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ABSTRACT Convolutions in neural networks are still essential on various vision tasks. To develop neural
convolutions, this study focuses on Structured Receptive Field (SRF), representing a convolution filter as a
linear combination of widely acting designed components. Although SRF can represent convolution filters
with fewer components than the number of filter bins, N-Jet, the sole component system implementation,
requires ten trainable parameters per filter to improve accuracy even for 3× 3 convolutions. Hence, we aim
to formulate a new component system for SRF that can represent valid filters with fewer components.
Our component system named ‘‘OtX’’ is based on the Principal Component Analysis of well-trained filter
weights because the extracted components will also be principal for neural convolution filters. In addition
to proposing the component system, we develop a component scaling method to defuse massive scale
differences among the coefficients in a linear combination of OtX components. In the experimental section,
we train image classification models on CIFAR-100 dataset under the hyperparameters tuned for the original
models with the standard convolutions. For NFNet-F0 classifier, OtX with six components performs 0.5%
better than the standard convolution, 3.1% better than N-Jet with six components, and only 0.1% worse
than N-Jet with ten components. Besides, OtX with nine components provides stabler training than N-Jet,
performing 0.5% better than the standard for NFNet-F0. OtX suits when replacing standard convolutions
because OtX performs at least comparably against N-Jet with further parameter efficiency and training
stability.

INDEX TERMS Convoluton layer, Hermitian polynomials, neural network, structured receptive field.

I. INTRODUCTION
Neural Networks (NN) are essential in vision tasks because
of their outstanding performance. Convolutional Neural Net-
works (CNNs) are common forms mainly consisting of con-
volution layers. CNNs sequentially convolve feature maps
and extract suitable features for each task. The versatility of
CNNs has made them predominant in the image process-
ing field. Recent studies actively develop non-CNN archi-
tectures because convolution is inadequate in merging two
related but distant features in a calculation. Vision Trans-
former (ViT) [1] and its derivates consist of multi-head self
attentions (MSAs) [2] and multi-layer perceptrons (MLPs).
MSAs directly compare features while ignoring their distance
and determine the value based on the comparison result.
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MLP-Mixer [3] and its derivates adopt spatial MLPs instead
of MSAs to capture long-range dependencies. Although this
trend may seem to ostracize convolution layers from NNs,
their importance is being re-acknowledged. Convolution,
a simple aggregation of local features, performs better for
extracting features than MSA, especially from less processed
maps [4]. Besides, though convolution layers seem to not be
used in ViT derivates, major patch aggregations are equiva-
lent to the processes in convolution layers where the kernel
size and the stride are equal to the patch size. Convolution
layer classes are used in programming codes, excluding when
adopting the standardization and the affine transform for
each patch. Thus, even though the current trend focuses on
capturing long-range dependencies, the convolution layer is
an essential component in NNs for vision tasks.

Designing convolution filters is a way of developing con-
volution layers in neural networks. In this paper, the word
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‘‘filter’’ means a two-dimensional convolution filter com-
posed of weights for signals on every offset in its receptive
field. A filter affects a channel in the input three-dimensional
feature map and maps to a channel of the output feature map.
Convolution filter design (CFD) aims to develop convolution
filters in hopes of improving the quality or reducing the
trainable parameters by modifying the structure of a filter
from an array of trainable parameters. This study is a CFD
work.

Let us first define variables for designing filters. A convo-
lution layer convolves an input feature map X ∈ RCin×D1×D2

with the heightD1, the widthD2, and the number of channels
Cin. Assuming that downsampling with strides larger than
one is done after the convolution as needed, the output of the
convolution Y hasCout×D1×D2 bins. Although the numbers
of channels Cin and Cout are fixed for each convolution layer,
the spatial resolutions D1 and D2 are arbitrary. Then, the
filter weights 2 consist of CoutCin filters with a particular
kernel size of K1×K2. With these variables, a convolution is
described as:

Ycout,h,w =
∑
∀cin,∀i,∀j

2cout,cin,i,j Xcin,h+1hi,w+1wj , (1)

where cout and cin are the indices for the output/input chan-
nels, h and w are the vertical/horizontal positions of the
maps, and i and j are the vertical/horizontal positions of the
filter. For each pair (cout, cin), a convolution is a weighted
summation of Xcin based on the importance of the position
(1hi, 1wj) away from (h,w). Note that the convolution is
calculated under a value such as zero for offsets out of X .
In this paper, each two-dimentional filter2cout,cin is regarded
as a linear combination of 3 two-dimentional filter compo-
nents {Fλ}λ=1,2,··· ,3:

2cout,cin,i,j =
∑
∀λ

θcout,cin,λFλ,i,j, (2)

where θ ∈ RCout×Cin×3 is the array of coefficients for the
filter components {Fλ}. This representation is seen in [5]. The
coefficients correspond to (sometimes scaled) the trainable
weight parameters of a convolution layer. In the case that a
filter is represented as an array of K1 × K2 parameters, each
filter component Fλ is described as:

Fλ,i,j = δi,iλδj,jλ , (3)

where δ·,· is the Kronecker delta.
Conventional convolution layers implicitly assume the

standard bases for each filter, and the coefficients for the
standard bases are optimized through training. This primitive
approach makes every K1×K2 filter representable. However,
the effective area of each parameter is strictly restricted. This
restriction decreases the worth of every parameter, making
it highly dependent on its offset. On the contrary, Structured
Receptive Field (SRF) [5] employs filter components where
each can act as a meaningful filter. Introducing SRF turns
the role of each parameter in convolution layers from the

importance of the offset to the importance of its correspond-
ing component. When a filter is a Gaussian filter, for exam-
ple, the conventional components require cooperatively tuned
parameters. In contrast, only one parameter is required when
a system of components contains the Gaussian filter compo-
nent. This example implies that a well-designed system will
reduce non-zero parameters, making the optimization simpler
and easier. Thus, how to construct 3 filter components is
essential, and this is the main topic of this study.

N-Jet [6] is introduced as an SRF component system
in [5] and is the sole component system formulation for SRF.
Namely, all SRF applications have been implemented with
N-Jet components. N-Jet components act as local differential
operators of which the orders are m for the vertical axis and
n for the horizontal axis. With the local differential filter
components, N-Jet approximates local signals with the Taylor
expansion and weights each polynomial signal components.
Although extracting features from the Taylor expansion is a
versatile approach in Natural science, N-Jet still have two
problems as a system of SRF components. The first problem
is SRF on N-Jet performs worse than the conventional convo-
lution when training on sufficiently large-scale datasets such
as the ImageNet dataset [7]. This problem critically, which
is not actually treated in this paper, shows there is a room
of investigating another component system for SRF. The
second problem is N-Jet components are highly correlated
one another. Although this nature guarantees N-Jet practically
requires at most fifteen components, the nature also detracts
the efficiency of each component. For example, N-Jet on SRF
with six components cannot outperform the conventional
convolution. Composing an SRF with more efficient and less
correlated components will make training easier and improve
performance with less components.

This paper proposes a new SRF component system,
‘‘OtX,’’1 as the second formulation of SRF. OtX is formulated
by modeling implicit principal components of well-trained
neural convolution filters. Thus, OtX has orthogonality,
in other words, the components of OtX are not correlated
one another. We also define the rule for the ordering of OtX
components, which contributes to picking a finite number
of efficient components to train. Since OtX reveals efficient
components to characterize neural convolution filters, SRF on
OtX requires fewer components than on N-Jet to outperform
the standard representation. OtX is also formulated based
on the Hermite polynomials and Gaussian function simi-
larly to N-Jet. The main change is the employment of radial
symmetric and π

4 rotated line-symmetric components. This
change accepts inseparable components in contrast to N-Jet
components which are all separable. In addition, we propose
a component scaling to make training of SRF on OtX easier.
Whereas a single use of the two does not perform well, the
combined use of OtX and the component scaling generates a

1The name ‘‘OtX’’ is only a sequence of symbol characters indicating
three symmetry types. The character ‘‘O’’ symbolizes radial symmetry, ‘‘t’’
symbolizes line symmetry

(
ϕ = 0, π2

)
, and ‘‘X’’ symbolizes line symmetry(

ϕ = π
4
)
, where ϕ is introduced in Section IV.
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synergistic effect. The component scaling makes OtX com-
parable with N-Jet as an SRF component system.

Summarizing the description above, the contributions of
this paper are as below.
• We analyze the implicit principal components of neural
convolution filters and reasonably formulate them. In the
formulation, we also generalize the rule for the ordering
of components.

• We apply the formulated OtX system as a new candidate
for SRF components, and OtX provides a denser filter
representation than N-Jet. Namely, training with OtX
can obtain better filters with fewer component candi-
dates than with N-Jet.

• We propose a component scaling method that helps the
training of OtX filters.

II. RELATED WORKS
This work aims to improve neural convolution layers. In this
section, we introduce related works that have phrasally simi-
lar purposes. Not all related works conflict with this study,
and our proposals can be applied to some of these works.
Works that can be combined with OtX are introduced in the
latter part of this section.

Neural convolution filter development that conflict with
this work is categorized into two types. Works of the first
type align trainable parameters symmetrically. A parameter
for a convolution filter affects multiple offsets in the filter.
Applying these components reduces the number of train-
able parameters. A work [8] develops horizontally symmetric
alignments of parameters. SymKer [9] replicates a unit of
parameters to form a filter. SymNet [10] uses three types
of radial symmetric filters. Filters in these works are not
spatially biased. However, the available shapes of filters in
these works are too restricted to maintain the performance
of neural networks. Hence, the works conclude that their
proposals can reduce trainable parameters without salient per-
formance degradation. Besides, these works cannot keep the
number of parameters small for large receptive fields because
the number scales linearly with K1K2. On the contrary,
works of the second type succeed in small-scale experiments,
and the number of parameters is independent of receptive
field sizes. These works design filter components of the
linear combination representation and train the coefficients.
N-Jet [6] is introduced as the first implementation of compo-
nent system (originally called ‘‘bases’’) for Structured Recep-
tive Field [5]. N-Jet components are tensor dot products of
the vertical and the horizontal Gaussian derivatives. Precisely,
a continuous N-Jet component Jm,n of which the order for x
is m, and that for y is n is defined as:

Jm,n(x, y) =
∂m+n

∂xm∂yn
exp

(
−
x2 + y2

2σ 2

)
, (4)

where x and y denote the offsets for the horizontal and
the vertical directions, respectively. A Gaussian derivative
is correlated with another which has the same order parity.
Thus, available pairs of Gaussian derivatives for an N-Jet

component are limited to ones such that the total orders are
up to 4. N-Jet components are similar to {9(0)

m,n} in OtX, but
OtXs’ are not correlated with one another because of their
orthogonality. SRF can choose an upper limit of the total
order of two Gaussian derivatives, and the number of parame-
ters for a filter can be 1, 2, 6, 10, or 15. This limitation causes
difficulty in reducing the total number of trainable parameters
for 3 × 3 convolutions which are the most widely used.
To reduce parameters fewer than nine, OtX can keep at most
eight components, whereas N-Jet must reduce components to
six. N-Jet on SRF outperforms standard convolution filters on
smaller scales than ImageNet classification with 1000 image
classes. FracSRF [11] forms a filter as a tensor dot prod-
uct of two approximated fractional derivatives of Gaussian.
FracSRF needs three parameters per filter, derivative orders
for the vertical and the horizontal directions and the scale of
the tensor dot product. FracSRF performs comparably against
SRF despite fewer parameters. Because all filters in FracSRF
are separable, applying OtX to FracSRF is difficult.

Not all N-Jet applications conflict with OtX. N-Jet Net [12]
is an expansion of SRF such that the receptive field scales are
changed, corresponding to the scale parameter of Gaussian.
The nature that SRF components have non-zero values in a
particular area of a receptive field enables this expansion.
Since OtX components also have this nature, OtX can be
expanded similarly to N-Jet Net. For the same reason, OtX
can apply to SESN [13], which uses a filter onmultiple scales.
Note that components in SESN are implemented based on
{ψn} which are not Gaussian derivatives.

Weight standardization [14] is a powerful development
for convolution weights. Weight standardization adjusts the
mean and the variance of weight values for every output
channel to be 0 and 1, respectively. Scaled weight standard-
ization in [15] scales the standardized weights with trainable
gain parameters defined for output channels of convolutions.
Applying OtX to these causes a problem: subtracting the
mean from the filters loses the role of the components.
To avoid this, we slightly modify the way of standardizing
weights. We divide weights by their second moment around
0 instead of their standard deviations without subtracting their
means. This modified scaled weight standardization is used
in our experiments’ NFNet [16] implementation.

Deformable convolution [17], [18] has flexible offsets, ref-
erence positions for convolutions. The offsets are calculated
by looking around each position. Then, standard convolution
layers are used as the explorers. We can replace the standard
convolution with OtX, which is a way of applying OtX to
Deformable convolution.

III. ANALYZING IMPLICIT PRINCPAL COMPONENTS OF
NEURAL CONVOLUTION FILTERS
In this section, we analyze convolution filter weights in a
well-trained CNN and show our OtX design policy. The CNN
model used for analysis is a VGG16 classifier [19] trained
on the ImageNet dataset [7]. We use the weights data from a
model zoo, PyTorch Image Models [20].
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FIGURE 1. Results of a principal component analysis of VGG16 convolution filters. The components are sorted by their standard deviations
indicated by the blue bar graphs.

FIGURE 2. The most critical nine OtX components (3 × 3).

We show the result of Principal Component Analysis
(PCA) [21], [22] of filter weights for each convolution layer
in Figure 1. At a first glance, the principal components of
each layer have almost a common characteristic. PCA is a
way of extracting orthonormal bases from a set of vectors,
and the bases are efficient for low-rank approximation of
the vectors in the set. Note that the sign of each compo-
nent is ignorable because the component is used for a linear
combination. Bar graphs in Figure 1 visualize the standard
deviations along with the components, and components with
larger standard deviations can approximate with more minor
errors. Namely, more left components in the figure are more
critical for characterizing the filter weights of the convo-
lution layers. This order is almost the same among all the
layers, and it may imply the existence of a general efficient
design of components for characterizing convolution filters.

Formulating and applying these components will bring some
benefits. For example, optimizations with carefully selected
components will reduce the number of trainable parameters
without significant deterioration. Thus, the remaining part of
this section analyzes the PCA results and designs the OtX
formulation policy.

(1) Every component is symmetric around its center point
or two lines through its center. (2) Absolute values of outer
points in a component tend to be smaller than that of inner
points except for symmetrical axes of the component, which
have odd symmetry. This result follows an intuition that
signals in closer positions are more critical since convolution
is a way of aggregating neighboring information. The decay
rates of weights become smaller as the layer becomes far
from the input. Thus, this decay rate should be adjustable
for the layers. (3) Some components adjoin the rotation of
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FIGURE 3. Two types of one-dimensional Hermite-Gaussians. The functions are numerically normalized so that their L2 norms equal 1.

themselves. There exist two types of angle differences: π
2

and π
4 . Components with odd symmetry along either the

horizontal or the vertical direction are the former type, and
pairs of components where one of them has odd symmetry in
both the horizontal and the vertical directions are the latter
type. The latter component has almost the same odd sym-
metry in two directions. On the contrary, some components
have no pair and accord to their π

2 rotation. These kinds
of components can be regarded as radial symmetric compo-
nents, which are isotropic, and each weight is determined
by the distance from the center of the component. (4) The
standard deviations of components seem to form a Gaussian
distribution. Closer layers to the input have slower decay
about the standard deviations. Notably, the ninth components
at most have approximately 1

10 standard deviations than the
first components, and their contributions will be slight.

Let us summarize the above discussions. Each component
is orthogonal to each other, and farther positions from its
center have small absolute values. The components are cate-
gorized into two types, radially symmetric or line-symmetric,
and each of the latter type filters has its pair which accord
to itself when rotated. A line-symmetric component has at
least one odd symmetric direction, and the rotation angle for
the overlap is π

2 if it has only one or π
4 if it has two. The

two symmetries are the same for a line-symmetric component
with two odd symmetries. In the next section, we concretely
formulate filter components that have these natures.

IV. FORMULATION
In this section, we formulate filter components and their
priorities. First, we introduce one-dimensional orthogonal
Hermite-Gaussians {ψn} and note its basic natures. Second,
we extend {ψn} into two-dimensional functions in two ways.
Our filter components are composed of these two types of
functions. The first extension composes radial symmetric
functions {8n}. These functions are defined if and only
if n is even and are generally not separable. The second

extension composes line-symmetric functions {9(ϕ)
m,n}. The

details of the available (m, n, ϕ) combinations are described
in Section IV-B2. After these extensions, we propose a way
of giving priority scores for {8n} and {9

(ϕ)
m,n}. Introducing

these scores enables one to choose 3 sufficiently effective
components from infinite numbers of components. At last,
we note a way of making K1 ×K2 numerical arrays from the
continuous functions {8n} and {9

(ϕ)
m,n}.

A. ONE-DIMENSIONAL ORTHOGONAL
HERMITE-GAUSSIANS
In this paper, we use ‘‘physicist’s Hermite polynomials.’’
Let n be a non-negative integer. Then, the n-degree Hermite
polynomial Hn(x) is defined by a recurrence relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x), (5)

where H0(x) = 1 and H1(x) = 2x. Hermite polynomials
{Hn(x)} have orthogonality with a weight function exp(−x2),
namely∫

R
Hm(x) Hn(x) exp(−x2) dx =

√
π2nn! δm,n. (6)

Thus, if an n-degree one-dimensional Hermite-Gaussian

ψn(x) = Hn(x) exp
(
−
x2

2

)
, (7)

{ψn} is an orthogonal system of functions, we have∫
R
ψm(x) ψn(x) dx =

√
π2nn! δm,n. (8)

Note that N-Jet components [5] are constructed based
on Gaussian derivatives

{
∂n

∂xn exp
(
−
x2
2

)}
=

{
Hn
(

x
√
2

)
exp

(
−
x2
2

)}
, and the function system does not have orthog-

onality. Figure 3 shows graphs of normalized ψn(x) and
Gaussian derivatives for comparison.
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If n is even, ψn is an even function, and if n is odd, ψn is an
odd function. Therefore, ψn(x) is either symmetric or anti-
symmetric about x = 0. This symmetric nature guarantees
that filter components’ weights are aligned symmetrically.

B. ORTHOGONAL SYSTEM OF HERMITIAN FILTER
COMPONENTS
1) EVEN DEGREE RADIAL SYMMETRIC FILTER COMPONENTS
We introduce a two-dimensional filter component system
{8n} by rotating ψn around the origin of an R2 plane. 8n is
defined if and only if n is even because each 8n must be the
same when rotating it by π . We assume an x-y plane such that
its origin is the center of filter components, and the shorter
side of the components corresponds to [−1, 1]. Then, let

8n(x, y) = ψn

(√
x2 + y2

σ

)
, (9)

where σ is a trainable parameter that represents the spatial
scale of components. Each convolution layer has one σ . For
larger σ , filter components are bounded by the filter bound-
ary, and for enough small σ , the components can have suffi-
cient non-zero parts. Components shown as (a), (d), and (i) in
Figure 2 are instances of 8n. Note that a 80 is a Gaussian
filter component. If n ≥ 2, each 8n cannot be represented
as 9(ϕ)

m,n, because 8n is not separable for n ≥ 2. In addition,
{8n} is an orthogonal system of L2(R2) as straightforwardly
derived from the orthogonality of {ψn}. Therefore, each 8n
can be a component obtained from a PCA if we ignore region
truncation errors.

2) LINE SYMMETRIC FILTERS
We assume the same x-y space as Section IV-B1. Let a
line-symmetric filter component

9(ϕ)
m,n(x, y) = ψm

(xϕ
σ

)
ψn

(yϕ
σ

)
, (10)

where (xϕ, yϕ) is a mapped point from the original position
(x, y) by rotating it by ϕ around the origin of the x-y plane.
Namely, [

xϕ
yϕ

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
x
y

]
. (11)

There also exist conditions for available (m, n, ϕ) combi-
nations of {9(ϕ)

m,n} as well as n of {8n}. Note that these are not
limitations derived from the nature of ψn but conditions so
that the components match the analysis result in Section III.
Available (m, n, ϕ) combinations are elements of a set

{(m,m, 0) | m is odd} ∪
{(
m,m,

π

4

)
| m is odd

}
∪ {(m,m+ 1, 0)} ∪

{(
m,m+ 1,

π

2

)}
.

The available combinations of m and n are significantly
limited to n = m,m + 1, and only two ϕ, which equals 0 or
another value, are defined for each relationship. The existence
of 8n will prohibit the combination with even m = n. If
m = n is odd, the relationship 9

( π2 )
m,m(x, y) = 9

(0)
m,m(−x, y)

holds, and that is the reason why ϕ = π
4 is used for odd

m = n combinations. Components shown as (b), (c), (e),
(f), (g), and (h) in Figure 2 are instances of 9(ϕ)

m,n. A system
{9

(ϕ)
m,n} for available (m, n, ϕ) combinations is an orthogonal

system, and each line-symmetric component in the system
has orthogonality with all radial symmetric components.
Therefore, elements of {9(ϕ)

m,n} can be components of a PCA
result simultaneously with {8n} components if we ignore
region truncation errors.

C. ORDER OF FILTER COMPONENTS
In Section IV-B, we defined two types of filter component
systems {8n} and {9

(ϕ)
m,n} as candidates for each Fλ in Eq. 2.

In practice, we must pick finite 3 components from infi-
nite candidates. Although this problem is generally to find
the optimal combination, in this paper, we give a score for
each component and greedily pick components that have
smaller scores. We define the score as the total degree of
one-dimensional orthogonal Hermite-Gaussians in the for-
mulation of a component. The score is n for 8n and m + n
for 9(ϕ)

m,n. Note that we prefer radial symmetric components
over line-symmetric ones with the same scores in principle.
There is an exception in the case of 2 × 2 filters where the
order of the components is 80, 9

(0)
0,1, 9

( π2 )
0,1 , 9

(0)
1,1 because the

sampling results of 82 equals that of 80. This ordering with
the score aligns with the component order in PCA as shown
in Figure 2.

D. SAMPLING FROM THE CONTINUOUS FILTER
COMPONENTS
Proposed filters are no longer arrays of trainable parameters,
but they are still K1 × K2 numerical arrays. Thus, continu-
ous functions defined in Section IV-B must be sampled into
K1×K2 arrays. In our definition of the x-y plane, the smaller
side of a filter corresponds to [−1, 1]. We pick sample points
{(xj, yi)} for array indices {(i, j)} by regular intervals on the
x-y plane. Namely, we have

xj =
K2 − 1
K − 1

(
2(j− 1)
K − 1

− 1
)

(12)

and

yi =
K1 − 1
K − 1

(
2(i− 1)
K − 1

− 1
)
, (13)

where K = Min{K1,K2}. After calculating the filter compo-
nent value for each (xj, yi), the array is divided by its L2 norm.
This normalization guarantees that the array norm equals a
steady value of 1 even if the component is bounded.

V. COMPONENT SCALING
The PCA result shows that components in a layer have quite
different coefficient variances. Thus, we attempt to create
such differences in the variances among components. While a
coefficient is usually one trainable parameter, we represent a
coefficient as a product of two kinds of trainable parameters.
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TABLE 1. Classification results on CIFAR-100 dataset. The phrase ‘‘The loss exploded.’’ indicates the training fails because the loss value becomes too
large to converge.

TABLE 2. Relationships between the number of components and
classification accuracy.

Specifically,

θcout,cin,λ = αcout,cin,λ βλ, (14)

where αcout,cin,λ is a trainable parameter almost compatible
with θcout,cin,λ and βλ is a trainable parameter defined for the
λ-th component in a layer. The newly introduced parameter
βλ adjusts the scales of coefficients for its corresponding
component. This modification acts as a restriction such that
coefficients, especially for components that do not havemuch
effect, do not become too large. The increase in the number of
trainable parameters is 3. Since the number of {θcout,cin,λ} in
a layer is Cout Cin3, this increase is negligibly small. In the
case of Cout = 32 and Cin = 3, although this is one of the
worst examples, the increase rate is approximately only 1%.
We initialize βλ with the equation

βλ = exp

(
−
s2λ
2

)
, (15)

where sλ is the score of the λ-th component. Scores for
N-jet components are defined similarly to OtX in our ablation
study.

VI. EXPERIMENTS
In this section, we keep the model structure of neural clas-
sification models but replace the convolution weights and
compare validation results. Getting a better result from a
method indicates that the method can find better convolution
weights. Learning rates for training are tuned for the original

models that obtain their convolution weights as arrays of
trainable parameters. We use hyperparameters tuned for the
original even when training weights on other representations.
All experiments are done on three random seeds, andwe show
the average value over the three trials.

A. SETTINGS
We use TIMM [20] implementations as baseline classi-
fier models. For filter architectures except for the base-
line, we initialize convolution filter parameters so that the
convolution weights have the same variance as the base-
line. We experiment with classifications on CIFAR-100
benchmark dataset [23]. Training images are resized to
192 × 192 pixels with distorted bounding box crops and
taken random horizontal flips [19]. Validation images are
center-cropped to 224 × 224 pixels after being resized to
256 × 256 pixels by bicubic interpolation. After the trans-
formations, we standardize image values for each channel
by the mean and the standard deviation of the channel over
the dataset. Mini-batch size is set as 32, and we train the
models for 90 epochs. The loss function is the cross-entropy
loss with label smoothing [24], and the smoothing parameter
is set to 0.1. We employ the standard stochastic gradient
descent (SGD) optimizer with Nesterov’s accelerated gradi-
ent method, of which the momentum is set as 0.9. Learning
rates fluctuate under the cosine decay schedule after the
linear warmup over 5 epochs. We apply a Sharpness Aware
Minimization (SAM) [25] step once every 5 training steps.

B. COMPARISON AGAINST THE BASELINE AND N-JET
We compare the OtX architecture against the baseline and
a modified N-Jet with trainable Gaussian scales. The initial
filter scale σ is set to 1. We denote the modified N-Jet with3
components as N-Jet-3, and a notation ‘‘OtX-3’’ is defined
similarly for the OtX architecture. We choose 3 = 10 for
N-Jet, which is the best 3, and 3 = 9 for OtX, which uses
almost the same number of trainable parameters as standard
3× 3 filters.
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TABLE 3. Relationships between the number of components and classification accuracy. Rows that start with bold text are the same settings as Table 1.
The phrase ‘‘The loss exploded.’’ indicates the training fails because the loss value becomes too large to converge.

We experiment on four classificationmodels; VGG16 [19],
DenseNet-121 [26], EfficientNetV2-S [27], and NFNet-
F0 [16]. Table 1 shows the results. Models with OtX convo-
lutions outperform those with standard convolutions on the
datasets where the models were able to be trained. Addition-
ally, training onOtX is more stable than onN-Jet when hyper-
parameters are tuned for standard convolutions. Accordingly,
standard convolutions can be replaced with OtX ones without
modifying the hyperparameters. Employing N-Jet requires
further hyperparameter-tunings even if good hyperparameters
for the model are known. Despite the stability, OtX performs
at least comparably with N-Jet. Thus, OtX can be a candidate
for an SRF component system to obtain better filters without
tuning any hyperparameters.

C. EFFICIENCY OF COMPONENTS
We train NFNet-F0 on N-Jet and OtX with various 3. This
experiment intends to reveal the efficiency of components
of the systems and the trade-off between the expansion
of representable filter space and the optimization of filters
by increasing the number of components. Table 2 shows
the results. Whereas N-Jet-6 performs worse than N-Jet-10,
OtX-6, which has the same number of components, performs
almost as well as OtX-9 and N-Jet-10. This comparison indi-
cates that OtX provides six more efficient components for
neural convolutions than N-Jet. In the second sight for the
trade-off, OtX-6 seems to have the best number of compo-
nents, and what has a larger3 obtains worse filters. However,
OtX-9 has two advantages over OtX-6. The first advantage is
the max accuracy. The max accuracy with OtX-9 is 82.7 %,
and that with OtX-6 is 82.4 %. This indicates that exploration
of coefficients for better filters sometimes succeeds even in
the case with a larger3. The second advantage is the stability
of the training. In the three trials we experimented, OtX-6
failed in training of one of the trials, while OtX-9 was trained
stably in all three trials. Thus, OtX-9 is more suitable when
one wants to obtain better filters through multiple trials or
avoid training failures.

D. ABLATION STUDY
We do an ablation study to reveal what difference between
N-Jet and OtX contributes to the performance. There are
three main differences between N-Jet and OtX; orthogonal-

ity of components, employment of radially or rotated line-
symmetric components, and application of the component
scaling. We do experiments on all combinations to test the
efficacy of each property. Table 3 shows the results. Although
each of the three properties influences the results, finding a
general rule is difficult since none of the three improves the
accuracies regardless of the other two properties. For exam-
ple, employing the component scaling works well on OtX
experiments, but it does not on N-Jet. Especially, comparing
the results of Row 4 and Row 8 indicates that only applying
new types of symmetry to N-Jet decreases the accuracy, and
combined use with other two features, orthogonality and
the component scaling, compensates the accuracy (Raw 5).
Thus, the combination of the three is inseparable and may be
suitable for finding better filters.

VII. CONCLUSION
In this paper, we design a new SRF component system named
‘‘OtX’’ for better optimization of neural convolution filters.
OtX is a modeled formulation of the implicit principal com-
ponents of neural convolution filters based on a PCA result
of well-trained convolution filters. The designed components
are radial or line-symmetric and approximately orthogonal
to one another. Training convolution filters with OtX can
find more efficient weights than the standard filters, which
represented as arrays of trainable parameters, without tuning
the hyperparameters of most of the original standard models.
In the case of using the original’s hyperparameters, OtX is
more stable than the existing N-Jet, but further stability is
required. Since OtX components are the principal ones of
neural convolution filters, OtX is more suitable for repre-
senting filters with fewer components than N-Jet. More OtX
components provide a stabler training and a higher proba-
bility of finding better filters. We also propose a component
scaling for OtX that improves OtX optimization to a degree
comparable to a successful trained N-Jet. Thus, our proposed
method can be a useful SRF component system and can be
applied even when applying SRF on N-Jet is difficult.
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