IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 25 July 2022, accepted 24 September 2022, date of publication 28 September 2022, date of current version 6 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3210530

== RESEARCH ARTICLE

A Domain-Specific Language for the
Document-Based Model-Driven Engineering

of Business Applications

ONUR LEBLEBICI'!, GEYLANI KARDAS 2, AND TUGKAN TUGLULAR "3, (Member, IEEE)

"Univera, Inc., 35560 Izmir, Turkey
2International Computer Institute, Ege University, 35040 Izmir, Turkey
3Department of Computer Engineering, Izmir Institute of Technology, 35430 Izmir, Turkey

Corresponding author: Geylani Kardas (geylani.kardas @ege.edu.tr)

This work was supported by Univera Inc.

ABSTRACT To facilitate the development of business applications, a domain-specific language (DSL),
called DARC, is introduced in this paper. Business documents including the descriptions of the responsibil-
ities, authorizations, and collaborations, are used as the first-class entities during model-driven engineering
(MDE) with DARC. Hence the implementation of the business applications can be automatically achieved
from the corresponding document models. The evaluation of using DARC DSL for the development of
commercial business software was performed in an international sales, logistics, and service solution
provider company. The results showed that the code for all business documents and more than 50% of
the responsibility descriptions composing the business applications could be generated automatically by
modeling with DARC. Finally, according to the users’ feedback, the assessment clearly revealed the adoption
of DARC features in terms of the DSL quality characteristics, namely functional suitability, usability,
reliability, maintainability, productivity, extensibility, compatibility, and expressiveness.

INDEX TERMS Business application, domain-specific language, DARC, model-driven engineering.

I. INTRODUCTION

Software developers may face various difficulties during
the development of business applications [1]. Usually, these
difficulties emerge from the continuously changing business
requirements and environments as well as the processing and
storage complexity of large amounts of data. Moreover, the
need to support the interoperability with other systems, neces-
sity of adapting to rapidly changing technologies, mainte-
nance issues and providing improved user interfaces may also
complicate the development of these applications. To cope
with these challenges and facilitate the design and implemen-
tation of the business applications by raising the abstraction
level of the development, many software companies follow
model-driven engineering (MDE) [2] approaches mostly sup-
ported with the use of domain-specific languages (DSLs) [3].
From the practical perspective, many market analysis results
highlight significant investments are being made by the ven-

The associate editor coordinating the review of this manuscript and

approving it for publication was Amedeo Andreotti

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

dors for the model-driven business applications as indicated
in [4] and it is predicted that this trend will continue in the
next several years in line with the widespread use of low-code
development platforms [5].

Since the design process within a software project or a
company is usually regularized with the document concept
known to any parties involved such as customers, analysts,
architects, developers, and testers, we believe that the doc-
uments, specifying the business applications with including
the descriptions of the responsibilities, user authorizations
and the collaborations with each other, can also be eval-
uated as the main entities of modeling these applications.
Hence, MDE of the business applications can be possible by
first creating business document models and then automatic
code generation from these models. Although various studies
already exist for the application of modeling techniques to the
development of business applications (e.g. [6], [7], [8], [9],
[10], [11]), none of them consider the use of business doc-
uments as the first-class elements of modeling combining
the design of business responsibilities, authorizations and

104093

https://orcid.org/0000-0002-5100-2968
https://orcid.org/0000-0001-6975-305X
https://orcid.org/0000-0001-6797-3913
https://orcid.org/0000-0002-6514-6807

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

collaborations altogether and this restricts the wide adoption
of these MDE techniques by the above mentioned parties who
take significant role in the business application development.
With the motivation of bridging this gap and supporting such
an MDE process, a DSL, called DARC (an acronym for
Document, Authorization, Responsibility, Collaboration), is
introduced in this paper.

DARC specifies a design template with the document con-
cept in its core. Developers use this template to describe var-
ious business model instances each conforming to a business
document with its properties. The translational semantics of
the DSL leads to the generation of code from these models
to create the required business application. We describe and
exemplify how MDE of business applications is possible with
DARC DSL in the paper. Moreover, the results achieved from
a comparative evaluation of using this new language are also
discussed. The evaluation was performed within one of the
international software companies having various well-known
sales, logistics and service solutions in retail technologies
worldwide.

The remainder of the paper is organized as follows:
Section II gives the related work while Section III introduces
the language constructs. MDE methodology based on using
DARC DSL is discussed in Section IV with a case study.
Evaluation of the language and the validity threats to this eval-
uation are given in Section V and Section VI, respectively.
Finally, we conclude the paper with Section VII.

Il. RELATED WORK

For more than two decades, the researchers have been work-
ing on developing new MDE techniques and/or DSLs to facil-
itate the design and implementation of enterprise business
applications for various domains [2], [12]. We can group
the related studies under two subjects: adaptation of the
well-known generic modeling approaches and creating new
languages or MDE methods.

In the automatic creation and management of the business
applications, studies like [9], [10], and [13] consider ben-
efiting from the notation and structures of the well-known
generic modeling or workflow languages. For instance, Lu et
al. [10] extends the OMG’s Business Process Model and
Notation (BPMN) [14] to specify interactions between busi-
ness processes and fungible/non-fungible asset registries for
the development of blockchain applications. Smart contract
generation methods can be achieved in their MDE approach
to automatically transform models into code. Likewise,
Yousaf et al. [13] propose a model-based methodology to
automatically generate test case documents from the initial
collected web application requirements represented through
the Interaction Flow Modeling Language (IFML) [15] mod-
els. MDE of business process rules is also considered in
Soleymanzadeh et al.’s work [9] where the logic rules in
JsonLogic structures, built on JavaScript Object Notation
(JSON) [16] can be generated from the graphical business
application models, as well as the recovery of visual models

104094

from the existing JsonLogic structures is provided with a
web-based tool.

Taking into consideration the second group, we can see
that the researchers propose new languages or MDE methods
(e.g. [6], [8], [11], [17], [18], [19], [20]) more specific to the
targeted business domains. For example, model-driven devel-
opment of form-based or data-based business applications
that interact with back-end systems is described in [17]. How
the application-specific functions of business applications
can be defined and generated automatically on a platform-
independent level with a DSL and toolkit, called IIS % CFun-
cLang, is described in [6] with a case study considering the
development of an educational information system. Chal-
lenger et al. [18] investigate the model-driven development
of composite content applications and propose a modeling
language, called MDD4CCA, which has a metamodel com-
posed of viewpoints such as form, navigation, workflow, and
content. Inside MDD4CCA’s IDE, it is possible to generate
business applications running on Microsoft Sharepoint plat-
form. Similarly, Bicevska et al. [21] enable business process
modeling through the use of a DSL, and the definitions of
executing business processes from models can be generated
to include event-based architecture in their study.

Ferry et al. [19] provide a model-driven approach both to
create cloud applications for the Infrastructure as a Service
(TaaS) and to manage these applications independent from
the cloud service providers. Another DSL, called MAML [8],
enables both the model-driven development of business pro-
cesses for different mobile applications and the automatic
generation of local source code for these applications. On the
other hand, the conceptual model-driven framework intro-
duced in [20] for modeling and configuring DevOps engi-
neering processes and platforms benefits from the model
weaving mechanism to link elements from platform and
process models. To build enterprise applications with an
interpretive MDE approach, Oliveira et al. [7] define the
system development steps from requirement specification
to the delivery of the developed application to the cus-
tomers. Efficiency and the financial gains of the proposed
approach are shown in comparison with a classical gener-
ative MDE approach that considers code generation from
business models. The effect of improving the notation of
the business process technology built in OutSystems, which
is one of the well-known low-code platforms for develop-
ing omnichannel enterprise applications, is investigated by
Henriques et al. [22]. The study confirms that the process
is effective and that the new notation supporting the MDE
of business applications has a higher usability rating. Finally,
MultiProLan DSML, introduced in [11], facilitates creation
of a framework for the formal description and automatic
execution of production processes. It is shown that production
processing models designed using MultiProLan are suitable
for the automatic generation of executable code.

DARC DSL, introduced in this paper, contributes to
the above-mentioned noteworthy efforts by providing a
new MDE methodology for business applications and it

VOLUME 10, 2022

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

IEEE Access

differentiates from the current approaches by having a lan-
guage syntax and translational semantics derived from the
specifications of business documents and their properties
which are the first-class entities of the modeling. To the best
of our knowledge, DARC presents the first unique model of
the business documents in which the responsibilities, autho-
rizations, and collaborations on them can be designed all at
once and the exact implementation of the business applica-
tions can be automatically generated from these designed
models.

It is worth indicating that MDE based on the business docu-
ments as proposed by DARC can also be related to the studies
like [23] and [24] where ontologies are used in business
modeling. However, these studies mainly consider the system
design for business processes (such as the overall description
of service-oriented architectures or process modeling) while
DARC directly aims at providing the automatic creation
of business applications from design models reflecting the
specifications of business documents. Similarly, responsibil-
ity modeling brought by DARC enables the representation
of business functionalities such as triggering various events
for the business documents while executing the applications.
This kind of responsibility modeling is different from the
modeling of distributing user responsibilities in the business
process (e.g., see [25]).

lll. DARC DSL

DARC provides a design template, which is general enough
to capture the semantics of many different domains.
Figure 1 shows this design template for a DARC-Document
(DARC-D). A DARC-D stores data and operations as well as
its contract(s) and workflow(s). There are five compartments
on a DARC-D template, which are titled as Name, Responsi-
bilities, Authorizations, Collaborations, and Fields.

The name represents a document. Names must be clear and
fit with the mission of the document. A field is an attribute
or related data along with its validation rules. The fields
must be coherent with the responsibilities and the responsi-
bilities must be coherent with the collaborations. However,
a field does not necessarily have a direct connection with the
responsibilities. For instance, a field called Explanation can
be added to the document and it may not be related to any
responsibility; it exists only as data in the document.

Responsibilities represent business functionality, which
are attached to a document. Those functionalities can be
triggered on before/after update, create, delete, persistence
successful, and persistence failed events. DARC defines two
kinds of responsibility. One is directly related to a doc-
ument, and the second one listens to another document
to perform some operations on the document. As can be
seen in Figure 1, many responsibilities can be defined in a
DARC document and given in a String format, i.e. numbered
responsibilities in Figure 1 can be named in real implemen-
tations such as LinePriceCalculator, OrderStatusPaid and
StockLevelChanger. For instance, to decrease the stock level,
an order document should be listened to and when an order is

VOLUME 10, 2022

— e
/[Document Name]\
s ™ ™
Responsibilities Authorization Collaborations
* Responsibility 1 Access Rights * DocumentName 1
* Responsibility2 * DocumentName?2
S Role1 (CRUD) * DocumentName3
* Responsibifityiv | |Role2 (CRUD) o
* DocumentNameN
Security Filters
Role1
(FilterExpression)
Role2
(FilterExpression)
AN AN AN vy
ield1(string)-required, maxlen(3), minlen(2),
Field2 . SubField1(int),
Field2 . SubField2(string),
Field3[).DetailField1(date)
Field3[).DetailField2(bool),

Field4([relatedDocumentName])

FIGURE 1. DARC Document Template.

received then corresponding products should be dropped out
of stock. These can be defined in a responsibility instance
called e.g. StockLevelChanger. The name of a responsibility
should be written in an easily and clearly understandable
fashion.

Delete

Rolel v v v v

Role2 v

a) DARC Access Control Matrix

Filter Expression

Rolel IsActive = true && OrderedBy = @me

Role2 OrderDate > @now(-30)

b) DARC Security Filters

FIGURE 2. DARC authorization.

Authorizations specify operations allowed with respect to
roles and filters. Operations that users can perform on the
document are restricted through access rights by roles as seen
in Figure 2(a). At the same time, access to the document
records may be restricted through the security filters as given
in Figure 2(b) among users with the same role. For instance,
in Figure 2(b), the first security filter assures that the users
playing the Role 1 have access only to the orders both
being active and ordered by the same users. Similarly, the

104095

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

s

[ocumen 2

PrimitiveFleldType [

ComplexFieldType [-]

DetallsFieldType [=]

FIGURE 3. Fragment from the DARC metamodel.

second security filter allows the users having Role 2 to access
only to the orders created in last 30 days. While reading,
updating or deleting a document record, the responsibilities
defined for that document are triggered based on the trig-
ger events that have been registered in the order they are
defined.

Collaborations are determined by checking out responsi-
bilities and fields. One or more collaborations can be defined
in a DARC document by indicating the names of the other
DARC documents having a role in the related collaboration
(see Figure 1 for the template example and Figure 6 and
Figure 7 for the real implementation examples). For instance,

104096

Definition

Chainlndex

Options

a stock document has a responsibility to listen to an order
document and therefore the stock has a collaboration with the
order, i.e. the name of the document (Order) will be placed
into the collaborations compartment of the stock document.
Another example is that a product document has a product-
Category field and therefore the product is in collaboration
with the productCategory. Similarly, the document name Pro-
ductCategory is placed into the collaborations compartment
of the product document. The Collaborations compartment
outlines interactions among documents as well as their inter-
dependencies. This compartment should be watched out for
low coupling.

VOLUME 10, 2022

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

IEEE Access

Syntax of the DARC-D template is based on a metamodel
encoded in XML Schema to be processed by the current
implementation of the DARC modeling tool (which will be
discussed at the end of this section). However, the structured
data model provided by this metamodel is also Eclipse Mod-
eling Framework (EMF) [26] compliant and hence it can be
used to create Eclipse-based modeling and code generation
tools or DSL workbenches, i.e. DARC DSL can also be
implemented easily on environments such as Sirius [27] or
Papyrus [28]. Derivation of the metamodel entities and their
relations was performed as the result of a feature-oriented
domain analysis. With the collaboration of business applica-
tion developers, both features of the document-based business
applications and the dependencies among those features were
determined. While studying the features, we also specified
the system constraints as again will be discussed at the end of
this section.

Each business document required for a business applica-
tion is created as an instance model of the derived meta-
model when the DARC-D template is used. Figure 3 shows a
fragment from this metamodel showing the important meta-
elements and their relations. These elements are explained
below:

Document/Fields: Fields are attributes and/or related data
of the documents. They can be primitive types like string,
integer etc. or formed as complex types. If related data have
to be represented as a list, there is also a detailed collection
available. For instance, an order document has a primitive
order date field, an address complex type field, and order
lines detail collection fields. Fields also have validation anno-
tations.

Document/Responsibilities: DARC defines the following
characteristics for a responsibility:

e One responsibility belongs to only one document; one
document can have more than one responsibility.

e Each responsibility must specify whether it’s manda-
tory or not.

e FEach responsibility must specify one or more trigger
events. Available trigger events (for the RunsOn ele-
ment) are:

1. BeforeCreate
AfterCreate
BeforeUpdate
AfterUpdate
BeforeDelete
AfterDelete
PersistedSuccessfully
8. PersistenceFailed

NownswD

e If the execution order is important with respect to the
triggering events, then the responsibility should define
its chain index.

Document/Authorizations: Create, Read, Update, and
Delete operations can be restricted depending on the role
and the authenticated user’s requests. There are two kinds of
authorization for a document:

VOLUME 10, 2022

o Access Right restricts the roles for CRUD operations.
Default behavior is restricted. To give access a role, both
the name of the role and the permitted CRUD operations
must be specified. For instance, if we specify CR for the
customer role, that means a user who plays the customer
role can create or read that document.

« Security Filter restricts the records that a role can access.
Default behavior is allowed. To create a security filter
for a role, both the name of the role and the filter
expression must be specified. For instance, if we specify
“IsActive=true” for the role customer, that means a user
who is the member of the customer role can access only
active records.

As discussed in [29], concrete syntax style of a DSL can
be textual, graphical, form-/table based or textual with gen-
eration of visualizations. To facilitate both the use of DARC
document templates and the formalization of DARC-D model
instances according to the above abstract syntax definitions
and constraints, we provide a form-/table based concrete syn-
tax to the DARC DSL users via an Integrated Development
Environment (IDE). Figure 4 shows a screenshot taken from
this web-based IDE. This IDE was implemented on ASP.NET
using C# language according to the well-known model-
view-controller design pattern. As can be seen, documents,
responsibilities, authorizations and collaborations needed for
a business application are all created in DARC language’s
IDE by just preparing the related forms and tables which
conform to the DARC metamodel specifications.

Constraint-checks and static semantics controls for all
instance models are performed inside the IDE according to
DARC DSL definitions, i.e., control on the multiplicity of
model instances and checking naming conformances and
types. In fact, developers do not need to know both the
definition and the structure of all these controls since they
are automatically applied on a DARC model without any user
intervention.

We defined a series of model-to-text (M2T) transformation
rules to generate business applications from DARC model
instances. Table 1 lists the definition of some of these rules.
Full specification of all these M2T rules can be found in the
accompanying Mendeley data repository [30]. These M2T
transformation rules were implemented as a C# program,
which parses DARC models. The semantics of DARC lan-
guage is provided over the application of these rules at run
time on document models conforming to DARC syntax.
Hence, the generation of NET source code from DARC mod-
els is possible. For instance, it is possible to generate various
.NET classes for document responsibilities and authoriza-
tions (see [30] for examples).

IV. MDE OF BUSINESS APPLICATIONS WITH DARC

Use of both DARC DSL and its IDE leads to the formalization
of an MDE methodology in which developers can design and
implement the enterprise business applications. The proposed
methodology includes system modeling and automatic code

104097

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

TABLE 1. Some M2T rules to generate .NET code from DARC instance models.

DARC Model Element

M2T Rule Description

Document.Name

Class name of the document and the DocumentAttribute.Name
value. For example, If the documet is a shadow, then use the
ShadowOf attribute for the DocumentAttribute.Name value
For example;

[Document(*“Order”)]

public class Order {

Document/Fields/PrimitiveField.MeasurementType

If the primitive field’s FieldType is MeasurementType then set
the value to the MeasurementMemberAttribute for the generated
property.

For example

[MeasurementMember(EmeasurementTypes.Volume)]

public double Capacity { get; set; }

Document/Responsibilities/Responsibility

Create a class that implements IDocumentResponsibility<T> or
IDocumentResponsibility<TChange, TListen>

Document/Responsibilities/Responsibility/RunsOn

Adds multiple trigger event registrations for the generated
responsibility.

For example;

If BeforeDelete and BeforeUpdate items are added to RunsOn
list, then

public EDocumentObservationEvents RunsWhen =>
EDocumentObservationEvents.BeforeDelete |
EDocumentObservationEvents.BeforeUpdate;

will be generated.

Document/Authorization

Authorization registrations defined under this path. Generates an
ApplyAuthorization function and adds registration code for each
access rights and security filter definitions.

For example;

DocumentAuthorization auth = new DocumentAuthorization();
auth = repository.Query().FirstOrDefault(d=> d.Identity ==
“Rolel” && d.DocumentName == “Order”);

auth = auth ?? new DocumentAuthorization();
auth.DocumentName = “Order”;

auth.Identity = “Rolel”;

auth.CreatePermission = EPermission.Allow;
auth.ReadPermission = EPermission.Allow;
auth.UpdatePermission = EPermission.Allow;
auth.DeletePermission = EPermission.Deny;
repository.Upsert(auth);

Document/Authorization/AccessRights.Role

Name of the role to set the access rights

generation for exact implementations. Figure 5 shows the
steps followed and tools used in this methodology.

In the system modeling step (Step 1), a developer creates
document models by using DARC concrete syntax inside
the fully functional IDE. As discussed in Section III, this
IDE does not only offer a computer-aided design for system
modeling, but also supports various automatic controls which
lead the designers into creating accurate models. The main
outcome of this step is DARC document models (including
the definitions of the authorizations, responsibilities, and
collaborations as well as their inter-relations) conforming to
DARC metamodel specifications, i.e. each DARC document
model is the instance of the DARC metamodel.

104098

The next step (Step 2) is the code generation from DARC
instance models. The output of the previous step will be the
input for the execution of this step. Here, DARC models
are converted into the.NET code for the targeted system.
The M2T transformation rules are automatically executed on
the DARC instance models by the DARC DSL parser and the
code is obtained for the implementation. The developer does
not need to know about both the context of these M2T rules
and their execution details. The code generation feature over
the IDE is only selected by the developer without intervening
in the rest of the code generation process. The result of
the automatic code generation step is the source files, i.e.
generated application.

VOLUME 10, 2022

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

fuenn suedaleds syools JaiiusplRdiLiunyo0ls sLedaleds s)a015

Uz 2180 520N

1S1| SSBIPPE 8y} U SSBIPPE SI0AU| BUO Si 89U LR S8SSaIPPE JUNOJJE SBJEpIEA

» UOUYEQ ApqisuodsaY

&
Aojepuepy
S| SUONEIOQEOY » 3L

FETLEN] oy IONEPI|EA SSBIPPE UN0JDY

s|ieyaq Auyp

3poQIoLTN001S
Jooisuoddngpuysaines
uosiaguoddnspuyaoiales
(asnoyaiem < 5'8°0 < Alojuaaur)
asnoyaiepmuoddnspUyaoiARS °

ssalppyuoly

pluedaleds sURLRIRdS SHO0)S 31ON'S3ION

spedaiedstsyaels | QUBLBAMISPUNDSXIL3G]IIM SHI01S

[IB12QUOLT SHO0IS PIRPOOICLTNI0IS SHI0IS

|BISUI'SHO0IS 31EUONE[EISUI SHI0IS
2INGSHI01S PIRHRS'S{01S PIo0ISsa0ls
wawwe) uonduosag Joalgns Kuoud
uiblig SMIBYS I3LNUAPNOBILGD PIIUNCIDY

pRsanbaysoAes SWILYSIUY BWILLES

101EDIBAJSILIUSPISSAIPRY
12%03y0fueLEMm

18338 QsNRISSNOIASId
I23yguons|sq
LIBUSOSUOIE|[30UEDISPI0RIARS
1303 DSN1LISISPI0ADINIES
~ayoadiLisanbaypuyoolsinege
JOIBPI[RASLUBNIISN |
3jqerdaaysifoualingaleplien
“1EWI0AI3qUINN|ELISSSHEda RdS
“|BAlRHESSLEdRIBISISPI0ATIMES
JO1BPI[BASSPOO[RIIISIZPININIES |
J01EPI|RASPOI0LTIBPIQRDIARS |
~aygjeuss=1eandngsyedaledsu)
pidAiunpiiealonuod i
30Ud[elo]aiejnaled i
.._cDwwmmsgg.ﬁzcmsogﬁnu_mo i

|egxe] [euo

PYIapI0a0IAIaS

() a1212a
() 1epdn 101B{N0|BDIBAIRPIOR0IAIAS
(Jpesy J9Y03UD3SN0LUIEMISPI0ADINISS

() 212319 1323103 WILI3PI0S0IAIRS

18pIQBJIAIRS

31BQYsIUILAIUBLEM S¥2015J00UIAIUBLIEM
alequRISAIURLIEAY SHO0IS)O0JUAIURBLIEA BPODIBLISS SHIOISIOOUIAURLIEM

PIYO0IS SYI0ISIO0UIAUBLEM S00ISJO0MIAIUBLIEAY PIUNO3Y

() 120
|euasuoddngpuyaoaes () alepdn
Jooisuoddngpuysaives () peay

wnodavHoddnspuyaolaes () 212210

%901S1UN020YIQAIUBLIEMN

odddeowxsp | =sunossioy W o

Screenshot from DARC IDE.

FIGURE 4.

104099

VOLUME 10, 2022

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

1. Creating document models with

DARC IDE

Developer

FIGURE 5. MDE with DARC.

Finally, in the third step, the developer completes the
auto-generated code with using .NET framework to achieve
the full implementation of the targeted business applica-
tion. It is worth indicating that this step can be optional
in some situations since DARC IDE succeeds in generating
the complete forms of many model instances, i.e. the devel-
oper does not need to add delta code as will be discussed
in Section V.

As a case study, we discuss MDE of an e-commerce
sales and inventory management application using DARC
DSL. Generated application is one of the important

104100

DARC IDE

— i — -8

e
—

— ﬁ._ .

DARC D5L

Parser

Generated Application

Final Application

commercial products currently sold to over 120 enterprise
customers.

First, we present only user stories that are related to the
sales management and inventory management sub-domains.
Then, we exemplify how documents of both sub-domains
are modeled with DARC. Finally, to give some flavor of
the automatic M2T transformations, the generation of the
targeted business application’s.NET code from the order doc-
ument, which is an instance DARC model, is explained. All
automatically generated .NET classes for this case study are
available in [30].

VOLUME 10, 2022

0. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications I E E E ACC@SS

(e]

Y N]
Responsibilities Authorization Collaborations

* LineFricaCalculator Access Rlights * Product
- BeforeCreate

- Beforelpdate admin {RD)

- Mandatory(true) customer (CRUD)

* OrderedBySetter

- BeforeCraate Security Filters

- Mandatory(true) customer

* TotalPriceCaleulator (CrderedBy=@me}

- BeforeCraate

- Beforelpdate

- Mandatory(true)

A AN N vy

[1. Price{decimal):required, minval(0)
Lines[].AppliedDiscounis[].Ratio{double):minval (0}
OrderedBy| string):required
Status{enum[Paid, WaitingForPayment]}required, default(WaitingForPayment)
TotalPrice{decimal)
DeliveryAddress Description
DeliveryAddress Location. Latitute
eliveryAddress.Location. Longtitue

{a) Order Model

[Product (InventoryManagement)]
-
Responsibilities Authorization Collaborations
[Access Rights
Security Filters
. AN AN /
¢ I
e vy

(c) Product Model

FIGURE 6. DARC models designed for the sales management.

We selected a limited number of user stories for an order
business process for the sake of brevity. They are listed as
follows:

® As an admin user, I should define products, so that
customer users can buy them.

® As an admin user, I should define the product with name,
price and tax ratio.

VOLUME 10, 2022

{ Payment]
. Y IRY4 O
Responsibilities Authorization Collaborations
* OrderSistusFaid [Access Rlights * Order
- AfterCreate
- Mandstory(true) admin (R}
* PaidBySetter customer (CR)
- BeforeCreaate
- Mandstory(true) Security Filters

customer

(PaidBy=@Eme)
o AN AN ./
.JA:':JL.ﬁ-_-;de: mal)required, minval {0} -\
RelstedCrderidentifier{Order)
PaidBy{string):required

(b) Payment Model

[Stock (InventoryManagement)]
Responsibilities Authorization Collaborations
* StocklLevelChanger Access Rights * Order

- AfterUpdate(Order):
'when the order status
sat 35 paid Security Filters
* StocklevelChecker

- BeforeCreate(Order)
- Beforelpdate(COrder)
- Mandatory(true)

(d) Stock Model

e As an admin user, I should define product categories and
add products to these categories, so that users can look up
products by categories.

e As an admin user, I should define discounts for products,
so that I can get customers’ attention.

e Asan admin user, I should set the stock levels of products,
so that I can control out-of-stocks and new stock orders.

104101

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

/[Product]

' Y ™ ™
Responsibilities | | Authorization Collaborations

[Access Rights * ProductCategory

= admin {CRUD)
* customer (R}

Security Filters
* customer
(IsActive=trus)

A AN AN

Mame(stringcrequired, maxien({258), minlen(3)
Price {decimal):required, minval(0)
TaxRate{double):required. minval(d)
IsActive|booldefault(true)
Categories[]required
Categories[]. ProductCategoryldentifierProductCategory)
Discounts]]. Ratio{double]:required, minval(X)
Discounts]]. StartsOn{date}required, minval{now}, compare(=EndsOn}
Discounts{]. EndsCOn(date):required, compare(>StartsOn)

S

AN

(a) Product Model

[]

Responsibilities Authorization Collaborations
[Access Rights * Product
* Warehouse
= admin {CRUD) * Order
Security Filters
e AN AN S
{;\e (double):required, minval{0}
Productldentifier{Product).required
WarehouseldentifierWarehouse):required

{c) Stock Model

FIGURE 7. DARC models designed for the inventory management.

e As a customer user, I should list products, so that I can
add them to my shopping cart.

e As a customer user, I should add any allowed amount of
product to my shopping car, so that I can buy them.

e As a customer user, I should view my shopping summary
for total amount and discounts.

e As a customer user, I should make payment for my
shopping cart, so that I can purchase my goods.

104102

{ ProductCategory 1

' AYd ™y ™
Responsibilities | | Authorization Collaborations

Access Rights

Role1 (CRUD)
RoleZ (CRUD)

Security Filters
Role1

[FilterExprassion)
Role2
(FilterExpression)

e A AN S
{—a”a[sl' nglrequired, maxien{258), minlen(3) ™
p. vy
(b) Product Category Model
[Warehouse (InventoryManagement)]
-~
Responsibilities Authorization Collaborations
Access Rights
admin {CRUD)
Security Filiers
. AN AN v
{—a”a[sl' nglrequired, minlen{2), maxen(25G) ™
M vy

(d) Warehouse Model

Models designed with DARC DSL for this application are
given in Figure 6 and 7. Each model is a DARC-D instance
conforming to the template introduced in Section III and
prepared according to the syntax and semantics definitions
of DARC language as expected. Screenshots from the IDE
for these models, which could not be shown here due to the
space limitations, are available in [30]. When customer users
want to purchase products, the order document is used for

VOLUME 10, 2022

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

IEEE Access

this process. Basic order model for the sales management
sub-domain is shown in Figure 6(a). It is worth indicating
that a sub-domain in the DARC model is a set of coherent
documents. Cohesion is the measure we suggest when group-
ing documents into a sub-domain. A complementary inven-
tory management sub-domain presented in Figure 7 is also
necessary to fulfill the requirements defined in user stories.
Inventory management sub-domain includes documents, with
which order documents collaborate.

The responsibilities defined on this model for keeping the
information of the order can be accessed through the fields
and the roles that are authorized to perform necessary opera-
tions on this document. When a new order record is created,
a responsibility that updates the stock level of the product can
be seen on the Stock model (Figure 6(d)). For instance, when
a customer wants to create a new order record, price calcula-
tions are performed for the products (Figure 6(c) and 7(a)) to
be purchased through LinePriceCalculator responsibility (see
Order model in Figure 6(a)), the authenticated user is set as
the person who placed this order through OrderedBySetter,
and the total price information of the order is calculated
through TotalPriceCalculator and it is set on the document.
Then, StockLevelChecker responsibility, which is specified
on the Stock model given in Figure 6(d) and 7(c), checks
the stock levels for the products purchased and their cate-
gories (Figure 7(b)), and if there are insufficient stocks, the
user is warned. Likewise, when a customer wants to update
an order (who can only operate on their own orders), this
time LinePriceCalculator and TotalPriceCalculator responsi-
bilities come into play. If there are newly added, removed,
or modified products, the calculations related to them are
performed again. Then StockLevelChecker, which is defined
on the Stock model, is activated again to control the stock
levels for the products to be purchased.

Finally, in case the customer pays through the Payment
document to complete the purchase, PaidBySettter responsi-
bility on the Payment model (Figure 6(b)) sets the authenti-
cated user as the payer and updates the order status given by
the customer paid with the OrderStatusPaid responsibility.

The order update process triggers update responsibility
on the Order document (Figure 6(a)) again, and stock level
checks are made once again with line price and total price
calculations. Then, the StockLevelChanger responsibility
specified on the Stock model (Figure 6(d)) for the Order
document, whose Status is paid, is activated, and it updates
the stock levels via Warehouse model (Figure 7(d)) for the
ordered products. The order update process triggers update
responsibility on the Order document (Figure 6(a)) again, and
stock level checks are made one more time with line price
and total price calculations. Then, the StockLevelChanger
responsibility specified on the Stock model for the Order
document, of which Status is paid, is activated, and it updates
the stock levels for the ordered products.

After the design of the application documents in these
two sub-domains using DARC DSL, M2T transforma-
tion rules are executed on these DARC models to obtain

VOLUME 10, 2022

e DARC.Sal

{

public enum EOrderStatus { WaitingForPayment = 1, Paid = 2 }

[Document("Order")]
public class Order : DocumentBase

[Required]

[DateTimeMenber (DefaultvValue = 0)]

public DateTime OrderDate { get; set; }

[Required]

[DocumentDetailMember]

public DocumentDetailElementCollection<OrderLine> Lines { get; set; }
[Required]

[StringMember]

public string OrderedBy { get; set; }

[Required]

[EnumMember (DefaultValue = EOrderStatus.WaitingForPayment)]
public EOrderStatus Status { get; set; }

[DecimalMember]

public decimal TotalPrice { get; set; }

[Required]

[ComplexTypeMenber]

public Address DeliveryAddress { get; set; }

public class OrderLine : DocumentDetailElementBase

[Required]

[RelationMember (nameof (Product))]

public string ProductIdentifier { get; set; }
public ShadowProduct Product { get; set; }

[MinValue(@)]

[Required]

[DoubleMember]

public double Quantity { get; set; }

[Minvalue()]

[Required]

[DecimalMember]

public decimal Price { get; set; }

[DocumentDetailMember]

public DocumentDetailElementCollection<OrderLineDiscount> Discounts { get; set; }

public class OrderLineDiscount : DocumentDetailElementBase

[DoubleMember]
public double Ratio { get; set; }

public class Address : ComplexTypeElementBase

[StringMember]

public string Description { get; set; }

[ComplexTypeMember]

public GeolLocation Location { get; set; }
A

public class Geolocation : ComplexTypeElementBase

[LongMember]
public long Latitute { get; set; }
[LongMember]
public long Longtitute { get; set; }
}
i}

FIGURE 8. Excerpt from the code generated for the order model.

"OrderDate" : "",
"OrderedBy" : "onur.leblebici”,
"Status" : "WaitingForPayment",
"TotalPrice" 37.67,
"DeliveryAddress" : {
"Description” : "Ordu Blv Karsiyaka / Izmir",
"Location" : {
"Latitute" :
"Longitude" :

38.321044,
26.640581

Lines

" "ProductIdentifier" : "224e2504-cfS1-4f@4-ba53-09ec3eds3fde",

"Quantity" : 3,
"Price" : 12.1
"Discounts” @ |

" "Ratio" : 10.0

"ProductIdentifier" : "dcf23773-60a7-46be-bc35-2388a5d5b31e",

"Quantity" : 1,
"Price" : S

FIGURE 9. Json sample for the order model.

corresponding .NET code automatically. Figure 8 includes
a fragment of the code generated for the Order model

104103

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

of the sales and inventory management application. The
pseudocode of the executed model transformation rules
is given inside the descriptions for the corresponding
rules as previously listed in Table 1. For instance, the
class for the Order Document in Figure 8 is generated
by running the model transformation algorithms defined
for the DARC model elements Document.Name, Doc-
ument/Fields/PrimitiveField. MeasurementType and Docu-
ment/Authorization/AccessRights.Role (see Table 1). The
order document and all required fields of this document are
determined by the DARC DSL parser and code for them is
generated by executing the transformations defined for these
DARC model elements (as discussed in Section III). Com-
plete specification of the executed transformation rules and
the code generated for all above discussed DARC instance
models can be found in [30]. When this generated code for
the order application is executed and a new order instance
is created, it will be stored in a NoSQL document-oriented
database using Json format. A Json sample for this order
model is given in Figure 9.

V. EVALUATION

A comparative evaluation of using DARC DSL and its
IDE during MDE of business applications was performed
in this study. For the construction of the evaluation study
and the assessment of the achieved artifacts, we followed
the multi-case evaluation method proposed in [31] which
we previously applied in the assessment of various DSLs /
DSMLs and MDE processes such as [32], [33], [34], and [35]
for different industrial domains. Quantitative analysis and
qualitative assessment steps of this method were updated and
improved in this study for the usability evaluation of DARC
as will be discussed below.

The scope of our evaluation here covers Development
Sub-dimension (under Execution Dimension) and User Per-
spective Sub-dimension (under Quality Dimension) of Chal-
lenger et al.’s [31] method. Therefore, the evaluation criteria
pertaining to these dimensions, called Output Performance
(Generation Performance) and Qualitative assessment by a
questionnaire, are taken into consideration. We aimed at
finding answers to the following research questions (RQs):

RQ1: Is it efficient to use DARC in MDE for business
applications?

RQ2: Do developers adopt using DARC?

To find answers for the above RQs, our evaluation consists
of two parts: 1) quantitative analysis, including generation
performance evaluation 2) qualitative assessment within user
perspective.

The evaluation was performed in Univera Company [36]
(hereafter shortly Univera), which produces various business
software for sales, logistics and service processes and offers
solutions to more than 25000 customers worldwide for the
management of multi-channel sales, partners, mobile teams,
warehouses, production, field data collection and procure-
ments. According to the Promotion Optimization Institute
(POI)’s Retail Execution Reports [37], Univera ranks among

104104

the world’s best companies in retail technologies regularly
since 2016.

Ten software developers working in the R&D center of
the company voluntarily participated in our study as the
evaluators. All evaluators had at least a B.Sc. degree in
computer engineering / software engineering except three
of them have B.Sc. in electrical engineering, mathematics
and business administration respectively. Two of them also
hold M.Sc. degrees in computer engineering while one of
them was a Ph.D. candidate in computer engineering at the
time of this evaluation. All evaluators had an average of
about 9 years of software development experience in different
industries varying from 15 months to 21 years. Moreover,
they had an average of approximately 7.5 years of experience
on developing business processes / enterprise automation
software. Although they were mostly familiar with the UML,
none of them previously used MDE techniques or had an
experience on using DSLs / DSMLs before using DARC.

A. QUANTITATIVE ANALYSIS

To answer RQ1, the generation performance of DARC was
calculated. For this purpose, we considered the production of
documents and responsibilities for an enterprise field service
application used by one of Univera’s customers, one of the
biggest multinational household appliances manufacturers,
active in more than 100 countries.

Development of six different documents for the above-
mentioned business application with varying complexities
were selected as the case studies. They are briefly described
below:

1. AccountProducts: Description of the customer products
are made into this document. Records can be added into
this document via predefined customer cards or templates
for mapping between the customers and the products. Data
includes customer code, product code, serial number (if any),
setup date and purchase date.

2. ServiceAndWarranty Agreement: It provides the creation
of service contracts or access to existing contracts for a
specific customer. Definition of the warranties, creation of
the automatic service orders and the reservations settings are
all provided by these documents.

3. ServiceOrder: A service order is created after a service
request is made and planned. Such orders are directed to
the ServiceOrder documents automatically. These documents
only enable editing and view operations for the orders.

4. ServiceOrderLabor: Labor addition for a related record
is made inside this document via the service orders screen.
It is also possible to list the labor entries mapped with the
product groups

5. ServiceRequest: A request for a service is created
according to a malfunction or maintenance reported by a
customer. Related records also include the device informa-
tion. If this request is moved to the planning step, it turns
into a service order. Update operations are also possible with
service request documents.

VOLUME 10, 2022

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

IEEE Access

Generation Performance
120% — — — — — — —
100% 100% 100% 100% 100% 100% 100%
o 100%
= T
> B0%
- 54% 38% 54%
= 60% a9 46% 43%
T 40%
o
o 20%
0%
el & & & & & &
- <& .r_\h P :92 &(_..C P
O oL o & Loy 2 -
a A A o & e JF
& P ot s X4
> 3 o 4 F &
& & > X) i P
o) - i, o
ks Ey - &
S‘:,.b 3 >
v
2
e -
i Document Type
Generation Ratio for the Document W Generation Ratio for the Responsibilities

FIGURE 10. Percentage of the auto-generated LoC for the business application documents and responsibilities.

6. ServiceOrderForm: Service request forms, which are
usually filled from the mobile applications during the
field service operations, are listed here. It is also possible
to add new records via the web interface. Listed forms
can be edited for further use based on the service form
templates.

All evaluators used DARC to develop documents and auto-
matically generate the corresponding code for the respon-
sibilities required for each case study and then completed
this code to build the system. Performance evaluation is ful-
filled by comparing the percentage of artifacts automatically
generated and manually developed. These artifacts are Lines
of Code (LoC) generated both for the business application
documents and the related responsibilities. The bar chart in
Figure 10 shows the comparison results for generating both
documents and responsibilities of all case studies. The LoCs
listed for each case study is the average of all developers
in the evaluator group. For instance, all evaluators obtained
auto-generated code depending on their DARC models for
the ServiceOrderForm document’s responsibilities with vary-
ing ratios. 77% LoC is their average which means they
needed to manually add 23% LoC on average to complete
the description of the related responsibilities. The Overall
Average (shown at the rightmost) is the LoC average obtained
from all case studies.

As can be seen from Figure 10, DARC DSL succeeded
in generating all documents of this enterprise field service
application completely from all user design models in this
study. That means document descriptions made by all eval-
uators using DARC syntax can be automatically converted
to the corresponding code. However, generated LoC for the
responsibilities for each document varies between 43% and
77%. The main reason for having a low ratio of LoC gener-
ation for responsibilities in comparison with the documents
is the need for the developers’ intervention to complete some

VOLUME 10, 2022

of the complex logic rules for the responsibilities (e.g. stock
control) since they cannot be fully formalized just by mod-
eling with the current implementation of DARC. Moreover,
we realized that the number of the required responsibilities
and the diversity seen in their types also affected the LoC
generation performance. For instance, the ServiceOrder doc-
ument required the creation of 33 different responsibilities
and 43% of them were automatically generated on average
from the DARC responsibility models created by the devel-
opers who participated in our evaluation. On the other hand,
a big portion of the responsibilities (approximately 77%)
for the Service OrderForm document were generated just
by modeling in DARC IDE since it was enough to create
5 different responsibilities for this document. In addition,
the developers’ knowledge and experience on the business
domain, comprehensiveness of each document as well as the
quality of models created by the developers naturally have an
effect on the generated LoCs. In order to keep this effect min-
imum, we conducted this multi-case evaluation with varying
document and responsibility structure complexities instead of
considering an application having only one document.
Considering all measurements made during this evaluation,
we can conclude that, on the average, more than half of
the responsibilities for a business application can be auto-
matically created by just modeling with DARC while use
of this language enables generating 100% of the business
document descriptions. The result of this evaluation also leads
us having some clues on the accuracy of the generated code in
comparison with the code written manually. Business docu-
ments automatically generated by only using DARC are com-
pletely same with the ones achieved by coding manually, i.e.
obtained business documents are syntactically same for both
processes. Moreover, code generated from DARC models for
the description of the business documents and responsibilities
is automatically compiled and directly executed for all of the

104105

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

6.00

5.00 470 A R4
429 430

=
=
v 3.00
bl
g
L5}
w

2.00

1.00

\\\-\'.‘\ \\c\ \\1}7‘ _3\:\
o e 3
£F @ i® &
oy 3 Q &
& &
& &

Questionnaire Results by DSL Quality Characteristics

DSL Quality Characteristics

FIGURE 11. Average scores received for the DSL quality characteristics.

case studies just like the code developed manually without
using DARC.

B. QUALITATIVE ASSESSMENT

The software developers in Univera, participating in this eval-
uation, were also requested to answer a questionnaire after
they experienced using DARC in the above discussed case
studies. The questionnaire has two parts: 1) scoring DARC
according to a set of DSL characteristics and 2) answering
6 open ended questions to criticize the usability of DARC
and its IDE. Achieved scores and feedback gained from this
questionnaire enabled us to answer the RQ2.

To prepare the scoring part of the questionnaire, the
Framework for Qualitative assessment of Domain-specific
Languages (FQAD), introduced in [38] was adopted and
customized to the DARC specifications. DSL quality char-
acteristics in this part were scored by the participants in the
range of 1-5 on a Likert scale where one means *“Very Bad”
and five means ‘“Very Good”. When an evaluator thought
assessing DARC according to a specific quality characteristic
is not applicable and hence preferred not scoring it, he/she
simply wrote N/A. In this case, this scoring was omitted
while calculating the final average point for this quality
characteristic achieved in the whole evaluator group.

The first part of the questionnaire consists of scoring
24 sub-characteristics categorized into 8 different quality
characteristics for evaluating the DSL, namely Functional
Suitability, Usability, Reliability, Maintainability, Produc-
tivity, Extensibility, Compatibility and Expressiveness. Due
to the space limitations, descriptions of all these 24 sub-
characteristics inside this questionnaire cannot be listed in
this paper. However, the whole questionnaire including all

104106

these descriptions and the answers received from all evalu-
ators are available in [30].

Figure 11 shows the distribution of the average scores
received from the evaluators for each DSL quality charac-
teristic. It is worth indicating that average scores for each
sub-characteristic were calculated first and then these aver-
age scores were equally weighted to calculate the aver-
age score for the quality characteristic covering all these
sub-characteristics. For instance, the score for the Usability
characteristic is the average of the scores achieved for its
sub-characteristics, namely Comprehensibility, Learnability,
Number of activities for task achievement, User perception,
Operability, Attractiveness and Compactness. From these
scores, we can see that the evaluators generally found the
features of DARC useful in business application development
since all of the scores are above 4 over 5 points. The grand
average of scores for all responses is 4.48 which can be said
quite high especially considering the wide set of the sub-
characteristics.

By having one of the highest average scores, the function-
ality of DARC was confirmed which means the evaluators
agreed on DARC’s support on expressing the domain-specific
concepts and its suitability for the specifications of the busi-
ness applications as well as the document-oriented design.
For instance, the language was found functional in express-
ing the responsibilities or indicating the authorizations for
a business document. Taking into consideration the points
given to the quality measures of the Usability characteristics,
it seems that the evaluators mostly agreed on the simplicity
of the provided notations and the operability of the language
construct hence the application documents can be created and
put into practice with a minimum effort. Only one evaluator

VOLUME 10, 2022

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

IEEE Access

found the user-friendliness and the comprehensibility of the
language as moderate. Reliability of the language was also
acknowledged in terms of the model checking and correction
features, i.e. the evaluators mostly found that DARC includes
correct elements and relations between them for a business
model and it prevents the unexpected interactions between its
elements during document design. Similarly, DARC got high
scores for the maintainability which means the evaluators
thought it is easy to add new functionalities or modify the
existing ones while the change in a language construct has a
minimum effect on the rest.

Productivity by means of shortening the design process
and improving the amount of human resource used in pro-
gramming was generally evaluated as satisfactory. More-
over, DARC was found compatible with various business
domains and the document models designed with DARC can
be utilized in the existing development processes. Similarly,
Expressiveness of the language was also confirmed since the
orthogonality of the business concepts defined in DARC was
found sufficient by the evaluators as well as the level of
abstraction from the underlying implementations and deploy-
ment platforms such as Microsoft .Net. Finally, an interesting
score was achieved for the Extensibility characteristic. As can
be seen from Figure 11, all evaluators gave the highest
point 5 to the language’s extensibility. This consensus can
be originated from the design of DARC document templates
since it facilitates adding new responsibilities, collaborations,
and authorizations over an extensible document template.

In the second part of the questionnaire, the following
questions were asked to the developers to get their feedbacks:

1. Does DARC make software development easier?

2. Do you find DARC suitable/useful for the development
of software for business processes?

3. Do you think DARC is strong enough to model overall
business structure?

4. Do you think DARC IDE is easy to use?

5. Are there any difficulties you encountered while using
DARC? If so, do you have any suggestions to solve it?

6. Please write your suggestions and other comments for
improving DARC’s features.

All evaluators responded to the first question positively and
highlighted the efficiency and speed-up in business applica-
tion development brought by modeling with DARC. Specifi-
cally, many of the evaluators also indicated their reason for
finding DARC facilitating the software development as it
provides a very standardized way of defining documents and
responsibilities as well as creating and managing the autho-
rizations. Finally, one of the experienced evaluators stated
that modeling with DARC may help dealing with the com-
plexity of integrity in document concepts inside large-scale
business applications.

Regarding the second question, the evaluators generally
found DARC feasible especially by means of supporting
abstraction from the technical issues of the underlying busi-
ness process deployment platforms during system develop-
ment. One evaluator stated that it was too comfortable to

VOLUME 10, 2022

concentrate on only the requirements of the business domain
and the specifications of the documents without dealing with
the implementation details at the first stage. Another evalua-
tor underlined how DARC models are suitable for managing
document responsibilities, i.e., responsibilities can be created
or modified before/after the creation of the documents and
responsibilities can be related with the documents anytime.
She also added that triggering the processing of one document
from another document is possible over the management of
the responsibilities by DARC models. In one of the interesting
answers for this question, an evaluator indicated that he
believes DARC provides a common design language shared
among the big development teams having team members
with varying domain knowledge and experience. The only
negative answer for this question took the notice of the
overengineering that may arise in the small projects modeling
with DARC.

Third question aimed at gaining user feedback on whether
DARC provides an all-embracing model of enterprise busi-
ness applications. All evaluators except one confirmed the
comprehensiveness brought by the business document def-
initions with DARC models. Support for different industry
domains was acknowledged in most of the answers. However,
one evaluator having a negative opinion on this issue indi-
cated that DARC’s applicability for different industries and
different application scales is up for debate since we need to
be sure of the completeness of the requirement analysis of the
system prior to the business modeling.

In most of the answers given to the fourth question, it seems
the evaluators agreed that DARC IDE provides a simple
design where users do not spend much effort, i.e. the IDE
facilitates the document design with a handy interface to
build the document functionality in addition to the access and
modify authorizations. However, one evaluator found the Ul
design of the IDE not user-friendly, and he stated that coloring
and the placement of the components inside the IDE needed
further improvements. One response partially confirmed the
usability of the IDE since the initialization step for document
modeling was found a little bit confusing with this IDE.

For the fifth question, which focuses on the problems faced
by the users, the most complained issue was the initial adap-
tation to the business modeling with DARC. One evaluator
indicated that the transition stages from other approaches to
the MDE brought by DARC can be painful, while another
evaluator found it is quite challenging at the beginning to
model the documents instead of programming. However, the
same evaluators also agreed that once this adaptation step
for modeling is completed, it is more effective to create the
applications with DARC.

Finally, the sixth question enabled us to obtain valuable
improvement suggestions from the evaluators that can be
considered in the future versions of DARC DSL and its IDE.
For instance, one evaluator suggested that a mechanism can
be built to support adding documents and the modification of
document components at runtime. Another suggestion was
about improving the modeling interface of the IDE as it

104107

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

will lead to adding comments and textual explanations to
the designed responsibilities. One remarkable suggestion was
about supporting the automatic processing of the results of
the queries on the responsibilities inside the IDE when all
responsibilities of a document are modeled.

VI. THREATS TO THE VALIDITY

There are some threats to the validity of the performed evalu-
ation which can be assessed according to the four main types
of the validity threats, namely internal validity, external valid-
ity, construct validity, and conclusion validity as described
in [39].

Internal threats to the validity of our experiments relate
much to the selection and grouping of the software devel-
opers participating as the evaluators. We paid attention to
conducting this evaluation only with developers who actively
implement commercial business applications in the industry.
As indicated at the beginning of this section, the developers
participating in this study have significant experience on
industrial scale business application development and we
believe that both their experience and feedback contributed
much to the evaluation of the DARC DSL. On the other
hand, only a single evaluator group was used instead of two
different groups, which could pose a threat to the execution
phase. In our previous studies for other application domains
(e.g. [32], [33], [34], [35], [40], [41]), we experienced using
both single and double evaluator groups. Using a single group
may raise the risk that the evaluators take advantage of their
prior development experience using DARC DSL while devel-
oping the same business application without using DARC
(or vice-versa). Using two groups may minimize this risk.
However, in case of two groups, the qualitative evaluation
based on the user feedback will not be completed in a fruitful
way since the groups with or without using DARC will
be different. For the questionnaire-based comparison, it is
crucial that a single group implements the same software
with or without using DARC. There is also the difficulty
of creating two homogeneous groups which have almost
the same level of domain knowledge, experience and skills.
Randomizing the order of the evaluator groups and/or the
applied case studies can also be an option (e.g. see [42])
However, we could not follow the same approach here mainly
due to the need of completing the implementations of six
different document-based applications from scratch instead
of just modeling as is the case in [42]. We also had time
limitations for the conducted experiments; and finally there
would be the unavailability of all evaluators for such an
extensive repeating model of evaluation inside the company.

For the threats to the external validity, generalization of
the achieved results should be considered. The experimental
environment needs to be more realistic. We believe that this
threat was mitigated in this study first by selecting profes-
sionals who are qualified for the tasks of development and
evaluation inside our experiments. Second, the experimental
setting exactly represents the industrial practice since the
evaluations took place inside a company producing various

104108

business processes software which is the domain of the lan-
guage being evaluated. Rather than being trivial examples, the
multi-case studies herein consider actual business application
developments leading to the achievement of the commercial
products for this company.

Construct validity refers to what extent the operational
measures and the cases that are studied really represent what
the researchers have in mind. We aimed at evaluating DARC
and its IDE taking into consideration its capability on the
automatic generation of business applications and adoption
of the language and its features by the developers. For this
purpose, design and implementation of six different docu-
ments and the related responsibility definitions for a large-
scale business application were completed inside the experi-
ments where the related tasks were realized with and without
using DARC. Moreover, LoC generalization was evaluated
according to the all experiment outputs received from the
repetition of the same activities by ten different evaluators
with varying domain experiences. Feedback from the same
developers were obtained via a questionnaire to determine
the advantages and disadvantages of using DARC. Hence,
the application of this multi-case evaluation methodology
enabled us to reach the aim determined at the beginning.

Finally, for the conclusion validity, we need to consider
the credibility of the achieved results. Within this context,
we believe that selecting multiple case studies with varying
complexities on the designed documents and the responsi-
bilities also helped to minimize the risk on the conclusion
validity. For example, as the result of each individual business
document development with DARC, it was determined that
the number and the diversity in type of the required respon-
sibilities encountered in each experiment directly affected
the LoC generation performance whereas the amount for
the generated document parts were the same independent
from the complexity of each case study. Another conclusion
threat can be on the number of the evaluators since only
ten developers could participate in this evaluation. However,
instead of selecting inexperienced users or even students,
we specifically paid attention to conduct this evaluation only
with developers who have experience in the related field
and actively working in the production of various indus-
trial business applications. In addition, the length and the
comprehensiveness of multi-case studies also affected the
number of volunteers since they were requested to develop
a full-fledged business application with six different docu-
ments from scratch by applying the whole MDE process and
this resulted in more work on the normal workloads of these
employees.

VII. CONCLUSION

To facilitate the development of business applications, a DSL
called DARC has been introduced in this paper. In MDE
with DARC, business documents, specifying the business
applications including the descriptions of the responsibilities,
authorizations, and collaborations, are used as the first-class
entities of system modeling and hence the implementation of

VOLUME 10, 2022

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

IEEE Access

the business applications can be automatically achieved from
these document models via model to text transformations
built in the DSL.

The comparative evaluation of using DARC DSL during
the development of an enterprise field service application
inside an international sales, logistics, and service solu-
tion provider company showed that all business document
descriptions could be fully generated automatically just by
modeling with DARC. Moreover, on the average, code for
more than 50% of the responsibilities can be automatically
created from the corresponding DARC model instances.
Finally, according to the users’ feedback, the assessment
clearly revealed the adoption of DARC features in terms of
the DSL quality characteristics, namely functional suitability,
usability, reliability, maintainability, productivity, extensibil-
ity, compatibility, and expressiveness. Some of the evaluators
found it quite challenging at the beginning to adapt modeling
instead of programming although they also acknowledged
the effectiveness brought into the development once they
familiarize themselves with the modeling.

DARC DSL is now being used in Univera during the
development of various commercial products. Although the
evaluation of using DARC for the development of an enter-
prise field service application of a household appliances
manufacturer is exemplified in this paper, it is worth empha-
sizing that DARC model and the DSL is used in the design
and implementation of various applications for more than
20 companies (Univera’s corporate clients) operating in sec-
tors including telecommunication, energy, industrial machine
production, hardware services and heating, ventilation, air
conditioning, and refrigeration (HVACR). In these applica-
tions, business needs covering the management of the work-
force, inventory and organization, the collection of client data
as well as the procurement of the services and support are
met. For instance, automation of service contracts for the
life of service contracts and the contract term fulfillment
features in a HVACR application are modeled by DARC
while the application of managing the shifts/working hours,
the skills, the certificates and the trainings of the employees
of a manufacturing company is built by the utilization of
DARC DSL. Another interesting use of DARC DSL is the
development of a business application for the combination of
both hardware installation instructions and parts inventories
and the automation of warranty follow-ups.

To increase the DARC’s current-generation performance
for the business documents, which have very complex logic
rules for the responsibility definitions, we aim at extending
the current DARC metamodel with new entities and relations
as the future work. However, our previous experience on the
MDE of logic rules in various domains, including business
applications (e.g., see [9], [32], [35]) showed that a perfect
balance needs to be set up between increasing the ratio
of the automatic generation of logic rules and keeping the
abstraction of system modeling at the desired level. There-
fore, although extending the related metamodels may lead
to an increase in generating artifacts, it may also cause both

VOLUME 10, 2022

the creation and comprehension of system models to be very
complicated. Hence, this issue needs further investigation for
DARC models.

ACKNOWLEDGMENT

(Onur Leblebici, Geylani Kardas, and Tugkan Tuglular con-
tributed equally to this work.) The authors would like to
thank all staff in Univera Company for their valuable col-
laboration during the evaluations performed in this study and
the directorate of Univera Company for their permission on
conducting the evaluation studies.

REFERENCES

[1] N.Kryvinska and A. Poniszewska-Maranda, Developments in Information
& Knowledge Management for Business Applications. Cham, Switzerland:
Springer, 2021.

[2] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering in Practice, 2nd ed. San Rafael, CA, USA: Morgan & Claypool
Publishers, 2017.

[3] T. Kosar, S. Bohra, and M. Mernik, “Domain-specific languages: A

systematic mapping study,” Inf. Softw. Technol., vol. 71, no. 7, pp. 77-91,

Mar. 2016.

A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy,

M. Tisi, A. Wortmann, and V. Zaytsev, “What is the future of modeling?”

IEEE Softw., vol. 38, no. 2, pp. 119-127, Mar./Apr. 2021.

[5] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, ‘“Low-code development and model-driven engineering: Two
sides of the same coin?”” Softw. Syst. Model., vol. 21, no. 2, pp. 437-446,
Apr. 2022.

[6] A.Popovic, I. Lukovic, V. Dimitrieski, and V. Djukic, “A DSL for model-
ing application-specific functionalities of business applications,” Comput.
Lang., Syst. Struct., vol. 43, pp. 69-95, Oct. 2015.

[7]1 A. Oliveira, V. Bischoff, L. J. Gongales, K. Farias, and M. Segalotto,
“BRCode: An interpretive model-driven engineering approach for enter-
prise applications,” Comput. Ind., vol. 96, pp. 86-97, Apr. 2018.

[8] C. Rieger and H. Kuchen, “A process-oriented modeling approach for
graphical development of mobile business apps,” Comput. Lang., Syst.
Struct., vol. 53, pp. 43-58, Sep. 2018.

[9] K. Soleymanzadeh, Y. Bul, S. Bagci, and G. Kardas, “A tool for modeling
JsonLogic based business process rules,” in Proc. Ist Int. Informat. Softw.
Eng. Conf. (UBMYK), Ankara, Turkey, Nov. 2019, pp. 263-267.

[10] Q. Lu, A. B. Tran, I. Weber, H. O’Connor, P. Rimba, X. Xu,
M. Staples, L. Zhu, and R. Jeffery, “Integrated model-driven engineering
of blockchain applications for business processes and asset management,”
Softw., Pract. Exper., vol. 51, no. 5, pp. 1059-1079, May 2021.

[11] M. Vjestica, V. Dimitrieski, M. Pisaric, S. Kordi¢, S. Risti¢, and I. Lukovi¢,
“Multi-level production process modeling language,” J. Comput. Lang.,
vol. 66, Oct. 2021, Art. no. 101053.

[12] V. Kulkarni, “Model driven development of business applications: A
practitioner’s perspective,” in Proc. 38th Int. Conf. Softw. Eng. Companion,
Austin, TX, USA, May 2016, pp. 260-269.

[13] N. Yousaf, F. Azam, W. H. Butt, M. W. Anwar, and M. Rashid, “‘Automated
model-based test case generation for web user interfaces (WUI) from
interaction flow modeling language (IFML) models,” IEEE Access, vol. 7,
pp. 67331-67354, 2019.

[14] Object Management Group (OMG). (2010). Business Process
Model and Notation. Accessed: Sep. 25, 2022. [Online]. Available:
https://www.omg.org/spec/BPMN/2.0/About-BPMN/

[15] M. Brambilla and P. Fraternali, Interaction Flow Modeling Language:
Model-Driven Ul Engineering of Web and Mobile Apps With IFML.
Burlington, MA, USA: Morgan Kaufmann, 2014.

[16] JsonLogic. (2017). JsonLogic: Build Complex Rules, Serialize
Them as JSON, Share Them Between Front-End and Back-End.
Accessed: Sep. 25, 2022. [Online]. Available: https://jsonlogic.com/

[17] T. A. Majchrzak and J. Ernsting, “Achieving business practicability of
model-driven cross-platform apps,” Open J. Inf. Syst., vol. 2, no. 2,
pp. 3-14, 2015.

[4

[l

104109

IEEE Access

O. Leblebici et al.: DSL for the Document-Based Model-Driven Engineering of Business Applications

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas, “A model-
driven engineering technique for developing composite content applica-
tions,” in Proc. 5th Symp. Lang., Appl. Technol., Maribor, Slovenia, 2016,
pp. 11:1-11:10.

N. Ferry, M. Almeida, and A. Solberg, “The MODAClouds model-driven
development,” in Model-Driven Development and Operation of Multi-
Cloud Applications (SpringerBriefs in Applied Sciences and Technol-
ogy), E. Di Nitto, P. Matthews, D. Petcu, and A. Solberg, Eds. Cham,
Switzerland: Springer, 2017, pp. 23-33.

A. Colantoni, L. Berardinelli, and M. Wimmer, ‘“DevOpsML: Towards
modeling DevOps processes and platforms,” in Proc. 23rd ACM/IEEE Int.
Conf. Model Driven Eng. Lang. Syst., Companion, Oct. 2020, pp. 1-10.
Z. Bicevska, J. Bicevskis, and G. Karnitis, ‘“Models of event driven
systems,” Commun. Comput. Inf. Sci., vol. 615, pp. 83-98, Jan. 2016.

H. Henriques, H. Lourenco, V. Amaral, and M. Gouldo, “Improving
the developer experience with a low-code process modelling language,”
in Proc. 21st ACM/IEEE Int. Conf. Model Driven Eng. Lang. Syst.,
Copenhagen, Denmark, Oct. 2018, pp. 200-210.

F. Benaben, S. Truptil, W. Mu, H. Pingaud, J. Touzi, V. Rajsiri, and
J. P. Lorre, “Model-driven engineering of mediation information system
for enterprise interoperability,” Int. J. Comput. Integr. Manuf., vol. 31,
no. 1, pp. 27-48, 2018.

Y. Cao, Y. Liu, H. Wang, J. Zhao, and X. Ye, “Ontology-based model-
driven design of distributed control applications in manufacturing sys-
tems,” J. Eng. Des., vol. 30, nos. 10-12, pp. 523-562, Dec. 2019.

C. Campos and R. Grangel, “A domain-specific modelling language for
corporate social responsibility (CSR),” Comput. Ind., vol. 97, pp. 97-110,
May 2018.

Eclipse Foundation. (2022). Eclipse = Modeling Framework.
Accessed: Sep. 25,2022. [Online]. Available: https://www.eclipse.
org/modeling/emf/

Eclipse Foundation. (2022). Eclipse Sirius Domain-Specific Model-
ing Tool. Accessed: Sep. 25, 2022. [Online]. Available: https://www.
eclipse.org/sirius/

Eclipse Papyrus. (2022). Eclipse Papyrus Modeling Envi-
ronment. Accessed: Sep. 25, 2022. [Online]. Available:
https://www.eclipse.org/papyrus/

U. Zdun and M. Strembeck, ‘“‘Reusable architectural decisions for DSL
design: Foundational decisions in DSL development,” in Proc. 14th Annu.
Eur. Conf. Pattern Lang. Program., Irsee, Germany, 2009, pp. 1-37.
(2022). DARC DSL Repository. Accessed: Sep. 25, 2022. [Online]. Avail-
able: https://data.mendeley.com/datasets/6d9nv4gk24/1

M. Challenger, G. Kardas, and B. Tekinerdogan, “A systematic approach
to evaluating domain-specific modeling language environments for multi-
agent systems,” Softw. Quality J., vol. 24, no. 3, pp. 755-795, 2016.

G. Kardas, B. T. Tezel, and M. Challenger, “Domain-specific modelling
language for belief—desire—intention software agents,” IET Softw., vol. 12,
no. 4, pp. 356-364, Aug. 2018.

S. Arslan and G. Kardas, “DSML4DT: A domain-specific modeling
language for device tree software,” Comput. Ind., vol. 115, Feb. 2020,
Art. no. 103179.

O. F. Alaca, B. T. Tezel, M. Challenger, M. Gouldo, V. Amaral, and
G. Kardas, “AgentDSM-Eval: A framework for the evaluation of domain-
specific modeling languages for multi-agent systems,” Comput. Standards
Interface, vol. 76, Jun. 2021, Art. no. 103513.

H. Marah, G. Kardas, and M. Challenger, ‘“Model-driven round-trip engi-
neering for TinyOS-based WSN applications,” J. Comput. Lang., vol. 65,
Aug. 2021, Art. no. 101051.

Univera Co. (2022). Univera Bilgisayar Sistemleri Sanayi ve Tic A.S.
Accessed: Sep. 25, 2022. [Online]. Available: https://www.univera.com.tr/
Promotion Optimization Institute (POI). (2021). POI 2021 Retail
Sales Execution Report. Accessed: Sep. 25, 2022. [Online]. Available:
https://poinstitute.com/

G. Kahraman and S. Bilgen, “A framework for qualitative assessment
of domain-specific languages,” Softw. Syst. Model., vol. 14, no. 4,
pp. 1505-1526, 2015.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012.

O. Yildirim and G. Kardas, “A multi-agent system for minimizing energy
costs in cement production,” Comput. Ind., vol. 65, no. 7, pp. 1076-1084,
Sep. 2014.

104110

[41] H.B. Saritas and G. Kardas, ““A model driven architecture for the develop-
ment of smart card software,” Comput. Lang., Syst. Struct., vol. 40, no. 2,
pp. 53-72, Jul. 2014.

[42] T.Miranda, M. Challenger, B. T. Tezel, O. F. Alaca, A. Barisic, V. Amaral,
M. Goulao, and G. Kardas, “Improving the usability of a MAS DSML,”
in Proc. 6th Int. Workshop Eng. Multi-Agent Syst. (EMAS), 17th Int. Conf.
Auton. Agents Multiagent Syst. (AAMAS), in Lecture Notes in Artificial
Intelligence, vol. 11375. Stockholm, Sweden, 2019, pp. 55-75.

ONUR LEBLEBICI received the B.Sc. degree in
computer engineering from Hacettepe University,
Turkey, in 2006, and the M.Sc. degree in computer
engineering from the Izmir Institute of Technol-
ogy, Turkey, in 2020. Since 2006, he has been
worked as a software engineer, a research and
development manager, a software development
manager, and a software development consultant
at various national and international companies.
He is currently the Chief Software Architect at
Univera Company. He is responsible for managing research and development
projects, designing and building brand new software development platforms,
and determining architectural compliance within the context of the system
architecture and best practices. His research interests include enterprise
business applications, software architectures, and model-driven engineering.

GEYLANI KARDAS received the B.Sc. degree in
computer engineering and the M.Sc. and Ph.D.
degrees in information technologies from Ege Uni-
versity, Turkey, in 2001, 2003, and 2008, respec-
tively. He is currently an Associate Professor with
the International Computer Institute (ICI), Ege
University, and the Head of the Software Engi-
neering Research Laboratory (Ege-SERLab), ICI.
He works as the principle investigator, a researcher

: or a consultant in various research and develop-
ment projects funded by governments, agencies, and private corporations.
His research interests include agent-oriented software engineering, model-
driven engineering, domain-specific (modeling) languages, and low-code
software development. He has authored or coauthored over 100 peer-
reviewed papers in these research areas. He is an Associate Editor of the
Journal of Computer Languages (Elsevier).

TUGKAN TUGLULAR (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in com-
puter engineering from Ege University, Turkey,
in 1993, 1995, and 1999, respectively. He worked
as a Research Associate at Purdue University,
from 1996 to 1998. He has been with the Izmir
Institute of Technology, since 2000. He is cur-
rently working as an Associate Professor at
the Department of Computer Engineering. His
research interests include software testing, model-
based software development, and machine learning augmented software
engineering.

VOLUME 10, 2022

