically as a Markov Decision Process
(MDP), which introduces four sets: S, A, P, and R [50]
where,

S – is a set of States that an agent can be in at any particular
time

A – is a set of conceivable actions that an agent can take at
any particular time

P – is a set of possibilities that an agent in action ’S’ would
transit to State S’ in t+1’ time by executing action A

R - Reward received by the agent as a result of taking some
specific action and changing its State from S to S’ As per
MDP’s logic, the probability of transitioning from s to s’ after
executing an action is stated as given below:

Pass′ = Pr (St−1 = S ′|St = S, at = a) (1)

In equation (1), the corresponding estimation reward values
for a given action a, from State’ s’ to ’s’, are represented as
shown: The sets S and P are viewed in terms of RL theory
as a single set of estimation Q-values, which is reliant on the
feedback reward value from the environment, as well as the
current time t when the relevant action was completed [51].
The equation below is a representation of the RL estimating
values function.

Rass′ = Ert+1|St = S, at = a, St+1 = S ′ (2)

Qk+1 = K + alpha ∗ [rk+1 − Qk ] (3)

Qk is the reward estimation value from the previous step,
Qk+1 is the reward estimation value from the current step,
and rk+1 is the reward value for a current step action. The
alpha alpha is a learning parameter for step size; and K is the
current step number.
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F. WORKING OF Q-LEARNING
Q-learning is a form of Reinforcement Learning in which AI
agents operate in a controlled environment, with States and
rewards as inputs and actions as outputs. Model-free environ-
ments are used in Q-learning. In a model-free environment,
the AI agent tries to build an optimal strategy by interacting
with the environment directly. TheAI agent accomplishes this
by employing an explicit trial-and-error strategy, in which
it repeatedly tries to solve the problem using various ways
across multiple episodes while continuously updating its pol-
icy as it learns more about its surroundings [52]. Q-learning
models have input and output system rewards in an environ-
ment. The agent’s action is an input to get the reward(output)
from the environment with which it interacts. They use the
Markov Decision Process and have two modes: training and
inference. Q-learning models have two unique properties
in addition to these essential characteristics. First, in the
Q-learning model, the number of alternative States is finite.
TheAI agent will always be in one of a predetermined number
of scenarios. Second, the number of actions that can be taken
in Q-learning is also finite. The AI agent will always have
to pick between a specific set of options for what to do
next. By relying on and updating Q-values, the AI agent
learns about the surroundings [53]. Q-value indicates the
quality of a particular action ’a’ in a given State S:(S, a),
which can be represented as a function of Q with two input
parameters, S and a. An AI agent always looks for the highest
quality action in any state. Q-values are current estimates
of the sum of future rewards. That means Q-values estimate
how much additional reward can be accumulated through
the remaining steps in a current episode if an AI agent is
in State S and decides to take an action a. The Q-values,
therefore, increase as the AI agent gets closer and closer to
the highest reward. The rewards can be positive or negative.
A negative reward can be conceptualized as a punishment or
penalty. The objective of an AI agent is to maximize its total
rewards andminimize the negative rewards(punishment). The
Q-values are stored in a Q-table with one row for each possi-
ble State, and one column for each possible action [11], [54].
An optimal Q-table contains values that allow the AI agent
to take the best action in any possible State, thus providing
the agent with the potential path to the highest reward. The
Q-table, therefore, represents the AI agent’s policy for acting
in the current environment [28]. In Q-learning, the Temporal
Differences’ TD’ provide a method of calculating how much
the Q-value for the action taken in the previous State should
be changed based on what an AI agent has learned about the
Q-values for the current State’s actions. Figure 3 shows the
formula for calculating the temporal difference. This means
that in the Q-learning process, the Q-value for the most recent
action is always updated after each step. Thus, if the new State
is promising, that is, if it provides a relatively good reward,
then the Q-value for the previous action will be increased,
and the AI agent will rely on this knowledge to make the
decision during the next training episode [13]. The Bellman

FIGURE 3. Temporal difference [13].

FIGURE 4. Q-Value [55].

FIGURE 5. Q learning.

equation, invented by Richard Bellman, is used to calculate
what new value is to be used as the Q-value for the action
taken in the previous State, as shown in Figure 4. It relies
on the old Q-value for the action taken in the previous State
and what has been learned after moving to the next State.
It includes a learning rate parameter alpha (alpha) that defines
how quickly the Q-values are adjusted. Figure 5 shows the
Q-learning procedures as a whole.
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FIGURE 6. Mathematical formalism of a neuron.

G. FEED FORWARD NEURAL NETWORKS
Because the input is only processed in one direction, the Feed
Forward model is the most basic form of a Neural Network.
The data flow in only one direction and never backwards,
regardless of how many hidden nodes it passes through [25].
A feed-forward Neural Network is a biologically inspired
classification technique. It is stacked throughout and com-
prises a (relatively vast) number of basic neuron-like pro-
cessing elements. Every unit in a layer is connected to every
unit in the layer preceding it [53]. These connections aren’t
designed to be all the same: their strength and weight may
vary. The weights represent the knowledge of a network on
these links. The nodes are the basic building blocks of a
Neural Network. Data enters through the inputs and passes
through the network layer by layer until it reaches the outputs.
During normal operation, there is no feedback between layers
when it serves as a classifier. It’s for this reason that they’re
known as Feed-Forward Neural Networks. In a mathematical
formalism, learning entails adjusting the weight coefficients
to meet certain conditions. A typical neuron has a linear
activator and a non-linear inhibitory function as shown in
Figure 6. The sums of weighted inputs plus an independent
term bias, b, are produced using the linear activation func-
tion. The sum’s signal level is attempted and seized using
the non-linear inhibitory function [56]. The most prevalent
inhibitory functions are Step, Sigmoid, and Hyperbolic Tan-
gent functions as shown in Figure 7. Purely linear func-
tions are also employed for this, especially in output layers.
Q-learning has been proposed to create routing policies for
path selection. The Q- routing algorithm requires nodes to
make per-node routing decisions. Each node learns a local
deterministic routing policy using the Q-learning technique.
Finding a local routing solution requires less time to compute
than finding a global routing solution. For each State-action
pair, the algorithm keeps a Q-value Q(s, a) in a Q-table.
Let ‘st’ and at signify an agent’s current State and action at
time instant t, respectively. Furthermore, let rt+1 signify the

FIGURE 7. Feed Forward network.

reinforcement signal generated by the environment for taking
action in the State St. When the agent obtains the rt+1 reward,
it updates the Q-value for the State st and action at as follows:

Q(St , at )

= Q(St , at )+ α ∗ [rt+1
+γ ∗Max(Qat+1(QSt+1, at+1)− Q(St , at ))] (4)

where learning rate alpha (alpha) [ranging between 0 to 1] is
the learning rate, and discount factor gamma (gamma) [rang-
ing between 0 to 1] is the discount factor. Each node of the
switching network contains Q learning modules. Local infor-
mation is transmitted between nodes regularly to maintain
track of projected delivery times to nodes. Routing policies
contribute to discovering paths that require the least amount
of delivery time. The overall time it takes to send a packet is
used to evaluate the policy’s performance. Each node calcu-
lates the time required to travel to a destination from every
neighbouring node. A table is maintained at each node to do
this. The table’s value tells how long it will take for a packet P
to reach destination d if it is sent through neighbour y. When
node x receives a request to transfer a packet to destination
d, it delivers it to the neighbour y’ with the least estimated
delivery time to ’d’. Following that, ’x’modifies its policy and
questions ’y’ how long it will take ’y’’ to deliver the packet
to ’d’. Because ’y’’s estimate is more likely to be closer to
’d’, it’s used to update ’x’ s delivery time estimate [29], [48],
[57]. On their journey to their destination, packets usually
make several hops at intermediate nodes. Each node receives
a packet, stores it, and then forwards it to the next hop until
it reaches its destination. Q-routing is an Adaptive routing
method that routes packets based on information learned from
its neighbours [57].

H. PROPOSED QL-FEED FORWARD ROUTING
ALGORITHM (QFFR)
Using the Q-value iteration, the Q-table containing the
Q-values of any State-action combination is generated using
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the Q-learning algorithm. Because every State-action pair
is stored, the Q-learning algorithm works effectively for
finite States and actions spaces because it requires a large
amount of memory to store all of the State-action pairs and
many more iterations for the Q-table to converge. It is sim-
ply impossible to utilize the Q-learning method when the
States space, actions space, or both are very large (in a real-
life scenario). The Q-value is estimated using Deep Neural
Networks, known for their effectiveness in approximating
functions, as a solution to this problem. The Q-table can be
viewed as a function used to evaluate an unknown function
at specific locations. Since it is a function, Deep Neural
Networks may be used to approximate it. The RL process
employingQ-learning and feed-forward network s is depicted
in Figure 5. The AI agent is assigned the role of a node
in this proposal, which is a Wireless Mesh network node.
For delivering the packet to the next router, the agent must
do the six steps: up, down, left, right, pick up the packet,
and deliver the packet. The set of rewards that the agent
receives depends on ACK or NACK, which is represented as
a routing table of each node. Q-learning and a Feed Forward
Network are combined in the proposed QL-Feed Forward
routing algorithm (QFFR). The States of the environment are
the inputs to the Feed forward neural network, and the outputs
are the collection of Q-values for each action connected with
the input State. Thus the Neural Network s are employed
to estimate the Q-value rather than the Bellman equation.
A Neural Network learns by repeatedly considering a set of
input values and attempting to predict their output values
as correctly as possible. This is performed by updating the
weights for all nodes in the input layer and hidden layer(s)
iteratively to reduce overall prediction error. The weights are
significant in establishing each artificial neuron’s input and
output values and forecasting the outcome. The AI agent
will usually take action with the highest Q-value, just like
Q-learning. The targets of an input State in deep Q-learning
are the Q-values associated with each conceivable action
for that input State. The present forecasts of the sum of
all future rewards earned corresponding to each action are
known as Q-values. The temporal difference formula cal-
culates these Q-values equation as shown in Figure 3. The
temporal difference is a formula used to find the Q-value by
using the Q-value of the current State and action and that of
the previous State and action. The SoftMax function is used
in the QL-Feed Forward routing algorithm (QFFR) to achieve
exploration. The AI agent must consider all of its alternatives
to determine how each will affect the agent’s goal of max-
imizing overall rewards. The SoftMax function transforms
a State’s set of Q-values into a set of probabilities for each
potential action in that State. The probability distribution for
the Q-values is obtained using the Soft Max function. The AI
agent’s decision is then made by drawing a random number
from the probability distribution supplied by the Soft Max
function. As a result, the AI agent is more likely to take
the action that appears to offer the best reward. The entities

FIGURE 8. Routers in grid architecture.

involved in Reinforcement Learning and those of suggested
routing protocols are related as stated below:

• Agent is acting as a Source node(Sender).
• The set of actions is the ’Set of nodes’ that constitutes
the network.

• Set of estimation Q-values forms the ’routing Table’.
• Agent’s action is to send a packet to a neighbour.
• The agent is Rewarded when the node receives the
Acknowledgment (ACK).

The set of actions or action space refers to the nodes which
constitute the network on which sender node (router) R5,
as shown in Figure 8, sends the messages. Sending a packet
to a given network node is an action. The agent has to send
the packet either in the up, down, left, or right direction as
it is assumed that the architecture of the network is the grid
formed by nodes at each cell position in the grid, as shown in
Figure 8. Node R5 expects to receive an Acknowledgement
Message (ACK) while transmitting this packet; if this hap-
pens, it indicates that the given node received the message,
and a reward was earned for selecting this node to send the
message. Node R5 expects an Acknowledgement Message
(ACK) while transferring this packet; if this occurs, it implies
the selected node received the message. A reward was won
for choosing the above node to deliver the message. If the
ACK is not received, it means the message was lost, and the
route is poor; node R5 is therefore penalized for the action
taken. Finally, the routing table of the protocol determines
the best efficient way to transmit a packet to a particular
destination. Similarly, an estimate set determines which
activity yields the optimal reward. As shown in Figure 9,
the Neural Network takes a State as input and returns the
Q-values of all feasible actions for that State. The feed-
forward network’s input layer is the same size as a State, and
the output layer is a collection of Q-values for each action
associated with the input State. This strategy can handle var-
ious sophisticated decision-making processes that a machine
with human-like intelligence traditionally could not. In this
QL-Feed Forward routing algorithm (QFFR), the AI agent
(WMN node) preserves all of its previous experiences as well
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FIGURE 9. QL-Feed forward network.

as the future action determined by the Q-output. To stabilize
the training and block the abrupt rise in Q-value count, the
Q- Network gains the Q-value at State’ s_t’. At the same time,
the target network (Neural Network) calculates the Q-value
for State’ S_t_+1 ’(next State) by reproducing it as training
data on each iterated Q-value of the Q-network. Figure 9
below depicts this procedure.

Loss = γ +Max(a′Q(S ′, a′)− Q(S, a)2) (5)

Previous experiences must be gathered and stored by the
AI agent. When a Neural Network and Q-learning are com-
bined, the Neural Network stores the experience in memory
in a tuple format (State, Next State, Action, Reward). It has
been shown that selecting a random value from a batch of
previous data enhances Neural Network training stability.
So, to improve agent performance, the QL-Feed Forward
routing algorithm (QFFR) leverages another concept: expe-
rience replay, which is simply the stocking (remembering)
of previous experiences. The target network uses experience
replay for training and by the Q- the network for calculating
the Q-value. The squared difference between the targeted and
forecasted Q-Values is used to compute the loss. This is solely
done to train the Q-Network before copying the parameters to
the target network. The working of QFFR can be summarized
simplistically as given below:

1) Provide the agent with the current status of the
environment.

2) The agent makes use of Q-values for each feasible
action to take for the given State.

3) To achieve higher rewards, the agent chooses and car-
ries out an action based on the activity’s Q-Value.

4) Evaluate the reward and subsequent actions.
5) Save the earlier experience in the memory used for

experience replay.
6) experience replay memory is used to train the net-

work s.
7) For each State, repeat steps 2 through 6.

FIGURE 10. QL-Feed forward routing algorithm.

FIGURE 11. QL-Feed forward network block diagram.

Figure 10 shows the flowchart for the proposed method, and
Figure 11 represents the block diagram of the proposed algo-
rithm QFFR. The graphical abstracted view of the proposed
algorithm QFFR is as shown in Figure 12

I. TIME COMPLEXITY
An acceptable Q-learning algorithm that uses an action-
penalty representation finishes after at most O(n) steps after
acquiring the goal State. A Markov Decision Process(MDP)
comprises four parameters: S, A, P, and R [50] where,

S – is a set of States that an agent can be in at any particular
time

A – is a set of conceivable actions that an agent can take at
any particular time

P – is a set of possibilities that an agent in State’ s’ would
transit to State ’s’ in ’t+1’ time by executing action A and
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FIGURE 12. Generic view of QL-Feed forward routing algorithm.

R - Reward received by the agent as a result of taking some
specific action and changing its State from s to s’.

When an action aεA is taken in a State sεS, a reward R[s,
a] is generated and the transitions to the next State sεS with
the probability of transitioning from s to s’ Stated as given In
equation 6.

Pa_ss′ = PrSt−1 = S ′|St = S, at = a (6)

The total reward(cumulative) can be Stated as mentioned in
equation 7.

Rtotal = σ (
∞∑
t=o

γ trt ) (7)

The proposed QLFF combines a Q-learning algorithm with
a Feed Forward network. The complexity of exploring unex-
plored grid worlds is very low. State space is referred to as
1-step invertible if it has no duplicate actions, is Stated in
equation 4 for any SεS and aεA(s), and has no duplicate
actions. Given that the input neurons represent the inputs,
the only neurons in feed-Forward networks that carry out
operations are the hidden and output neurons (so they do
not perform any process). Each hidden neuron first applies
a non-linear (or activation) function to a linear combination
of its inputs. As a result, every hidden neuron executes the
operation as indicated in equation 8.

yj = σ (
n∑
i

wijxi) (8)

where i represents the input from the input neuron i, wij
represents the weight of the connection from the input neuron
i to the hidden neuron j, and yj is used to represent the output
of neuron j. Thus, the worst-case complexity of attaining
a goal State has a tight bound of O(n3) if a proper task
representation or appropriate initialization is chosen. For the
value-iteration action executions and the Q-learning action
executions, respectively, the time complexity is O(n2). The
O(n3) bound can be further reduced if the agent has prior
knowledge of the topology of the State space or the State
space has extra features [58], [59].

IV. EXPERIMENTAL SET UP AND RESULT ANALYSIS
A. EXPERIMENTAL SET UP FOR TRADITIONAL
ALGORITHMS (SIMULATION SET UP)
The network simulator (ns3) version 3.25 is used for observ-
ing the performance of four traditional routing protocols,

namely, Ad hoc On-Demand Distance Vector (AODV), Opti-
mized Link State routing (OLSR), Destination-Sequenced
Distance-Vector (DSDV) and Distance Source routing
(DSR). They are compared using the network Simulator,
which is said to be one of the standard simulation tools
available [22]. ns3’s simulation environment is set up on the
Ubuntu 20.04 LTS operating system. The simulation lasts
200 seconds, the first 50 of which serve as start-up time,
where a popular random waypoint mobility model is used.
Node density is an essential factor that significantly impacts
howwell routing algorithms work. A simulation environment
with 50 nodes is set to confirm the network’s thoroughness.
Within a 300× 1500 m area, the nodes move with a speed of
20 m/s and no pause time following the RandomWaypoint-
Mobility Model. With a 2Mb/s rate (802.11b) and a Friis loss
model, the Wi-Fi operates in ad hoc mode. The transmission
power is 7.5 dBm. Ten source/sink data pairs transmit the data
at a rate of 2.048 Kbps each. Usually, 64-byte packets are sent
per second in this manner. The simulations can be conducted
by directly changing the speed and quantity of nodes, it is pos-
sible to vary the network’s density andmobility. Changing the
transmit power allows users to alter the network’s properties
as well (as power increases, the impact of mobility decreases
and the effective density increases), which can give produce
variation in algorithm’s performance [60]. Table 2 shows the
parameters selected while setting up the experiment. Com-
munication between the nodes is established at random. The
source and destination nodes, and also the duration of the
connections between nodes, are generated at random using
the uniform random variable defined in ns3.

1) MOBILITY MODEL
The nodes transverse according to the Random Waypoint-
Mobility Model in this experiment. In mobility management,
the random WaypointMobility model is used. It is a random
model for mobile user movement, including how their veloc-
ity, acceleration and location change over time. Random-
based mobility simulation models have mobile nodes that
move at random and without restriction. More accurately, the
destination, speed, and direction are all chosen at random,
with no consideration for the other nodes. The network’s
mobility and density can be varied by adjusting the network’s
speed and the number of nodes. The transmit power can also
be changed to change the network’s characteristics (as power
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TABLE 2. Description of NS3 parameters for experiment set up.

increases, the impact of mobility decreases and the effective
density increases). The Wi-Fi is in ad hoc mode, with a rate
of 2 Mb/s (802.11b) and a Friis loss model. The Friis free
space propagation model simulates Line of sight( LOS) route
loss in a free space environment free of objects that cause the
characteristic-altering phenomenon to a radiated wave like
absorption, diffraction, and reflections.

2) PROPAGATION LOSS MODEL
The loss of power or attenuation of a signal or radio wave
travelling via a transmission channel can be simulated using
a propagation loss model. It facilitates the estimation of a
destination node’s reception power. This permits them to see
if the node can receive a signal. The reception power is deter-
mined by the source node’s emission power as well as the
position of the source and destination nodes. The position of
nodes is determined by themobilitymodes established. In this
case, the Long-distance Propagation Loss model is used. The
reception power can be calculated as given in Equation.

PL = PL0 + 10nlog10(d/d0) (9)

where,
d0: reference distance (m)
PL0: path loss at the reference distance (dB)
d: distance (m)
PL: path loss (dB)

B. RESULT-TRADITIONAL ALGORITHMS
Table 3 shows the results of the performance of four tra-
ditional routing protocols, namely, Ad hoc On-Demand

Distance Vector (AODV) and Optimized Link State routing
(OLSR) Destination-Sequenced Distance-Vector (DSDV)
and Distance Source routing ( DSR). As per the set of
parameters mentioned in Table 2, the experiments are con-
ducted for four algorithms, i.e. AODV, OLSR, DSDV and
DSR. The analysis is accomplished using the parameters
like packet rate(packets received per second), bits per second
at every flow( packet flow), delay and the number of lost
packets.Figures 13, 15, 17, and Figure 19 illustrate theAODV,
OLSR, DSDV, and DSR packet receiving rates respectively.
Each flow is a collection of packets consisting same pro-
tocol, source (IP, port), and destination (IP, port. Packets
are categorized based on the flow to which they belong.
Figures 14, 16, and 18, respectively, illustrate the number of
packet flows for AODV, OLSR, and DSDV and the total end-
to-end delays for all packet flows.The overall comparison
based on packets received per second for the mentioned algo-
rithms is seen in Figure 20. Throughput, latency, and packet
delivery ratio (PDR) are the performance measures used in
the evaluation.

TABLE 3. Result analysis of traditional algorithms.

1) PACKET DELIVERY RATIO (PDR)
The proportion of packets transmitted by the application to
packets received at the destination.

2) THROUGHPUT
The number of packets transmitted to a destination divided
by the number of packets received is known as throughput.
In a highly dynamic topology where the viability of a route
can quickly change, this is an excellent indicator to assess a
route’s quality.

3) DELAY
The amount of time it takes a packet from its source node
to reach the destination node. The packet’s delay is esti-
mated from when it leaves the source node until it reaches
its destination. As stated earlier, in these algorithms, the
router’s decision is as per the protocol’s policy. Due to this,
they take the same conclusion, facing similar challenges at
times. Table 3 shows the algorithms’ performance as per the
specifications mentioned in Table 2. Table 3 illustrates how
AODV outperforms in the given experimental set-up. OLSR
has a throughput of 723.13 Kbps, AODV of 752.81 Kbps,
DSDV of 259.11 Kbps, and DSR of 743.56 Kbps. It arises
due to AODV’s reduced bandwidth usage compared to the
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competition [19]. Table 3 contains the analysis for packet
Delivery Ratio AODV, OLSR, DSDV, and DSR. The Packet
Delivery Ratio of OLSR is 4.580 percent better than AODV,
10.272 percent better than DSDV, and 2.705 per cent bet-
ter than DSR, according to the study’s findings. OLSR can
maintain performance despite an increase in the number of
nodes [19]. It is evident since OLSR is proactive and regularly
broadcasts messages. It always maintains the informational
route for the entire network and is immediately usable for
packet transmission references and a few more. Compared to
DSDV, OLSR, and DSR, AODV has a better average delay.
According to the Table3, the average delay for AODV is
343.73 ms, OLSR is 466.23 ms, DSDV is 496.76 ms, and
DSR is 428.58 ms.

FIGURE 13. Performance of AODV Algorithms 1.

FIGURE 14. Performance of AODV Algorithms 2.

C. THE ENVIRONMENT SETUP FOR Q-LEARNING AND
PROPOSED QL-FEED FORWARD ROUTING
ALGORITHM (QFFR)
The wireless mesh network is formed using a grid struc-
ture of three by four size, considered a sample network.
Python has been used as a programming language to work
with high-dimensional environments like those offered by

FIGURE 15. Performance of OLSR Algorithms 1.

FIGURE 16. Performance of OLSR Algorithms 2.

FIGURE 17. Performance of DSDV Algorithms 1.

the OpenAI Gym. The experiment uses a new open-source
package, Simple rl, for conducting reinforcement-based
(Q-learning) algorithm’ experiments [61]. The essential three
components in this experiment are routers, RL agents (or
a collection of agents), and an environment (an MDP)
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FIGURE 18. Performance of DSDV Algorithms 2.

FIGURE 19. Performance of DSR Algorithms 1.

FIGURE 20. Comparison of traditional algorithms.

that models the wireless mesh environment. The agent (s)
communicate with the environment to make the routing deci-
sion. The QL-Feed Forward routing algorithm (QFFR) exper-
iment is conducted considering two scenarios. In the first
scenario, the routers are arranged in a grid format, i.e. a grid
architecture formed by three rows by four columns with each
router at each intersection as shown in Figure 8. In the second

scenario, the mesh network is formed using the python library
network x instead of considering a grid architecture, as shown
in Figure 25. The shortest path is computed, which shows the
time taken by the agent to reach the destination. Identification
of the shortest path (faster packet delivery) is a significant
factor in the routing process from the network s’ performance
perspective. The time taken to reach the destination signif-
icantly impacts performance metrics like throughput, delay,
packet receiving rate, and the packet delivery ratio.

A taxi-v3 gym environment is chosen for the proposed
QL-Feed Forward routing algorithm (QFFR). This is a simple
environment where a router acts as an agent and must pick up
and drop off packers for transmission while accomplishing
six different activities while sending the packets from source
to destination. The experiment is carried out using various
combinations of learning rate alpha (alpha) and discount
factor gamma (gamma).

1) STATE SPACE
State Space S is a collection of all possible States for an
agent. The nodes in this experiment are considered to form
a grid-like layout regarded as a mesh architecture, and the
scenario is handled using the well-known World Grid Prob-
lem [62]. As indicated in Figure 8, a grid with three rows and
four columns is explored. As discrete States, this yields in a
State-space S formed by 3× 4 = 12. Node (router) R5 is the
source node (second row, first column). Node (router) R8 is
the target (destination) node (second row, fourth column).

2) ACTION SPACE
The collection of all conceivable actions ’a’ that an agent can
execute is known as the action space A [11]. This includes
actions to Pick up the packet, deliver the packet, move up,
move down, move left, and move right).

3) TRANSITION FUNCTION
When an agent performs an action a, the transition function
T(S’| S, a) characterizes how an agent transitions from current
State S to S’. For a given State S, this function provides the
probability distribution across all possible following States S’
(S, a) [11].

4) REWARD FUNCTION
The reward that an agent receives when performing action
’a’ from State S, R is defined by a reward function (S, a).
There can be a Good action yielding a reward or a Bad action
yielding No reward or penalty [11].

5) DISCOUNT FACTOR
The discount factor gamma γ in the range (0,1), deter-
mines how myopic (short-sighted) the agent is when making
decisions. (Discount factor, =0 short-sighted, and =1 long-
sighted) A short-sighted decision is one in which the agent is
mainly concerned with current benefits. In contrast, a long-
sighted decision is one in which the agent includes potential
future information [63], [64].
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6) LEARNING RATE
The agent gathers information from its environment to fore-
cast future actions. To increase the accuracy of these predic-
tions, new information must be incorporated into the learning
process to reflect the current State of the environment. The
prediction error, which assesses the difference between the
current forecast and the observed environmental State, and
the learning rate alpha α, which defines how much of the
prediction error is applied to updating the prediction, are two
crucial aspects in the integration of new information. The
learning rate alpha determines how much the model updates
the action value depending on the reward prediction error
[63], [64].

V. RESULTS
A. Q LEARNING WITH GRID ARCHITECTURE
The results of the Q learning algorithm applied to the grid net-
work architecture, with various values for instances, episodes
and steps to analyse the performance of the Q learning algo-
rithm, are discussed as given below. In this experiment, the
Instances are the number of times the experiment should be
repeated. Episodes are the number of episodes per instance.
An episode will consist of a sequence of steps, after which
the agent will be reset to its initial condition (but gets to
remember what it has learned so far). The Steps are the
number of steps in each episode. The agent chooses the action
to move to the next State (node) with the maximum reward.
With the different number of episodes and number of steps
analysed in the experiment. Figure 21 depicts Q learning
on a three-by-four grid with a step size of 10. Figure 22
illustrate the results of Q-learning with three by four grid
architecture, number of episodes set to 100 and step size set
to 10. Figure 23 illustrate the results of Q-learning with three
by four grid architecture, number of episodes set to 100 and
step size set to 20. Figure 24 shows the Q learning output with
three by four grid architecture where the experiment repeated
with 50 episodes and step size 10. Changes to the grid size,
the number of episodes, and the agent’s steps to explore the
environment, as shown in case1,case2 and case3 are used to
validate the performance. The results obtained are stated as
below:

1) Case 1: In this analysis, the number of episodes is
fifty(50), and steps are defined as equal to ten(10).
Figure 21 shows the cumulative rewards achieved by
the Q-learning agent. The time taken by the agent is
shown in Table 4. The agent has taken 0.49 sec to
complete the Q-learning.

2) Case 2: In this analysis, the number of episodes is
hundred (100), and steps are defined as equal to ten(10).
Figure 22 shows the cumulative rewards achieved by
the Q-learning agent. The time taken by the agent is
shown in Table 4. The agent has taken 0.53 sec to com-
plete the Q-learning. Figure 23 shows the performance
of the QL agent with hundred episodes and a step size
equal to 20.

FIGURE 21. Q learning repeated experiment with ten by ten grid,
episode = 50 step = 10.

FIGURE 22. Q learning with three by four grid, episode = 100 step = 10.

FIGURE 23. Q-learning with three by four grid, episode = 100 step = 20.

3) Case 3: Figure 24 shows the agent’s performance when
the experiment is repeated. The time taken by the
agent is shown in Figure Table 4. The agent has taken
0.47 seconds to complete the Q leaning, which is
nothing but time taken to choose a set of actions to
accomplish the task.

B. Q-LEARNING WITHOUT GRID ARCHITECTURE
Many times, inWMNs, the nodesmay not form the grid archi-
tecture. So, a random network forming a mesh of nodes is
generated using the well-known python library ‘‘networkx’’,
as shown in Figure 25, to test the performance of the Q learn-
ing algorithm. The time the algorithm takes when applied to
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FIGURE 24. Q learning with repeated experiment with episode = 50,
step = 10.

TABLE 4. Performance of Q-learning algorithm.

FIGURE 25. Wireless mesh network formed by nodes.

non-grid architecture is computed. The experiment was run
by varying the discount factorgamma(gamma) values equal
to 0.9,0.99(almost equal to 1) and 0.6 (below 1).Table 5
shows the graphical output and time taken by the agent to
complete the task which is 3.5 sec, 4.0 sec and 3.7 sec for
gamma(gamma) values equal to 0.9,0.99(almost equal to 1)
and 0.6respectively.

C. RESULT PROPOSED QL-FEED FORWARD ROUTING
ALGORITHM (QFFR)
The results of proposed algorithm are shown in the Table 7.
The parameters Such as Total episodes, Total test episodes,
Max steps per episode, Exploration rate, Exploration prob-
ability at the start, Minimum exploration probability and
Exponential decay rate for exploration probability are set as
described in Table 7 for the conduction of this experiment.
The suggested algorithm provides an environment in which
the agent (router) can communicate using a trial-and-error
method with 5000 episodes, of which there are 100 test
episodes. The agent’s exploration rate epsilon (ε), which
defines how frequently it should explore and exploit, is set
to 1. Too little or too much exploration may be ineffective

TABLE 5. Results for mesh network formed without grid architecture.

TABLE 6. Parameters set for proposed algorithm.

for the agent to learn from the environment. Hence Start
maxepsilon’s exploration probability is set at 1 and 0.01 min-
imum. The exponential decay rate for exploration probability
is adjusted to 0.01 to stabilize the model’s output. The
results of the suggested algorithm Q-learning feed-forward
(QLFF) are shown in table 7. The various parameters and
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TABLE 7. Results of proposed algorithm.

their values are shown in Table 6. The time taken by the agent
to complete the task is shown below, as mentioned in five
different cases. The time taken by the algorithm to complete
the task with variation in the discount factor gamma gamma
and the learning rate alpha alpha are as mentioned below:
1) Case 1: Discount factor= gamma= 0.5, Learning Rate

(alpha) = 0.7 Here the parameters are set up as shown
in Table 6. The time taken to complete the task by the
proposed model is 7.86 ns, as shown in Table 7.

2) Case 2: Discount factor= gamma= 0.8, Learning Rate
(alpha) = 0.7 Here the parameters are set up as shown
in Table.6 The time taken to complete the task by the
proposed model is 8.07 s s shown in Table 7.

3) Case 3: Discount factor = gamma = 0.618, Learning
Rate (alpha) = 0.7 Here the parameters are set up as
shown in Table.6 The time taken to complete the task
by the proposed model is 8.1 s s shown in Table 7.

4) Case 4: Discount factor = gamma = 0.618, Learning
Rate (alpha) = 0.8 Here the parameters are set up as
shown in Table.6 The time taken to complete the task
by the proposed model is 7.62 s s shown in Table 7

5) Case 5: Discount factor = gamma = 0.618, Learning
Rate (alpha) = 0.5 Here the parameters are set up as
shown in Table 6. The time taken to complete the task
by the proposed model is 7.62 s s shown in Table 7

The combinations of discount factor gamma gamma and the
learning rate alpha alpha are used to understand their impact
on the time taken for task completion.

VI. CONCLUSION
This paper presents a detailed analysis of traditional and latest
Reinforcement Learning-based routing algorithms’ imple-
mentation to select the best route in wireless mesh networks.
Two reactive namely, Dynamic Source routing (DSR) and
Destination Sequenced Distance Vector (DSDV) algorithms
and two proactive, namely, Ad hoc On-Demand Distance
Vector(AODV) and Optimized Link State routing (OLSR)
algorithms, have been analyzed among the traditional routing
algorithms. This paper also shows the implementation of
the Q learning algorithm and suggests a hybrid QL-Feed
Forward routing algorithm (QFFR) algorithm for routing in
wireless mesh networks.AODV and DSR show good per-
formance regarding packets received and packet loss ratio
among the traditional algorithms. OLSR has a throughput of
723.13 Kbps, AODV of 752.81 Kbps, DSDV of 259.11 Kbps,

and DSR of 743.56 Kbps. The Packet Delivery Ratio of
AODV is 71.25, OLSR is 74.67, DSDV is 67.25, and DSR
is 72365. The average delay for AODV is 343.73 ms,
OLSR is 466.23 ms, DSDV is 496.76 ms, and DSR is
428.58 ms.Implementation of Q learning algorithm shows
that the Q learning agent completes the task of identification
of route and reaches to the destination in average of in 3.7s
in non-grid architecture. The Q-learning agent takes 0.49 sec
with a grid size ten by ten and 0.53sec in three by four
grid size. The suggested QLFFR takes average of 0.7 sec
score over time as observed. The fundamental difference
between the traditional and Reinforcement Learning-based
algorithms is that the Reinforcement Learning algorithms
decide to select the route(in turn, next-hop) as per their learn-
ings from the environment. The learning rate and discount
factors significantly impact the time the algorithm selects
the entire route. The Q learning for routing gives the path
identification for the given network faster than the QL-Feed
Forward routing algorithm (QFFR). The suggested QL-Feed
Forward routing algorithm (QFFR) has an advantage over
the Q learning implemented for routing because the increase
in the number of nodes spanning the size of the network
architecture will not affect the performance. Combining Q
learning algorithm with Long Short Term Memory or Con-
volution Neural networks to enhance the wireless network’s
performance could be the future scope of this work. Further,
the design of the customized network architecture or test-bed
formed for the wireless mesh network, rather than using
the predefined architectures, is the need of the present time.
An interesting point to note is that ns-3 is more modular
than specific simulation platforms, which offer users a single,
integrated graphical user interface environment in which all
operations related to networking are accomplished. How-
ever, command-line work and the use of Python or C++
software development tools are anticipated by users. Most
AI algorithms presumably use open-source frameworks like
TensorFlow and PyTorch. There are a few other machine
learning-specific libraries that ns3 does not support. How-
ever, the most recent version of ns3-gym is a framework that
combines OpenAI Gym with ns-3 to foster the use of RL in
networking research, which may be the future application of
this work.
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