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ABSTRACT One way to characterize the seismicity in a given zone is through the study of the conditional
intensity function of the ETAS model (Epidemic Type Aftershock Sequence) which represents the average
number of seismic events greater than given magnitude. Being Chile one of the most seismic country in the
world, it is very important to predict where the seismic events will happen with more frequency. In this work
we propose a parallel neural network based on the Convolutional Network (CNN) and the Long Short Term
Memory (LSTM) network, called Multi-Culumn ConvLSTM, using the accumulated crustal velocity and
the intensity data as input for predicting the daily mean number of seismic events in Chile with magnitude
greater than a given value. For the application, the central zone of Chile between the regions of Coquimbo and
Araucania, in the period from 2010 to 2017 was considered. At the spatial level, each region was partitioned
considering a 20 x 20 dimension grid, while at the temporal level, input data from the last 20 days were
used to predict the mean number of seismic events for the following day. The experiments showed that the
Multi-column ConvLSTM network obtained the best results in the test set with an average coefficient of

determination of 0.81.

INDEX TERMS Deep learning, ETAS model, prediction, seismic events.

I. INTRODUCTION

Chile is one of the most seismic country in the world due to its
proximity to the Nazca plate which beneath South American
continental tectonic plate with an average converging rate of
6.5 mm per year, one of the fastest rates on Earth [3]. Depend-
ing on the depth, subduction earthquakes can be classified
into two main categories: the crustal and interplate events
which occur at a plate boundary at a depth less than 70 km,
approximately; and the deep and intermediate intraplate
events which occur at greater depths (major than 70km) in
the interior of the tectonic plate (see, [4], [34], and [53]).
Most of earthquakes which are concentrated on interplate
faults have caused major disasters in Chile with many
dead and/or economic losses. In the last century, numerous
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earthquakes have occurred on the Chilean subduction zone
with magnitude larger than 8.0, including the 1960 Val-
divia earthquake, the largest instrumentally recorded earth-
quake in the world, which it is supposed to have caused
an increased stress that leaded to other earthquakes [25].
Successively, about 230 km north of the 1960 quake, another
major earthquake in Chile was registered on February 27th,
2010, that affected almost 80% of the Chilean population in
a certain degree [39]. Recently, two main earthquakes with
magnitude major than 8 happened on Abril 1, 2014 in the
North of Chile (Iquique, Tarapaca region) and on September
16, 2015 in the central part on Chile (Illapel, Coquimbo
region), respectively. The last zone is also characterized by
outer rise stress changes related to the subduction of the
Juan Fernandez Ridge [16].

Hence, any information which could improve prediction
of future seismic events could be very useful for preventing
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disastrous consequences. Unlike other natural phenomena
such as the rains or hurricanes where their occurrences can
be predicted with a certain precision, for earthquake events
there is not a consolidated mechanism that allows to predict
when and where the next big earthquake will occur. However,
there are different perspectives on earthquake prediction:
while some studies concluded that earthquakes cannot be pre-
dicted [64], others proposed different methods for predicting
the occurrence of future seismic events (see, for example,
[71, [9], and [28]). Considering the hypothesis that a seismic
event is predictable, seismic prediction models are grouped
into different categories that consider the use of statistical and
spatial tools, analysis of precursor signals, classic machine
learning algorithms and deep learning algorithms [60]. One
way to represent the seismicity in a region is through the
ground intensity function which represent the expected num-
ber (or occurrence rate) of earthquake events with magni-
tude greater than a particular degree. This work proposes
to predict the average number of daily seismic events with
magnitudes greater than 2.8 on the Richter scale in the central
zone of Chile (between the regions of Coquimbo and Arau-
canfa) during the years 2010-2017 using modern machine
learning techniques, especially deep neural networks. Specif-
ically, we consider neural network models for spatio-
temporal data such as the Convolutional network Long Short
Term Memory (ConvLSTM) and the Multicolumn Convolu-
tional Long Short Trem Memory (Multicolumn ConvLSTM)
networks.

The data used in these models come from the the public
catalog of the National Seismological Center of Chile and
from the e Global Position System (GPS) instruments. In par-
ticular, the data are pre-processed in the following way: from
the the seismic events of the Chilean catalog we estimate
the intensity function using the spatio-temporal ETAS model,
and from the GPS data, we evaluate the accumulated velocity
associated to the main seismic event. Both data sets are build
on a 20 x 20 spatial grid covering the area under study. This
spatial distribution facilitates the application of convolution
operators of the neural networks used. Sequences of these
matrices are then used as inputs of the networks for predicting
the average future number of seismic events in the following
days on a 20 x 20 grid. Since we assume that the use of
velocity time series could help to improve the prediction of
the number of seismic events, we propose a network designed
for multiple data sources, the Multi-column ConvLSTM. The
proposed model is then compared to some traditional neural
network models such as feed-forward neural network (FFNN)
Long Short Term Memory (LSTM), and the Convolutional
LSTM, in order to assess the goodness of the results.

Il. RELATED WORK

In the last years various approaches have been proposed for
the prediction of seismic events by applying deep neural
networks, most of them using CNN or LSTM networks
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Gravirov [31] analyzed the potential of using deep neural
networks (DNN) for seismic data analysis and they concluded
that DNN5s are promising tools, although the major limitation
of these data is the presence of few events of large magnitude.
Zhou et al. [68] introduced a hybrid CNN-RNN model to
detect seismic events from seismic waves captured by seis-
mograms, outperforming traditional algorithms in terms of
selection stability (low false detection) and high selection
accuracy. Linville et al. [38] explored the use of convolu-
tional and recurrent neural networks to achieve explosive and
tectonic source discrimination for local distances, using a
5-year event catalog generated by seismograph stations,
which performed better than 99%. Kriegerowski et al. [33]
used the full waveform recording of three components from
multiple seismic stations while a convolutional network
(CNN) was used as a neural model. CNN successfully
located events in validation. The CNN successfully located
908 events in the validation. Perol et al. [48] presented Con-
vNetQuake, a highly scalable convolutional neural network
for earthquake detection and localization from waveform.
This technique was applied to study induced seismicity in
Oklahoma (USA), detecting 20 times more earthquakes than
previously cataloged by the Oklahoma Geological Survey.
Vijayasankari and Indhuja [60] used LSTM networks for
spatio-temporal earthquake forecasting. Simulation results
showed that the developed two-dimensional input LSTM
network was capable of discovering and exploiting spatio-
temporal correlations between earthquakes. Geng et al. [20]
addressed the problem of long-term historical dependence of
seismic time series prediction by proposing deep temporal
convolution neural networks (DCTCNN and CNN-LSTM),
demonstrating that they are superior to the other five pre-
sented algorithms, successfully completing the seismic pre-
diction task. Huang et al. [27] proposed to project seismic
events on a topographic map and generated an image dataset
where earthquake with magnitude > 6 is labeled “1”°. The
authors used a CNN to detect and predict whether these large
earthquakes will occur in the next 30 days. Li et al. [37]
proposed a method for earthquake fault detection using a
CNN that requires only a small training set, treated the
fault detection process as a semantic segmentation task, and
trained a CNN encoder-decoder, to perform pixel-by-pixel
prediction to determine whether each pixel is a fault or not.
Wang et al. [61] trained ResNets for seismic data interpo-
lation, where the model is used to reconstruct dense data
with halved trace intervals. The generated data can provide
reasonable interpolation results and can be used to improve
the accuracy of subsequent algorithms. Due to physical or
financial constraints, seismic data sets can often be under-
sampled, occasionally these data sets can also present bad
data or dead traces that the geoscientist must deal with. Even
neural generative models have been applied to this problem.
Oliveira et al. [46] evaluated the performance of a conditional
generative adversarial network for the interpolation problem
on post-stack seismic datasets.

107403



IEEE Access

A. G. Fuentes et al.: Spatio-Temporal Seismicity Prediction in Chile Using a Multi-Column ConvLSTM

LSTM and CNN neural networks were also applied by [1],
[19], [29], [30], [36], [40], [43], [49], [63] for temporal and
spatial earthquake prediction. Wang et al. [63] employed a
long short-term memory (LSTM) network to learn the spatio-
temporal correlations among earthquakes in different loca-
tions and make predictions. Fabregas et al. [19] developed a
system based on a Rule Based Algorithm and a Long Short-
Term Memory (LSTM) Network which is able to forecast
the following variables: frequency, maximum magnitude, and
average depth of earthquake events in a specific region in a
given year. Li et al. [36] proposed a Deep Learning model,
called DLEP, for Earthquake Prediction called DLEP by
using a CNN on eight precursory pattern-based indications
and explicit features. Kavianpour et al. [30] and [1] propose
a novel prediction method based on attention mechanism
(AM), convolution neural network (CNN), and bi-directional
long short term memory (BiLSTM) models for the earthquake
prediction in China [30] and in Bangladesh [1], respectively.
Kail et al. [29] proposed a deep neural network classification
model based on a LSTM and a convolutional network to
predict if an earthquake with the magnitude above a threshold
takes place at a given area of Japan for the next 30—180 days.

Few works have dealt deep neural network model for
predicting seismic events in Chile. A novel approach combin-
ing ETAS (Epidemic type aftershock sequence) models (see,
[41] and [42]) with neural networks have been recently pro-
posed by [49] and [43] to forecast seismic events for the
next days in Chile. In particular, in [43], a CNN is used
for predicting the region where the the seismic event with
maximum magnitude will occur, and a LSTM for predicting
the average number of seismic events for the next days.

While these works are mostly based on applications of
CNN or LSTM for analyzing and predicting seismic events
using historical data, we propose a Multi-column Convo-
lutional LSTM (MConvLSTM) network which takes into
account the past values of the earth crustal velocity as covari-
ate besides to the ETAS intensity function values. The intro-
duction of this new covariate was also considered by [14]
where they empirically show that this component can improve
the description of triggered seismicity in the ETAS model.

lll. BACKGROUND

A. ETAS (EPIDEMIC TYPE AFTERSHOCK SEQUENCE)
Space-time point processes can be uniquely characterized
by their conditional intensity function, which represents the
mean number of events in a region and time, conditional on
the past [17]. These models first appeared in applications to
population genetics and are therefore also known as Epidemic
Type Models. Ogata [44] and [45] introduced Epidemic-Type
Aftershock Sequence (ETAS) models for modeling seismic
events in the temporal and spatio-temporal domains, respec-
tively. The space time conditional intensity function can be
represented as follows:

Mz, s|Hy)

. E[N([t, 1+ At] x [s, s + As])|H;]
= lim (H
L(A1),L(As)—0 L(At)L(As)
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where L(-) is the Lebesgue measure, At and As are incre-
ments in time and space, s = (x, y). The intensity function
A(-) depends on a set of parameters to be estimated.

Seismic events are generally collected in a seismic cat-
alogue, which includes the time when the event occurred,
the coordinates of the hypocenter, and the magnitude for
n observed events. The ETAS model is normally used for
describing the spatio-temporal seismicity and the clustering
features of aftershocks. The intensity function of the ETAS
model is based on the history of event occurrences H; and
depends on a set of parameters, 6, to be estimated. According
to [13], [45] and [14], the spatio-temporal conditional inten-
sity can be written as:

Ao(t, s|Hp) = uf(s) + Zg(f — tilmj)e(s — sjlmy)  (2)
<t

where uf (s) represents the background seismicity, stationary
in time, with f(s) space density. The second part of Eq.
describes the triggering component given by the product the
temporal density of aftershocks describing the occurrence
rate of aftershocks at time ¢, after the earthquake at time f
with magnitude m;, and the density of aftershocks in space.
The rate of earthquake occurrence at time ¢ is described by
the parametric model [13]:

Ke(@—v)(mj—mo)
t—t+cy
where K is an aftershock productivity constant, ¢ and p are
parameters of the modified Omori’s law proposed by [59];
p is used to characterize the seismicity pattern, indicating the
rate of decrease of aftershocks over time. The parameter «
and y measure the influence on the relative weight of each
sequence, and my is the magnitude threshold (lower limit for
which earthquakes with higher magnitude values are certainly

recorded in the catalogue).
For the spatial distribution conditional on the magnitude of
the event, the following distribution is usually used:

—5)? 1
Us — sj|mj) = {M +d} 4)

eV (mj—mo)

gt —tjlmj) = with t > f; 3)

where d and g are two parameters related to the spatial
influence of the main earthquake. Finally, the equation for
the conditional intensity can be written as follows:
ro(t, s|Hp) = juf (5)
—-q
+ d} .0

Kela—v)mi—mo) [ (¢ _ ¢)2
> ron

oy |
B. NEURAL NETWORKS

Artificial neural networks (ANNs) are important tools in the
field of artificial intelligence. They are based on the behavior
of the brain, referring to neurons and their connections. ANN
models are normally designed to allow the resolution of com-
plex problems where the relationship between the the desired
output and the input variables is non-linear. Next, the neural
network models used in this work will be described below.
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Input Hidden Output
Layer Layer Layer

FIGURE 1. Diagram of a FFNN.

1) FEED-FORWARD NEURONAL NETWORK

One of the most popular neural network paradigms is the
feed-forward neural network (FFNN) [57]. In a FENN neural
network, neurons are generally organized in layers. This net-
work is denoted as X x H x O, where X, H, and O represent
the number of input units, the number of hidden layers, and
the number of output units, respectively. Figure 1 shows a
fully connected feed-forward network.

The neurons of the hidden layer and the output layer are
processing units. Each neuron has an activation function that
is chosen, this can be a sigmoid function, ReL.U, etc. The
network input to neuron j is given by:

net; = f (Z wiixi + 6;) (6)

where x; are the outputs of the previous layer, w;; are the link
weights connecting neuron i to neuron j, 6; is the bias and
f is the activation function. This model is the most basic of
those available, which is why it is considered as base method
to compare the proposals.

2) LONG SHORT TERM MEMORY

Long Short Term Memory (LSTM) network was proposed
by Hochreiter and Schmidhuber [26], and can be considered
an evolution of the Recurrent Neuronal Network (RNN).
LSTM networks are models designed for data in the form of
sequences, capable of learning long-term dependencies and
remembering information over long periods of time. Figure 2
represents the structure of the LSTM neural network:

This network is composed of memory blocks called cells.
These transfer two states to the next cells, the cell state and
the hiddent state. The cell state is the main data flow chain,
which allows data to go forward without major changes. Data
can be added to or removed from the cell state through the
sigmoid layer. The sigmoid function takes values from the
output of the last LSTM unit 4~ and the current input x’
at time step ¢. The sigmoid function will determine which
part of the previous output should be removed. This gate
is called the forget gate which will be denoted by f [23];
S is a vector with values ranging from 0 to 1, corresponding
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FIGURE 2. Structure of the neural network long short Trem
Memory (LSTM).

to each number in the cell state C'—1.

fr=o® +Yy U+ win %)
J j

x' is the input vector, o is the sigmoid function, ', U/ and
W/ are the bias, input weights and recurrent weights of the
gate respectively.

The next step is to store the new information in the new
input x’ by updating the cell state. This step contains two
parts, the sigmoid layer and the hyperbolic tangent func-
tion. The sigmoid layer decides whether the new information
should be updated or ignored with values between 0 or 1,
and the hyperbolic tangent function gives weight to the values
passed, through an importance level between -1 and 1. These
two values are multiplied to update the new x’ cell state. This
new memory is added to the old memory in C*~! resulting in
c'.

. : ) -
i =o' + Z Ulx! + Z winh )
J J

-1 ; r—1
C' = C'"'f" +i'tanh(@ + ) Uixl + Y WiH™hH (9)
j j

C'~! and C represent the cell states at time steps ¢ and
t — 1, while b, U and W are the bias, input weights and
recurrent weights of each cell state respectively.

For the final step, the output values A’ are based on the
output cell state O' . First, a sigmoid layer decides which parts
of the cell state reach the output. Next, the output of this
is multiplied by the new values created by the hyperbolic
tangent function of the cell state C?, with a value varying
between —1 and 1.

O' =0+ Ulxl+Y Wj”h]’f‘) (10)
j j

h' = O'tanh(C") (11)

b°, U° y W? are the bias, the input weights, and the
recursive weights of the output gate, respectively. Although
it does not consider the spatial disposition of the events, this
model is adequate to the available temporal data, for which it
is considered as a base method in the experiments.

3) CONVOLUTIONAL NEURONAL NETWORK
The Convolutional neural network (CNN) is a specialized
type of neural network for processing gridded data [23].
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Convolutional networks are neural networks that use convo-
lution instead of general matrix multiplication. This operation
refers to a mathematical combination of two functions to pro-
duce a third function. In the case of CNNs, the convolution is
performed between the input data and a kernel that performs
the filter function, so as to obtain a feature map, this operation
is usually indicated by an asterisk (see, Figure 3).

1lof1]o]1
11 jof1]1 1010 2 (3|4
oflof1]ol1 * o1 1| =1[s6]3]s
1l1]of1]o 1010 2 (3|3
ofl1fof1]o0

Input Kernel Feature map

FIGURE 3. Convolution example.

In machine learning applications, the input is usually an
array of data and the kernel is usually an array of parameters
to be learned. Often convolutional ones are used on more than
one dimension at a time, which is why if a two-dimensional
image I is used as input, a two-dimensional kernel K should
probably also be used:

slijl = = K)li,jl=> > Im,nlK[i —m,j—nl.
12)

This model is a component of the ConvLSTM and Multi-
column ConvLSTM models, which are the ones proposed in
this work.

4) ConvLSTM

LSTM networks have been widely used to process sequential
data however it can have difficulties modeling grid data, due
to the large number of weights and large matrix multiplica-
tions required to parameterize each cell [10]. A more suitable
alternative in this type of data is the LSTM convolutional
network (ConvLSTM), which differs from LSTM in that
it replaces the matrix product operations with convolution
operations. This model has been applied to spatio-temporal
data such as rainfall [56] or videos [62].

Figure 4 shows the structure of a ConvLSTM cell. The
architecture of this network allows large matrices to be
operated using convolutions sequentially, which drastically
reduces the number of parameters needed to train. Simultane-
ously, the convolution operation allows to model the relations
between the neighboring cells of the input. The mathematical
formulation of the ConvLSTM model is:

it = 0(Wyx Xy + WpixH—1 + Wei0o Cro1 + b))
fi=0oWy = X; + Wy xHi_1 + Wer 0 Ciq + by)
Ct = fy 0 Ci—1 + iy o tanh(Wye * Xy + Wie x Hi—1 + b,)
0r = 0(Wyo x Xy + Wio x Hr 1 + Wep 0 Cr + by)
H; = o0; o tanh(C}) (13)
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FIGURE 4. Convolutional long short Trem memory (ConvLSTM) neural
network structure.

where o is the sigmoidal function, Wy~ and Wy~ are 2D
convolutional kernels, X; is defined as the input, C; the cell
output, H; the hidden state and the gates i, f;, o;. In gen-
eral, all variables correspond to 3D tensors. The symbol
“x”” denotes the convolution operator, while “o” denotes
the Hadamard product. Our proposal uses this architecture
because the input spatio-temporal data considers a grid shape
in the spatial representation of the geographic regions under
study.

5) MULTI-COLUMN CONVOLUTIONAL NEURAL NETWORK
The Multi-column Convolutional Neural Network (MCNN)
is a neural network architecture proposed by [15] in the con-
text of visual object recognition. This neural network differs
from a typical convolutional neural network in that it contains
multiple branches which are connected at the output layer,
thus handling multiple inputs simultaneously. This model has
been applied to counting multiple people [67] or emotion
recognition using EEG [66]

Conv 7x7

Pooling 2x2 ﬂl’nnhng 22 ﬂcunv 5x5
Conv 5x5 UCUHV&(S L/

Pooling 2x2 Pooling 2x2
Conv 3x3 ‘ / Conv 3x3

FIGURE 5. Multi-column convolutional neuronal network
architecture [67].

Feature Density map

Input
mapunion  (Output)

Conv 3x3

N

Figure 5 shows the architecture used in [67]. This model
shows the use of different filters in each component CNN
which allow parallel processing of patterns at different
scales within the input image. Subsequently, the outputs of
these networks are concatenated to form the output density
map. Our proposal consists in the use of a variant of this
architecture to process different input data through multiple
components.
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y-latitude

x-longitude

FIGURE 6. Seismic events in Chile from 2010 to 2017 with the studied
area in the square (left panel); Google map of the study area with seismic
events (right panel).

IV. PROPOSED METHODOLOGY

In this work, data from the earthquake Chilean cata-
logue, covering the Coquimbo and Araucania regions,
located between latitudes [—38.00, —31.00] and longitudes
[—75.00, —71.00] are considered (see, Figure 6). The selec-
tion of this area is mainly related to its sismicity. In particular,
it is characterized by an high number of interplate events
(with depth less than 70 km) occurred mainly along the cost
of Chile. Also, this area includes the epicenters of two big
earthquakes: the Constitucién earthquake occurred on the
south of the area on February 27, 2010 and the Illapel earth-
quake occurred on September 16, 2015 located in the north
of the study area. Two types of variables are considered for
the earthquake prediction: the daily accumulated velocity and
the values of the intensity function from the estimation of the
ETAS model. In summary, the proposed methodology mainly
consists of (i) data pre-processing and (ii) the application
of neural models. First, data pre-processing is described to
facilitate the convolution operation used in neural models.
Then the specific architectures of the proposed networks
based on ConvLSTM are described. These two data sets are
described below.

A. VELOCITY BASED ON GPS SENSORS

Several studies show that GPS data provide useful infor-
mation for the earthquake prediction (see, for example,
[24] and [21]). In this work, we use the accumulated dis-
placement velocity, obtained by the GPS measurements, as a
predictor of the average number of daily seismic events.
To obtain the daily accumulated velocities associated to each
seismic event in the study area, we downloaded the GPS
measurements from the web page http://geodesy.unr.edu/
NGLStationPages/GlobalStationList and we use the seismic
catalogue provided by the National Seismological Center of
the University of Chile ( https://www.sismologia.cl/). While
GPS stations capture daily coordinates in a defined time
interval and spatial point, the seismic catalogue includes
some main features associates to each seismic event, such as
longitude, latitude, magnitude, date of occurrence, and depth.
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FIGURE 7. Longitude y latitude time series for the EMAT station.

Figure 7 shows an example of time series of the coor-
dinates (longitude y latitude) recorded by the EMAT GPS
station located in the Coquimbo region, in the period
from 2007 to 2021. The velocity field considered in this work
has been calculated by estimating the regression line at the
GPS stations as mentioned in [18]. In this case an interval of
5 days prior to the event was considered for the adjustment of
the line. The slopes representing the vertical and horizontal
velocity were obtained to finally perform the Pythagorean
theorem and thus obtain the movement in mm/5days. The
imputTS library of R software has been used for interpolating
missing data. The preparation of the input data for the neural
networks in 20 x 20 grid format required the following steps:

1) Estimation of missing values of the time series, for
which two steps were required:

« Missing value estimation through the R library
imputTS

« Denoising process of time series through R wmtsa
library

2) Assignment of the velocity to each seismic event
through the following algorithm:

Algorithm 1 Assignment of Velocity to Seismic
Catalogue
input : C,Gn
[ C= Catalog of seismic events
G= Time series of GPS stations
n= Number of seismic events
Jj=Number of columns of C]
fori =0tondo
G'[i] < Find nearby station(C[i, ], G);
DIi] < Calculate velocity (G'[i]);
Cli,j+ 1] < D[{]
output: C

3) Generation of the 20 x 20 grid in the geographic space.

When creating this data set representing the displacement
velocity, a 20 x 20 grid per day was generated in the defined
geographic space. Each cell was associated to a velocity
value measured by the nearest GPS station. In the case of the
presence of multiple GPS stations within a cell area, the cell
was assigned to the velocity with the largest value. Finally, in
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FIGURE 8. Displacement velocity for the day 02/03/2010.

case of absence of velocity in a cell, it was assigned the value
of zero.

Figure 8 shows the velocity calculated in the defined zone
corresponding to March 2, 2010, that is, three days after the
big Constitucion earthquake of magnitude 8.8.

B. INTENSITIES OF THE ETAS MODEL

The Chilean seismicity is here represented through the con-
ditional intensity function of the ETAS model. In particular,
the conditional intensity describes the average number of
seismic events greater than a predetermined threshold in a
spatial region. The input data of the ETAS model are the
seismic events (in terms of longitude, latitude, magnitude,
and time) recorded by the National Seismological Center of
Chile. For the spatial estimation, we consider a 20 x 20 grid
over the geographic area of interest. This zone has been
defined between latitudes [—38.00,—31.00] and longitudes
[—75.00, —71.00] in the years 2010-2017 corresponding to
the Coquimbo and La Araucania regions of Chile. In the
estimation of the ETAS intensity function, we considered a
magnitude threshold of 2.8 on the Richter scale. This value
has been selected by analyzing the log-cumulate distribution
of the magnitudes of the data in the studied area as suggested
by [14]. For each cell, the intensity value is calculated using
Eq. 5. The estimation of the parameters of this function has
been implemented by using the EtasFLP library [13] of the
R software.

Table 1 shows the estimated parameters according to the
estimation of the intensity function. According to [14], we fix
the parameter p to 1 land y to O.

Figure 9 shows the values of the intensity function for the
day 03/02/2010 in Chile between the regions of Coquimbo
and Araucania. Finally, the intensity functions are processed
by logarithmic transformation as proposed by [43], in order
to reduce the high asymmetry in the data.

V. THE PROPOSED MULTI-COLUMN LSTM

NEURAL NETWORK

The neural network model proposed in this work, called
Multi-column ConvLSTM, is based on ConvLSTM neural
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TABLE 1. Parameter estimation of the ETAS model.

Parameters Estimates Std Error
w 0,6796 0,0182
k 0,2440 0,0449
c 0,0135 0,0007
P 1,0000 0,0000
d 45,6977 2,9065
q 1,7382 0,0271
2010-03-02
-32
Intensity
function
-34 1.39
0.93
36 0.46
0.00

-35 I .
-75-74 -73 -72 -T1

FIGURE 9. ETAS model estimation for the day 03/02/2010.

networks arranged in two parallel branches. This model can
be seen as a variant of the Multi-column CNN network seen in
section III-B5. The proposed network is then compared with
a ConvLSTM network where both input data are processed in
a single branch as shown by Figure 10.

In Figure 11, we present the structure of the Multi-column
ConvLSTM network with two parallel inputs proposed to
treat independently the velocity and intensity. The two mod-
els are then combined in the last layer to perform the
prediction.

The structure of the proposed Multi-column ConvLSTM
network is composed of two ConvLSTM layers for each
column, with Dropout and Batch Normalization components
between layers. Finally, a third ConvLSTM layer is added
where the two columns that process intensity and velocity are
connected.

VI. EXPERIMENTAL PROCEDURE

This section describes the preparation of the data and the
experimental results for the validation of the proposed
models.

A. DATA PREPARATION
Experiments have been performed following the block-based
cross-validation scheme [11]. This method is based on divid-
ing the data sequentially into blocks. In this case the blocks
are chosen considering the different seismicity in each period.
The database, covering the period from 01/31/2009 to
12/31/2017, is sequentially partitioned into three blocks con-
sidering the years 2015, 2016 and 2017 within the test data
set. The validation set corresponds to the previous year of
the testing year, while the training set corresponds to all
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FIGURE 10. Structure of the tested ConvLSTM model.

previous years. All blocks are initialized following
Xavier’s [22] method. For the prediction, 20 previous days
are used to make the forecast for the next day.

In the Table 2 the sequential blocks of data are detailed with
the corresponding dates. For the choice of hyperparameters of
the neural networks, the Keras-Tuner tool proposed by [47]
was used. This optimization is done considering only the
training and validation sets. Regarding the parameters of this
optimization, we considered 5 iterations for the hyperparam-
eter optimization algorithm based on hyperbands as well as
25 iterations per model [47]. After finding the hyperparame-
ters of the models, the training of each model was carried out
considering 240 epochs and a batch-size of size 20.

B. EXPERIMENTAL RESULTS

The experiments were performed at a quantitative and quali-
tative level. In the quantitative experiments, the neural models
are tested and the metrics are reported to evaluate the quality
of each model. Qualitative experiments are complementary.
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FIGURE 11. Structure of the proposed multi-column ConvLSTM model.

TABLE 2. Partition of the data in training, validation and testing sets for
three different periods.

Period Dates Partition Time interval
Train (31/12/09 - 31/12/13)
1 31/12/09 - 31/12/15 Val (01/01/14 - 31/12/14)

Test (01/01/15 - 31/12/15)
Train (31/12/09 - 31/12/14)
2 31/12/09 - 31/12/16 Val (01/01/15 - 31/12/15)
Test (01/01/16 - 31/12/16)
Train (31/12/09 - 31/12/15)
3 31/12/09 - 31/12/17 Val (01/01/16 - 31/12/16)
Test (01/01/17 - 31/12/17)

In this part, some predictions at the spatial and temporal level
are visually shown.

1) QUANTITATIVE EXPERIMENTS

The quantitative experiments were performed considering
the proposed neural networks, ConvLSTM and Multi-column
ConvLSTM. Base methods such as multidimensional FFN
and LSTM were added for comparison. The FFN network
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consisted of 3 hidden layers, while the LSTM network has
2 hidden layers. Each neural network was hyperoptimized
considering the number of neurons per layer. The metrics
considered to evaluate the quality of the models are the
mean squared errors (MSE), the mean absolute error (MAE)
and the coefficient of determination (R%). These metrics are
generally used to evaluate time series forecast models. On the
other hand, since it is not obvious how to comparatively
evaluate metrics with non-predefined scales such as MSE
or MAE, we have chosen to additionally compare them
using the relative improvement criterion, which is applied
in the machine learning community ( [12], [65]). For exam-
ple, if two techniques obtain an MSE of 0.128 and 0.064,
then the relative improvement of the second over the first is
(1—-0.064/0.128) * 100% = 50%, which expresses the error
reduction to the half. For uniformity, this criterion was also
adapted for the R. In the following, we will focus on the
results for the test set although we will also show the results
for the training and validation sets.

a: ConvLSTM

This neural network considers historical conditional intensity
and velocity data as input. The architecture is specified in
Figure 10. Table 3 shows the results of the ConvLSTM neural
network for each block.

The results show that this network obtained on average a
MSE equal to 0.0051, a MAE equal to 0.0039 and an R? equal
to 0.761 on the test set. In all periods, a determination coef-
ficient greater than 0.74 was obtained. When analyzing the
results by blocks, it is observed that the best metrics are in
the second block with MSE, MAE and R2 with values 0.0038,
0.033 and 0.78, respectively.

TABLE 3. Resulting metrics with their standard deviations (in
parenthesis) in the training and testing sets for different periods using
ConvLSTM network.

Period Train Val Test
MSE MAE R2 MSE MAE R2 MSE MAE R2
1 0.0050 0.0434 0.841 0.0043 0.0398 0.713 0.0066 0.0475 0.747
(0.1E-4) (0.2E-4) (3.0E-4) (0.2E-4) (04E-4) (0.001) (0.3E-4) (0.6E-4)  (0.001)
2 0.0044 0.0361 0.847 0.0054 0.0388 0.785 0.0038 0.0336 0.780
(0.1E-4)  (0.2E-4) (3.0E-4) (0.2E-4) (0.6E-4) (0.001) (0.2E-4) (0.5E-4)  (0.001)
3 0.0043 0.0345 0.846 0.0036 0.0317 0.787 0.0049 0.0364 0.756
(0.1E-4)  (0.2E-4) (3.0E-4) (0.2E-4) (0.5E-4) (0.001) (0.2E-4) (0.5E-4)  (0.001)
Train Val Test
MSE MAE R2 MSE MAE R2 MSE MAE R2
Mean 0.0046 0.0380 0.845 0.00446 0.0368 0.761 0.0051 0.0392 0.761

Sd (0.1E-4)  (0.2E-4) (0.3E-4) (0.2E-4) (0.5E-4) (0.001) (0.2E-4) (0.5E-4)  (0.001)

b: MULTI-COLUMN ConvLSTM (MConvLSTM)

This neural network considers both historical velocity and
seismic intensity data as inputs. Each component column of
this network processes each input. Table 4 presents the results
of this neural network by block.

The results show that this network obtained on average
an MSE of 0.0039, MAE of 0.031 and R? of 0.812. About
MSE and MAE, the best result was given in the second block
with values of 0.034 and 0.0294; while with respect to R? it
reached 0.827. We observe that in the first block the best value
of R? was reached, and also the highest values of MSE and
MAE, which indicates that the metrics are complementary.
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When comparing these results with those of the ConvLSTM,
the MConvLSTM manages to significantly outperform them
in all metrics. In MSE, MAE and R? it achieves on average
arelative improvement of 23%, 20% and 6%, which indicates
that MConvLSTM clearly outperforms ConvLSTM. We pro-
pose that this improvement is due to the use of multicolumns,
which allow the data to be initially processed independently,
while ConvLSTM mixes them from the beginning, which can
make it difficult to find the best hypotheses of the predictive
model.

¢: BASE METHODS

For comparison, other classic neural network architectures
are applied: Feed Forward Neural Network (FFNN) and the
multidimensional Long Short Trem Memory (LSTM). The
FFNN network maintains the data in the form of sequences,
however, it does not consider local connections between
nodes, losing local temporal and spatial connectivity. On the
other hand, the LSTM network does consider temporal mem-
ory, however, it does not consider spatial connectivity, unlike
the ConvLSTM and Multi-column ConvLSTM networks.

TABLE 4. Resulting metrics with their standard deviations (in
parenthesis) for the Multi-column ConvLSTM network processed with
intensities and logarithm of velocities as inputs.

Period Train Val Test
MSE MAE R2 MSE MAE R2 MSE MAE R2
1 0.0038 0.0304 0.880 0.0031 0.0269 0.789 0.0044 0.0330 0.827
(0.1E-4) (0.2E-4) (3.0E-4) (0.2E-4) (0.5E-4) (0.001) (0.3E-4) (0.5E-4) (0.001)
2 0.0038 0.0302 0.869 0.0045 0.0321 0.822 0.0034 0.0294 0.805

(0.1E-4)  (0.3E-4) (0.001) (0.3E-4)  (0.5E-4) (0.001) (0.2E-4) (0.4E-4)  (0.001)
3 0.0036 0.0299 0.873 0.0030 0.0273 0.825 0.0040 0.0313 0.804
(0.1E-4)  (0.2E-4) (0.001) (0.2E-4)  (0.6E-4)  (0.001) (0.2E-4)  (0.5E-4)  (0.001)
Train Val Test
MSE MAE R2 MSE MAE R2 MSE MAE R2
Mean 0.0037 0.0302 0.874 0.0035 0.0288 0.812 0.0039 0.0312 0.812

Sd (0.1E-4) (0.2E-4) (3.0E-4) (0.2E-4) (0.5E-4) (0.001) (0.2E-4) (0.5E-4)  (0.001)

Table 5 shows the metrics of the LSTM and FFNN models
considering the intensity and velocity as inputs. The LSTM
metric values are better than those given by FFN. In relation
to MSE, MAE and R?, LSTM obtains an average of 0.012,
0.075 and 0.408, while FFN has 0.0168, 0.091 and 0.222,
respectively. These results occur because LSTM considers the
sequential nature of the data leading to a clear advantage over
FFN. However, both networks have much lower performance
than the ConvLSTM and Multi-column ConvLSTM network
models, which indicates that spatial information is very rele-
vant in this problem.

d: ConvLSTM (USING ONLY SEISMIC INTENSITY)

In this way we complement the ConvLSTM neural network
using only the seismic intensity data as input. The architecture
was similar to the previous experiment using ConvLSTM
where only the input data was changed.

Although this work studies the use of intensity as velocity,
we have observed that the latter variable is comparatively
highly dispersed due to the fact that there are few GPS
sensors compared to seismic sensors. This may imply that not
necessarily both data sources are similarly reliable.

Table 6 shows the behavior of the ConvLSTM network
without the velocity variable as input. For this network,
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TABLE 5. Resulting metrics with their standard deviations (in
parenthesis) for the LSTM and FFNN models processed with intensities
and logarithm of velocities as inputs.

Train Val Test
Model  Period MSE MAE R2 MSE MAE R2 MSE MAE R2
1 0.0035 0.0342 0.889 0.0058 0.0504 0.609 0.0138 0.0735 0.470
(0.1E-4)  (0.2E-4) (2.0E-4) (0.2E-4) (0.5E-4)  (0.001) (0.5E-4) (0.8E-4)  (0.001)

LST™M 2 0.0033 0.0319 0.885 0.0152 0.0687 0.406 0.0117 0.0788 0.324
(0.1E-4)  (0.2E-4) (2.0E-4) (0.5E-4) (0.9E-4) (0.001) (0.3E-4) (0.7E-4)  (0.001)
3 0.0032 0.0324 0.886 0.0063 0.0561 0.633 0.0115 0.0719 0431

(0.1E-4) (02E-4) (20E-4) (02E-4) (0SE-4) (0.001) (03E-4) (0.7E-4)  (0.001)
T 00170 00870 0460 00126 0093  0.159 00256  0.1190 0011

(03E-4)  (04E-4)  (0.001)  (0.2E-4) (0.5E-4) (0.001) (0.6E-4) (0.8E-4)  (0.002)
FFENN 2 0.0148 0.0774 0.489 0.0209 0.0880 0.186 0.0141 0.0823 0.185
(02E-4) (04E-4) (40E-4) (0.7E-4) (0.1E-4) (0.002) (0.3E-4) (0.8E-4)  (0.001)
3 0.0080 0.0588 0.717 0.0077 0.0647 0.552 0.0108 0.0703 0.468
(0.IE4) (02E-4) (3.0E-4) (02E-4) (0.5E-4) (0.001) (0.2E-4) (0.6E-4) (0.001)
Train Val Test
Model  Metric MSE MAE R2 MSE MAE R2 MSE MAE R2

Mean  0.0033  0.0328 0887  0.0091 00584 0550 00123 00747  0.408
LSTM  Sd  (0.IE4) (02E-4) (2.0E-4) (0.3E-4) (0.6E-4) (0.001) (04E-4) (0.4E-4)  (0.001)

Mean 00133 00744 0556 00137 00821 _ 0299 00168 00905 0222
FFNN  Sd  (02E-4) (03E-4) (6.0E-4) (04E-4) (04E-4) (0.001) (0.4E-4) (0.7E-4)  (0.001)

the average values of MSE, MAE and R? resulted 0.0042,
0.0339 and 0.802, respectively. It is notable that the Con-
vLSTM network outperforms the ConvLSTM network with
both intensity and velocity data sources. Nonetheless, it still
has a lower result (on average) than Multi-column ConvL-
STM which considers both data sources. Note that Multi-
column only makes sense when considering multiple data
sources. When analyzing each metric, it is observed that,
on average, Multi-colum ConvLSTM obtains a relative
improvement compared to ConvLSTM (with only intensity)
of 7%, 8% and 1.2% in the MSE, MAE and R?, respectively.

TABLE 6. Resulting metrics with their standard deviations (in
parenthesis) for the ConvLSTM network with only intensity as input.

Period Train Val Test
MSE MAE R2 MSE MAE R2 MSE MAE R2
I 0.0043 0.0387 0.864 0.0037 0.035 0.754 0.0051 0.0401 0.805
(0.1E-4)  (0.2E-4) (3.0E-4) (0.2E-4) (0.4E-4) (0.001) (0.3E-4) (0.5E-4)  (0.001)

2 0.0040 0.0315 0.861 0.0046 0.0321 0.817 0.0034 0.0292 0.802
(0.1E-4)  (0.2E-4) (4.0E-4) (0.2E-4) (0.5E-4) (0.001) (0.2E-4) (0.5E-4)  (0.001)
3 0.0038 0.0327 0.867 0.0031 0.0292 0.819 0.0041 0.0321 0.799
(0.1E-4)  (0.2E-4) (2.0E-4) (0.2E-4) (0.4E-4) (0.001) (0.2E-4) (0.5E-4)  (0.001)
Train Val Test
MSE MAE R2 MSE MAE R2 MSE MAE R2
Mean 0.0040 0.0343 0.864 0.0038 0.0321 0.797 0.0042 0.0339 0.802

Sd (0.1E-4)  (0.2E-4) (3:()}-:—4) (0.2E-4)  (0.4E-4)  (0.001) (0.2E-4)  (0.5E-4)  (0.001)

2) QUALITATIVE EXPERIMENTS

Qualitative experiments are complementary to quantitative
experiments due to the difficulty of visually analyzing the
results of space-time predictions. This subsection visually
shows a set of predictions at the spatial level considering
a specific day and, at the temporal level, considering the
cumulative number of events in the study area. In partic-
ular, in this analysis, we consider the period including the
Illapel earthquake of magnitude 8.4 on the Richter scale that
occurred on September 16, 2015

a: SPATIAL PREDICTION

Figure 12 shows the spatial behavior of the predictions con-
sidering all the models that used the intensity and velocity
data. For comparing the performances of the models we
considered the fifth day after the great Illapel seismic event
of September 16, 2015, as shown in Figure 12, since the
prediction of the main event is still a challenge open problem.
It is evident that the proposed Multi-column ConvLSTM
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FIGURE 12. Spatio-temporal predictions obtained by different models
considering intensity and velocity. This graph refers to the fifth day after
the main lllapel earthquake occurred on September 16, 2015. The text in
red colour indicates the location and the magnitude of the main event.

network (Figure 12 b) obtains much better predictions than
other models. The LSTM and FFNN models (Figure 12 d and
e) present poor performances in terms of the number of events
in this day.

b: TEMPORAL PREDICTION

Figure 13 shows the behavior of the intensity function at the
location where the Illapel 2015 earthquake occurs through
neural models considering data intensity and velocity. It is
observed that the both ConvLSTMs and Multi-column Con-
vLSTM models fit the real intensity values better than the
FEFNN and LSTM models. Moreover, both models have close
levels of prediction, which is why the analysis of metrics is
required to be able to compare both models considering all
the blocks of the data set. In this aspect, when we analyze
the 15 consecutive days to the fifth day after the main event
main event, given in Figure 14, it is observed that the Multi-
column ConvLSTM model obtains a great advantage over the
ConvLSTM model. This interestingly suggests that velocity
information is more relevant on days close to a major event,
in this case in the first 7 days later, after which the models
tend to have similar performance.

However, these models can be used to predict the number
of triggering events but none of them can predict the main
event.

Figure 13 shows the behavior of the estimates of the log-
arithm of the intensity function for the different networks in
the period 1 test, as well as the ETAS model estimates and
the observed values. Among the estimates of the different
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FIGURE 13. Time series of the logarithm of the intensity function where
the main event occurs, between latitude [-33.5,—31 ] and longitude
[-73,-71], for the different models.

models, it is observed that the M-ConvLSTM network shows
a better performance. For the time series of the observed
events, a linear interpolation treatment was performed when
no seismic event was recorded in the area, in order to avoid
problems with the logarithmic transformation.
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FIGURE 14. Logarithm of the intensity time series between latitudes
[-33.5,—31 ] and longitudes [-73,—71] considering 15 consecutive days
up to the fifth day after the main event on September 16, 2015.

3) ANALYSIS OF RESULTS RESPECT THE OBSERVED DATA
Additionally, we measured the performance of the models
respect the observed data. Although the models were opti-
mized considering the logarithm of the intensity function
according to the ETAS model as the output variable, we also
assessed models with reference to the observed seismic
events. For this, we considered the period with the greatest
telluric movement, that is, the first period where the year
2015 was tested.

Figure 15a) and b) show the predicted intensity function
by the M-ConvLSTM which the seismic events overlapped
for five and ten days after the main event, respectively. It can
be seen that the highest predicted intensity coincides with the
area where the most earthquakes occurred. This indicates that
the Multicolum ConvLSTM network is able to capture the
spatio-temporal behaviour of the aftershock events. To quan-
tify this result, we calculated the metric values by comparing
the observed data and the model results considering the log-
arithm of the total number of daily seismic events as well as
the number of daily predicted events during the year 2015.

By observing Table 7, it is evident that MconvLSTM
is again the model that best predicts the logarithm of the
observed number of seismic events leaving both ConvLSTM
models in second place according to the evaluated metrics.
Therefore, despite the fact that the model focused on values
of the logarithm of the number of events, it is still able to
recover the patterns of the number of daily events.

Note that in this work, we considered the prediction of
the logarithm transformation of the intensity function due
to the high asymmetry of the number of seismic events [5].
In particular, the presence of high magnitude earthquakes
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FIGURE 15. Spatio-temporal predictions using the M-ConvLSTM network
with the observed seismic events overlapped (green dots) on the fifth
(a) and tenth (b) days after the main lllapel earthquake occurred on
September 16, 2015. The red triangle indicates the main event.

TABLE 7. Resulting metrics with their standard deviations
(in parenthesis) respect the observed number of events.

Method MSE MAE R2
MConvLSTM 0.486 (0.015)  0.501 (0.006) _ 0.448(0.012)
ConvLSTM(Only intensity) ~ 0.510 (0.017)  0.522 (0.006)  0.421 (0.011)
ConvLSTM 0.531 (0.017) 0517 (0.006)  0.396 (0.012)
LSTM 0.819 (0.023)  0.623(0.008)  0.070 (0.009)
FFN 0.977 (0.025)  0.757 (0.008)  -0.110 (0.015)
Etas model 0.235 (0.007) _ 0.377 (0.004) _ 0.733 (0.008)

(greater than 7.0) originate a very high number of aftershocks,
which decreases rapidly in the following days. This behavior
caused some difficulties in the models to produce relatively
good predictions, so that logarithm transformation was con-
sidered. In subsequent works we hope to refine the neural
models to predict the number of events directly.

VII. DISCUSSION AND RESULTS

When visualizing the resulting metrics of all the experi-
ments, it can be concluded that the FFNN approach is the
weakest, failing to capture the continuous changes of the
intensity function in the space-time of the three periods.
LSTM networks are able to capture some spatio-temporal
change, however their determination coefficients are still low.
On the contrary, the ConvLSTM and Multi-column ConvL-
STM networks better capture the continuous changes of the
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intensity function. When comparing the best models, that is,
the ConvLSTM network without the use of velocity data and
the Multicolum ConvLSTM network with both intensity and
velocity data, it is observed that the Multicolum-ConvLSTM
network outperforms the ConvLSTM, on average. On the
other hand, when comparing the results of the ConvLSTM
neural network using intensity and velocity data with respect
to the same network using only intensity data, the last one
obtains better results on average. This leads us to suggest that
architectures with multiple columns are the best option when
using multiple data sources. In general, the experiment that
obtained the best results was the Multi-column ConvLSTM
network, where the aggregation of the velocity information
contributes slightly to the improvement of the performance.
One aspect of interest is that the greatest improvement com-
pared to ConvLSTM in the MSE, MAE and R? metrics occurs
in the first block corresponding to the 2015 test, when the
great Illapel earthquake occurred (relative improvements of
13.7%, 17.7% and 2.6%, respectively). On the other hand,
the smallest improvements occur in the second block (being
similar in MSE and MAE with an improvement in R? of 0.4%)
corresponding to the 2016 test.

We can note that in 2016, no major earthquake occurred
within the study area. A similar pattern happens in the third
block where the year 2017 is tested. Therefore, this leads us
to suggest that the advantage of using velocity information
with a Multi-column ConvLSTM network is more exploitable
when there are periods with larger earthquakes, which are
precisely the most relevant cases from the perspective of
disastrous effects, which highlights the importance of this
study. On the other hand, the experiments show that if the
prediction is performed in periods where there are no major
earthquakes, the advantage may not be so high, although
it should be noted that these periods are the ones of least
interest.

Finally, we can note that the results given in this work
improved those observed in [43] where the maximum values
of the intensity functions were processed in an LSTM net-
work for different areas of Chile, where determination coef-
ficients were obtained that varied between 0.32 to 0.65 for
different magnitudes of cut.

VIil. CONCLUSION AND FUTURE WORK

Spatio-temporal prediction of the conditional intensity values
is a highly challenging task. In this work, the ConvLSTM
and Multi-column ConvLSTM neural network architectures
were proposed for the prediction of the rate of occurrence of
seismic events in Chile, using as input the values of the inten-
sity function of the ETAS model and the previous velocity of
the displacement associated to a seismic catalog. The results
showed that the Multi-column Convolutional LSTM network,
using both intensity and velocity, turns out to be the best
model among those tested, since it obtained the best average
values of MSE, MAE and determination coefficient in the
test set corresponding to 0.004, 0.031 and 0.81, respectively.
Interestingly, it is observed that the use of velocity in a
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Multi-column ConvLLSTM network generates a large relative
advantage over the use of only intensity in a ConvLSTM
network when a period containing a large earthquake within
the study region is evaluated, as in the case of the great Illapel
earthquake of 2015.

Despite the relatively good results obtained in this work,
further questions need to be addressed in the future. One of
these is to further refine the pre-processing of the velocity
data using spatial interpolations in the points where the GPS
measurement is missing. Also, the real number of events (and
a pre-processing of them) should be considered instead of
the ETAS intensity values for making predictions more inter-
pretable and realistic. Finally, new advanced neural network
should be experimented, such as the neural network with
attention.
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