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ABSTRACT In this paper, we study the impact of computational complexity on the throughput limits of the
fast Fourier transform (FFT) algorithm for orthogonal frequency division multiplexing (OFDM) waveforms.
Based on the spectro-computational complexity (SC) analysis, we verify that the complexity of an N-point
FFT grows faster than the number of bits in the OFDM symbol. Thus, we show that FFT nullifies the OFDM
throughput on N unless the N-point discrete Fourier transform (DFT) problem verifies as Q(N), which
remains a “‘fascinating” open question in theoretical computer science. Also, because FFT demands N to
be a power of two 2/ (i > 0), the spectrum widening leads to an exponential complexity on i, i.e. O(2'i).
To overcome these limitations, we consider the alternative frequency-time transform formulation of vector
OFDM (V-OFDM), in which an N-point FFT is replaced by N /L (L>0) smaller L-point FFTs to mitigate the
cyclic prefix overhead of OFDM. Building on that, we replace FFT by the straightforward DFT algorithm
to release the V-OFDM parameters from growing as powers of two and to benefit from flexible numerology
(e.g., L = 3, N = 156). Besides, by setting L to ®(1), the resulting solution can run linearly on N (rather
than exponentially on i) while sustaining a non null throughput as N grows.

INDEX TERMS Fast fourier transform, computational complexity, throughput, spectro-computational
analysis, vector OFDM, parameterized complexity.

I. INTRODUCTION

The fast Fourier transform (FFT) algorithm [1] is among
the top-ten most relevant algorithm of the 20th cen-
tury [2]. FFT outperforms the O(N?) straightforward discrete
Fourier transform (DFT) algorithm by performing an N -point

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang

104436

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

frequency-time transform in O(N log, N) time complexity. !
Particularly for signal communication processing, FFT rev-
olutionized the design of an N-subcarrier OFDM signal
by replacing a bank of N synchronized analog oscillators
by a single digital chip that requires a single oscillator.

TAs in the computational complexity theory, by “time” or ‘“‘time com-
plexity”, we mean ‘“‘number of computational instructions’” unless otherwise
stated. The term is interchangeable with wall-clock runtime, provided the
wall-clock time taken by each instruction on a particular computational
apparatus.
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Ever since, FFT has been employed as the frequency/time
transform algorithm by several multicarrier and single carrier
waveforms [3].

A. MOTIVATION AND PROBLEM STATEMENT

In recent discussions [4], [5], scholars have doubted the
performance abilities of FFT to modulate signals in the future
sixth generation (6G) of wireless networks. They point that
6G waveforms are expected to leverage data rate to the
order of Terabit per second (Tbit/s) to improve the mobile
broadband service of 5G. This envisions signals operating
in the so-called terahertz (THz) frequency band of the elec-
tromagnetic spectrum i.e., 0.1-10 x 1012 Hz [6]. To allevi-
ate the power consumption implied by the FFT complexity
under wide signals, Rappaport ez al. [5] suggest to give up
the “perfect fidelity” of the DFT computation on behalf
of (slightly) more error-prone approximation algorithms in
portable devices [4]. In other words, the throughput gains
envisioned by extremely wideband services of future wireless
networks can lead the computational complexity of FFT to
prohibitive levels in some practical scenarios. From this,
it does result a natural trade-off between throughput and com-
plexity that might concern the design of beyond 5G wireless
networks.

In this work, we consider the throughput-complexity trade-
off of FFT in the context of OFDM-based waveforms and
reason about the throughput limit of a DFT algorithm consid-
ering its computational complexity as the number of points
grows. In summary, we place the following questions: can the
FFT complexity impose a bottleneck that nullifies the OFDM
throughput as N grows? Besides, what should be the lower
bound asymptotic complexity required to sustain a non null
throughput of the DFT problem in OFDM?

B. CONTRIBUTIONS

We study the impact of computational complexity on the
throughput limits of different DFT algorithms (such as FFT)
in the context of OFDM-based waveforms. The spectro-
computational (SC) analysis [7], [8], [9] is employed to
calculate the SC throughput of different DFT algorithms. The
SC throughput SC(N) = B(N)/T(N) of a signal processing
algorithm stands for the computational complexity time 7 (N)
spent to modulate B(N) bits into an N-subcarrier symbol.
In the SC analysis, a signal algorithm is asymptotically scal-
able if its throughput does not nullify as the spectrum grows,
ie.,limy_ o SC(N) > 0. Our contributions can be classified
into two categories. First, we report novel asymptotic limits
relating complexity and throughput of FFT in the context
of OFDM signals. Prior works have considered the impact
of asymptotic complexity on aspects other than throughput
such as DFT silicon area [10], [11] or information loss of
computation [12]. Although complexity and throughput have
been widely recognized as key performance indicators for
future wireless networks [6], to the best of our knowledge,
a formal answer to our question still lacks in the literature.
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In summary, we demonstrated the following novel asymptotic
laws for FFT in OFDM:

e The throughput of FFT nullifies on N in OFDM.
Besides, considering that FFT imposes the number of
points to grow as a power of two N = 2/ (i > 0), the
spectrum widening causes FFT to run exponentially on
i, i.e., 02);

« No exact DFT algorithm scales throughput on N (given
a constellation size M) unless the asymptotic complexity
lower bound of the DFT problem verifies as (V). Cur-
rently, this DFT lower bound remains an open ““fascinat-
ing”’ question in field of computational complexity [13];

« We formalize what we refer to as the sampling-
complexity (or the Nyquist-Fourier) trade-off. This
trade-off accounts for the fact that the DFT complexity
increases as the Nyquist interval decreases, causing
the N-point DFT computation to become a bottleneck
for the sampling task. Considering OFDM symbols of
fixed duration, this trade-off cannot be solved since
it demands a lower bound of (1) for the DFT
problem.

In our second set of contributions, we consider alternative
forms of frequency-time transform computation under which
the resulting complexity 7' (N) meets the fundamental crite-
rion of the SC analysis limy_, oo SC(N) > 0, i.e., complexity
does not nullify throughput as N grows. We disclose how
to meet such criterion for vector OFDM (V-OFDM) [14],
a variant of OFDM that replaces an N-point FFT by N /L
(L > 0) smaller FFTs to mitigate the cyclic prefix overhead
of OFDM. Our contribution results from the fact that other
V-OFDM-based works e.g., [15], [16], [17], [18] care on
aspects other than the throughput-complexity trade-off for
the DFT problem. In this sense, we report the following
contributions:

« We present the SC analysis of the frequency-time trans-
form problem in V-OFDM. In this context, we replace
FFT by DFT to relax the power of two constraint on N
and to provide V-OFDM with flexible numerology (e.g.
L =3, N = 156). Besides, we apply the parameterized
complexity technique [19] on the DFT algorithm, get-
ting what we refer to as the parameterized DFT (PDFT)
algorithm. By setting L = ©(1), PDFT can run linearly
on N rather than exponentially on i while sustaining a
non null throughput as N grows;

« We identify the most efficient setup of V-OFDM to mit-
igate sampling-complexity trade-off. By setting L = 2,
PDFT becomes multiplierless requiring only O(N) com-
plex sums. Although this does not solve the sampling-
complexity trade-off, the most expensive computational
instruction of DFT is eliminated and the additions can
be performed in parallel.

The remainder of this work is organized as follows.
In Section II, we present a joint throughput-complexity
analysis of the DFT problem and the FFT algorithm. We also
enunciate the sampling-complexity (Nyquist-Fourier) trade-
off, based on which we calculate the minimum asymptotic
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TABLE 1. Notation and symbols.

Symbol Usage
N Number of subcarriers (DFT points)
Af Subcarrier spacing (Hz)
w Signal bandwidth (Hz)
M Size of constellation diagram
B(N) Bits per N-subcarrier symbol
Tprr(N) | Complexity of a given N-point DFT algorithm
SC(N) Throughput of an algorithm under an N -size input
TnyQ Inter sample time interval (seconds)
J Imaginary unity
X Complex frequency domain symbol
Y Complex time domain symbol
X k-th complex frequency domain sample
Y: t-th complex time domain sample
X [-th frequency domain vector block
Yq g-th time domain vector block
L Number of vector blocks and DFT size
M Length of vector blocks
o(f) Order of growth asymptotically equal or
larger than f
o) Order of growth asymptotically equal or
smaller than f
o(f) Order of growth asymptotically equal to f
[T transpose of the matrix [-]

complexity required for a DFT algorithm to meet the
sampling interval of digital-to-analog/analog-to-digital
(DAC/ADC) converters in OFDM-based waveforms.
In Section III, we present the PDFT algorithm. In Section IV,
we present a comparative performance among FFT and
the PDFT algorithm and validate our theoretical results.
In Section V, we summarize the the work.

Il. SPECTRO-COMPUTATIONAL ASYMPTOTIC

ANALYSIS

In this section, we study the joint capacity-complexity asymp-
totic limit of the DFT problem by means of the SC analysis
(subsection II-A). Then, in Subsection II-B, we specialize
the analysis to the FFT algorithm to respond whether it is
sufficiently fast to process signals of increasing throughput.
Finally, in Subsection II-C, we relate the DFT complexity
with the Nyquist sampling interval and introduce what we
refer to as the sampling-complexity (Nyquist-Fourier) trade-
off. The notation and symbols used throughout the paper are
summarized in Table 1.

A. CAPACITY-COMPLEXITY LIMITS OF THE DFT
COMPUTATION

The IDFT at an OFDM transmitter consists in computing
the complex discrete time samples Y;, ¢t = 0,1,--- ,N — 1
of a symbol given the complex samples X; that modulate
the baseband frequencies k = 0,1, --- ,N — 1. Accord-
ing to the Fourier analysis, such relationship is given by
Y, = YN Xeed Nt = 0,1,.-. N — 1, in which
j = «/—1. At the receiver, a DFT algorithm takes the
signal back from time to the frequency domain by performing
X = ﬁV;O] Yie 2mk/N k= 0,1,---,N — 1. Since in
each transform both k and ¢ vary from O to N — 1, it is
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easy to see that the resulting asymptotic complexity Tprr(N)
is O(N?). The FFT algorithm improves this complexity to
O(N log, N) at the constraint of N = 2!, for some i > 0.
For this reason, the number of FFT points (hence, channel
width) at least doubles across novel wireless network stan-
dards targeting faster data rates, e.g., IEEE 802.11ax [20].
For more details about the theory of DFT and FFT, please
refer to [21].

The SC analysis proposed in [7] and [8] defines the SC
throughput SC(N) bits/time of an N-subcarrier signal pro-
cessing algorithm as the ratio between the amount of useful
transmission bits B(/V) carried by the symbol and the overall
computational complexity 7'(N) required to build the symbol.
For a constellation diagram of size M = 27 (for some p > 0),
each subcarrier modulates log, M bits. Thus, in OFDM DFT
is performed on a symbol that carries a total of B(N) =
N log, M useful bits. As usual in the analysis of algorithms,
the complexity accounts for the most recurrent and expensive
computational instruction. Thus, without loss of generality,
let now Tprr(N) denote the asymptotic number of complex
multiplications performed by a given DFT algorithm. Let
us also denote Typyrr(d) as the computational complexity
to perform a single complex multiplication between two
d-bit complex numbers. For OFDM d = log, M, then the
SC throughput of a DFT algorithm in bits/computational
time is,

Nlogy, M
Tyurr(logy M)Tprr(N)

We assume that the channel SNR does not grow arbitrarily
on N, meaning that the number of points in the constellation
diagram is bounded by a constant, i.e., M = ©(1). Hence,
N is the unique variable of our asymptotic analysis, i.e.,
N — 00.% Thus, there exist constants d > 0 and ¢ > 0 such
that the SC throughput in (1) rewrites as,

SCorr(N) = —2 @
DFT =

Tprr(N)ce
Now, proceeding the asymptotic analysis on N and assuming
the implied limit exists, all constants can be neglected and the

following asymptotic SC throughput results,

SCprr(N) =

ey

N
SCprr(N) ngnoo Torr (V) 3)

As N grows, both the number of bits of the OFDM symbol
as well as the DFT complexity to assemble it grows accord-
ingly. The condition for the scalability of a DFT algorithm as
N grows is given in Def. 1.

Definition 1 (DFT Capacity-Complexity Scalability Con-
dition): The throughput of a DFT OFDM algorithm of com-
plexity Tprr (N) is not scalable unless the inequality (4) does
hold.

lim — >0 “4)
N—oo Tprr(N)
2Note that this technicality of the asymptotic analysis does not mean the

signal bandwidth is unlimited. Instead, it will enable us to verify whether the
SC throughput nullifies on N through a benefit-cost ratio analysis.
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Based on the fundamental condition of Def. 1, the required
Tprr(N) time complexity upper-bound is summarized in
Lemma 1.

Lemma 1 (Required DFT Asymptotic Complexity for
SNR-bounded Channels):  The throughput of a given
N-point DFT algorithm employed to perform the frequency-
time transform of a (d - N)-bit OFDM waveform (d > 0)
nullifies on N unless it runs in ©(N) time complexity.

Proof: Let M be the length of the largest constella-
tion diagram at which the bit error rate becomes negligible.
Assuming the channel SNR does not grow arbitrarily, M is
bounded by a constant (i.e., M = ©(1)), so the number of
bits d = log, M per subcarrier. Thus, the computational com-
plexity to multiply two d-bit complex constellation points is
bounded accordingly, resulting in a constant c. Therefore, the
complexity Tprr (N) required to process Nd bits ensuring the
throughput of the DFT algorithm does not nullify as N grows
(i.e., remains greater or equal than a non-null constant k) is
given by:

Iim ——— >k>0
N—oo cTprr(N)

. Nd .
Iim —— > lim &
N—o0 CTDFT(N) N—o0

g.
|
v

Nlim Tprr(N)
Tprr(N) = O(N) )

Considering the O(N) upper bound of Ineq. 5 along with
the fact that no O(N) storage complexity DFT algorithm
can run below Q(N) steps [13] — assuming that at least N
computational instructions are needed to read the input — a
non-null throughput DFT algorithm must run in ®(N) time
complexity. O

If one relaxes the assumption M = ©(1) by consider-
ing M can grow faster or as fast as N (i.e., channels of
unbounded SNR), the required Tprr(N) complexity upper
bound can be calculated from Eq. 1 by considering either
M = Q(N)or M = O(N), respectively. In this case, the
overall asymptotic complexity (so the algorithm through-
put) also depends on the multiplication algorithm, whose
complexity depends on the number of bits per subcarrier
d = log, M. Considering, as a matter of example, N = ©(M)
and the O(d'°%2 %) complexity of the Karatsuba multiplication
algorithm [22], the DFT complexity upper bound would be
nearly O(N / logg'585 N).

B. SPECTRO-COMPUTATIONAL ANALYSIS OF THE FFT
ALGORITHM

The FFT algorithm [1] outperforms the O(N?) straightfor-
ward DFT algorithm by running in O(N log, N) time com-
plexity. FFT performs O(N) computational instructions to
decrease an N-point DFT problem into two N /2-DFTs per
iteration (or recursive calling). This is possible by noting that
the frequency samples X; and Xiyn/2 (k =0,1,--- ,N/2 —
1) can be computed from the same following N /2-point
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DFTs:
N/2—1 ik
Ex= ) Yue ™7 ©)
t=0
N/2—1 )
O = PN 3 e W ™
t=0

In other words, Ey (Eq. 6) and Oy (Eq. 7) are the
N /2-point DFT taken from the even-indexed and odd-
indexed time samples of the N -point input array, respectively.
Based on them, the Danielson—Lanczos lemma shows that,

Xy = Ex + e 2N oy ®)
Xiiny2 = Ex — e KN oy 9)

This way, N /2 iterations are necessary to compute X; and
Xk+n /2, yielding a total of O(NV) computations. Each of these
iterations needs to solve both the N /2-point DFTs E; and
Oy. Denoting Tprr(N) as the complexity of an N-point FFT
and applying the Danielson-Lanczos lemma recursively, the
overall complexity can be given by the recurrence relation
Tprr(N) = O(N)+2Tprr(N /2) which results in Tppr(N) =
O(N log, N). Note, however, that FFT demands N = 2!
(i > 1), yielding an exponential complexity of O(2 - i) on
i. The Corollary 1 follows from the O(N log, N) complexity
of FFT in the Lemma 1,

Corollary 1 (Asymptotic Null FFT Throughput): The
spectro-computational throughput of the FFT algorithm does

nullify as N grows.
Proof: From Lemma 1, the FFT throughput follows,
Nd
N = — 10
FIT = Nlogy N (10)

If the SNR can get arbitrarily large such that the constellation
diagram length M grows on N then d = Q(log, N). In this
case, the complexity c to multiply two d-bit numbers grows
at least linearly on d. Thus, since the fastest multiplying
algorithm implies in ¢ = ©(d), the asymptotic throughput of
FFT is given by Eq. 11 at best. Therefore, the FFT throughput
nullifies as N grows.

lim _N =0 (11)
N—oo N log, N
O
Fig. 1 illustrates the asymptotic growth of the FFT through-
put for different subcarrier signal mappers assuming a total of
Tprr(N) = N log, N complex multiplications. Without loss
of generality for the asymptotic analysis, it is assumed each
complex multiplication takes a constant ¢; of 1 picosecond,
yielding a total runtime of N log, N/10'? seconds. Note
that hardware improvements (e.g., pipelined FFT hardware)
translates into lower c¢; i.e., faster execution of a computa-
tional instruction. However, the overall number of instruc-
tions remains N log, N, meaning that better hardware can
improve wall-clock runtime but cannot decrease the complex-
ity of an algorithm. Hence, in fast pipelined FFT hardwares
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FIGURE 1. Asymptotic throughput of the FFT algorithm over distinct
OFDM signal mappers. As the number of points increases, complexity

grows faster than the number of modulated bits irrespective of the
chosen mapper.

the complexity penalizes performance indicators other than
wall-clock runtime such as portability, manufacturing cost
and power consumption. Moreover, for all constellations,
widening symbol spectrum by increasing the number of sub-
carriers causes the FFT throughput to decrease rather than
increasing. This happens because complexity grows faster
than the number of modulated bits in FFT. To overcome this
bottleneck, the processing capability of the FFT hardware
should scale on N.

We believe that the SC analysis of FFT (as illustrated in
Fig. 1) formally endorses the issues conjectured by prior
works about the infeasibility of FFT for some scenarios of
future wireless networks. In this sense, the FFT throughput
nullification implied by complexity translates the prohibitive
power consumption FFT may experience under ‘‘massive
channel bandwidths”.

C. THE SAMPLING-COMPLEXITY NYQUIST-FOURIER
TRADE-OFF

DFT algorithms face two particular issues in the context
multicarrier waveforms such as OFDM. The first comes from
a mismatch between the unit of processing of DFT algo-
rithms and the other algorithms along the processing block
diagram. Although blocks such as ‘“‘signal mapping” and
“cyclic prefix insertion’” process a total of N signal samples,
they can process them in a sample-by-sample basis. Thus,
the processing of a particular sample does not depend on the
value of other samples in those blocks.

By contrast, DFT algorithms cannot start running before
all N samples are loaded in the input. Hence, the unit
of processing of DFT algorithms is N times higher than
their preceding and succeeding processing blocks. As N
grows, such mismatch turns a DFT algorithm to become a
bottleneck along the OFDM block diagram. This problem
has been described by the digital radio design literature
as a runtime deadline to be met by signal process-
ing algorithms [23], [24], [25], [26], [27]. By formal-
izing the problem as an asymptotic trade-off between
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sampling and computational overhead, we can calculate
the required asymptotic complexity to meet the sampling
interval.

Second, DFT algorithms are responsible to feed the DAC
in a classic OFDM transmitter. To avoid signal aliasing at
the receiver, the transmitter must sample the time-domain
signals produced by the IDFT algorithm within a specific
time interval. This interval is calculated from the Nyquist
sampling theorem which states that the largest time interval
between two equally spaced (time-domain) samples of a
signal band-limited to W Hz must be Tyyp = 1/2W)
seconds. In the case of complex IQ modulators where the
real and imaginary dimensions of the signal are indepen-
dently and simultaneously sampled by two parallel samplers,
Tyyg = 1/W seconds.

In IQ systems, at least W samples must feed the DAC
every second — which is known as the Nyquist sampling rate
— otherwise the signal frequency can suffer from aliasing
thereby preventing its correct identification at the receiver.
For an inter-subcarrier space of Af Hz, the width of an
N-subcarrier OFDM signal is Worpyy = NAf, so a
complex time-domain OFDM sample must feed the DAC
every,

1
Tyyg = —— seconds (12)

NAf

Based on Eq. 12, we relate the asymptotic complexity of
DFT algorithms with the Nyquist interval. As result, we intro-
duce the sampling-complexity (Nyquist-Fourier) trade-Off
in Def. 2.

Definition 2 (The Sampling-Complexity Nyquist-Fourier
Trade-Off): In OFDM radios with Af Hz of inter-subcarrier
space, the N-point DFT computational complexity Tprr(N)
increases as the Nyquist period 1/(NAf) decreases to
improve symbol throughput.

The sequence of discrete time samples output by the IDFT
algorithm corresponds to the time-domain version of the
OFDM symbol that lasts Tsyys = 1/Af seconds. In the
design of a real-time OFDM radio the entire digital signal
processing must take no more Tsyy, otherwise the sys-
tem either suffers from sample losses or misses the real-
time communication capability [23], [24], [25], [26], [27].
We capture this condition in terms of asymptotic complexity
in Lemma 2.

Lemma 2 (DFT Upper Bound for OFDM Waveforms): The
computational complexity upper bound required to solve the
DFT problem under the Nyquist interval constraint on radios
with finite processing capabilities is O(1).

Proof: Considering that a DFT algorithm is the asymp-
totically most complex procedure of the basic OFDM wave-
form, its complexity must satisfy

Tprr(N) < Tsym = NTnyo (13)

Assuming that the throughput improvement is achieved by
enlarging N and that the symbol duration does not grow on
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N (e.g., IEEE 802.11ac [28]), it follows that

Nli_{rl<>o Tprr(N) < Tsym (14)
Tprr(N) = O(1) (15)
O

Note that one can relax the complexity lower bound pre-
dicted by Lemma 2 if the radio digital baseband processing
capabilities can grow arbitrarily on the number of subcarriers.
However, with the end of the so-called “Moore’s law” [29],
higher processing capability translates into higher manufac-
turing cost, power consumption and hardware area, bringing
doubts to the feasibility of portable multicarrier Terahertz
radios.

The Corollary 2 follows from Lemma 2.

Corollary 2 (Unfeasible Nyquist-Constrained DFT):
Given that the minimum possible lower bound complexity
of the DFT problem is Q2(N) [13] and the Nyquist interval
imposes an upper bound of O(1) (Lemma 2), no DFT algo-
rithm can meet the Nyquist interval as N grows.

To face the result of the Corollary 2, one may relax the
Nyquist constraint which results in the compressive sensing
systems [30]. However, high accuracy signal frequency pre-
diction in such systems has been proved to be a NP-hard
problem [31] which turns out to much more complex systems
because only exponential time algorithms are known for that
class of problems.

Note that the sampling-complexity trade-off does not
restrict to multicarrier waveforms such as OFDM and
its variants but also to single carrier signals that rely
on DFT to mitigate the peak-to-average power ratio of
uplink transmissions in wireless cellular networks [32].
Of course, the trade-off is more critical to waveforms
designed for broadband traffic services that target wider
spectrum.

lIl. PUSHING THE CAPACITY-COMPLEXITY

LIMITS OF DFT

In this section, we consider methods to overcome the through-
put bottleneck faced by N-point DFT algorithms such as FFT
(Section II) and discuss a solution to mitigate the sampling-
complexity trade-off described in Subsection II-C.

A. PARAMETERIZED COMPLEXITY
To mitigate the Nyquist-Fourier trade-off in practice, we
apply an algorithm design technique inspired in the param-
eterized complexity [19]. The parameterized complexity was
originally proposed to enable the polynomial time solution
of multi-parameter NP-complete problems. The idea consists
in bounding one or more parameters of the problem such
that the complexity of the solution becomes a polynomial
function of the non-bounded parameters. For a compre-
hensive study about the parameterized complexity please,
refer to [19].

We consider an alternative parameterized formulation of
the frequency-time transform problem in order to achieve
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faster-than FFT computations. In a typical OFDM transmitter,
the IDFT operation associates N input frequency samples
Xy (k =0,---,N — 1) to N respective baseband frequen-
cies k Hz at the time instant # by the complex multiplica-
tion X;e/>"k/N  The direct IDFT algorithm repeats these N
multiplications to compute N time samples, which yields a
total of O(N?) operations. To cut this complexity, we param-
eterize the number g < N of frequency samples associated
to a given baseband frequency, as illustrated in Fig. 2. In the
parameterized DFT scheme, all the N frequency samples are
equally divided across g baseband frequencies k, leading to
n = N /g groups (solid rectangles) of g frequency samples
each. An n-point IDFT across frequency samples of distinct
groups (dashed rectangles), yields one g-sample time domain
group per time instantr = 0, 1, - -+ , n— 1, resulting in a total
of ng = N time domain samples.

We identify that the waveform resulting from the parame-
terized DFT computation we have just described is not new.
Indeed, it exactly matches vector OFDM (V-OFDM), a wave-
form originally proposed to reduce the cyclic prefix overhead
of OFDM [14]. Prior works have investigated V-OFDM with
respect to different aspects. Cheng et al. [17] study the BER
performance in Rayleigh channels and Li ef al. [18] identify
setups in which the V-OFDM BER performs similarly or
better than OFDM for different low-complexity receivers.
More recently, V-OFDM has been merged with other signal
processing techniques such as index modulation [16] and
MIMO [15].

Our work builds on those prior works to present novel
results for V-OFDM. In particular, we rely on V-OFDM
as an alternative to avoid the throughput nullification faced
by FFT in OFDM. Also, we exploit the VB structure to
relax the power of two constraint of FFT without giving
up a fast asymptotic complexity. By releasing all V-OFDM
parameters from growing as powers of two, more flexible
numerologies can be enabled (e.g. n = 3, N = 156).
In Subsections III-B and I1I-C, we review the V-OFDM signal
and discuss how to relax the N = 2/ constraint of V-OFDM
keeping a complexity that does not nullify throughput on NV,
respectively.

B. The VECTOR OFDM SIGNAL

The V-OFDM transmitter arranges the N-sample complex
frequency domain symbol {X[}i.vz 61 into L complex vectors
blocks (VBs) x; (I =0,1,---,L —1) having M = N/L
samples each. Denoting [-]7 as the transpose of the matrix
[-], the samples of {Xi}ﬁ\;?)l within the /-th VB x; is given by

X = Xpgml? m=0,1,--- , M—1 (16)

The sequence of complex frequency domain samples is

X = [Xo, X1, -, Xy—1] = [x0,x], -, xI_4]

17)
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e t=n-1 [Y(n-l)g+0 Y(n-l)g+1 Yng-l ]

FIGURE 2. Frequency-time transform scheme of Vector OFDM. The N-size
frequency domain input is arranged into n groups (solid rectangles) of
frequency k and length g = N/n each.

The g-th time domain VB (¢ =0, 1, --- , L — 1)isdenoted
as

Yo =Yorsmlm m=0,1,--- , M~—1 (18)

The V-OFDM literature [15], [16], [17], [18] performs M
inverse L-point FFTs to calculate each time domain VB.
Since this contrasts to a single N-point FFT of OFDM,
we refer to it as the Parameterized FFT (PFFT). The resulting
samples within the g-th time domain VB is therefore

Yy M40 XoM-+0

Yo Ma M- Xoatem
X@-nM+0

L X(L—l.)./\/H-l ej27'rq(L*1)/L (19)
X(L—l)/\./l-i-M—l

The time domain transmitting sequence is
T
Y11 (20)

Both the normalized inverse DFT and DFT signals are
respectively summarized as follows

Y=[YO,Y],""YN7]]=[Y(])W,Y{7"'

L—1
1 2mql/L
Yq=z§x,ef”q/ g=01,---,L Q1)

L—1
1 —j2mql/L
x| = Zque mal/l 1 =0,1,--- L (22)
q=0
After the inverse DFT transform, the signal follows as

in the classic OFDM waveform for transmission. At the
receiver, the signal undergoes the reverse steps unless for the
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Algorithm 1 Parameterized (Inverse) DFT (PDFT) Algo-
rithm for the Vector OFDM Waveform. By Relying on the
DFT Algorithm and the Parameterization Technique, PDFT
Relaxes the N = 2 Constraint of FFT (thereby Enabling a
Wider Range of numerologies) and Can Run Linearly on N
Rather Than Exponentially on i.

I {X;i(i=0,1,---,N —1)is the frequency domain input}

2: {Yi(i=0,1,---,N — 1) is the time domain output}

3: {L is the number of points per vector block};

4: {M is the number of vectors such that N = LM };

5: for(i=0;i <N;++1i)do

6: Y; <« 0; {initialization of the entire time-domain
array};

7: end for

8: for (g =0;9g<L;++¢g)do
: for(m=0;m < M;++m)do
10: for(I=0;l <L;++1)do

L1 Yo mam = Yo ram + Xipgm - @2740E,
12: end for

13:  end for

14: end for

detection processing whose complexity can grow exponen-
tially on the VB size (e.g., maximum likelihood estimation).
While the conditions for low complexity detection have been
discussed by the V-OFDM literature e.g., [15], [30], in this
work we focus on the complexity of the IDFT/DFT problem
in V-OFDM regardless of the chosen detection heuristic.
In what follows, we adopt the notation LM (instead of ng)
that is usual across the V-OFDM literature.

C. PARAMETERIZED DFT ALGORITHM FOR V-OFDM

In order to relax the power of two constraint on the spectrum
parameters of V-OFDM, we replace FFT by the straightfor-
ward DFT algorithm. Since V-OFDM performs M L-point
frequency-time transforms, the DFT and FFT complexities
in V-OFDM are O(ML?) and O(ML log, L), respectively.
However, differently from OFDM in which the asymptotic
complexity of DFT cannot be as efficient as FFT’s, one can
exploit the vectorization feature of V-OFDM to refrain the
DFT complexity.

We achieve that by parameterizing L to &(1), getting what
we refer to as the parameterized DFT (PDFT) algorithm
(Algorithm 1). The parameterization provides DFT with
non-null throughput on N as demonstrated in Lemma 3.

Lemma 3 (Scalable Throughput of the Parameterized
DFT Algorithm): By setting the number of points L to
O(1), the PDFT algorithm (Algorithm 1) achieves non-null
throughput as the number of subcarriers N gets arbitrarily
large (Def. 1).

Proof: Since N = ML, setting L = ©O(1) leads the
O(L?> M) complexity of PDFT to become O(M) = O(N).
Thus, assuming the channel conditions does not enable
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arbitrarily large constellation diagrams (as in the FFT analysis
of Lemma 1), the total number of bits per V-OFDM symbol
iSN xd = N xlogy M = O(N) and the computational com-
plexity to perform a single complex multiplication is ®(1).
Therefore, the throughput (Def. 1) of the PDFT algorithm
does not nullify on N, as demonstrated below:
. Nd . Nd
Iim —— = lim — =c¢>0 (23)
No>oo LZM  N—>oo N

O
If N = ML is set to grow as a power of two 2/, setting L to
©(1) leads both FFT and PDFT to run in O(M) = O(2!/L)
time complexity. However, if that constraint is relaxed, PDFT
can provide V-OFDM with flexible numerology while run-
ning linearly on N rather than exponentially on i. The flex-
ible numerology of PDFT, turns V-OFDM a competitive
waveform for spectrum allocation in fragmented frequency
bands. Besides, the reduced complexity is a step towards the
enhancement of current broadband-driven services such as
the enhanced mobile broadband service of 5G [33] and the

very high throughput service of IEEE 802.11ac [28].

D. MULTIPLIERLESS PARAMETERIZED DFT AND THE
SAMPLING-COMPLEXITY TRADE-OFF

We identify that the specific case L = 2 can have
notable implications for the lower bound complexity of the
frequency-time transform problem in V-OFDM. As explained
in Subsection II-C, a lower bound complexity of €2(1) is
required if the frequency-time transform computation of
a N-point signal is constrained by the Nyquist sampling
theorem. This is typical requisite of real-time implementa-
tions of physical layer standards such as 5G [24] and Wi-
Fi [23], [25], [26], [27]. Next, we explain how the L = 2 case
of V-OFDM relate to the sampling-complexity trade-off.

By setting L to 2, the N-subcarrier V-OFDM symbol is
vectorized into only two VBs, leading to N /2 2-point DFTs.
Since these 2-point DFTs are completely independent from
each other, they can be computed in parallel. Each 2-point
transform takes O(1) time complexity regardless of the value
of N, therefore the entire solution requires N /2 complex
additions. Indeed, both the indexes / and ¢ that iterate across
the frequency and time VBs (lines 10 and 8 in Algorithm 1,
respectively), vary from O to 1, causing the complex exponen-
tial to simplify to either 1 or —1. The two time domain VBs
are

X0.N /240 X1.N /240
yo — X0~N'/2+1 O XI-N./2+1 LI
Xo-N/z;rN/z—l Xl-N/2—.|—N/2—1
and
Xo.N/2+0 X1.n/2+40
v = XO-N'/2+1 o X1~N./2+1 o 2s)

X0-N/2+N/2-1 X1.N/24N/2—1
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Therefore, from the perspective of an analysis that considers
complex multiplications as the asymptotic dominant instruc-
tion of the DFT problem, the L = 2 case satisfies the (1)
lower bound requisite of the sampling-complexity trade-off.
By contrast, if all instructions are considered, the solution
does not meet that requisite. However, the O(N) complex
additions are easier to implement in practice and can remove
the DFT bottleneck by being performed in parallel. Note
also that the case L = 1 of V-OFDM dispenses the DFT
computation at the transmitter but requires an extra N-point
IDFT at the receiver. In turn, the case L = 2 is multiplierless
at both the transmitter and the receiver.

IV. EVALUATION

In this section, we present simulation results to compare the
FFT and PDFT algorithms and to validate our theoretical
analysis. Please, note that FFT remains the recommended
choice even for the most recent variations of V-OFDM [15],
[16]. Moreover, the FFT performance remains a reference
for the frequency-time transform problem in current and
upcoming wireless network physical layer standards [5], [20],
[33]. In Subsection IV-A, we describe the methodology of the
simulations. In Subsection IV-B, we discuss the performance
of both algorithms under a power of two number of points,
as required by the FFT algorithm. In Subsection IV-C, we
discuss the performance of the PDFT algorithm under a non
power of two number of points.

A. TOOLS AND METHODOLOGY

We compare our proposed PDFT algorithm for V-OFDM
against the FFT algorithm employed by both OFDM and
V-OFDM state of the art. We implement the PDFT algorithm
in C++ and refer to the FFT implementation of [34] to
assess the FFT algorithm. It is important to remark that the
runtime performance of our chosen FFT implementation can
be outperformed by highly optimized FFT libraries available
in the literature e.g., [35]. However, these libraries impose
several preliminary runs of distinct DFT algorithms to pick
the one that perform best for the considered platform and
value of N. Hence, the chosen algorithm may vary across
distinct values of N and the assessed runtime is highly depen-
dent on several hardware optimizations that vary across the
chosen platform. By contrast, our focus in this work is on the
asymptotic complexity improvement rather than on hardware
optimizations that can be handled in future work.

We vary the number of points which is equivalent to
the number of subcarriers N for both algorithms. In this
simulation, we vary N as powers of two considering a
relatively small number of subcarriers, as in today’s FFT-
based waveforms. In the other simulation, we consider non
power of two N and a minimum of 10° subcarriers. In this
simulation, we also vary the number of VBs of PDFT,
as well as the number of points per VB. For each algo-
rithm, we assess the runtime Tprr(N) (seconds) and the
throughput SC(N) (Megabits per second) according to the
Def. 1. We also report the complexity of the compared
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FIGURE 3. FFT vs. PDFT (proposed): Simulation runtime.
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FIGURE 4. FFT vs. PDFT (proposed): Complexity.

algorithms. Note that the complexity captures the total
number of calculations performed by the algorithms and
holds irrespective of the way they are implemented (such as
pipelined ASIC). Unless differently stated, the throughput of
each algorithm was measured considering each subcarrier is
BPSK-modulated.

We sampled the wall-clock runtime Tprr (N ) of each algo-
rithm with the standard C++ t imespec library [36] under
the profile CLOCK_MONOTONIC on a 1.8 GHz i7-4500U
Intel processor with 8 GB of memory. We repeated each
experiment as many times as needed in order to achieve
a mean with relative error below 5% with a confidence
interval of 95%. Each sample of Tprr(N) was forwarded
to the Akaroa-2 tool [37] for statistical treatment. Akaroa-2
determined the minimum number of samples required to
reach the transient-free steady-state mean estimation for
Tprr(N). In each execution, we assigned our central pro-
cessing unit (CPU) process with the largest real-time prior-
ity and employed the isolcpus Linux kernel directive to
allocate one physical CPU core exclusively for each process.
We generate the input points for the algorithms with the
standard C++ 64-bit version of the Mersenne Twistter (MT)
19937 pseudo-random number generator [38] set to the seed
1973272912 [39]. In Tables 2 and 3 of Appendix A, we report
the statistics and results discussed in subsection IV-B and
Subsection IV-C, respectively.
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FIGURE 6. Throughput of PDFT algorithm under different signal
constellation mappers.

B. POWER OF TWO DFTs

In this Subsection, we evaluate the performance of FFT and
PDFT algorithms under power of two number of points,
as required by the FFT algorithm. In Fig. 3, we plot the
runtime of the FFT algorithm (employed by OFDM and
V-OFDM) and the multiplierless PDFT algorithm we pro-
pose for V-OFDM set to two N /2-subcarrier vector blocks.
In Fig. 4, we plot the total number of arithmetic instructions
predicted by the theoretical complexity analysis. The overall
number of arithmetic instructions performed by the FFT
algorithm and the PDFT algorithm are at least SN log, N [35]
and N (Subsection III-D), respectively. The statistics of the
runtime are reported in Table 2. We report the throughput
considering the BPSK modulation in which one bit modulates
one subcarrier. Thus, one can reproduce Fig. 5 and Fig. 6 just
by multiplying the BPSK-based throughput with the number
of bits achieved by other modulation, e.g., 6 in the case of
64-QAM.

As one can observe in Fig. 3 and Fig. 4, the exponential
nature of the FFT complexity becomes clear after N =
212 = 4096 points. Because the FFT algorithm demands
N to grow as a power of two 2! (for some i > 0), the
number of DFT points must at least double in novel stan-
dards that adopt more subcarriers to improve throughput.
Consequently, the complexity of the FFT algorithm grows
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FIGURE 7. Runtime of FFT and the proposed PDFT algorithms for a
number of points N = 1-105,2.10°, - - ., 6 - 105. For FFT, only the powers
of two 27 = 131072, 2'8 = 262144 and 2'° = 524288 are considered.

accordingly. We highlight the performance of FFT for the
largest number of points of different wireless communi-
cation standards. In the case of the IEEE 802.11a [40],
IEEE 802.11ac [28] and 5G [33] physical layer standards
the maximum number of FFT points are 64, 512 and 4096,
respectively. Considering the 5N log, N arithmetic instruc-
tions of the Cooley-Tukey algorithm [35], no less than
1920, 23040 and 245760 arithmetic instructions must be
performed by FFT in those standards, respectively. In our
simulation, these complexities caused the FFT runtime to
grow at least one order of magnitude, which corresponded
to 3.58 ws, 33.97 ws and 363.8 ws, respectively, as reported
in Fig. 3.

The wall-clock runtime of FFT can be improved if FFT
is implemented on dedicate hardware such as application-
specific integrated circuits (ASICs). However, as shown in
Fig. 4, the overall number of arithmetic instructions remains
exponential irrespective of the implementation technology.
Thus, the FFT complexity represents a serious concern for
other relevant performance indicators of future networks like
manufacturing cost, area (device portability) and power con-
sumption.

By contrast, the proposed PDFT algorithm performed
about two orders of magnitude better than FFT for all scenar-
ios, even under the power of two constraint of FFT. Also, the
FFT algorithm nullifies on N. In the simulation, this behavior
can be observed by noting that the FFT throughput reaches
the maximum value for N = 2° but achieves nearly the
same value for N = 22 and N = 2!8 (Fig. 5). In turn,
the PDFT algorithm keeps nearly the same throughput after
N =27 (Fig. 6). According to our theoretical analyses, this
stems from the fact that both the PDFT complexity and the
number of processed bits grows linearly on N. Therefore,
the PDFT throughput tends to a non-null constant as N gets
arbitrarily large.

C. NON POWER OF TWO DFTs
In this Subsection, we evaluate the performance of the PDFT
algorithm under a non power of two number of points N.
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FIGURE 8. Throughput of FFT and the proposed PDFT algorithms for a
number of points N = 1-105,2.105, ..., 6- 105. For FFT, only the powers
of two 27 = 131072, 2'8 = 262144 and 2'° = 524288 are considered.

We vary N through 1 -10%,2-10%,---,6 - 10°. In Figs. 7
and 8, we plot the runtime and throughput performance of the
proposed PDFT algorithm, respectively. We vary the number
of vector blocks L = 2, 3,4, 5 and plot the performance of
the FFT algorithm by setting N to the existing powers of
two in the interval [1 - 10°, 6 - 10°], namely 2!7 = 131072,
218 = 262144 and 2!° = 524288. PDFT requires the length
N/L of each vector block to be an integer. This requisite
is met by all chosen values of N and L except L = 3.
In this case, we decrease N by N mod 3 to ensure N/L is
an integer (x mod y returns the remainder of division of x
by y). Thus, for L = 3 the values of N 10°,2-10%,4-10° and
5. 10° are subtracted by —1, —2, —1 and —2, respectively.

The runtime and throughput of the FFT and PDFT algo-
rithms are taken from Table 2 and Table 3, respectively. Both
tables have the same structure of columns, as we explained
in Subsection IV-B.

As one can see in Fig. 7, the runtime performance of
PDFT improves for lower values of L. The best performance
is achieved for L = 2 in which PDFT becomes multi-
plierless and performs N /2 2-point transforms. Although
the PDFT performance worsens for larger L, its complexity
remains linear on N for all evaluated setups. This happens
because PDFT exploits the parameterization technique to
perform M = N/L independent L-point DFTs. By set-
ting L to ©(1), each independent DFT takes L? = O()
time complexity, yielding a total of (N/L) - ®(1) = O(N)
complexity.

The lowest complexity of PDFT (achieved with L = 2)
translates into the fastest throughput among all algorithms,
which is about two orders of magnitude above all other
algorithms, as one can see in Fig. 8 where throughput is
plotted considering one bit per point (i.e., BPSK modulation).
Despite that, PDFT sustains a non-null throughput for all
values of L whereas FFT nullifies as N grows.

The throughput nullification happens because the com-
plexity grows asymptotically faster than the number of mod-
ulated bits as N grows. In the case of PDFT, the throughput
remains constant as N grows even considering the fact that
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complexity grows too. Besides, because PDFT relies on the
straightforward DFT algorithm rather than FFT, the number
of points can grow in an unitary manner rather than doubling.
Considering the range of the experiment [1 - 10°,--- , 6 -
105] for example, there exist 250001, 166667, 125001 and
100001 possible setup choices of N for PDFT under L = 2,
L =3,L =4 and L = 5, respectively. By contrast, there
are only three choices of N for the FFT algorithm in the same
range, they are 2!7 = 131072, 2'% = 262144 and 2!° =
524288. This can provide standardization bodies with more
setup choices for future multicarrier wireless communication
standards.

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrated that the fast Fourier trans-
form (FFT) algorithm can be too complex for the post-5G
generation of broadband waveforms. The constraint that the
number of points N must grow as a power of two 2 (for some
i > 0) along with the unprecedented growth in the number of
subcarriers, cause FFT to run in the exponential complexity
O(2! - i). Also, because this complexity grows faster than the
number of modulated bits, the FFT throughput nullifies as N
grows. We generalized this result to show that the throughput
of any DFT algorithm nullifies on N unless the lower bound
complexity of the DFT problem verifies as (N ), which is an
open conjecture in computer science.

To overcome the scalability limitations of FFT, we consider
the alternative frequency-time transform formulation of vec-
tor OFDM (V-OFDM) [14], a waveform that replaces an N-
point FFT by N /L (L > 0) smaller FFTs to mitigate the cyclic
prefix overhead of OFDM. In this sense, we replace FFT by
DFT to relax the power of two constraint on N and to provide
V-OFDM with flexible numerology (e.g. L = 3, N = 156).
Besides, by parameterizing L to ®(1), we identify that the
resulting DFT-based solution (we refer to as parameterized
DFT, PDFT) can run linearly on N rather than exponentially
oni.

We also formulate what we refer to as the sampling-
complexity (Nyquist-Fourier) trade-off, which stems from the
fact that the N-point DFT algorithm operates on a batch of
N samples but its associated sampler operates on a sample
by sample basis. As N grows, the Nyquist inter-sample time
interval demanded by the sampler decreases but the DFT
complexity to compute all samples increases. We demonstrate
that the asymptotic solution of the trade-off would require
®(1) DFT algorithms. Since DFT algorithms grows linearly
on N at best, i.e., Q(N), no DFT algorithm can meet the
Nyquist deadline as N grows. However, we identify that the
trade-off can be countered in practice if V-OFDM is set to
two N /2-subcarrier vector blocks (i.e., L = 2). In that case,
the transform simplifies to N /2 complex sums that can be
performed in parallel both at the transmitter and receiver.
Thus, the N-point DFT becomes multiplierless and each
sample that feeds the DAC/ADC comes only from two —
rather than N — other samples. We believe these results turn
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TABLE 2. Runtime and throughput of PDFT (V-OFDM, L = 2) and FFT
(V-OFDM) algorithms under BPSK modulation and power of two number
of points. § is the half-width of the confidence interval with 95% of
confidence and relative error below 0.05.

Algo- | Runtime | Throughput .
N rithm s (Mbps) 46 pus | Variance
91 PDFT | 0.05 38.02 0.001 < 0.001
FFT 0.42 4.71 0.01 < 0.001
92 PDFT | 0.07 58.31 0.001 < 0.001
FFT 0.54 7.35 0.03 < 0.001
PDFT | 0.09 84.84 0.001 < 0.001
23 FFT 0.72 11.06 0.03 < 0.001
PDFT | 0.15 109.07 0.001 < 0.001
24 FFT 1.06 15.13 0.02 < 0.001
PDFT | 0.26 125.05 0.01 < 0.001
25 FFT 1.89 16.96 0.09 < 0.001
PDFT | 045 143.59 0.01 < 0.001
26 FFT 3.58 17.86 0.08 < 0.001
PDFT | 0.80 159.96 0.01 < 0.001
27 FFT 7.54 16.97 0.37 0.02
PDFT | 1.58 161.66 0.08 < 0.001
28 FFT 15.65 16.36 0.51 0.05
PDFT | 2.96 172.94 0.01 < 0.001
29 FFT 33.97 15.07 1.26 0.29
PDFT | 6.43 159.24 0.30 0.02
210 ["FFT 73.58 13.92 2.79 1.39
PDFT | 12.99 157.71 0.35 0.02
211 [FFT 158.28 12.94 0.55 0.05
PDFT | 24.35 168.22 0.16 < 0.001
212 ["FFT 362.43 11.30 2.82 1.42
PDFT | 48.93 167.43 0.46 0.04
213 ["FFT 790.96 10.36 6.01 6.45
PDFT | 97.60 167.87 0.18 0.01
214 [FFT 1786.68 9.17 3.13 1.76
PDFT | 220.81 148.40 0.13 < 0.001
215 [TFFT 4193.85 7.81 3.55 2.25
PDFT | 442.09 148.24 0.38 0.03
216 [TFFT 9154.79 7.16 60.18 647.40
PDFT | 899.34 145.74 6.74 8.13
217 ["FFT 19805.5 6.62 54.58 5325
PDFT | 1845.65 142.03 11.34 23.0
218 ["FFT 54415.6 4.82 24592 | 1482

V-OFDM into a competitive candidate waveform for future
broadband wireless networks.

In future work, the PDFT-based V-OFDM implementation
can be coupled to an analog Terahertz radio and the optimal
parameterization for the PDFT complexity can be identified
under different channel propagation conditions. The joint
throughput-complexity asymptotic limit of detection algo-
rithms can be investigated as well. In this sense, one may
concern about enhancing the analytic model employed in
this work to capture the natural trade-off between complexity
and bit error rate in algorithms such as signal detection and
error correction codes. Also, the impact of sampling on the
SC analysis of DFT algorithms can be investigated under
other conditions not considered in this work such as variable
symbol duration and sub-Nyquist samplers [30], [31].

APPENDIX A SIMULATION RESULTS

In Tables 2 and 3, we report the statistics of each simulation.
Both tables report the number of points, the algorithm, the
runtime in us, the throughput, the runtime’s half-width of the
confidence interval and the runtime’s variance, respectively.
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TABLE 3. Runtime and throughput of PDFT algorithm under BPSK
modulation and non power of two number of points. § is the half-width
of the confidence interval with 95% of confidence and relative error

below 0.05.
PDFT Runtime Throughput .
N setup s (Mbps) +d pus | Variance
=2 | 61627 16227 355 [ 116
T=3 | 1319470 | 7.58 1836 | 60.25
100000 41966160 | 5.09 2812 | 14131
T=5 | 26566.00 | 3.76 130.42 | 3040.57
T=2 | 126086 | 158.62 106 | 020
=3 [ 2666420 | 7.50 3373 | 100.66
200000 ———T"39414.40 | 5.07 37.05 | 246.64
=5 [ 5308440 | 3.77 39.00 | 272.09
=5 [ 193358 | 155.15 733 | 9.60
T=3 | 4096950 | 7.32 33.04 | 195.16
300000 - —r—59453.20 | 5.05 59527 | 63339.50
T=5 | 8023030 | 3.74 5735 | 58781
T=2 | 2556.07 | 15648 500 | 4.46
T=3 | 5295840 | 7.55 2659 | 12636
400000 17904520 | 5.06 33.66 | 340.75
T=5 | 106685.00 | 3.75 13626 | 3318.80
T=2 | 325060 | 15382 305 [ 075
so0000 | =3 | 6712520 | 7.45 30926 | 29939.60
T=4 | 100663.00 | 4.97 R07.14 | 116450.00
T=5 | 134902.00 | 3.71 969.38 | 167969.00
T=2 | 383285 | 15654 306 | 1.68
T=3 | 7938340 | 7.56 2929 | 15330
600000 | ——118633.00 | 5.06 57.44 | 589.81
T=5 | 159963.00 | 3.75 29460 | 1551350

No experiment demanded more than 70000 repetitions and
an average of about 500 samples were discarded due to the
transient stage.
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