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ABSTRACT Robotic systems with force sensing have great potential for use in radioactive environments.
In this study, a modified observer-based method was developed to calculate the unknown external force
without adding a redundant sensor and achieve the fault detection in the presence of a force sensor. A dynamic
model of a serial robotic manipulator was built and the design procedure for a modified disturbance observer
(MDO) was established. The output of observer was then used to suppress the disturbance and generate the
fault signature. Moreover, the stability analysis shows that the convergence of the observer error is ultimately
bounded. Simulation results under the step and composite sinusoidal disturbance torque demonstrate the
performance of the force estimation and disturbance rejection. The results, obtained using the Kinova Jaco2

robot manipulator, show that the estimated errors of the external force in X-Y-Z direction are bounded within
±0.5 N, ±2 N, and ±3 N, respectively. Finally, the effectiveness of fault detection is also verified by the
experiment results.

INDEX TERMS Robotic manipulator, observer-based, force estimation, fault detection.

I. INTRODUCTION
Over the past several decades, nuclear energy has been
applied extensively in civilian domains, such as nuclear
power plant, nuclear medicine, and food-processing. It is
highly convenient for mankind, but also has negative effects
to human environmental health. Radioactive waste is one
of the major hazards of the environment and human health.
This type of hazardous waste exits harmful radiations and
may lead the human operators to infections and diseases.
Therefore, the nuclear industry worldwide has been seeking
the cost-effective approaches for the safe disposal of radioac-
tive waste [1]. The use of robotics and remote technologies
provides a safe approach to complete a lot of dangerous
tasks which the human beings had to perform earlier. These
tasks often involve robot-environment interactions, such as
dismantling and packing the reactor vessel internals and

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

grasping the pieces of nuclear fuel bundle. Force interactions
with surrounding objects are essential for guaranteeing safe
task performance. Hence, there is a need to implement the
force control for the robotic manipulators to achieve com-
pliant and safe movement, which requires the information of
robot-environment interaction forces [2]. The typical method
for acquiring the information of interaction force is to equip
the force/torque sensors of the high-resolution and reliability
on the wrist of robot manipulator. However, these sensors
result in a significant increase in the cost of the robotic system
and the complexity of the software and hardware design.
Moreover, the performance of these sensors is easy to be
affected by the radioactive environment (high temperature,
high doses of radiation and strong disturbance) [3]. On the
other hand, with the growing requirements on the safety and
reliability of robotic system in radioactive environments, fault
diagnosis via hardware redundancy may not be an appro-
priate option for robotic systems due to the radiation dam-
age of the hardware. Therefore, the more effective strategies
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of fault detection without additional hardware need to
be addressed.

To overcome the above mentioned drawbacks of the
deployment of force sensors, force estimation methods pro-
vide a means of quantifying the forces and torques exerted
into a robotic system, which is an alternative solution to
eliminate the need for expensive force sensors in strong radi-
ation environments. Several studies have been conducted in
the field of robotics to estimate the interaction force with-
out using force sensors. The most direct estimation method
is to use the available measurements, such as the motor
torque, joint position, velocity, and acceleration to estimate
the external force [4], [5]. However, the acceleration signal is
not available or is difficult to obtain from the joint position
signal owing to the noise sensitivity of the second order
differential, so this method is not practical to implement.
An external force estimation using a comprehensive dynamic
model was developed, where the model was divided into
the dynamic and quasi-static modes [6]. Nevertheless, this
model-based estimation is limited by the parameter uncer-
tainty and unmodelled nonlinear effects and the precision of
force estimation is not guaranteed. To avoid the calculation of
the joint acceleration, generalizedmomentum-basedmethods
to calculate the interaction force were adopted by [7]. This
generalized momentum-based method can guarantee that the
estimated torques quickly converge to the actual ones, but the
inertia parameters are required in the generalized momentum.
A robust force estimation scheme based on a semi-parametric
model and a disturbance Kalman filter (DKF) was introduced
to detect the interaction force for a multi-linkmanipulator [8].
This scheme considers the manipulator’s model as well as
the disturbancemodel, which improves the robustness against
uncertainty. However, the performance of this scheme can be
worsened by the neglected dynamic uncertainty. In addition,
an extended state observer (ESO) was developed for estimat-
ing the time-varying external forces on a robotic manipulator
[9]. Nevertheless, the model errors of the robot dynamic
model reduce the accuracy of the ESO observer, and the high
frequency tremors may limit the suitability of the method.
A second-order sliding-mode observer was designed for esti-
mating the interacting force on a robot manipulator [10]. This
observer can calculate the external force exerted by the envi-
ronment without disturbance, which restricts the application
of the observer, particularly in realistic robotic systems.

Recently, a higher-order sliding mode observer was
developed for the online monitoring of unknown external
force/torque. This method regards the torque disturbance as
an unknown input and reconstructs the torque disturbance
by using robust sliding mode (SM) terms [11]. An interac-
tion force estimation method based on a higher-order slid-
ing mode observer (HOFTO) was introduced to evaluate
the fast-varying external forces acting on the ER3A robot.
The HOFTO can achieve a higher estimation accuracy and
better system performance than the traditional ESO method.
However, this method is still sensitive to unmodelled effects
and sensor noise, which results in estimation errors [12].

Another force estimation method was the use of the distur-
bance observers (DOB), which reconstructs the unknown the
external force on the robotic manipulation from the known
inputs and the measurable output [13]. The estimation accu-
racy of the DOB is theoretically guaranteed because the
estimation of the system state converges to the vicinity of
the actual states [14]. Furthermore, the non-linear disturbance
observer (NDOB) was extended to nonlinear and coupled
systems for the estimation of robot-environment interaction
[15], [16], [17].

On the other hand, various advanced control techniques
have been proposed to estimate the unmodeled dynamics
and suppress the disturbances, such as sliding mode con-
trol (SMC) [18], [19], robust control [20], [21], adaptive
control [22], [23], neural network control [24], [25], [26].
For example, the adaptive control or robust control was
applied to the controller that handle unforeseen influences
to a limited extent [27]. The neural network control was
used to compensate the influence of unknown dynamics and
uncertainties [28], [29]. However, among the variousmethods
of disturbance rejection, disturbance observer-based control
scheme is the most efficient way to handle the disturbance
effect. The basic concept behind disturbance observer-based
control is to lump all the system uncertainties into the dis-
turbance term and to estimate the lumped term. Then, the
effect of the disturbance can be cancelled out by introducing
feedforward compensation. For the fault diagnosis of the
robot system, several types of observer-based fault diagnosis
approaches have been developed. An optimal placement of
sensors based on a discrete particle swarm algorithm was
developed for the fault diagnosis of hydraulic control system
[30]. A high-gain observer was designed for fault diagnosis of
the ANAT robot [31]. A proportional integral observer-based
fault detection was proposed on the basis of the robust adap-
tive fuzzy sliding mode extended autoregressive exogenous
input–Laguerre model for a robot manipulator [32]. A data-
driven method-based fault diagnosis approach based on the
deep convolutional neural network is used to recognize the
sensor and actuator faults of the robot system [33]. a fault
diagnosis scheme based on the adaptive observer is proposed
for the actuator fault in the networked manipulator system,
which the residual of the time-delay state is used to design
the fault estimation law [34].

Motivated by the above-mentioned works, we presented
a novel method to calculate the external forces and detect
the sensor faults. The main contributions of this study
can be summarized as follows: a) A modified distur-
bance observer-based method is proposed for calculating
the unknown external force without additional hardware and
detecting the sensor fault in the presence of a force sensor,
which can enhance the safety and reliability of the robotic
system in radioactive environments. b) A Lyapunov stability
analysis is considered to illustrate the stability of themodified
disturbance observer and the observer error asymptotically
converge to be ultimately bounded. c) Simulations and exper-
iments performed on the Kinova Jaco2 manipulator verified
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the performance of the observer-based force estimation and
fault detection.

The remainder of this article is organized as follows.
The dynamic model and properties of a serial multiple-joint
manipulator are presented in Section 2. The modified distur-
bance observer design, stability analysis, and fault detection
are detailed in Section 3. Simulation studies for different sce-
narios are given in Section 4. Experiments are performed in
Section 5 to illustrate the effectiveness of the proposed force
estimation and fault detection method. Finally, Section 6 out-
lines the conclusions.

II. ROBOT DYNAMIC MODEL AND PROPERTIES
According to the recursive Newton-Euler method [35], the
dynamic equations of n joint manipulator systems can be
described as:

D(q)q̈+ C(q, q̇)+ G(q)+ F(q̇) = τ + τ ext (1)

where D(q) ∈ Rn×n refers to the symmetric inertial matrix,
C(q, q̇) ∈ Rn×n denotes the nonlinear Coriolis and centrifugal
torque vector andG(q) ∈ Rn denotes the gravity loading force
vector and F(q̇) ∈ Rn denotes the friction torque vector; q, q̇,
q̈ ∈ Rn refer to the joint position vector, velocity vector and
joint acceleration vector, respectively; τ ∈ Rnis the actuator
torque acting on the joints. τ ext ∈ Rn denotes an unknown
external joint torque vector.

Although several types of effective friction models have
been proposed for the mechanical systems, the classical
Coulomb-viscous friction model is still widely used to model
joint friction in robotic applications [36]. The friction torque
model is given by:

F(q̇) = f csign(q̇)+ f vq̇ = [sign(q̇), q̇] · [f c, f v] (2)

where f c ∈ Rn denotes the Coulomb coefficients vector;
f v ∈ Rn denotes viscous friction coefficients vector. sign(·)
represents a sign function.

The important properties of the dynamic model (1) utilized
in convergence analysis and control system design are given
as follows:
Property 1: The matrix Ḋ(q) − 2C(q, q̇) is a skew-

symmetric matrix, and it can be derived as Ḋ(q) = C(q, q̇)+
C(q, q̇)T .
Property 2: The inertia matrixD(q) is symmetric, positive-

definite and bounded by the positive constants d1 and d2. The
following inequality holds:

d1 ‖x‖2 ≤ xTD(q)x ≤ d2 ‖x‖2 (3)

where x is an identity matrix.
Property 3: C(q, q̇) and G(q) are upper bounded by known

bounds as follows:

‖C(q, q̇)‖2 ≤ kc ‖q̇‖, ‖G(q)‖ ≤ kg (4)

where kc and kg are bounded positive constant.
Assumption 1: The actuator torque τ and its time derivative

are upper bounded.

FIGURE 1. Control strategy for robot manipulator.

Assumption 2: External joint torque τ ext and its time
derivative are bounded by known limits.

The motion control objective is to make the actual joint
position q converge to a given desired joint position qd . the
error vector of the position and velocity can be obtained as:

e(t) = qd (t)− q(t), ė(t) = q̇d (t)− q̇(t) (5)

To achieve the purpose of control, the position error vector
e(t) and velocity error vector ė(t) vanishes asymptotically.

lim
t→∞

e(t) = 0, lim
t→∞

ė(t) = 0 (6)

The composite controller consists of a linear proportional
derivative (PD) controller and a disturbance observer. The
undesirable effects of external force/torque and other distur-
bances are compensated by the outputs of the disturbance
observer through feedforward technology, which enhances
the disturbance attenuation ability for the composite con-
troller. Thus, the control law can be written as:

τ = G(q)+ Kpe(t)+ Kd ė(t)− τ̂ ext (7)

where Kp and Kd are symmetric, positive-definite matrix
with constant value and act as the proportional and derivative
gains, respectively. G(q) is the online gravity compensation.
τ̂ ext is the estimate vector of external joint torque. The control
strategy of observer-based force estimation and fault detec-
tion is shown in Fig. 1.

III. OBSERVER DESIGN AND STABILITY ANALYSIS
A disturbance observer (DOB) was originally proposed in
[37] for the robotic application as an unknown input observer.
The core concept of this type observer is to utilize the
known control inputs and the measured outputs to reconstruct
unknown disturbances. With the measurable joint accelera-
tion information and considering the external force as the dis-
turbance, the following disturbance observer was developed
for the model (1) [38]:

˙̂τ ext = −Lτ̂ ext + (D(q)q̈+ C(q, q̇)+ F(q̇)− τ ) (8)

where L denotes the diagonal gain matrix. Defining s =
τ ext− τ̂ ext as the observer error, the dynamics of the observer
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FIGURE 2. Structure of modified disturbance observer for external torque
estimation.

error can be obtained from (1) and (8).

s = τ̇ ext − Ls (9)

The dynamics of observer error (9) is asymptotically stable
by the proper choice of gain matrix L when the external joint
torque tends to be constant. As seen in (8), the joint accel-
eration measurement q̈ is required for the implementation
of the disturbance observer. However, the joint acceleration
measurement cannot be obtained from the joint position or
velocity measurement by differentiation owing to measure-
ment noise. Installing an accurate accelerometer for acceler-
ation measurement is impractical in robotic manipulators due
to its difficult integration and the reliability.

To overcome the limitation of the observer (8), a new
auxiliary variable z is introduced to remove the dependence
of the acceleration measurement.

z = τ̂ ext + p(q, q̇) (10)

where z ∈ Rn donates the auxiliary state variable vector,
p(q, q̇) ∈ Rn donate the auxiliary function to be designed. It is
assumed that the following nonlinear equation is satisfied:

LD(q)q̈ =
[
∂p(q, q̇)
∂q

∂p(q, q̇)
∂ q̇

] [
q
q̈

]
= ṗ(q, q̇) (11)

Considering (10), (11) and (8), implies that

ż = ˙̂τ ext − ṗ(q, q̇)

= −Lτ̂ ext+L(D(q)q̈+C(q, q̇)+G(q)+F(q̇)−τ )−ṗ(q, q̇)

= −Lτ̂ ext + L(C(q, q̇)+ G(q)+ F(q̇)− τ )

+ LD(q)q̈− ṗ(q, q̇)︸ ︷︷ ︸
=0

= −L(z+ p(q, q̇︸ ︷︷ ︸
τ̂ext

))+ L(C(q, q̇)+ G(q)+ F(q̇)− τ )

(12)

According to (10) and (12), the structure of modified dis-
turbance observer (MDO) for external torque estimation is
shown in Fig.2.

Proof: According to the definition of the observer error
s = τ ext − τ̂ ext , its dynamic becomes:

ṡ = τ̇ ext − ˙̂τ ext = τ̇ ext − (ż+ ṗ(q, q̇)) (13)

From (1) and (11), the derivative of the auxiliary variable
z can be written as:

ż = −L(z+ p(q, q̇))+ L(τ ext − D(q)q̈)

= L(τ ext − τ̂ ext )− LD(q)q̈ (14)

By considering (12) and (14), the error dynamics (13) can
be represented as follows:

ṡ = τ̇ ext − Ls+ (LD(q)q̈− ṗ(q, q̇)) (15)

To eliminate the dependency of the observer error dynam-
ics on the acceleration measurement q̈, the assumption (11)
should be held.

ṗ(q, q̇) = (∂p(q, q̇)/∂q)q̇+ (∂p(q, q̇)/∂ q̇)q̈

= LD(q)q̈ (16)

Therefore, ∂p(q, q̇)/∂q = 0 must be satisfied and p(q, q̇)
becomes a function of q̇, the following equation can be
obtained:

L = (∂p(q, q̇)/∂ q̇)D−1(q) = XD−1(q) (17)

p(q, q̇) = (∂p(q, q̇)/∂ q̇)q̇ = Xq̇ (18)

where X is a constant diagonal and positive-definite matrix,
which is the gain matrix of the MDO to be designed.

Error dynamics (15) can be simplified as follows:

s = τ̇ ext − Ls (19)

To analyze the stability of the error dynamics in (19),
we consider the following Lyapunov function:

V =
1
2
sTD(q)s (20)

The derivative of the Lyapunov function (20) becomes:

V̇ = sTD(q)ṡ

= sTD(q)(τ̇ ext − Ls)

= −sTD(q)XD−1(q)s+ sTD(q)τ̇ ext (21)

Considering that X is a constant diagonal and positive-
definite matrix and D(q) is a symmetric, positive-definite
matrix, it is clear that D(q)XD−1(q) is also a positive def-
inite matrix. Using Rayleigh inequality [39], the following
inequalities can be obtained:

λmin(X) ‖s‖2 ≤ sTD(q)XD−1(q)s ≤ λmax(X) ‖s‖2 (22)

sTD(q)τ̇ ext ≤ ‖s‖ ‖D(q)‖ ‖τ̇ ext‖ (23)

where λmin(X) and λmax(X) are the minimum and maximum
eigenvalues of matrix X , respectively. It should be remarked
that 0 < λmin(X) ≤ λmax(X) is satisfied owing to the
properties of the positive definite matrix X .

Combining (22) and (23) with (21) yields:

V̇ ≤ −λmin(X) ‖s‖2 + ‖s‖ ‖D(q)‖ ‖τ̇ ext‖ (24)

Theorem 1: If the external joint torque is constant, that is,
τ̇ ext = 0, the observer error s converges asymptotically to
zero and τ̂ ext approaches the external joint torque τ ext .
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Proof: V̇ in (24) can be simplified as follows:

V̇ ≤ −λmin(X) ‖s‖2 ≤ 0 (25)

From equation (25), we can conclude that the derivative
of the Lyapunov function V̇ is a negative-definite function.
Also, the error dynamics (19) becomes ṡ + Ls = 0, and its
solution can be written as:

s = Ce−Lt ≤ Ce−λmin(X)t/d2 (26)

where C is a constant. Note that ‖L‖ ≥ λmin(X)/d2 is
satisfied. Then, the error dynamics is asymptotically stable.
Theorem 2: If the external joint torque is time varying and

its time derivative is bounded by a positive constant ε, that
is, ‖τ̇ ext‖ ≤ ε(ε > 0) the observer error s converges with an
exponential rate in a finite time and bounded uniformly.

Proof:The inequality (24) can be represented as follows:

V̇ ≤ −λmin(X) ‖s‖2 + ‖s‖ ‖D(q)‖ ‖τ̇ ext‖

= −‖s‖ (−λmin(X) ‖s‖ + ‖D(q)‖ ‖τ̇ ext‖)

≤ −‖s‖ (−λmin(X) ‖s‖ + ‖D(q)‖ ε) (27)

From equation (27), it is seen that V̇ is a negative-definite
function if the following inequality (28) is satisfied:

−λmin(X) ‖s‖ + ‖D(q)‖ ε > 0 (28)

Apparently, the solution boundedness of the error dynam-
ics (19) is guaranteed in the region (29) and its solution can
be expressed as the from (30).

V̇ < −‖s‖ < 0, ∀ ‖s‖∈D=
{
‖s‖>

‖D(q)‖ ε
λmin(X)

}
(29)

s < Ce−λmin(X)t/d2 +
‖D(q)‖ ε
λmin(X)

(30)

Therefore, the observer error converges at an exponential
rate in a finite time and into a bounded region D. From (30),
the convergence speed is governed by λmin(X). The decay
rate of the observer error increases when λmin(X) is larger,
ultimately leading to a faster convergence speed. λmin(X) is
determined by the selection of the gain matrix X . Hence, the
observer design can be transformed into the selection of the
gain matrix.

For the fault detection of the force sensor, it is assumed
that ‖τ ext‖ ≤ ε(ε > 0)· in Theorem 2 is satisfied and the
inequality (30) can be rewritten as follows:

s < Ce−λmin(X)t/d2 +
‖D(q)‖ ε
λmin(X)

≤ C +
‖D(q)‖ ε
λmin(X)

= σ

(31)

where σ denotes a constant determined by the X , ε, andD(q).
The external force can be precisely measured by the force
sensor while working in a good condition and the equivalent
joint torque τm caused by the external force is equal to the
actual torque τ ext . Hence, the following inequality holds:

s = τm − τ̂ ext < σ (τm = τ ext ) (32)

FIGURE 3. Schematic diagram of disturbance observer-based fault
detection.

TABLE 1. Fault signatures matrix.

Accordingly, the inequality (32) in Cartesian space can be
formulated as:

sc = Fm − F̂ext < σ c(Fm = Fext ) (33)

where Fm, Fext , and F̂ext are the measured, actual, and esti-
mated force on end effector, respectively; sc is the estimated
error of external force. σ c is the threshold to be designed.
The sensor fault can be detected by the residuals between
sensor measurement and estimated outputs, which is defined
as R =

∣∣∣Fm − F̂ext ∣∣∣. The detection mechanism of the sensor
fault by using inequality (33) can be presented as follows:

f =

{
0, |sc| < σc

1, otherwise
(34)

where f denotes the fault signature. f = 0 indicates the
residual within the threshold range and the sensor works in
good condition. f = 1 indicates that the residual goes beyond
the threshold and the sensor fault may occur due to radiation
damage. The schematic diagram of the disturbance observer-
based fault detection is shown in Fig. 3.

The fault signature matrix for the residuals is shown in
Table 1.

Furthermore, the estimated external force can be obtained
by using the following relationship:

τ̂ ext = JT F̂ext (35)

where JT denotes the transposed matrix of the Jacobian.F̂ext
is defined as follows:

F̂ext = [F̂x , F̂y, F̂z, τ̂x , τ̂y, τ̂z]T (36)
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Finally, the external force on the end-effector can be com-
puted by the following equations:

F̂ext = (JT )−1τ̂ ext (37)

where (JT )−1 is the inverse matrix of the manipulator Jaco-
bian.

IV. NUMERICAL SIMULATIONS
In this section, simulations were conducted on Simulink/
MATLAB to illustrate the effectiveness of the proposed esti-
mation scheme. The dynamic parameters of the Six-DOF
Kinova Jaco2 robot manipulator used in the simulation were
obtained by the dynamic parameter identification methods
[40], [41]. These parameters are listed in Appendix. To show
the disturbance attenuation ability and the tracking perfor-
mance of the proposed scheme, the proposed scheme is
compared with the conventional PD controller and the adap-
tive bias radial basis function neural network (RBFNN)
controller [24].

The gains of the conventional PD controller are chosen as:

Kp = diag {40, 40, 40, 20, 20, 20} (38)

Kd = diag {8, 8, 8, 0.4, 0.4, 0.4} (39)

The gains of the adaptive bias RBFNN controller are cho-
sen as:

K1 = diag {10, 10, 10, 5, 5, 5} (40)

K2 = diag {5, 5, 5, 2.5, 2.5, 2.5} (41)

The input number of adaptive RBFNN m = 18, the
number of hidden layer nodes P = 7; The center of the
receptive field of Gaussian functions are selected as c =
[−1.5,−1,−0.5, 0, 0.5, 1, 1.5]18×7, and the width of Gaus-
sian functions b = 1. In term of the adaptive law, the learning
rate 0 = diag {8, 8, 8, 4, 4, 4}, the discontinuous switching
constant δ = 0.001, and the weight of the adaptive RBFNN
controllerW = 14.
The initial condition used for simulation is set as:

q(0), q̇(0), q̈(0), qd (0), q̇d (0) = 0 (42)

z = [0, 0, 0, 0, 0, 0]T (43)

To evaluate the performance of the proposed control strat-
egy and force estimation method. The gain matrix used in
the simulation are given in Table 2. The desired position
trajectories for the Kinova Jaco2 manipulator are depicted in
Fig. 4. The step torque and composite sinusoidal torque are
assumed to be joint disturbance torque.
A step torque of 10 Nm was applied to all the joint 1-6

to analyze the step response of the proposed observer, which
simulates the rapidly changing disturbance. The estimation
results of the step disturbance torque for different gain matri-
ces are depicted in Fig. 5. The settling times of the 2%
criterion for the estimated external torque are listed in Table 3.
It can be observed that the MDO can exactly estimate the

sudden change of the disturbance torque and the gain matrix
X3 provides the fastest convergence speed in the response

TABLE 2. The selection for the gain matrix X .

FIGURE 4. The desired position trajectories for Kinova Jaco2 manipulator.

of the step external torque. Moreover, the estimation errors
converge to zero and the estimated torque by using MDO
approaches the actual joint torque while the disturbance
torques remain constant from 1 to 6 s. This confirms the
correctness of the analysis in the Theorem 1.

The position tracking control is performed with and with-
out MDO compensation under the gain matrix X3 and the
same controller gain parameter. The tracking performances
of the conventional PD control and the adaptive bias RBFNN
control with and without MDO compensation are compared
in Fig. 6. The tracking error are showed in Fig. 7. From
Figs. 6 and 7, the adaptive bias RBFNN control scheme
presents the superior tracking control performance on the
tracking precision and strongest property to uncertain terms
compared with the conventional PD control scheme. How-
ever, the adaptive bias RBFNN control scheme has still the
steady tracking error in the presence of disturbance. On the
other hand, both the conventional PD controller and the adap-
tive bias RBFNN controller with MDO compensation can
significantly improve the position tracking performance and
enhance the disturbance attenuation ability.

To further analyze the robustness performance of the posi-
tion tracking and the torque estimation for a fast-varying
disturbance torque. A composite sinusoidal torque with τ =
10 sin(2π t)+sin(20π t) is applied to all the joint 1-6 from t=1
to 9 s. Fig. 8 shows the estimation results of the composite
sinusoidal disturbance torque under the different gain matri-
ces. The corresponding tracking errors are shown in Fig 9.
As shown in Figs. 8 and 9, the MDO can still estimate the
fast-varying disturbance torque with bounded tracking errors.
The larger (smaller) eigenvalue of the matrix may lead to the
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FIGURE 5. Estimation of step disturbance torque applied on all joints: (a) - (f) corresponding to the joint 1- joint 6.

FIGURE 6. Tracking performances with and without MDO (step disturbance torque): (a) - (f) corresponding to the joint 1- joint 6.

smaller (larger) tracking error and a larger rate of change in
the disturbance torque results in an increased tracking error.
These results support the analysis in Theorem 2.

Similarly, the joint position tracking control is performed
with the same controller parameter of the step disturbance
torque simulation. The joint position tracking performances
of each joints with and without MDO compensation are
shown in Fig. 10. The tracking error are showed in Fig. 11.
It can be clearly seen that the conventional PD controller
under the fast-varying torque disturbance shows a rela-
tively stable system but has a large tracking error. Com-
pared with the conventional PD controller, the adaptive

bias RBFNN controller provides a relatively good track-
ing performance and results in much smaller tracking error.
However, both the conventional PD controller and the
adaptive bias RBFNN controller cannot completely can-
cel the effect of disturbances due to lack of the feed-
forward compensation. The MDO can effectively suppress
the fast-varying disturbances and greatly reduces the track-
ing error of each joints caused by these disturbances. The
composite controller integrated with MDO compensation
significantly improve the tracking performance under the
disturbance and achieve strong robustness against torque
disturbances.
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FIGURE 7. Tracking errors with and without MDO (step disturbance torque): (a) - (f) corresponding to the joint 1- joint 6.

FIGURE 8. Estimation of the composite sinusoidal disturbance torque applied on all joints: (a) - (f) corresponding to the joint 1- joint 6.

V. EXPERIMENTS AND DISCUSSIONS
The experiment for validating the proposed observer was
performed on a Six-DOF Kinova Jaco2 manipulator, which is
a lightweight robot with revolute joints, as shown in Fig. 12.
Integrated encoders and torque sensors are embedded in each
joint for position, velocity and torque measurements. The
joint of the manipulator is controlled by the Kinova SDK
developed in the Matlab/Simulink. The sampling frequency
is 100Hz. The Denavit-Hartenberg (DH) table for the manip-
ulator are given in Table 4. The controller gain parameters for
the manipulator are set as the same in (38) and (39). The gain
matrix was chosen as X3.

A. EXPERIMENT 1: EXTERNAL TORQUE ESTIMATION WITH
A FIXED POSITION
To illustrate the effectiveness of the proposed method for the
external torque estimation with a fixed position, the load (a
steel ball of 1 Kg) was applied to themanipulator end-effector
as an external disturbing force. The load is regarded as a
constant force in the Z direction. Accordingly, the disturbance
torque caused by the load was exerted on each joint. The
disturbance torque was changed by exerting and removing the
load. The load is placed on the end effector from t = 5.0 to
15.4s and 25.8 to 35.3s while the joint position is keeping sta-
ble at q = [−π/4;π;π/2; 0; 0; 0] rad, as shown in Fig. 12.
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FIGURE 9. Tracking error of MDO (composite sinusoidal disturbance torque): (a) - (f) corresponding to the joint 1- joint 6.

FIGURE 10. Tracking performances with and without MDO (the composite sinusoidal disturbance torque): (a) - (f) corresponding to the joint 1-
joint 6.

TABLE 3. Settling time of 2% criteria for the estimated external torque.

The estimated joint torquewas comparedwith the actual mea-
surement (obtained by the joint torque sensor). Fig. 13 shows

TABLE 4. DH parameters for Kinova Jaco2 manipulator.

the estimation results of the external disturbance torques
exerted on the joints. The results in Fig. 13 indicate that the
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FIGURE 11. Tracking errors with and without MDO (the composite sinusoidal disturbance torque): (a) - (f) corresponding to the joint 1- joint 6.

FIGURE 12. Six-DOF Kinova Jaco2 manipulator.

estimated external torque can rapidly and precisely follow
the actual torque. It should be noted that the external torques
produced by the load were only exerted on joints 2, 3, and 5 in
this case.

B. EXPERIMENT 2: EXTERNAL TORQUE ESTIMATION WITH
A TRACKING TASK
To evaluate the performance of the proposed method for the
external torque estimation with a tracking task, the manip-
ulator was controlled to execute the tracking task while the
load was placed on the end effector from t = 1.1 to 8.8 s and
20.8 to 28.1 s. Fig. 14 shows the motion of the manipulator
for the tracking task. The position and velocity of all the joints
in the joint space are shown in Fig. 15(a) and Fig. 15(b). Cor-
respondingly, the trajectory of the end effector in Cartesian
space is shown in Fig. 15(c). Note that the joints 4 to 6 are

still at a fixed position so that the load (the steel ball) is always
placed on the end-effector during the motion.

Fig. 16 shows the estimation results of the external distur-
bance torques on each joint in this case. As can be seen, the
estimation results provide relatively accurate approximation
of the actual external torque in magnitude and time response.
A spike occurs in the actual torque when the joint velocity
is reversed, which is mainly caused by the nonlinear fric-
tion. Therefore, it is reasonable to infer that the MDO can
effectively predict the unknown disturbance torques when the
manipulator performs a tracking task.

C. EXPERIMENT 3: ELASTIC FORCE ESTIMATION ON THE
END EFFECTOR
To highlight the effectiveness of the proposed method,
another experiment of the elastic force estimation was per-
formed and compared with the extended state observer (ESO)
estimation method [9]. A six-axis force sensor (Robotiq,
FT300) was used to measure the actual force exerted on
the end effector. A spring with an elastic coefficient of
1.16 N/mm was installed between the end effector and the
force sensor. The end-effector was commanded to move up
and down vertically, and the elastic force generated by the
spring was changed with a 5 second cycle, as shown in
Fig. 17. The gain parameters of the ESO parameterized by
using the pole placement technique [42] are listed in Table 5.

The estimated joint torques by using the proposed and
ESO-based methods were compared with the actual torques
in joint space, as shown in Fig. 18. According to the esti-
mated joint torques (see Fig. 18), the corresponding esti-
mation of the external forces can be computed by Eq. (37).
Fig. 19 shows the measurement of the external forces and
the estimation of external forces in Cartesian space, where
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FIGURE 13. Estimation results of external torques with a fixed position: (a) - (f) corresponding to the joint 1- joint 6.

FIGURE 14. The movement of robot manipulator for the tracking task.

FIGURE 15. The joint position, velocity in joint space and trajectory of end effector in Cartesian space: (a) joint position, (b) joint velocity,
(c) trajectory of end effector.

the measured forces were obtained by using the force sensor
(Robotiq, FT300). The estimation errors of the external force
induced by the proposed and ESO methods in the X-Y-Z
direction are shown in Fig. 20. As it is shown in Fig. 20,
the estimation errors of the proposed method in the X-Y-Z
direction are bounded within ±0.5 N, ±2 N and ±3 N,
respectively.

Moreover, the performance of the proposed scheme was
quantitatively evaluated by the root-mean-square (RMS)
error between themeasurement and the estimation, which can
be expressed as follows [43]:

εRMS =

√
1
N

∑N

i=1
(τmi − τei)2 (44)
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FIGURE 16. Estimation results of external torques with the tracking task: (a) - (f) corresponding to the joint 1- joint 6.

FIGURE 17. Experiment for the elastic force estimation on the end effector.

FIGURE 18. Comparison between the estimated and actual torque in all joints: (a) - (f) corresponding to the joint 1- joint 6.

105314 VOLUME 10, 2022



H. Liu et al.: DOB-Based Force Estimation and Fault Detection for Robotic Manipulator

FIGURE 19. Comparison between the measured and estimated force on the end effector: (a) - (c) corresponding to the external force in X-Y-Z
direction.

FIGURE 20. Estimation error of external force induced by the proposed and ESO method: (a) - (c) corresponding to the estimation error in X-Y-Z
direction.

TABLE 5. The gain parameters of ESO.

TABLE 6. RMS errors of torque estimation for the experimental
validation.

where τmi is the ith sample of the measured value and τei is the
estimated value of torque /force at the ith point. N represents
the total number of samples. The RMS errors of the torque
estimation for the experimental validation are summarized in
Table 6. The RMS errors of external force estimation induced
by the proposed and ESO methods are compared in Table 7.

These results indicate that the RMS errors of the proposed
scheme are smaller than the ESO method and the proposed
scheme is more effective in estimating the external force.

TABLE 7. The comparison of RMS error for external force estimation.

D. EXPERIMENT 4: FORCE SENSOR FAULT DETECTION
Similar to experiment 3, the final experiment was performed
to illustrate the effectiveness of the proposed approach for
fault detection. A broken connection of the signal was exerted
on the force sensor to simulate a sensor fault, which can result
in a sudden change in the measured value. Fig. 21 shows the
measured and estimated external forces when the signal is
disconnected at 7.7 s. As shown in Fig. 21, the estimated force
output can track the actual sensor measurement in the X-Y-Z
direction before sensor faults occur. However, the force sen-
sor cannot measure the external force after a fault occurs,
while the proposed observer is still effective in estimating
the external force. The residuals between the estimated force
outputs and the actual force outputs in the X-Y-Z direction
are shown in Fig. 22. The detection thresholds for residuals
in the X-Y-Z direction were set as ±1 N, ±2.5 N and ±4 N,
respectively. The residuals were within the thresholds in the
absence of faults (before 7.7 s) and out of the thresholds once
a fault occurred (after 7.7 s). Note that the residual signal in
the X direction does not exceed its threshold because of the
smaller external force in the X direction.

According to the decision mechanism (34) described in
Section 3, the sensor fault signatures in the X-Y-Z direction
can be obtained to detect the sensor fault. The fault signature
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FIGURE 21. The measured and estimated force: (a) - (c) corresponding to the external force in X-Y-Z direction.

FIGURE 22. Residual and detection threshold for fault detection: (a) - (c) corresponding to the residual in X-Y-Z direction.

TABLE 8. Fault signature matrix for the residuals.

matrix is presented in Table 8. It can be seen form Figs. 21–22
that the sensor fault can be effectively detected at 7.7 s
in Y-Z direction and the fault signatures would be made
immediately.

In order to evaluate the detection performance, the accu-
racy, the fault detection rate (FDR), the false alarm rate
(FAR), and the missed detection rate (MDR) are adopted as
the indexes. The accuracy, FDR, FAR, and MDR are defined
as follows [44]:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(45)

FDR =
TP

TP+ FP
(46)

FAR =
FN

TP+ FN
(47)

MDR =
FP

Total number of faults
(48)

where TP, TN, FP, and FN indicate the number of true posi-
tives (fault signal correctly diagnosed as fault), true negatives
(normal signal correctly diagnosed as normal), false positives

FIGURE 23. The classification results of fault detection.

TABLE 9. The detection performances in X-Y-Z direction.

(fault signal incorrectly identified as normal), and false neg-
atives (normal signal incorrectly identified as fault).

The experiment of the fault detection was tested for
250 times, with 50 times for sensor faults. The results were
divided in two classes; normal and fault. The classification
results of fault detection are summarized into bar plots and
showed in Fig. 23. Table 9 shows the detection performances
in terms of the accuracy, FDR, FAR, and MDR. According
to the results showed in Fig. 23. and listed in Table 9, the
proposed detection strategy achieved the highest accuracy
of 98.80% with the smallest false alarm rate of 3.92% in Z
direction. However, the detection performances in X direction
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is undesirable due to the high number of FPs and FNs. Note
that the sensor failure can be correctly determined once the
faulty signal occurs in a certain direction. Hence, the pro-
posed approach can be used to detect the sensor faults in
radioactive environments.

VI. CONCLUSION
In this study, a modified disturbance observer (MDO) based
scheme is proposed to estimate the unknown external force
and detect the sensor faults for a robot manipulator. The
stability analysis shows that the proposedmethod can guaran-
tee the asymptotically convergence of the observer tracking
error to be ultimately bounded. The disturbance rejection
and tracking performance were greatly improved by using
MDO compensation. Simulations and experiments under dif-
ferent practical scenarios are carried out to illustrate the
effectiveness of the proposed observer. The results performed
on the Kinova Jaco2 manipulator show that the proposed
scheme can evaluate the external disturbance force with the
bounded estimated errors and the superiority of the proposed
scheme was highlighted by comparing it with the extended
state observer (ESO) method. Furthermore, the sensor fault
detection was achieved by using the fault signatures from
the proposed observer, which can improve the safety and
reliability of the robotic system without additional hardware.
Hence, the proposed scheme provides an efficient alternative
to traditional sensors as well as a redundant solution for the
force sensing of robotic systems. Future work will make
efforts to achieve sensorless force control of remote robot
manipulator in radioactive environment.

APPENDIX
The dynamical parameters of Kinova Jaco2 manipulator used
in simulation are listed as follows:
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