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ABSTRACT This paper deals with the state estimation and control problem for nonlinear lateral vehicle
dynamics with time delays. First, a novel time-varying delay vehicle model described as a Takagi-Sugeno
fuzzy model is presented. In particular, it is considered that the lateral force contains an air resistance term
which is assumed to be a quadratic function of the lateral vehicle velocity. A time-varying delay has been
included in the vehicle states by a simple formula in order to capture brake actuation aspects or other practical
aspects that may generate a delayed response, while the nonlinear part of the vehicle model is described as a
Lipschitz function. A Takagi-Sugeno time-delay observer-based control that satisfies the Lipschitz condition
is proposed to get closed-loop stability conditions. These results generalize existing ones in the literature on
lateral dynamics control. Additionally, we provide a new methodology for the controller and observer gains
design that can be cast as linear matrix inequality constraints. Finally, we illustrate our results with numerical
examples, which also reveal the negative effect of not considering the presence of delays in the controller
design.

INDEX TERMS Lateral vehicle model, time-varying delay, observer-based control, T-S fuzzy model, LMIs.

I. INTRODUCTION
Every year around the world, over a million people are killed
and millions are injured in car accidents. This can be seen
as a huge road war in some countries, since many people
risk their lives every day. Researchers have tried to tackle
the challenge of road traffic safety from different angles (see
for example [1] and the references therein). The study and
development of vehicular systems play a significant role in
overcoming this challenge, and the automotive engineering
industry and research laboratories in this field have constantly
been striving tomake vehicles comfortable, efficient and safe.
In this regard, this work delves in the topic of observer-
based control systems for lateral vehicle dynamics, and in
particular, expanding the analysis to consider time-varying
delays with nonlinear vehicle dynamics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wonhee Kim .

The research on lateral vehicle dynamics and their control
design has received a great deal of attention in the recent
decade [2], [3], [4], [5]. Model predictive control (MPC)
schemes have been used to track a lateral vehicle desired
path [6], [7], [8]. In [9], a state-feedback control is investi-
gated for the lateral motion of an intelligent vehicle. A great
deal of work has been done to estimate and control lateral
vehicle systems. The active yaw stabilizer (AYS) system was
proposed in [2] to improve vehicle lateral stability control.
In [3], the authors used the steer-by-wire (SBW) system to
improve vehicle safety, maneuverability and steering flexi-
bility. In [4], the authors investigated a two-dimensional state
portrait analysis to enable the control designer to test the sta-
bility and trajectories of the vehicle system. In addition, many
approaches and methodologies addressing vehicle systems’
problems are discussed in [4] and the references therein.
In [10], the authors used a fuzzy control method for vehicle
systems to increase stability and reduce the rollover risk when
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considering the lateral forces’ nonlinearity using the Takagi-
Sugeno (T-S) representation.

It is well known that many physical, industrial and engi-
neering systems are nonlinear. In this context, the T-S fuzzy
approach has become essential for dealing with complex non-
linear systems, since fuzzy models can adequately describe
several natural systems. These systems are competent to
describe a large class of nonlinear systems using fuzzy
IF-THEN rules, which are described in the form of local
linear or affine models connected by fuzzy membership func-
tions [10], [11]. Recently, fuzzy observer-based control has
attracted the attention of several researchers due to the impor-
tance of unmeasured internal states of real systems. Several
studies have dealt with fuzzy observer design problems for
continuous systems [10], [11], [12]. In [10], the authors used
a fuzzy observer-based control to evaluate the vehicle states,
while in [11], the observer-based control strategy was used
to control T-S fuzzy descriptor systems with time-varying
delays and a H∞ performance index.

Researchers have also studied the delay-free lateral vehi-
cle dynamics, and several mathematical models have been
suggested [13], [14], [15]. However, most of these models
are derived by using assumptions and approximations, which
can turn into the loss of critical information, especially when
dealing with safety related behaviors of nonlinear models.
In particular, the delay information could be regarded as
an essential component of an accurate model for lateral
vehicle dynamics, when considering the effect that irregular
or asymmetrical road conditions could have on the steer-
ing. This work introduces a time-varying delay function that
aims to recover information that would be otherwise lost
when applying approximations to deal with delays in the real
model. We believe that this can help to get a new time-delay
model that may perform better for observer-based control
applications.

Time delays have not attracted much interest from
researchers in the field of lateral vehicular motion. However,
it is well known that delay occurs in most natural systems
and is part of many processes. For example, delays may
occur as a result of the transmission of information between
various parts of a system and because of limited information
processing capabilities [11], [16], [17]. Furthermore, delays
can not be ignored, as they can cause instability and system
performance degradation [18], [19], [20]. Several works have
been reported that deal with a time-varying delay system, see
for comparison purposes [11], [16], [17] and the references
therein.

The first contribution of the present work is to propose
a novel lateral vehicle model by introducing a time-varying
delay in its states. The proposed model is more general than
those in the literature [10], [21], which can be recovered as the
time-varying delay tends to zero. Also, the lateral forces have
been represented by the Takagi-Sugeno (T-S) model, which
globalizes the lateral forces given in other works such as [10],
[21], and [11]. The nonlinear part not introduced in the T-S
model is considered to be a Lipschitz function. The second

contribution is the proposal of a T-S observer-based control
to estimate the yaw rate and side-slip angles, together with a
new methodology for simultaneously designing the observer
and controller gains based on LMI conditions.

The outline of this paper is as follows: Section II presents
the notation and nomenclature used throughout the paper.
In Section III, we present the lateral vehicle model under
study. In contrast, Section IV presents the problem formu-
lation and the main contributions of this work regarding
observer-based control design. Section V presents simulation
results and their analysis, illustrating the theoretical results
and the design methodology for the proposed observer-based
control scheme. Finally, conclusions and future work are
placed in VII.

II. NOTATION AND NOMENCLATURE
We use Rn to denote the n-dimensional Euclidean space, and
Rn×n to denote the set of all n× n real matrices. For a matrix
X ∈ Rn×n, X−1 and XT will denote the inverse and the
transpose of X , respectively. Asterisks (∗) will denote the
symmetric part of a symmetric matrix. The notation X > 0
means that the matrix X is real symmetric positive definite.
We denote by I (In) the identity matrix of adequate order (n)
and by 0n×m the n × m null matrix. We define sym(A) =
A+ AT . Finally, diag{. . . } denotes a block-diagonal matrix.

NOMENCLATURE
(See Fig. 1):

Fx Is a longitudinal force.
Fy Is a lateral force.
Mz Is the yaw moment, pointing in the positive

z direction.
Vx(t) Is the longitudinal velocity.
Vy(t) Is the lateral velocity.
ψ̇ Is the yaw rate.
Iz Is yaw moment of inertia.
Fyf Is the front tire force.
Fxr Is the rear tire force.
a1 Is the distance from the center of gravity to the

front tires.
a2 Is the distance from the center of gravity to the

rear tires.
δ(t) Is the front wheel steering angle.
αf (t) Is the front tire side-slip angle between

wheel x-axis
and the velocity v.

αr (t) Is the rear tire side-slip angle between
wheel x-axis
and the velocity v.

Cf Is the cornering stiffness of the front tires.
Cr Is the cornering stiffness of the rear tires.
βf (t) Is the front side-slip angle of wheel vehicle.
βr (t) Is the rear side-slip angle of wheel vehicle.
β(t) Is the vehicle side-slip angle.

III. VEHICLE MODEL
This section describes the vehicular model to be studied.
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A. INITIAL VEHICLE MODEL
The bicycle model (Fig. 1) describes the essential nonlinear
lateral dynamics of the vehicle. They balance complexity and
computation efficiency. The first contribution of this work is
to propose a new vehicle model that describes the relationship
between the relevant variables of the lateral dynamics, for
example, the yaw rate and the side-slip angle (see Fig. 1).

FIGURE 1. Vehicle model.

The bicycle vehicle model (single-track model) was
invented in 1940 and is still widely used today [22], [23], [24].
Several significant omissions and simplifications are
included in the bicycle model, which effectively reduces the
degree of freedom of the model without affecting the vehi-
cle’s dynamic behavior in the linear range. The bicycle model
can be converted to a computer simulation model and can be
used to quickly and easily analyze vehicle behavior [25], [26].
Based on the assumptions and simplifications considered
in [25], [26], the geometric relationships for the bicyclemodel
can be developed as shown in Fig. 1.

By using Newton-Euler motion equations for a rigid vehi-
cle in the body coordinate frame connected to the vehicle at
its mass center, the following equations are obtained [27]:

Fx = mV̇x(t)− mψ̇(t)Vy(t),

Fy = mV̇y(t)+ mψ̇(t)Vx(t),

Mz = ψ̈(t)Iz, (1)

wherem is themass of the vehicle, andMz is the yawmoment,
pointing in the positive z direction. We can now consider the
four-wheel vehicle whose longitudinal and lateral forces are
projected on the body coordinate as follows

Fx = 2Fxf cos δ(t)− 2Fyf sin δ(t)+ 2Fxr ,

Fy = 2Fxf sin δ(t)+ 2Fyf cos δ(t)+ 2Fyr ,

Mz = 2a1Fyf cos δ(t)+ 2a2Fxf sin δ(t)− 2a2Fyr . (2)

The nonlinear model given in (2) has been obtained by assum-
ing that the left and right wheels have the same longitudinal
and lateral force.Moreover, in [27], [28], and [21], the authors
considered the steer-angle δ(t) to be small, to obtain linear

models for the yaw moment, and the longitudinal and lateral
forces. Based on this approximation, large amount of work
has been done, in order to deal with the challenges arising
from nonlinear terms in the lateral vehicle dynamics.

Considering small steer-angle δ(t) approximations, the
above nonlinear forces in (2) can be simplified as (see for
instance [27], [28] and [21]):

Fx = 2Fxf + 2Fxr ,

Fy = 2Fyf + 2Fyr ,

Mz = 2a1Fyf − 2a2Fyr . (3)

In [21] and [10], the authors have considered that the
lateral forces depend on the front and rear side-slip angles
αf (t) and αr (t), and the relationship between these forces
and the angles αf (t) and αr (t) to be linear. By assuming such
approximations, these relationships can be expressed as

Fyf = −Cαf αf (t), Fyr = −Cαrαr (t). (4)

Notice that the relationships given in (4) are valid for
bounded side-slip angles, which implies that they are applica-
ble when the vehicle velocity is small. Thus, the conditions in
(4) are valid in the linear region (steady-state), which makes
dynamic relationships much more complex. Furthermore,
we can see that the lateral forces suggested in (4) tend to
be constant for all vehicle wheels. This is not generally true
since the lateral force generated by each wheel is different
from the ones produced by the other wheels. In this context,
we consider the nonlinearities of the lateral forces by using
the Takagi–Sugeno (T-S) representation, and we recall the
lateral forces proposed in [10] and [29] described as follows

if | αf (t) | is M1 then

{
Fyf = −Cαf 1αf (t);
Fyr = −Cαr1αr (t),

if | αf (t) | is M2 then

{
Fyf = −Cαf 2αf (t);
Fyr = −Cαr2αr (t),

(5)

where Cαfi and Cαri are the front and rear tire cornering stiff-
ness coefficients, respectively, M1 and M2 are the fuzzy sets
for slip angles. Using the membership function, the overall
cornering forces (5) are described as following

Fyf = −
2∑
i=1

θi(| αf (t) |)Cαfiαf (t),

Fyr = −
2∑
i=1

θi(| αf (t) |)Cαriαr (t), (6)

where the membership functions θi, i = 1, 2 satisfy the
following conditions

2∑
i=1

θi(| αf (t) |) = 1, 0 ≤ θi(| αf (t) |) ≤ 1, i = 1, 2, (7)

and are given by the following expression

θi(| αf (t) |) =
ωi(| αf (t) |)∑2
i=1 ωi(| αf (t) |)

, (8)
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where ω1(| αf (t) |) and ω2(| αf (t) |) are membership
functions given by

ωi(| αf (t) |) =
1(

1+
∣∣∣ |αf (t)|−cidi

∣∣∣)2bi . (9)

Remark 1: To reduce the number of membership func-
tions, the authors in [10] have considered αf (t) and αr (t)
in the same fuzzy set. That is why the rules are only made
for αf (t), which in turn allows us to reduce the number of
parameters to identify [30].

B. EXTERNAL FORCES
When the vehicles move and their velocity increases,
it appears that external forces try to resist their movement,
which may impact the protection requirements of the vehicle
as a safety measure. Among these external forces we find the
intensity of the wind, which is evident when the vehicle’s
velocity increases or when the weather changes. Assuming
that the lateral force comprises an air resistance term, that is
assumed to be a quadratic function of the lateral velocity of
the vehicle Vy(t), and using the T-S model given in (6), the
lateral forces in (4) can be written as follows.

Fyf = −
2∑
i=1

θi(| αf (t) |)Cαfiαf (t)− CAf V 2
y (t),

Fyr = −
2∑
i=1

θi(| αf (t) |)Cαriαr (t)− CArV 2
y (t). (10)

where CAf and CAr are the front and rear air resistance
coefficient, respectively.

Considering the relationship between the lateral velocity
Vy(t), the vehicle side-slip angle β(t) and the longitudinal
velocity Vx(t), that is β(t) =

Vy(t)
Vx (t)

, (10) can be rewritten as

Fyf = −
2∑
i=1

θi(| αf (t) |)Cαfiαf (t)− V 2
x (t)CAf β

2(t),

Fyr = −
2∑
i=1

θi(| αf (t) |)Cαriαr (t)− V 2
x (t)CArβ

2(t). (11)

Remark 2: The vehicle model’s complexity depends on
the model of the cornering forces Fyf and Fyr . In the litera-
ture, several formulations have been proposed to define these
forces. Moreover, these forces are given as a function of the
tire slip angles using nonlinear relationships, as in [10], or as
the form in (4). Furthermore, note that when CAf = CAr = 0,
(11) recovers the results presented in [10] and [29], which
means that the front and rear tire forces proposed in this work
are more general than the existing ones in the literature.

To obtain the coefficients defined in the membership
parameters of the T–Smodel, we use the method cited in [10].
The obtained coefficients are described in Table 1.

C. TIME DELAYS
As discussed in [10], [21], [28] and [11], and the references
therein, many works have considered both side-slip angles

TABLE 1. Parameters of the membership functions.

βf (t) and βr (t), under the assumption that they are small. The
relationship between them and the front and rear tire side-slip
angles, αf (t) and αr (t), are given as follows

αf (t) = βf (t)− δ(t) = β(t)+
a1
Vx
ψ̇(t)− δ(t),

αr (t) = βr (t) = β(t)−
a2
Vx
ψ̇(t). (12)

Note that the approximation used to represent both side-
slip angles is not unique and various approximations have
been used in the literature. The assumption is unrealistic
despite the representation used for the front and rear tire side-
slip angles. In a practical setting, and when the vehicle’s
slip angle changes, the force system on the planar vehicle
model can not respond immediately, which could translate
into the presence of delays. Delays exist in many practical
dynamical systems but are usually disregarded when design-
ing controllers and observers. However, especially in safety-
critical applications, they can be a source of performance
and safety loss for the overall system, if they are not ade-
quately addressed when synthetizing a controller or observer.
Furthermore, since the vehicle should be safe for humans, it is
essential to detect any possible problems that may arise due to
its dynamical properties. For example, When a vehicle enters
a turn, the lateral forces between the wheels and the roadway
are proportional to the side-slip angle of the wheels. For a
front-steered vehicle, the side-slip angle on the unsteered rear
wheels takes a moment to build up, delaying the application
of cornering forces to the rear wheels [25]. To improve the
deficiencies of driver assistance systems, drawbacks in each
system must be reduced or compensated. One such weakness
is the delay required to generate adequate braking torque on a
wheel brake [25]. This time delay of several tenths of a second
is caused in part by the following factors [25]:
• Elasticities in the brake lines;
• The compressibility of the brake pads;
• Elasticities in the brake calipers.

Certain environmental conditions, such as heavy moisture
and road salt buildup on the brake discs, can increase the time
delay in the braking system.

Under the assumption that the equations of motion of the
tire are stationary or at least quasi-stationary, we have that the
introduced parameters, such as the values of circumferential
slip, slip angle β(t), camber angle, as well as the tire forces
Fx ,Fy, and tire torques Mz, remain constant over time or
fluctuate very slowly [26]. These requirements are absent
or insufficiently fulfilled to justify this assumption. In these
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cases, the longitudinal slip and the side-slip angle (β(t))
change very fast with time, implying that the tire forces
(Fx ,Fy) and torques (Mz) can only build up with a time
delay [26]. To consider the effect of the potential time-delay
on the side slip angles, we consider the following representa-
tion of the front and rear tire side slip angles of the vehicle:

αf (t) = l1β(t)+ (1− l1)β(t − h(t))+
a1
Vx
ψ̇(t)− δ(t),

αr (t) = l2β(t)+ (1− l2)β(t − h(t))−
a2
Vx
ψ̇(t), (13)

where l1 and l2 are delay parameters satisfying

0 ≤ l1 ≤ 1 and 0 ≤ l2 ≤ 1 (14)

and h(t) is a time-varying delay satisfying the following
constraint

0 ≤ h1 ≤ h(t) ≤ h2, ḣ(t) ≤ µ, (15)

where h1 and h2 are the lower and upper bound of the time-
varying delay, and µ is the upper bound of the time-varying
delay derivative. Based on the above discussion, it can be
concluded that the steering angles can be described by a delay
while the yaw rate cannot.
Remark 3: The idea behind considering different delay

parameters l1 and l2, as opposed to being equal, is that the
front and rear side slip angles may not be affected by delays
equally. Take for instance when a vehicle begins to navigate
on irregular terrain (change of road conditions), or if the
wheels are of different characteristics, or under an emer-
gency situation (puncturedwheel) or similar cases. Therefore,
the proposed model is more general than the existing ones in
the literature as it considers a potential delay parameter for the
front side slip angle that may differ from the delay parameter
for the rear side slip angle.
Remark 4: Notice that the time-delay tire side-slip angles

given in (13) are more general than those provided in [21]
and [10]. Thus, if l1 = l2 = 1 or (h(t) = 0) we obtain the
delay-free tire side-slip angles as indicated in [21] and [10]
and otherwise the tire side-slip angles are totally affected by
delay. Moreover, the delay parameters l1 and l2 are the tuning
parameters that help us introduce a delay in side-slip and yaw
rate angles and allow us to control the percentage of the delay
in the vehicle model.

A simple differential equation cannot successfully model
many complex systems. For many systems, the future evolu-
tion of the state variables x(t) depends not only on their cur-
rent value of the state and its derivatives but also on their past
values [31]. Furthermore, the delay is not just a mathematical
concept; more significantly, it is embedded in many natural
systems, such as biochemical reactions, industrial processes
and mechatronic motions. Delay, as a universal part of many
processes, is a phenomenon that undoubtedly deteriorates the
quality of the control, causing oscillations and instability.
Therefore, the stability and control analysis of such a system
are of theoretical and practical importance. Considering a
time-delay in the lateral vehicle model may allow us more

information about the system’s behavior, especially when
these delays may be exacerbated in the event of an emergency
or a change in road conditions.

Furthermore, the idea behind using (13) is to reconstruct
the information that could be eliminated from the system
when using the linear approximation in (3), which could
affect the system’s performance. Thus, the delayed part has
been identified as global information, which is ignored when
approximations are used.

It is assumed that the vehicle body moves at a constant
forward speed, which means that V̇x = 0 and the first line
in (1) becomes an independent algebraic equation. Therefore,
the longitudinal force does not affect vehicle stability, and the
integration into the system equation is unnecessary.

Combining (1), (10) and (13), and assuming the yaw rate
ψ̇(t) as the output, the modelled vehicle system can be repre-
sented as follows:

ẋ(t) =
2∑
i=1

θi(| αf (t) |){Aix(t)+ Adix(t − h(t))

+Biu(t)} + f (x(t)),

y(t) =
2∑
i=1

θi(| αf (t) |)Cix(t), (16)

where xT (t) = [x1(t) x2(t)] = [β(t) ψ̇(t)] is the state vector
and δ(t) = u(t) is the control input,

Ai =

[
−π i1 −(1+ π i2)

−π i3 −π i4

]
, Bi =

 2
Cαfi
mVx

2
a1Cαfi
Iz

 ,
f (x(t)) =

[
−χ1x21 (t)

−χ3x21 (t)

]
, Adi =

[
−π i5 0

−π i6 0

]
,

Ci =
[
0 1

]
, (17)

with

π i1 = 2
l1Cαfi + l2Cαri

mVx
, π i2 = 2

a1Cαfi − a2Cαri
mV 2

x
,

π i3 = 2
a1l1Cαfi − a2l2Cαri

Iz
, π i4 = 2

a21Cαfi − a
2
2Cαri

IzVx
,

π i5 = 2
(1− l1)Cαfi + (1− l2)Cαri

mVx
,

π i6 = 2
a1(1− l1)Cαfi − a2(1− l2)Cαri

Iz
,

χ1 = 2
Vx(CAf + CAr )

m
, χ3 = 2

(a1CAf − a2CAr )V 2
x

Iz
.

Remark 5: The lateral forces (11) depend not only on the
tire side-slip angles but also on the vehicle side-slip angle.
Because of this, we could recover the information ignored
when using the approximation made in other works [10],
[11], [21]. Moreover, by combining (13), the lateral forces
(11) will be reformulated not only by the present vehicle side-
slip but also by the side-slip from the past. Besides, as men-
tioned in Remark 4, the lateral forces (11) in combination
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with (13) are reduced to those in [10], [21], and [11] when
h(t) = 0 and CAf = CAr = 0 or when l1 = l2 = 1 and
CAf = CAr = 0, which shows that the current model is more
general.

The proposed vehicle system model in (16) is a nonlinear
time-varying delay system, which is more general than some
systems found in the literature. Moreover, since the nonlinear
parts are of the kind x21 , they can be regarded as Lipschitz
functions, at least locally, by considering that the operating
range of x1 is bounded. Because of that. in this work, it is
assumed that the nonlinear function f (x(t)) satisfies the one-
sided Lipschitz condition in [32], that is,

< f (x(t)), x(t) >≤ ρ1 ‖ x(t) ‖2, ρ1 ∈ R, (18)

and also, verifies the quadratic inner-bounded condition
given by

‖ f (x(t)) ‖2≤ ρ2 ‖ x(t) ‖2 +ρ3 < f (x(t)), x(t) > . (19)

IV. OBSERVER-BASED CONTROL
As in many practical systems, the vehicle system states are
not necessarily fully observable due to sensor and technol-
ogy limitations or other practical reasons. Because of this,
observer-based control is very relevant, as it seems to be well-
suited for estimating the vehicle states from the measured
vehicle output states. In this context, we will present the main
results of this work by formulating an observer-based control
problem for the proposed vehicle dynamics, followed by an
LMI based approach for its design.

A. PROBLEM FORMULATION
In order to estimate the vehicle system states in (16), consider
the following observer which has the same structure as the
vehicle system:

˙̄x(t) =
2∑
i=1

θi(| αf (t) |){Aix̄(t)+ Adix̄(t − h(t))

+Biu(t)+ Li(y(t)− ȳ(t))} + f (x̄(t)),

u(t) =
2∑
i=1

θi(| αf (t) |)Kix̄(t),

ȳ(t) =
2∑
i=1

θi(| αf (t) |)Cix̄(t), (20)

where x̄(t) is the state estimation of x(t), ȳ(t) is the observer
output, and Li and Ki are, respectively, the observer and the
controller constant gain matrices.
Remark 6: Note that, the observer-based control given in

(20) is more general than the traditional static-gain approach.
The term Adix̄(t − h(t)) introduces a new degree of freedom
to the system. In particular, assuming that h(t) = 0 and Adi =
2LiCj, system (20) is reduced to the conventional static-gain
case.

The aim is to design the gains Ki and Li such that the error
defined as e(t) = x(t) − x̄(t) tends to zero in steady state.

In order to achieve this, let us define the augmented error
system as follows

ẋ(t) = Akx(t)− Bke(t)+ Adx(t − h(t))+ f (x(t)),
ė(t) = ALe(t)+ Ade(t − h(t))+1f (x(t), x̄(t)). (21)

where

Ak =
2∑
i=1

2∑
j=1

θi(| αf (t) |)θj(| αf (t) |)(Ai + BiKj),

AL =
2∑
i=1

2∑
j=1

θi(| αf (t) |)θj(| αf (t) |)(Ai − LiCj),

Bk =
2∑
i=1

2∑
j=1

θi(| αf (t) |)θj(| αf (t) |)(BiKj),

1f (x̄(t), x(t)) = f (x(t))− f (x̄(t)). (22)

Moreover, it is assumed that1f (x(t)) verifies the one-sided
Lipschitz and quadratic inner-bounded conditions described
in the following conditions, for given scalars ϑi ∈ R,
i = 1, 2, 3.

< 1f (x̄(t), x(t)), e(t) > ≤ ϑ1 ‖ e(t) ‖2

‖ 1f (x̄(t), x(t)) ‖2 ≤ ϑ2 ‖ e(t) ‖2

+ϑ3 < 1f (x̄(t), x(t)), e(t) > .

(23)

One can see that the error goes to zero when the time-delay
system (21) is asymptotically stable. The notation in (22) is
used to help us in the development of our results.

Most of the works in the literature that study time-delay
systems use the boundedness of integral terms, since these
terms appear in the time-derivative of a Lyapunov-Krasovskii
functional. In recent years, a significant reduction in the
conservatism of stability results has been achieved due to
the boundedness of these terms and the use of Wirtinger’s
inequality (Lemma 1). Next, we present two technical lem-
mas that are helpful when deriving our results.
Lemma 1 [16]: For any matrix R > 0, and a differentiable

signal x ∈ [h1, h2]→ Rn, the following inequality holds:

−

∫ h2

h1
ẋT (s)Rẋ(s)ds ≤

1
h2 − h1

ξT8(R)ξ, (24)

where ξ = [xT (h2) xT (h1) 1
h2−h1

∫ h2
h1
xT (s)ds]T and

8(R) =

−4R −2R 6R
∗ −4R 6R
∗ ∗ −12R

 . (25)

Lemma 2 [33]: For matrices V, L and Z > 0 with appro-
priate dimensions, the following inequality holds:

VL+ LTVT
≤ VεZVT

+ LT (εZ )−1L. (26)

B. TIME-DELAY OBSERVER-BASED CONTROL DESIGN
Now, we consider a time-delay observer-based control to esti-
mate the vehicle model states developed in the above section
and to ensure that the closed-loop system is asymptotically
stable. Additionally, we consider that the controller gains are
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known and, based on the Lyapunov-Krasovskii functional,
we present the condition that ensures the stability of sys-
tem (21). First we have the following result.
Theorem 1: Let us consider the system (16), with condi-

tions (18), (19), and (23) satisfied, and the proposed observer
in (20) with given gains Ki and Li, i = 1, 2. The augmented
time-varying delay error system in (21) is asymptotically sta-
ble, with given gainsKi and Li, if for given positive scalars γ1,
γ2 , there exist positive definite matrices Qr , Nr , r = 1, 2, 3,
diag{Px11,Px22,Px33}, R1, R2, T1, T2, diag{Pe11,Pe22,Pe33},
and positive scalars γ3 and γ4 such that the following
conditions hold

�ij < 0, i, j = 1, 2, (27)

where

�ij =

[
�
ij
x �

ij
xe

∗ �̄
ij
e

]
+

[
0T1ij

0T2ij

]
(h21R1 + h

2
12R2)

[
0T1ij

0T2ij

]T
,

(28)

with h12, �̄
ij
e , �

ij
x , and �

ij
e , as shown in the equation at the

bottom of the page.

�
ij
x11 = sym{Px11A

ij
k } + Q1 + 2σ1I − 4R1,

�x15 = h1Px22 + 6R1,

�x17 = Px11 + 2σ2I ,

�x22 = −(Q1 − Q2)− 4R1 − 4R2,

�x25 = −h1Px22 + 6R1,

�x26 = h12Px33 + 6R2,

�x33 = −(1− µ)(Q2 − Q3),

�x44 = −Q3 − 4R2,

�x46 = −h12Px33 + 6R2,

σ1 = γ1ρ1 + γ2ρ2, σ2 = γ2ρ3 − γ1,

�
ij
e11 = sym{Pe11A

ij
L} + N1 + 2σ3I − 4T1,

�e15 = h1Pe22 + 6T1,
�e17 = Pe11 + 2σ4I ,
�e22 = −(N1 − N2)− 4T1 − 4T2,
�e25 = −h1Pe22 + 6T1,
�e26 = h12Pe33 + 6T2,
�e33 = −(1− µ)(N2 − N3),
�e44 = −N3 − 4T2,
�e46 = −h12Pe33 + 6T2,
σ3 = γ3ϑ1 + γ4ϑ2, σ4 = γ4ϑ3 − γ3,

�ij
xe =

[
−Px11B

ij
k 0n×6n

06n×n 06n×6n

]
,

01ij =
[
Aijk 0 Aid 0n×3n In

]
,

02ij =
[
−Bijk 0n×6n

]
,

52ij =

[
AijL 0 Aid 0n×3n In

]
.

Proof: See Appendix A.
Theorem 1 was obtained by using Wirtinger’s inequal-

ity (Lemma 1) [16], which has been shown to reduce con-
servatism on the related bounds when compared to using
Jensen’s inequality.

Notice that Theorem 1 provides a delay-dependent stability
analysis of the lateral vehicle described in (1). Moreover,
the conditions presented in Theorem 1 are linear for given
controller gains Ki and Li. Thus, they can be solved in
a straightforward manner using the standard LMI-Toolbox
solver [34].

If the controller gains Ki and Li are variable, we have
that condition (27) is not an LMI, since nonlinear terms
will appear. Therefore, more work is required to solve the
nonlinearity problem in Theorem 1. The following theorem
presents sufficient conditions to design both gains Ki and Li
simultaneously, in order to ensure the asymptotic stability of
the closed-loop system (21).

h12 = h2 − h1,

�̄ij
e = �

ij
e +5

T
2ij(h

2
1T1 + h

2
12T2)52ij,

�ij
x =



�
ij
x11 −2R1 Px11Aid 0 �x15 0 �x17
∗ �x22 0 −2R2 �x25 �x26 0
∗ ∗ �x33 0 0 0 0
∗ ∗ ∗ �x44 0 �x46 0
∗ ∗ ∗ ∗ −12R1 0 0
∗ ∗ ∗ ∗ ∗ −12R2 0
∗ ∗ ∗ ∗ ∗ ∗ −2γ2I


,

�ij
e =



�
ij
e11 −2T1 Pe11Aid 0 �e15 0 �e17
∗ �e22 0 −2T2 �e25 �e26 0
∗ ∗ �e33 0 0 0 0
∗ ∗ ∗ �e44 0 �e46 0
∗ ∗ ∗ ∗ −12T1 0 0
∗ ∗ ∗ ∗ ∗ −12T2 0
∗ ∗ ∗ ∗ ∗ ∗ −2γ4I


,
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Theorem 2: System (16) is asymptotically stabilizable by
(20) if for given positive scalars γ1, γ2, there exist positive
definite matrices Q̃r , Nr , r = 1, 2, 3, diag{X11, P̃x22, P̃x33},
diag{Pe11,Pe22,Pe33}, R̃1, R̃2, T1, T2, matrices Yi, Gi and
positive scalars γ3 and γ4 such that the following conditions
hold

4ii < 0, i = 1, 2, (29)

4ij +4ji < 0, 1 ≤ i < j ≤ 2, (30)

where h12, 4ij, �̄ij(0), �̃
ij
x , and �

ij
e , as shown in the equation

at the bottom of the page.

1ג̃ = T1 − 2Pe11,

2ג̃ = T2 − 2Pe11,

ĩ1 = R̃1 − 2X11,

ĩ2 = R̃2 − 2X11,

�̃
ij
x11 = sym{AiX11 + BiYj} + Q̃1 + 2σ1X11X11 − 4R̃1,

�̃x15 = h1P̃x22 + 6R̃1,

�̃x17 = X11 + 2σ2X11,

�̃x22 = −(Q̃1 − Q̃2)− 4R̃1 − 4R̃2,

�̃x25 = −h1P̃x22 + 6R̃1,

�̃x26 = h12P̃x33 + 6R̃2,

�̃x33 = −(1− µ)(Q̃2 − Q̃3),

�̃x44 = −Q̃3 − 4R̃2,
�̃x46 = −h12P̃x33 + 6R̃2,
σ1 = γ1ρ1 + γ2ρ2,

σ2 = γ2ρ3 − γ1,

�
ij
e11 = sym{Pe11Ai − GiCj} + N1 + 2σ3I − 4T1,

V̄ij =
[
(BiYj)T 0n×15n h1(BiYj)T h12(BiYj)T

]T
,

0̃T1ij =
[
AiX11 + BiYj 0 AdiX11 0n×3n In

]T
,

L =
[
0n×7n I 0n×4n

]
.

Moreover, if the above conditions are satisfied, the param-
eters of the observer-based controller are obtained as follows

Ki = YiX
−1
11 , Li = P−1e11Gi. (31)

Proof: The proof can be found in Appendix B.
Theorem 2 provides a new design methodology for both

controller and observer gains simultaneously. The design
methodology has been developed without structural restric-
tions on the Lyapunov matrices, which reduces conservatism.
The obtained controller and observer gains ensure that the
closed-loop vehicle system is asymptotically stable for all
admissible delays.
Remark 7: To get less restrictive conditions for the con-

trol and observer gains design, a new matrix variable is
introduced in Theorem 2 in order to separate the dynamical
system matrices from the Lyapunov matrix. This delivers the
condition (51), which is not linear for a given scalar ε. Several

h12 = h2 − h1,

4ij =

 �̄ij(0) V̄ij LT

∗ −(2δ1 − δ2)I 0
∗ ∗ −δ2I

 ,

�̄ij(0) =



�̃
ij
x 07n×7n 07n×n 07n×n h10̃T1ij h120̃T1ij
∗ �

ij
e h15T

2ijPe11 h125T
2ijPe11 07n×n 07n×n

∗ ∗ 1ג̃ 0n×n 0n×n 0n×n
∗ ∗ ∗ 2ג̃ 0n×n 0n×n
∗ ∗ ∗ ∗ ĩ1 0n×n
∗ ∗ ∗ ∗ ∗ ĩ2


,

�̃ij
x =



�̃
ij
x11 −2R̃1 AdiX11 0n×n �̃x15 0n×n �̃x17

∗ �̃x22 0n×n −2R̃2 �̃x25 �̃x26 0n×n

∗ ∗ �̃x33 0n×n 0n×n 0n×n 0n×n
∗ ∗ ∗ �̃x44 0n×n �̃x46 0n×n
∗ ∗ ∗ ∗ −12R̃1 0n×n 0n×n
∗ ∗ ∗ ∗ ∗ −12R̃2 0n×n
∗ ∗ ∗ ∗ ∗ ∗ −2γ2I


,

�ij
e =



�
ij
e11 −2T1 Pe11Adi 0n×n �e15 0n×n �e17
∗ �e22 0n×n −2T2 �e25 �e26 0n×n
∗ ∗ �e33 0n×n 0n×n 0n×n 0n×n
∗ ∗ ∗ �e44 0n×n �e46 0n×n
∗ ∗ ∗ ∗ −12T1 0n×n 0n×n
∗ ∗ ∗ ∗ ∗ −12T2 0n×n
∗ ∗ ∗ ∗ ∗ ∗ −2γ4I


,
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researchers have explored how to choose this scalar, and
several methods have been developed to find the optimal
scalar, namely fminsearch. To overcome the complexity of
choosing ε, we implement the inequality X11 > δ1I by means
of the inequality − 1

ε
≤ −(2− ε). These inequalities help us

deal with the nonlinearity set out in (51) and allow us to obtain
the LMI conditions (29) and (30).

V. SIMULATION RESULTS
To illustrate the efficacy of the proposed methodology to
obtain the gains of the fuzzy observer-based control to
estimate the vehicle state, we use the vehicle parameters
[10], [30] given in Table 2 and the membership parame-
ters [10] given in Table 1.

TABLE 2. Vehicle parameters.

First, we will demonstrate the impact of the function
f (x(t)) and the time-varying delay on the side-slip and yaw
rate angles by perturbing the vehicle model with the delay
h(t) with different delay parameters l1 6= l2 and with l1 = l2.
Consider an input signal δ(t) = 0.3, CAf = CAr = 0.5,
0.1 ≤ h(t) ≤ 0.7, µ = 0.3 and the following initial condition
x(0) = [0 0]T . The side-slip angles are plotted in Fig. 2 for
l1 6= 1 or l2 6= 1 (delayed side-slip angle) and for l1 = l2 = 1
(delay-free side-slip angle). The yaw rate angles are plotted
in Fig. 3 for l1 6= 1 or l2 6= 1 (delayed yaw rate angle) and
for l1 = l2 = 1 (delay-free yaw rate angle).

According to Fig. 2 and Fig. 3, the time-varying delay and
nonlinear dynamics have a significant impact on the side-
slip and yaw-rate angles, as large oscillations occur when the
time-varying delay becomes meaningful. Furthermore, it can
be seen that when the delay is high in the vehicle states (side-
slip and yaw-rate angles), it can cause destabilization and
performance degradation. Additionally, when l1 = l2 = 1,
which means that the system states are delay-free, one can
see the effect of the nonlinearity f (x(t)) on the vehicle states.
This demonstrates the significance of including the possible
appearance of a delay in the vehicle model states.

We now consider the delay parameters as l1 = 0.5 and
l2 = 0.7. The time-varying delay h(t) as 0.1 ≤ h(t) ≤
0.6 which means that h1 = 0.1 and h2 = 0.6 and µ =
0.3. Applying Theorem 2, the observer and controller gains
obtained for γ1 = 2, ρ1 = −0.9, γ2 = 5, ρ2 = 0.7,
ρ3 = −0.15, ϑ1 = 0.09, ϑ2 = 0.9, ϑ3 = 0.05 are given by.

[
K1 L1
K2 L2

]
=

 [−0.3876 − 0.1719]
[
0.4935
12.8226

]
[
−0.1279 −0.4106

] [
0.6128
7.8630

]
 .
(32)

FIGURE 2. Vehicle side-slip angles.

FIGURE 3. Yaw rate angles.

To demonstrate the effectiveness of the proposed approach,
we will disturb the vehicle system with time-varying delay,
and we will use the observer-based control scheme with gains
(32) to estimate the vehicle states β(t) and ψ̇(t). The vehicle
side-slip β(t) and yaw rate ψ̇(t) angles over time are dis-
played in Fig. 4 and Fig. 5, respectively. Fig. 4 shows the tra-
jectory of the side-slip angle β(t) and its estimate β̄(t), while
Fig. 5 shows the trajectory of the yaw rate angle ψ̇(t) and its
estimate ˙̄ψ(t). These simulations were obtained by using the
initial conditions x(0) = 0 and x̄(0) = [−0.1π 0.3π ]T . The
time-varying delay is chosen as h(t) = 0.1+ 0.5 | sin 0.6t |.
From Fig 4 and Fig 5, we can see that the estimation of

the vehicle’s state with a small-amplitude converges to the
system states after 1 second for the side-slip angle and before
1 second for the yaw rate angle. The estimation is inaccurate
before 1 second. This can occur for several reasons, for
instance, the initial conditions, the time-varying delay, the
nonlinear function f (x(t)), and the dynamics not included in
the mathematical model. As a result, the estimation becomes
significant and successful after 1 second for side-slip and yaw
rate angles. Moreover, the effect of the delay can be seen in
the trajectory of the vehicle states where the oscillation has
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FIGURE 4. Side-slip angle and its estimate.

FIGURE 5. Yaw rate angle and its estimate.

arisen. Finally, the system states are asymptotically stable
using the controller gains (32).

In the case where l1 = 1 and l2 = 1, which means that
Adi = 0, i = 1, 2 and by applying Theorem 2, the observer-
based controller gains for (20) are given by

[
K1 L1
K2 L2

]
=

 [−0.3099 − 0.1520]
[
0.4002
10.4119

]
[
−0.1553 −0.3771

] [
0.2835
6.3246

]
 .
(33)

Fig 6 and Fig 7 display the vehicle states for the delay-free
model and for the standard observer-based control structure
with l1 = 1 and l2 = 1. The simulation was performed with
the controller gains (33) and the initial conditions x(0) = 0
and x̄(0) = [−0.1π 0.3π ]T .
For comparison purposes, in Fig 6 and Fig 7, we can see

that the vehicle states and their estimates converge to zero,
implying that they are asymptotically stable when using the
delay-free observer.

To show the efficiency of the control structures, Ad 6= 0
with the controller gains in (32), andAd = 0 (standard control
structure) with the controller gains in (33), we perturb the

FIGURE 6. Side-slip angle and its estimate for l1 = 1.

FIGURE 7. Yaw rate angle and its estimate for l1 = 1.

FIGURE 8. Vehicle side-slip angle and its estimate.

vehicle model with a time-varying delay and use the two
control structures to estimate the vehicle states. The initial
conditions used for the simulation are x(0) = 0 and x̄(0) =
[−0.1π 0.3π ]T , and the time-varying delay considered is
h(t) = 0.1 + 0.5 | sin 0.6t |. The vehicle side-slip and yaw
rate angles and their estimates are displayed in Fig. 8 and
Fig 9, respectively.
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It is evident from Fig. 8 that the standard control scheme
Ad = 0 does not estimate the vehicle side-slip angle β(t)
when the time-varying delay occurs. While the proposed
control scheme Ad 6= 0 provides a good estimation of the
vehicle state. This illustrates the efficacy of the proposed
control scheme in the presence of time-varying delays and
nonlinear dynamics.

FIGURE 9. Yaw rate angle and its estimate.

Fig. 9 shows that the proposed control scheme (Ad 6= 0)
is successful in estimating the vehicle states while the stan-
dard control scheme Ad = 0 offers defective estimation of
the yaw rate ψ̇(t). We can infer from these results that the
efficiency given by the proposed control structure is better
than that provided by the traditional control scheme. This has
been demonstrated by comparing the state estimation of the
standard control scheme and the proposed scheme. We can
also see that the gains obtained can control the vehicle system.
Finally, these results highlight the importance of considering
the presence of a delay in such systems.

VI. DISCUSSION
The lateral vehicle model, widely used in vehicle dynamics,
offers a detailed representation of chassis motion [10], [11],
[21], [22], [24]. In particular, [23] had proposed an extended
representation of the vehicle model considering roll, which
yields better results. Note that, in comparison to the proposed
lateral vehicle model, the aforementioned model is a special
case when l1 = l2 = 1 (or h(t) = 0). Since the lateral
vehicle models found in the literature are delay-free [10],
[11], [21], [22], [24], [35], a direct comparison with the
proposed time delay model may be unfair. Because of that,
a general comparison in terms of time-varying delay may be
more significant, and it is done in this paper, where a delay-
free lateral model and a time-varying delay lateral vehicle
model have been compared in Section V.

VII. CONCLUSION
In this work, we developed a time-delay vehicle model using
a simple formula that helps us introduce a time-varying delay
in its states and considering that the lateral vehicle’s air resis-
tance can be represented as a Lipschitz function. The global

nonlinear vehicle model was represented by a fuzzy T-S
model with a time-varying delay and stability conditions
were obtained based on an appropriate Lyapunov-Krasovskii
functional in combination with Wirtinger’s inequality.

The vehicle side-slip and yaw rate angles were estimated
using a T-S observer-based control with a time-varying delay.
The observer and controller gains have been designed simul-
taneously using a new design methodology formulated in
terms of linear matrix inequalities. Numerical simulations
showed a clear benefit of considering a model with delays
as the control scheme without it underperforms when it is
used to control the delayed system. In contrast, the proposed
approach can estimate the vehicle states better and stabilize
its dynamics. Future work could focus on full vehicle models
with time-varying parameters and delays.
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APPENDIX A
PROOF OF THEOREM 1
Let us consider the following Lyapunov-Krasovskii
functional

V (x(t), e(t)) = V1(x(t))+ V2(e(t)), (34)

where

V1(x(t)) = ηTx (t)P
x
dηx(t)+

∫ t

t−h1
xT (s)Q1x(s)ds

+

∫ t−h1

t−h(t)
xT (s)Q2x(s)ds

+

∫ t−h(t)

t−h2
xT (s)Q3x(s)ds

+ h1

∫ 0

−h1

∫ t

t+λ
ẋT (s)R1ẋ(s)dsdλ

+ h12

∫
−h1

−h2

∫ t

t+λ
ẋT (s)R2ẋ(s)dsdλ, (35)

V2(e(t)) = ηTe (t)P
e
dηe(t)+

∫ t

t−h1
eT (s)N1e(s)ds

+

∫ t−h1

t−h(t)
eT (s)N2e(s)ds

+

∫ t−h(t)

t−h2
eT (s)N3e(s)ds

+ h1

∫ 0

−h1

∫ t

t+λ
ėT (s)T1ė(s)dsdλ

+ h12

∫
−h1

−h2

∫ t

t+λ
ėT (s)T2ė(s)dsdλ, (36)

with

h12 = h2 − h1,

ηT� = [�(t) (
∫ t

t−h1
�(s)ds)T (

∫ t−h1

t−h2
�(s)ds)T ],

P�d = diag{P�11,P�22,P�33}, � = {x, e}.
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Taking the derivative of V1(x(t)) along the trajectory
of x(t), we obtain

V̇1(x(t)) ≤ ηTx (t)P
x
d η̇x(t)+ x

T (t)Q1x(t)
− xT (t − h1)(Q1 − Q2)x(t − h1)
−(1− µ)xT (t − h(t))(Q2 − Q3)x(t − h(t))
− xT (t − h2)Q3x(t − h2)
+ ẋT (t)(h21R1 + h

2
12R2)ẋ(t)

− h1

∫ t

t−h1
ẋT (s)R1ẋ(s)ds

− h12

∫ t−h1

t−h2
ẋT (s)R2ẋ(s)ds. (37)

Using Lemma 1 for the last two integral terms, one can obtain

−h1

∫ t

t−h1
ẋT (s)R1ẋ(s)ds ≤ ξT8(R1)ξ,

−h12

∫ t−h1

t−h2
ẋT (s)R2ẋ(s)ds ≤ ξT8(R2)ξ. (38)

Condition (18) implies that there exists a γ1 > 0 such that.

2γ1{ρ1xT (t)x(t)− f T (x(t))x(t)} ≥ 0. (39)

We also note that (19) implies that there exists a γ2 > 0 such
that

2γ2{ρ2xT (t)x(t)+ ρ3f T (x(t))x(t)− f T (x(t))f (x(t))} ≥ 0.

(40)

Substituting (38) into (37) in combination with (39) and (40),
we obtain

V̇1(x(t)) ≤
[
ζx
e(t)

]T {�x

[
−Px11Bk
06n×n

]
∗ 0


+5T

1 (h
2
1R1 + h

2
12R2)51

} [
ζx
e(t)

]
, (41)

where

ζ Tx = [xT (t) xT (t − h1) xT (t − h(t)) xT (t − h2)

×ϕT1 ϕ
T
2 f T (x(t))],

ϕT1 = (
1
h1

∫ t

t−h1
x(s)ds)T , ϕT2 = (

1
h12

∫ t−h1

t−h2
x(s)ds)T

51 =
[
Ak 0 Ad 0n×3n In −Bk

]
.

The time derivative of V2(e(t)) along the trajectory of e(t)
can be obtained by following a similar approach as in the
derivative for V1(x(t))

V̇2(e(t)) ≤ ηTe (t)P
e
d η̇e(t)+ e

T (t)N1e(t)

− eT (t − h1)(N1 − N2)e(t − h1)

− (1− µ)eT (t − h(t))(N2 − N3)e(t − h(t))

− eT (t − h2)N3e(t − h2)

+ ėT (t)(h21T1 + h
2
12T2)ė(t)

− h1

∫ t

t−h1
ėT (s)T1ė(s)ds

− h12

∫ t−h1

t−h2
ėT (s)T2ė(s)ds. (42)

As in (18) and (19), condition (23) implies that there exist
γ3 > 0 and γ4 > 0 such that

0 ≤ 2γ3{ϑ1eT (t)e(t)−1f T (x̄(t), x(t))e(t)},

0 ≤ 2γ4{ϑ2eT (t)e(t)+ ϑ31f T (x̄(t), x(t))e(t)

−1f T (x̄(t), x(t))1f (x̄(t), x(t))}. (43)

Combining (43) with (42) and using Lemma 1, we obtain

V̇2(e(t)) ≤ ζ Te {�e +5
T
2 (h

2
1T1 + h

2
12T2)52}ζe, (44)

where

ζ Te = [eT (t) eT (t − h1) eT (t − h(t)) eT (t − h2) ϕT3 ϕ
T
4

×1f T (x̄(t), x(t))],

ϕT3 = (
1
h1

∫ t

t−h1
e(s)ds)T , ϕT4 = (

1
h12

∫ t−h1

t−h2
e(s)ds)T .

The time derivative of (34) along the trajectory of (21) is
obtained as follows

V̇ (x(t), e(t)) = V̇1(x(t))+ V̇2(e(t)) ≤ ζ T�ζ, (45)

where ζ T = [ζ Tx ζ Te ]. By considering the augmented system
(21) with (22) and known Ki and Li, � will be given by

� =

2∑
i=1

2∑
j=1

θi(| αf (t) |)θj(| αf (t) |)�ij. (46)

Note that considering the conditions in (7) and (8),
if Theorem 1 holds, then � < 0, which implies that V̇ (x(t),
e(t)) < 0. Thus, the closed-loop system (21) with known
Ki and Li is asymptotically stable, which completes the
proof. �

APPENDIX B
PROOF OF THEOREM 2
By using the Schur complement,� can be rewritten as in (47),
shown at the top of the next page, with

i(R−1∗1 ) = −Px11R
−1
1 Px11,i(R−12 ) = −Px11R

−1
2 Px11,

T−11)ג ) = −Pe11T
−1
1 Pe11, T−12)ג ) = −Pe11T

−1
2 Pe11.

Furthermore, �xe and 0T2 can be rewritten as

�xe = 61

[
Bk

06n×n

]
︸ ︷︷ ︸

Bk

[
−In 0n×6n

]︸ ︷︷ ︸
I

, 0T2 = ITBTk ,

(48)

with 61 = diag{Px11,Px11,Px11,Px11,Px11,Px11, In}.
To obtain the observer and controller gains, we define

X11 = P−1x11 and 6 = diag{6−11 , I7n, In, In,P−1x11,P
−1
x11}.

Then, pre and post multiplying � in (47) by 6T and its
transpose respectively, we obtain

�̃ = 6T�6 = �̃(0)+ VL+ LTVT , (49)

where, as shown in the equation at the top of the next page,
with

0̃T1 = 6
−1
1 0T1 , �̃x = 6

−1
1 �x6

−1.
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� =



�x �xe 07n×n 07n×n h10T1 Px11 h120T1 Px11

∗ �e h15T
2 Pe11 h125T

2 Pe11 h10T2 Px11 h120T2 Px11

∗ ∗ T−11)ג ) 0 0 0
∗ ∗ ∗ T−12)ג ) 0 0
∗ ∗ ∗ ∗ i(R−11 ) 0
∗ ∗ ∗ ∗ ∗ i(R−12 )


, (47)

�̃(0) =



�̃x 07n 07n×n 07n×n h10̃T1 h120̃T1
∗ �e h15T

2 Pe11 h125T
2 Pe11 0 0

∗ ∗ T−11)ג ) 0 0 0

∗ ∗ ∗ T−12)ג ) 0 0
∗ ∗ ∗ ∗ i(X11R−11 X11) 0
∗ ∗ ∗ ∗ ∗ i(X11R−12 X11)


,

V =
[
BTk 0n×9n h1BTk h2BTk

]
,

L =
[
0n×7n I 0n×4n

]

Using Lemma 2, we obtain

�̃ ≤ �̃(0)+ V(εX11)VT
+ LT (εX11)−1L. (50)

Using the Schur complement Lemma, we have

�̃ ≤

 �̃(0) VX11 LT

∗ −
1
ε
X11 0

∗ ∗ −εX11


︸ ︷︷ ︸

4

. (51)

For a positive definite matrix, the following inequalities
hold

i(X11R−11 X11) ≤ R̃1 − 2X11, T−11)ג ) ≤ T1 − 2Pe11,

i(X11R−12 X11) ≤ R̃2 − 2X11, T−12)ג ) ≤ T2 − 2Pe11.

(52)

For a positive scalar ε, we have− 1
ε
≤ −(2−ε). By assum-

ing X11 > δ1I , we obtain

−
1
ε
X11 ≤ −(2δ1 − εδ1︸︷︷︸

δ2

)I , −εX11 ≤ −δ2I . (53)

Define the following change of coordinates

P̃x22 = X11Px22X11, P̃x33 = X11Px33X11,

R̃	 = X11R	X11, 	 = {1, 2},

Q̃� = X11Q�X11, � = {1, 2, 3}. (54)

Substituting (53) and (52) from the right hand side of (51)
and using (22) with the relaxation scheme in [36], we obtain

4 =

2∑
i=1

θ2i (| αf (t) |)4ii

+

2∑
i=1

2∑
i<j

θi(| αf (t) |)θj(| αf (t) |)(4ij +4ji) (55)

Thus, one can see that if conditions (29) and (30) are
satisfied, then (55) holds as well, implying that� < 0, which
completes the proof. �
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