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ABSTRACT In this paper, a novel Machine Learning (ML) based Adaptive Fuzzy Logic-Proportional
Integral (AFL-PI) controller was developed for the self-balancing and precision motion control of a two
wheeled Underactuated-Mobile Inverted Pendulum (U-MIP) under variable payloads. One of the external
disturbances in balance andmotion control of the U-MIP is the amount of payload it carries on. To investigate
the effectiveness of the proposed controller, a load bar wasmounted on top of the U-MIP. The weights of 55gr
each can be attached to this bar for variable payloads. The weights on the bar were labeled as three different
classes: LowLoad (LL), Normal Load (NL) andHeavy Load (HL). Artificial Neural Network (ANN), Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN) models
were tested to obtain the highest payload class estimation. The highest load classification accuracy was
achieved with ANN. Therefore, the ANN model was applied on the U-MIP. The balance performance of
the U-MIP was compared by applying the classical FL-PI and ANN based AFL-PI controller on the robot.
In order to compare the body tilt angle performance of the U-MIP, the optimal FL-PI parameter in LL was
applied for NL and HL conditions without changing. Then, the proposed ANN based AFL-PI controller
was implemented on U-MIP. With the proposed novel controller, the body tilt angle variation of the U-MIP
was improved by %29.42 for NL and %55.62 for HL compared to the classical FL-PI controller. The validity
of the proposed controller was proved by real experiments.

INDEX TERMS Machine learning, adaptive fuzzy logic control, balance robot, sensor fusion.

I. INTRODUCTION
In recent years, technology has developed rapidly and has
become an indispensable part of our lives. It has also led to
the development of many robotic tools that make our lives
easier. Various personal vehicles that can move flexibly and
offer ease of access in narrow places have been used in many
areas such as city centers, shopping malls, hospitals, etc. [1],
[2], [3], [4], [5], [6], [7]. Segways, one of the most well-
known andwith extraordinary capabilities, have been actively
used in shopping centers, hospitals, airports, factories and
many areas to transport people from one place to another.
Two wheeled vehicles are widely preferred in many fields
due to their advantages such as small footprint, flexible
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mobility and simple mechanism. Two wheeled self-balancing
robots, which is different form of the inverted pendulum
system, has a nonlinear structure with Single Input Multi
Output (SIMO) controller [8]. Due to nonlinear structure
and challenging control characteristics, the self-balancing
and motion control of this robotic system is very difficult.
In addition, ground robots, which can move quickly and
overcome indoor obstacles, often lack speed or versatility
in maneuvering [9]. Hence, it has attracted a remarkable
attention of many researchers who have been doing theoret-
ical and applied studies in the field of robotics. There have
been many studies to solve this robot equilibrium and motion
control problem using various control techniques in the litera-
ture. Nonlinear control structures with different analyses and
designs [10], [11] dual-mode model predictive control [12],
vision-based adaptive control [13], Sliding Mode Control
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(SMC) [14], adaptive fuzzy control [15], Takagi-Sugeno type
Fuzzy Logic Control (FLC) [16], interval Type-2 FLC [17],
semiconcave Control Lyapunov Function (CLF) [18] and
advanced interval Type-2 Fuzzy SMC [19] are some of them.
Over the past decades, Machine Learning (ML) and Fuzzy
Logic (FL) based intelligent control systems have been a
dominant topic in research, robotics or control societies.
Because, ML and FL based hybrid intelligent controllers
offer a robust nonlinear controller for complicated systems
with dynamic uncertainties and functional uncertainty as
well as disturbances [16], [19]. The Fuzzy Logic Controllers
(FLCs) have been extensively used and successfully applied
in control problem of robotic systems where its mathematical
model is difficult to obtain. On the other hand, FLCs cannot
assure the global stability of the closed loop system for
nonlinear complex systems with uncertainties [20]. The ML
is considered as a subfield Artificial Intelligence (AI) [21].
It is about extracting knowledge from data [22]. Data are used
to estimate or reply to future data [23]. ML algorithms are
widely used in tasks such as automatic detection of objects
in images (a crucial component of driver-assisted and self-
driving cars), speech recognition (which power voice com-
mand technology), knowledge discovery in medical sciences
(used to improve our understanding of complex diseases) and
predictive analytics (leveraged for sales and economic fore-
casting) [24]. Many techniques and methodologies for ML
tasks have been developed in progress of time [21]. ML algo-
rithms that learn from input/output data pairs are called super-
vised learning algorithms [23]. TheArtificial Neural Network
(ANN), Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM) and k-Nearest Neighbours (k-NN) are one
of the supervised machine learning approaches [25]. In the
recent times, many researchers have combined the FLCs with
machine learning methods [26], [27].

Nonlinear dynamics that cannot bemodeled and a tendency
to instability due to its structure are important features of the
U-MIP robot. In addition, the most crucial issue in U-MIP
control is how to handle parametric, unmodeled dynamics,
and environmental disturbances [28]. The amount of payload
that the U-MIP carries on is one of the external disturbances
that negatively affect its ability to maintain self-balance and
motion control. However, the reference body tilt angle is very
important in the self-balancing and stable motion control of
the U-MIP. The controller parameter should be changed in
accordance with the payload the U-MIP carries to maintain
its self-balance and perform the desired motions. Besides,
as the amount of payload on the U-MIP increases, optimum
reference body tilt angle should be determined according
to the payload for stable motion control. Classical control
techniques cannot adapt to the parameter changes of the
system. Hence, these controllers are insufficient for stable
motion control under variable payload of the U-MIP. Robots
such as U-MIP have operational payload capacities according
to their mechanical structures. Considering the electrome-
chanical system components of the U-MIP, the total payload
was determined to be 495gr. The 495gr payload on the U-MIP

was grouped as Low Load (0 < LL ≤ 165gr), Normal Load
(165 < NL ≤ 330gr) and Heavy Load (330 < HL ≤ 495gr).
These three main payload categories were predicted using
ML based classifiers and data obtained from the U-MIP
robot. To estimate variable payloads, ML methods such as
ANN, LDA, SVM, and k-NN were used in this study. The
best results in real-time payload forecast were obtained using
ANN. For use in ANN based payload estimation, the robot’s
body tilt angle change, the linear displacement of the wheels
and the controller output (voltage applied to the motors)
data were obtained. Then, new features such as Mean Abso-
lute Target Tilt Angle Deviation Error (MATTADE), Mean
Absolute Target Linear Displacement Error (MATLDDE)
andMean Absolute Target Controller Output Deviation Error
(MATCODE) were extracted from robot data. The effective-
ness of the proposed ML based AFL-PI control was tested
under variable payload and proved to be highly robustness
against uncertainties.

The topics discussed in the article are as follows.
In section II, we describe the mechanical design, hard-
ware and Inertial Measurement Unit (IMU) of the U-MIP.
In section III, a revised mathematical modelling of the
U-MIP is derived. The developed ANN based AFL-PI con-
trol scheme is given in section IV. In section V, real-time
performance evaluation of the proposed ANN based AFL-PI
controller is presented under variable payload. In the last
section, the proposed ANN based AFL-PI controller are
interpreted and evaluated.

II. ROBOT OVERVIEW
A. HARDWARE OF THE U-MIP
The overview of the hardware components of the U-MIP
robot is seen in Fig. 1. On the U-MIP, two 6.25 cm radius
wheels are mounted on Permanent Magnet Direct Current
(PMDC) motors with gearboxes. PMDC motors used for
the motion of the robot have incremental encoders. It also
has a Lithium Polymer (Li-Po) battery, a Cortex M3-based
microcontroller, VNNH5019 PMDC motor driver board
with dual channel, an HC-05 bluetooth unit, and a 9-DoF
BNO055 IMU.

B. INERTIA MEASUREMENT UNIT
Figure 1 shows the U-MIP robot control circuit board that we
designed, which includes the BNO055 IMU.

The BNO055 IMU was used to measure the tilt angle,
which is very important for the U-MIP’s self-balancing and
motion control. The 3 DoF accelerometer sensor in the struc-
ture of this BNO055 IMU is adjusted to±4g sensitivity, while
the gyroscope sensor 3 DoF is adjusted to ±250◦

/
s. In addi-

tion, BNO055 IMU has 3-axis magnetometer sensor. With
the sensor groups on the IMU, measurements can be taken in
three axes. The BN0055was connected to themicrocontroller
via the I2C. The gyroscope in the hardware system measures
the angular velocity of the robot, in other words, the rate of
change in the orientation of the robot. These sensors contain
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FIGURE 1. Hardware block diagram of the U-MIP.

FIGURE 2. Characteristics curves of the PMDC motor used in U-MIP.

some noise sources in their structure. The main noise sources
in the gyroscope sensor are quantization noise, bias and angle
random walk [29]. The acceleration sensor generates a high
noise signal at the smallest vibrations [30]. In order to get
accurate measurement from these sensors, the sensors must
be calibrated. Also, sensor fusion algorithms are required.
The BNO055 9-axis absolute orientation IMU we used in the
study was calibrated by the manufacturer and an embedded
sensor fusion algorithm [31].

III. DYNAMIC MODELLING OF THE U-MIP
Determining of the parameters are important while obtaining
the mathematical model of U-MIP robot. Table 1 shows the
parameters of the revised U-MIP [32], [33]. One of the most
important components in the U-MIP robot is the actuators.
PMDC motor is preferred as the actuator in the U-MIP robot.
In Fig. 2, the characteristics curves of the PMDC motor at
12V were obtained by using the document in [34]. The basic
equations of Fig. 2(a), (b), (c) are as follows, respectively.

nshaft =
60Vt

2πKe
–

60Ra

2πKtKe
τout (1)

Pout =
Vt

Ke
τout –

Ra

KtKe
τ2

out (2)

%η =
(
ωshaft

VtIa
τout –

ωshaft

VtIa
τfr

)
× 100 (3)

where, nshaft speed of the motor shaft in revolution per
minute, τout output torque, Pout output power, %η percentage
of efficiency. In detail, how the equations are obtained can be
examined in detail from reference [35].

In Fig. 2(a), slope of torque versus armature current is the
current constant Kc. It is obtained as

Kc =
Isec – Inl

τset – 0
=

5.5 – 0.2
1.3734

= 3.86 A
/

Nm (4)

The reciprocal of this slope (torque constant) is given as

Kt =
1

Kc
=

1
3.86

= 0.26 Nm
/

A (5)

The motor friction torque τfr is determined multiplying the
Kt and Inl.

τfr = KtInl =
(0.26Nm)(0.2A)

A
= 0.052Nm (6)

Since the inductance of the PMDC motor (Lm) is very small,
it can be considered as zero. In addition, friction coefficient
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TABLE 1. Physical parameters of U-MIP [32], [33].

between wheel and floor of the U-MIP is considered to be
zero. In addition, the friction coefficient between body and
PMDCmotor is given in Table 1. Terminal voltage on PMDC
can be calculated as

Vt = IaRa + Ea (7)

where Ia is armature current, Ra is armature resistance and
Ea represents back-Electro Motor Force (back-EMF). If the
armature current is Ia = Isec then Ea = 0, Ra can be
determined as

Ra =
Vn

Isec
=

12V
5.5A

= 2.18� (8)

The back-EMF is expressed as

Ea = Keωm (9)

Voltage at no load of the motor described as

Vnl = InlRa + Keωnl (10)

Considering (7) and Table 1, the Ke value is approximately
0.33 Vsec/rad.

U-MIP systemwasmodelled basing on Lagrangianmethod
referred as Yaurihiso Yamamoto [33]. Coordinate systems
and variables of U-MIP are depicted in Fig. 3. When U-MIP
has a screw load bar, the distance between the floor and the
top of the load bar is 38 cm.

In Fig. 3(a); θl and θr defines left and right wheel angle
on coordinate system, θ denotes the average angle of left
and right wheel, ωm = θ̇ denotes the average angular veloc-
ity of left and right wheel, ψ defines the body tilt angle.
Fig. 3(b), (c) shows coordinate system of side and top views
of U-MIP. In Fig. 3(b), (c); xb, yb, zb denotes the system’s
center of gravity xm, ym, zm denotes the robot wheel’s center
of gravity. The total payload carrying capacity of U-MIP is
mtp = 0.495kg. θmr and θml denote the right and left wheel
PMDC motor angle. In addition, the motion and self-balance
control of the U-MIP are active between –30◦ ≤ ψ ≤ 30◦.
The body yaw angle is denoted by φ.
The displacement of the left and right wheels along the

x-axis are defined as

XL = θlR (11)

XR = θrR (12)

The variation of (xm, ym, zm), which is the center of gravity
of the wheels of the U-MIP, are defined as

xm = Rθ cosφ (13)

ym = Rθ sinφ (14)

zm = R (15)

The mathematical equations of the U-MIP are obtained by
the Lagrangian method considering the coordinate system in
Fig. 3(b), (c). If x-axis of theU-MIP robot is positive direction
at t = 0. Each coordinates are given as the following [33].

(θ ,φ) =
(

1
2

(θl + θr) ,
R
w

(θr – θl)
)

(16)(
ẋm, ẏm

)
=
(
Rθ̇ cosφ, Rθ̇ sinφ

)
(17)(

xl, yl, zl
)

=
(

xm –
w
2

sinφ, ym +
w
2

cosφ, zm

)
(18)(

xr, yr, zr
)

=
(

xm +
w
2

sinφ, ym –
w
2

cosφ, zm

)
(19)(

xb, yb, zb
)

=
(

xm + L sinψ cosφ,
ym + L sinψ sinφ, zm + L cosψ

)
(20)

The Lagrangian L is defined in (21).

L = T1 + T2 – U (21)
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FIGURE 3. a) U-MIP b) side view of the U-MIP c) top view of the U-MIP.

where T1 is translational kinetic energy, T2 is rotational
kinetic energy, and U is potential energy. U, T1 and T2 are
given as

U = mgzl + mgzr + Mgzb (22)

T1 =
1
2

m
(

ẋ2
l + ẏ2

l + ż2
l

)
+

1
2

m
(

ẋ2
r + ẏ2

r + ż2
r

)
+

1
2

M
(

ẋ2
b + ẏ2

b + ż2
b

)
(23)

T2 =
1
2

Jwθ̇
2
l +

1
2

Jwθ̇
2
r +

1
2

Jψ ψ̇2 +
1
2

Jφ φ̇2

+
1
2

n2Jm
(
θ̇l – ψ̇

)2 +
1
2

n2Jm
(
θ̇r – ψ̇

)2 (24)

Lagrange equations are defined as

d
dt

(
∂L
∂θ̇

)
–
∂L
∂θ

= Fθ (25)

d
dt

(
∂L
∂ψ̇

)
–
∂L
∂ψ

= Fψ (26)

d
dt

(
∂L
∂φ̇

)
–
∂L
∂φ

= Fφ (27)

From equations (25), (26) and (27) generalized forced equa-
tions are obtained as[

(2m + M) R2 + 2Jw + 2n2Jm

]
θ̈

+
(

MLR cosψ – 2n2Jm

)
ψ̈ – MLRψ̇2 sinψ = Fθ

(28)(
MLR cosψ – 2n2Jm

)
θ̈ +

(
ML2 + Jψ + 2n2Jm

)
ψ̈

– MgL sinψ – ML2φ̇2 sinψ cosψ = Fψ (29)[
1
2

mw2 + Jφ +
w2

2R2

(
Jw + n2Jm

)
+ ML2 sin2 ψ

]
φ̈

+ 2ML2ψ̇φ̇ sinψ cosψ = Fφ (30)

Considering the PMDCmotor torque and viscous friction, the
generalized forces can be rearranged as(

Fθ , Fψ , Fφ
)

=
(

Fl + Fr, Fψ ,
w
2R

(Fr – Fl)
)

(31)

Fl = nKtIal + fm
(
ψ̇ – θ̇l

)
– fwθ̇l (32)

Fr = nKtIar + fm
(
ψ̇ – θ̇l

)
– fwθ̇r (33)

Fψ = –nKtIal – nKtIar – fm
(
ψ̇ – θ̇l

)
– fm

(
ψ̇ – θ̇r

)
(34)

where Ial, Iar are the left and right PMDCmotor current. Since
the PMDC motor is drived by the Pulse Wide Modulation
(PWM) technique, the generalized forces must be written
depending on the voltage applied to the left (Vtl) and right
(Vtr) wheels. Ial, Iar are defined as

Ial =
Vtl + Ke

(
ψ̇ – θ̇l

)
Ra

, Iar =
Vtr + Ke

(
ψ̇ – θ̇r

)
Ra

(35)

Generalized forces depending on the motor voltage is given
as

Fθ = α (Vtl + Vtr) – 2 (β + fw) θ̇ + 2βψ̇ (36)

Fψ = –α (Vtl + Vtr) + 2βθ̇ – 2βψ̇ (37)

Fφ =
w
2R
α (Vtr – Vtl) –

w2

2R2 (β + fw) φ̇ (38)

α =
nKt

Ra
, β =

nKtKe

Ra
+ fm (39)

State space equations are obtained by linearizing the equa-
tions of motion around the equilibrium point of the U-MIP.
Briefly, the ψ value around the equilibrium point of the U-
MIP is quite close to 0. Hence sinψ ∼= ψ and cosψ ∼= 1.
At the same time, quadratic terms are omitted. Under these
conditions, the equations of motion (28), (29) and (30) are
rearranged as[

(2m + M) R2 + 2Jw + 2n2Jm

]
θ̈

+
(

MLR – 2n2Jm

)
ψ̈ = Fθ (40)
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(
MLR – 2n2Jm

)
θ̈ +

(
ML2 + Jψ + 2n2Jm

)
ψ̈

– MgLψ = Fψ (41)[
1
2

mw2 + Jφ +
w2

2R2

(
Jw + n2Jm

)]
φ̈ = Fφ (42)

The generalized equations Fθ and Fψ discussed in the article
can be expressed as

E
[
θ̈

ψ̈

]
+ F

[
θ̇

ψ̇

]
+ G

[
θ

ψ

]
= H

[
Vtl
Vtr

]
(43)

E, F, G and H in (43),

E =
[

(2m + M) R2 + 2Jw + 2n2Jm MLR – 2n2Jm
MLR – 2n2Jm ML2 + Jψ + 2n2Jm

]
F = 2

[
β + fw –β

–β β

]
G =

[
0 0
0 –MgL

]
H =

[
α α

–α –α

]
The state variable x1 can be defined as

x1 =
[
θ ψ θ̇ ψ̇

]T , u =
[

Vtl Vtr
]T (44)

where u is system input. State-space model equation of the
U-MIP can be expressed as

ẋ1 = A1x1 + B1u (45)

The matrix A1 in the state-space model is defined as

A1 =


0 0 1 0
0 0 0 1
0 A1(3, 2) A1(3, 3) A1(3, 4)
0 A1(4, 2) A1(4, 3) A1(4, 4)

 (46)

The matrix B1 in the state space model is defined as

B1 =


0 0
0 0

B1(3) B1(3)
B1(4) B1(4)

 (47)

The variables in the A1 and B1 matrix are defined
as A1(3, 2) = –gMLE(1, 2)/ det(E)

A1(4, 2) = gMLE(1, 1)/ det(E)
A1(3, 3) = –2 [(β + fw) E(2, 2) + βE(1, 2)] / det(E)
A1(4, 3) = 2 [(β + fw) E(1, 2) + βE(1, 1)] / det(E)
A1(3, 4) = 2β [E(2, 2) + E(1, 2)] / det(E)
A1(4, 4) = –2β [E(1, 1) + E(1, 2)] / det(E)

B1(3) = α [E(2, 2) + E(1, 2)] / det(E)
B1(4) = –α [E(1, 1) + E(1, 2)] / det(E).

The state space model of U-MIP without screw load bar
and bar nuts (In this case, M=1.392 kg and H=0.09 m)

TABLE 2. Eigenvalues of the variable loaded U-MIP.

is described as
θ̇

9̇

θ̈

9̈

 =


0 0 1 0
0 0 0 1
0 24.8141 –52.0474 52.0474
0 44.3049 75.0414 –75.0414



θ

9

θ̇

9̇



+


0 0
0 0

78.7130 78.7130
–113.4876 –113.4876

[Vtl
Vtr

]
(48)

With the state space equations, it can be calculated that the
system is completely controllable and observable. The open
loop eigenvalues of the U-MIP with variable payload are
given in Table 2.

With increasing payload, the positive eigenvalues in the
right half plane leads the instability of the system. In order to
stabilize the system under variable load, we need a controller
that can carry the closed-loop eigenvalues of the system to the
left half plane. The controller parameters were roughly deter-
mined by simulation results using the mathematical model
of the U-MIP system under variable payload. Then, the con-
troller parameters of the U-MIP under variable payloads were
obtained by fine-tuning via real-time robot control interface.

IV. PROPOSED ML BASED AFL-PI CONTROLLER
In order that the U-MIP system remains stable under variable
payload, the controller parameters must be variable. Also,
in the precise motion control of the U-MIP system, the
reference input signal must be dynamic according to the
payload. Due to these requirements, different classification
algorithms ANN, LDA, SVM and k-NN have been evaluated
for the estimation of variable payloads in the U-MIP. ANN
is a flexible mathematical model that can learn a system
behavior using input and output datasets. ANN is used in
many different fields of engineering thanks to its learning
ability. An ANN usually has an input layer, a hidden layer
and an output layer. While there are as many neurons as the
number of inputs of the system in the input layer of the ANN,
there are as many neurons as the desired output number in
the output layer [36]. Most researchers have determined the
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FIGURE 4. Distribution of a) new featured data b) the mean of new featured data (mean of each N=25
data).

number of neurons in the hidden layer by trial-and-error [37].
LDA is used as a tool for classification, dimension reduction,
and data visualization. It is simplicity and provide robust,
decent, and interpretable classification results [38]. SVM,
proposed by Vapnik et al., is a supervised machine learning
approach [39]. SVM is a highly successful learning method
in many applications. The origin of SVM is based on two
basic ideas. The first approach is to use linear classifiers in
this new space after mapping feature vectors in nonlinear
high-dimensional space. The second assumption involves
using wide-margin linear classifiers to maximally separate
the data from the potentially infinite number of hyperplanes
that can use [39], [40]. Nearest Neighbour (NN) is a machine
learning algorithm that is resistant to old, simple and noisy
training data. However, its performance is highly dependent
on the quality of the training data [41]. Each new sample is
compared to existing samples using a distance metric, and
the nearest available sample is used to assign the class to
the new one. Sometimes more than one NN is used and the
majority class of the k-NN (or distance-weighted average if
the class is numeric) is assigned to the new sample. This is
called the k-NNmethod [39], [40], [41], [42]. The new dataset
for classification is consisted of three features after feature
extraction process. These new featured data are Absolute Tar-
get Tilt Angle Deviation Error (ATTADE), Absolute Target
Linear Displacement Deviation Error (ATLDDE) and Abso-
lute Target Controller Output Deviation Error (ATCODE).
In Fig. 4(a), data distributions obtained for Low Load (LL),
Normal Load (NL) and Heavy Load (HL) are shown. The
average of these data was used in the ANN based payload
estimation algorithm in the developed AFL-PI controller
structure. MATTADE, MATLDDE and MATCODE data,
which are used as input data of ANN, LDA, SVM and k-NN
for load estimation, are defined as (49), (50) and (51).

MATTADE =
1
N

N∑
1

|9t –9| (49)

MATLDDE =
1
N

N∑
1

|Xt – Xd| (50)

MATCODE =
1
N

N∑
1

|Ut – Uc| (51)

Here, N = 25. Also, the sampling time of the data mea-
surement from the U-MIP is 20msec. The target body tilt
angle of the U-MIP is 9t. The target displacement of the
U-MIP refers to Xt. The controller output of the U-MIP
when the robot is at the target body tilt angle refers to Ut.
These reference target variables have a value of zero. The
actual body tilt angle is 9. The actual linear displacement
is Xd. The actual controller output is Uc. The distribution
of the extracted data is given in Fig. 4(b). The highest load
estimation performance was obtained with ANN, which is
one of the machine learning algorithms used. The propose
a novel ANN based AFL-PI controller is given in Fig 5.
The FLC includes input normalization, fuzzification, fuzzy
inference system, defuzzification and output normalization.
The knowledge and skill of the expert in FLC design is the
most important factor in the design.

In addition, the selection of the normalization factors
of the input values and the denormalization of the output
in the fuzzy controller design provide a general solution
in the overall working space. Although normalization and
denormalization parameters have linear characteristics, they
are critical in fuzzy controller performance. While there is
no payload on the robot, normalization parameter coeffi-
cients are defined as K1 = 0.3, K2 = 0.65, and denor-
malization parameter coefficient is chosen as K3 = 0.55.
The parameters were defined experimentally considering
balance performance data obtained by robot control inter-
face. The utilized triangular membership functions are used
for input and output linguistic variables as Negative Big
(NB), Negative Medium (NM), Negative Small (NS), Zero
(Z), Positive Small (PS), Positive Medium (PM), Positive
Big (PB). The performance of the FLC depends on the
information and experience. Decision table is 7 × 7 and
49 fuzzy rule base was developed for this system. In general,
Table 3 shows the fuzzy rules. IF-THEN rule base is defined
linguistically by expert on the system. Mamdani method is
used for ANN based AFL-PI control. Max-Min operation
used for composition. The fuzzy inference mechanism is
expressed as

µi (u) = max (µi (e1) ,µi (e2)) (52)
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FIGURE 5. The structure of the proposed novel ANN based AFL-PI.

TABLE 3. Rule base of ANN based AFL-PI controller.

The output in the form of the fuzzy set was converted to
crisp values to produce the control signal of the U-MIP.
This is called defuzzification. Finally, the output value was
normalized in the opposite direction to produce the con-
troller signal of the system. For the defuzzification process
in this study, the commonly used center of gravity method
was used.

According to this the control signal of U-MIP is given as

1u =

m∑
j=1

djA(µj)

m∑
j=1

A(µj)
(53)

where the fuzzy controller output is 1u. dj is the distance
between jth fuzzy set and the center. A(µj) is the area value of
jth fuzzy set. As a result, the payload changes were estimated

with the ANN adaptation mechanism and the controller
parameters K1,i, K2,i and K3,i were updated with the help of
the switching function σi(i = 1, 2, 3). The flow diagram of the
proposed ANN based AFL-PI adaptation mechanism is given
in Fig. 6.

As seen from the adaptation flowchart, firstly AFL-PI
parameters and ANN classifier are started. Then, blocks A,
B and C are run every 20ms. When ‘‘ind’’ variable reaches
499, block D is executed. Then, the adaptation mechanism
performs and the PWM signals for the self-balance and
motion control of the U-MIP are applied to the PMDC driver.

V. EXPERIMENTAL RESULTS
To analyze the stability of the U-MIP under varying load
conditions, 55g masses were added one by one to the steel
rod on the U-MIP. The load added to the U-MIP is divided
into three classes as LL, NL and HL. The overview of the
U-MIP with variable load is shown in Fig. 7(a), (b), (c). The
experiments were conducted on a flat surface, 1.5meters wide
and 3 meters long, as shown in Fig. 7. (d).

First, it was applied for bothNL andHL payload conditions
without changing the controller parameter designed for LL.
In this case, the body tilt angle of the U-MIP, which varies
in the position of self-balancing, is given in figure 8(a). The
most suitable FL-PI parameter for LL conditions did not give
good results in the performance of the U-MIP under NL and
HL conditions. The body tilt angle of the U-MIP ranged from
–1.5 degrees and 1.5 degrees under LL conditions. In the NL
condition, the body tilt angle ranged from –3.63 degrees to
3.27 degrees. Under HL conditions, the tilt angle changed
between –5.92 degrees and 5.55 degrees. As a result, if the

VOLUME 10, 2022 104713



A. Unluturk, O. Aydogdu: ML Based Self-Balancing and Motion Control of the U-MIP With Variable Load

FIGURE 6. Flow diagram of the proposed novel ANN based AFL-PI adaptation mechanism.

FIGURE 7. U-MIP with an added (a) 110gr payload (b) 275gr payload (c) 440gr payload (d) self-balance and motion test environment.

FL-PI controller parameters remain constant as the payload
on the U-MIP increases, the value of deviation from the
reference tilt angle rises significantly. Additionally, in order
to the U-MIP to be able to perform different maneuvers such
as forward and backward motion, right and left turns with
respect to autonomous motion control, the reference body
tilt angle must vary according to the payload on it. If the
optimum body tilt angle value is not determined according to

the payload on the U-MIP, self-balance and motion control of
the robot cannot be performed. In order to better understand
this situation, real-time tests were performed LL, NL and HL
payload classes on the U-MIP. For the forward motion of the
U-MIP, the optimum body tilt angle value determined for the
LL has been applied for the HL. This situation is seen in
Fig. 8(b), (c), (d). As can be seen, an unsuitable body tilt angle
value leaded to an uncontrolled motion on the U-MIP. As a

104714 VOLUME 10, 2022



A. Unluturk, O. Aydogdu: ML Based Self-Balancing and Motion Control of the U-MIP With Variable Load

FIGURE 8. a) Response of U-MIP under NL and HL load conditions in LL controller parameter (b), (c), (d) unstable motion of U-MIP with 440gr.

result, after a certain point, the U-MIP lost its self-balance.
In order to better explain the scene, the average of the data
received in 0.1 seconds was taken while Fig. 8(b), (c), (d) was
obtained.

In this study, a novel ML based AFL-PI controller is
proposed to eliminate this negative effect due to the payload
on the U-MIP. For this, it is necessary to estimate the payload
class on the U-MIP. Four different type ML methods are
evaluated to classify the payload. Table 5 presents the best
classification results (Sensitivity (SEN), Specificity (SPE),
Accuracy (ACC), F-Score) for different techniques used.
SEN, SPE, ACC and F-Score equations are given as

SEN =
TP

TP + FN
(54)

SPE =
TN

TN + FP
(55)

ACC =
TP + TN

TP + FN + TN + FP
(56)

F1 – Score =
TP

TP + 1
2 (FP + FN)

(57)

where TP, the number of true positives classified by the
model. FN, the number of false negatives classified by
the model. FP, the number of false positives classified by
the model. In Table 4, ANN, k-NN, LDA and SVM based
payload classification results are given according to perfor-
mance criteria. For all classification methods, 10-fold cross
validation was used during the training process.

During the training of ANN, the number of hidden nodes
in Hidden Layer 1 (HL 1) and Hidden Layer 2 (HL 2) was
increased from 10 to 100 step by 10.Here, it shows that
the best classification accuracy was obtained as %98.33.

TABLE 4. Machine learning based payload classification results.

TABLE 5. ANN based payload classification results.

In Table 5, the best load classifier was obtained with ANN
classifier when HL 1=60 and HL 2=70.

SEN, SPE, ACC and F1-Score performance criteria were
considered in evaluating the classification performance. As a
result, a novel ANN based AFL-PI controller is developed
to adjust the variable FL-PI controller parameters in each
payload class. The system response, which includes the test
parameter used to estimate the variable payloads and the
optimum controller parameter that should be in the variable
payload in the U-MIP, is given in the Fig. 9, 10 and 11. In the
first experiment, the performance of the controller was tested
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FIGURE 9. Change of data in ANN based AFL-PI controller parameter (110gr payload added).

FIGURE 10. Change of data in ANN based AFL-PI controller parameter (275gr payload added).

for the references of the U-MIP body tilt angle change, wheel
velocity changes and controller output change under 110gr
load. The FL-PI test controller parameter and performance
of the ANN based AFL-PI controller response under 110gr
load conditions of the U-MIP is shown in Fig. 9. The body
tilt angle changes of the U-MIP ranged from -1.5 degrees
to 1.5 degrees under LL conditions. In the second case, the
payload on the U-MIP was increased to 275gr. The FL-PI
test controller parameter and performance of the ANN based
AFL-PI controller response under 275gr payload conditions
of the U-MIP is shown in Fig. 10. The body tilt angle changes
of the U-MIP ranged from –2.35 degrees to 2.52 degrees

under NL conditions. In the third case, the variable payload on
the U-MIP was increased to 440gr. The FL-PI test controller
parameter and ANN based AFL-PI controller performances
of the U-MIP in this case are given in Fig. 11. The body
tilt angle changes of the U-MIP ranged from –2.5 degrees to
2.59 degrees under HL conditions. However, when the FL-PI
control parameters suitable for the LL condition were used
in both NL and HL conditions, the body tilt angle varied
considerably according to the load class. In this case, the
changes of the body tilt angle of the U-MIP with time is
between –3.63 degrees and 3.27 degrees for NL. For the HL,
it is between –5.92 degrees and 5.55 degrees.
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FIGURE 11. Change of data in ANN based AFL-PI controller parameter (440gr payload added).

As the payload increased, the balancing performance of
the U-MIP decreased. Therefore, in order to improve the
self-balance performance of the U-MIP, the robot parameters
according to the payload are automatically adjusted with the
ANN learning method in the AFL-PI structure. As a result,
the body tilt angle change was reduced by –1.28 degrees
and 0.75 degrees for NL and –3.42 degrees and 2.96 degrees
for HL, respectively. The minimum and maximum body tilt
angle change performance of the U-MIP robot was enhanced
by %29.42 and %55.62, respectively, under NL and HL,
according to the experimental results. In addition, a novel
approach for motion control of U-MIP is suggested. With
this proposed method, precision motion control is provided
by determining the optimum reference angle values required
for different maneuvers according to the variable payload on
the U-MIP. The proposed ANN based AFL-PI controller is
flexible to adapt to different control systems by researchers.

VI. CONCLUSION
This paper has presented a novel ANN based AFL-PI control
design on a U-MIP robot with variable load. In the controller
used on U-MIP, various ML based algorithms such as ANN,
LDA, SVM, and k-NN are used for payload estimation. The
highest payload estimation among these ML algorithms was
obtained with the ANN classifier with an accuracy rate of
98.33%. Thus, ANN payload estimation algorithm was used
on the U-MIP. The proposed ANN-based AFL-PI controller
performs in real time on a microcontroller. Furthermore, the
effectiveness of the developed ANN-based AFL-PI control
method was proven by comparing it to the classical FL-PI
control technique. With the proposed ANN based AFL-PI
controller, theminimum andmaximumbody tilt angle change
of U-MIP is improved by %29.42 and %55.62, respectively,
in NL and HL conditions. The performance of the proposed

ANN based AFL-PI controller is shown in detail in exper-
imental results. In addition, an estimation of the payload on
the robot is required for autonomousmotion and performing a
task. In this case, weight sensors are generally preferred. But
motion control of U-MIP is not possible in case of weight
sensor failure. In terms of a sensorless and low-cost solu-
tion approach, this study is very advantageous than existing
methods.
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