
Received 5 September 2022, accepted 21 September 2022, date of publication 28 September 2022, date of current version 4 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3210248

Task Offloading and Resource Allocation for
Industrial Internet of Things: A Double-Dueling
Deep Q-Network Approach
WEIJUN CHENG 1,2, (Member, IEEE), XIAOSHI LIU 1, XIAOTING WANG1,
AND GAOFENG NIE2, (Member, IEEE)
1School of Information Engineering, Minzu University of China, Beijing 100081, China
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Weijun Cheng (weijuncheng@muc.edu.cn)

This work was supported by the Open Foundation of the State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, under Grant SKLNST-2022-1-14.

ABSTRACT With the development of 5G technology, Mobile Edge Computing (MEC) has become a
promising technology that is widely used in the Industrial Internet of Things (IIoT) and other fields. However,
the increase in terminal devices and massive data growth has brought new challenges to MEC systems. How
to meet the latency requirements of mobile devices while reducing system costs as much as possible is an
urgent problem to be solved. To address this problem, we construct a smart factory model and formulate a
mixed-integer nonlinear programming problem with the goal of minimizing the weighted sum of task delay
and energy consumption. Considering that this problem is non-deterministic polynomial hard (NP-hard),
we choose the Deep Q-network (DQN) approach to solve the objective function. In order to avoid the
inaccurate Q-value estimation problem of the Double DQN algorithm and the overestimation problem of
the Dueling DQN algorithm, we combine them to propose a Double-Dueling DQN (D3QN) algorithm. The
simulation results show that the D3QN algorithm significantly outperforms the DQN, the Double DQN, and
the Dueling DQN algorithm in reducing the total system cost.

INDEX TERMS Mobile edge computing (MEC), task offloading, deep reinforcement learning, Industrial
Internet of Things (IIoT).

I. INTRODUCTION
Driven by the Fourth Industrial Revolution wave, the world
has entered an era of intelligence. The traditional interconnec-
tion between people and people or people and things has been
unable to meet the needs of today’s social production. Thanks
to the emergence and development of the Internet of Things
(IoT) technology, people have broken the barrier of connec-
tivity between things, which makes it possible to realize the
Internet of Everything (IoE). Based on this, Germany first
proposed the idea of Industry 4.0 at HANNOVER MESSE
in 2013 [1]. With the further development of science and
technology, the outline of smart manufacturing has gradu-
ally become clear. All major industrial countries have also

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

gradually transformed and upgraded traditional manufactur-
ing factories into smart factories [2]. In recent years, on the
one hand, smart factories have greatly improved the pro-
duction efficiency of factories and reduced production costs.
Still, on the other hand, their shortcomings have gradually
been exposed. The Cloud Computing (CC) centralized pro-
cessing mode in traditional smart factories has risks such as
high delay, high energy consumption, and low security, and
it cannot meet some tasks with high requirements such as
delay [3]. Furthermore, with the continuous increase in the
number of smart devices, the amount of task data will increase
exponentially, which will also cause tremendous pressure on
the transmission bandwidth of CC.

Fortunately, the emergence of Mobile Edge Computing
(MEC) provides the possibility to solve the above prob-
lems. MEC is a data offloading solution that improves the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 103111

https://orcid.org/0000-0003-1432-4324
https://orcid.org/0000-0003-2130-5762
https://orcid.org/0000-0002-2471-6375

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

computing and storage capabilities on the edge side of the
network by deploying edge servers with computing and stor-
age capabilities near mobile terminals. MEC inherits part
of the caching and computing power of CC. Because edge
computing servers are usually deployed at the edge of the
network and are closer to users, they not only make up for the
limited computing capability of smart terminal devices but
also solve the problems of CC transmission delay and high
energy consumption. The development of MEC has greatly
improved users’ Quality of Experience (QoE) and Quality of
Service (QoS) [4]. It can be said that, as a supplement to CC,
MEC adds distributed capabilities to traditional cloud centers;
meanwhile, the coverage of CC is further extended.

In the current Industrial Internet of Things (IIoT), the main
problems of MEC are offloading decisions and resource allo-
cation [5]. Typically, the offloading decision mainly includes
judging whether the current task needs to be offloaded
and selecting the offloading method and the offload strat-
egy according to the situation. Resource allocation mainly
involves the reasonable allocation of limited computing,
storage, bandwidth, and other resources according to task
requirements and the realization of the offloading goal.
Offloading goals usually include the goal of shortening the
delay, the goal of reducing energy consumption, and the
goal of optimizing the weighted sum of delay and energy
consumption. In this paper, in order to solve the compu-
tational offloading problem in IIoT, we propose a Double-
Dueling DQN (D3QN) algorithm, which is based on Deep
Q-Networks (DQN) and combines the Double DQN algo-
rithm and the Dueling DQN algorithm, aiming to optimize
the weighted sum of latency and energy consumption in IIoT.

The main contributions are as follows.
1) We construct a ‘‘cloud-edge-device’’ collaborative task

offload system in IIoT and define the system’s com-
munication and offload models. We separately discuss
and model different processing methods, such as local
computing, edge computing, and cloud computing.
Finally, a mixed integer linear programming problem is
developed. For this non-deterministic polynomial hard
(NP-hard) problem, we use a Reinforcement Learning
(RL) approach to solve it.

2) We analyze the disadvantages of the inaccuracy of
the Double DQN algorithm and the overfitting of the
Dueling DQN algorithm. In order to overcome their
disadvantages, we propose to combine the network
update method of the Double DQN algorithm with the
dual-branch network structure of the Dueling DQN
algorithm based on the structure of the DQN algorithm
to generate the D3QN algorithm.

3) We design simulation experiments to prove that the
D3QN algorithm is significantly better than the basic
algorithm in reducing the total system cost. And we test
the algorithm under different system model parameters
to evaluate the algorithm’s performance.

The rest of this paper is organized as follows. In Section II,
we present related research. The system model of this paper

is established, and the optimization problem is proposed in
Section III. Next, the shortcomings of the original algo-
rithm are illustrated, and the D3QN algorithm is proposed in
Section IV. In Section V, we present experimental and per-
formance evaluation results. Finally, conclusions are drawn
in Section VI.

II. RELATED WORKS
In recent years, more and more scholars have conducted
research on computing offloading and resource optimiza-
tion in MEC. Benefiting from the development of online
optimization algorithms, Meng et al. [6] proposed a task
offloading algorithm based on particle swarm optimiza-
tion to maximize the revenue of all MEC servers in the
network. In [7], the authors combined the adaptive genetic
algorithmwith the adaptive particle swarm optimization algo-
rithm and proposed an improved hierarchical adaptive search
algorithm, which refined the resource allocation scheme
layer by layer so as to minimize energy consumption. The
authors in [8] proposed a delay-aware offloading scheme
for cooperative Non-Orthogonal Multiple Access (NOMA)-
based near-and-far MEC networks. Minimizing latency by
optimally allocating transmit power, time slots, and computa-
tional tasks. A multi-objective joint optimization method for
communication-computing-caching resources was proposed
in [9] and was solved by the multi optimization method of
nondominated sorting genetic algorithm II (NSGA-II). The
above studies mainly apply traditional intelligent algorithms
to computational offloading and resource optimization prob-
lems, but this class of methods often requires access to envi-
ronmental a priori information, which is somewhat difficult
in MEC systems.

Some scholars have combined game theory with
MEC [10], [11], [12]. Huang et al. [10] formulated a nonlin-
ear non-convex delay optimization offloading problem based
on non-cooperative game theory and proposed a distributed
task offloading algorithm to solve it. Zhao et al. [11] divided
the computing offloading game into intra-alliance scheduling
and inter-alliance formation and proposed a greedy algorithm
to help users choose different computing service providers
to obtain better computing resources and reduce latency.
Yang et al. [12] formulated the proposed cost minimization
problem as a strategy game. Then a potential game offloading
algorithm was proposed for this problem to reach Nash
equilibrium.

There are also some researchers who consider solving
the target problem by applying mathematical optimization
methods. The authors in [13] considered an energy-efficient
NOMA-based MEC design for a multi-cell network and
formulated the problem into a mathematical problem of
mixed integer nonlinear programming. The problem was
further decomposed into multiple sub-problems and solved in
turn through mathematical optimization. In [14], the authors
constructed an offload revenue function for task offloading
and resourced allocation to maximize the system revenue
and introduced Lyapunov optimization theory and convex

103112 VOLUME 10, 2022

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

optimization methods to solve the optimal solution.
Hu et al. [15] considered the trade-off between energy effi-
ciency and service delay, using convex decomposition and
submodular methods for the proposed optimization problem
and proposed an online offloading and resource allocation
algorithm to achieve optimization of energy efficiency and
service latency. Rafiq et al. [16] proposed a nonlinear inte-
ger optimization problem with the goal of minimizing task
execution latency and energy consumption, decomposed the
problem into interrelated sub-problems, and solved the sub-
problems to obtain the optimal solution. Tang et al. [17]
decomposed the optimization problem into two subproblems,
which were solved alternately in each iteration using differ-
ent algorithms until a convergence condition was reached.
It can be seen that mathematical optimization is a promising
optimization method, but the Lyapunov optimization method
often has certain limitations and can only obtain approximate
optimal solutions.

To address these challenges, more and more researchers
have begun to try to solve optimization problems using deep
learning methods. In [18], the authors combined Q-learning
with deep neural networks to propose a sleep scheduling
scheme based on Deep Reinforcement Learning (DRL) to
reduce system energy consumption by automatically sleeping
idle devices. Zhang et al. [19] divided the action space into
two parts and presented a hybrid decision-based DRL algo-
rithm, where Deep Deterministic Policy Gradients (DDPG)
and DQN processing were used for continuous and dis-
crete spaces, respectively. The authors in [20] proposed an
offloading algorithm based on a meta-Reinforcement Learn-
ing (meta-RL) model and a DRL model, which improved the
offloading performance in terms of latency and energy con-
sumption during the offloading process. Yang et al. [21] pre-
sented a DQN-based RL algorithm for computing resource
allocation with the goal of minimizing energy consumption.
In [22], the authors described the computational resource
allocation problem with a Markov Decision Process (MDP)
model with discrete-continuous mixed action spaces and
then proposed a Parametric Deep Q-Network (PDQN)-based
approach to solve it. Both [23] and [24] adopted a DRL-based
allocation scheme to obtain a real-time efficient allocation
strategy. The authors in [25] modeled the server selection
decision as the MDP with the goal of minimizing the overall
cost and proposed a DRL-based algorithm to address this
problem. Li et al. [26] presented a computational offloading
model for heterogeneous network scenarios and designed a
DDPG-based algorithm to minimize task latency. In [27],
the authors improved on RL and proposed the RL-based
state-action-reward-state-action (RL-SARSA) algorithm to
make offloading decisions to optimize latency and energy
consumption. The above studies are all based on the DQN
architecture, which can make offloading decisions without
obtaining prior information. Although the above work has
made certain improvements to the deep Q-learning algorithm
and greatly improved its efficiency, it has not overcome
the inherent problems of over-fitting and over-estimation of

FIGURE 1. A smart factory model.

Q-learning itself. In order to solve this problem, we build
a ‘‘cloud-edge-device’’ collaborative task offloading model
in IIoT application scenarios and propose a D3QN algorithm
that combines Double DQN and Dueling DQN with the
goal of minimizing system cost and limited computational
and storage resources. The experimental simulation results
show that the D3QN algorithm can optimize the objective
function with limited computational resources, and the effect
is significantly better than the DQN algorithm, Double DQN
algorithm, and Dueling DQN algorithm.

III. SYSTEM MODEL
A. SCENARIO DESCRIPTION
As shown in Fig. 1, in this section, we build a smart factory
application scenario and propose the system architecture of
edge computing, which is mainly composed of three parts:

1) Cloud server. It has powerful computing and caching
capabilities, but it is often far away from the terminal device.
Multiple edge servers are deployed within the coverage of
cloud servers for edge computing.

2) Edge servers. The caching and computing capabilities
of edge servers are much lower than cloud servers. A cloud
server is connected to the edge servers through the wired opti-
cal fiber. Each edge server can only provide edge computing
service to the terminal devices within its coverage area.

3) Terminal devices. It mainly includes robotic arms,
instruments, machine tools, robots, cameras, etc., in the smart
factory. The terminal device itself has very limited computing
power. Terminal devices can process tasks by themselves or
choose to offload tasks to edge servers or cloud servers for
processing.

There are N terminal devices and M edge servers in our
system, their sets are denoted as N = {1, 2, · · · , n, · · · ,N },
M = {1, 2, · · · ,m, · · · ,M}, respectively. Same as the
existing work [28], in this paper, we consider tasks to be

VOLUME 10, 2022 103113

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

inseparable due to the correlation between tasks, i.e., the
offloading method is coarse-grained offloading.

The maximum queue length for each edge server to per-
form tasks is L. Each terminal device has only one task.
The task of the terminal device n is denoted as Qn. Each
computing task Qn can be represented by a triple: Qn =
{Dn,Gn, τn}, whereDn denotes the amount of data consumed
by task Qn, Gn denotes the number of CPU cycles consumed
by computing task Qn, τn denotes the maximum tolerated
delay of processing task Qn.

B. COMMUNICATIONAL MODEL
In this paper, the offloading from the terminal device to the
edge server can be divided into three steps: the task trans-
mission stage, the task processing stage, and the processing
result return stage. Since the amount of data will be greatly
reduced after the task is processed and generally speaking,
the downlink transmission rate of the device is much faster
than the uplink transmission rate of the device. Therefore,
the energy consumption and delay of the data downlink phase
will be much lower than that of the data uplink phase, so the
energy consumption and delay of the processing result return
phase are ignored in this paper.

In the task transmission stage, we use the Orthogonal
Frequency DivisionMultiple Access (OFDMA) technologies
to divide the bandwidth of the mobile edge server m into Km
channels equally. The bandwidth of each channel is randomly
allocated according to the task size, and a one-to-one relation-
ship between users and subbands is defined so as to ensure
the orthogonality of uplink transmissions of users associated
with the same base station.

The terminal device n transmits the task to the edge server
m through the wireless channel. Suppose the channel gain
between the device n and the edge serverm isHmn. Consider-
ing that the moving distance of the device is almost zero in the
extremely short time delay of task transmission, according to
Shannon’s theorem, the transmission rate of the channel can
be obtained as:

rmn = Bnlog2(1+
PnHmn
σ 2), (1)

where Bn denotes the channel bandwidth allocated to taskQn,
Pn denotes the transmission power of the task. Particularly,
if the task is processed locally, Pn = 0. σ 2 is the noise power.

C. OFFLOADING MODEL
During the task processing of the terminal device, it can
choose whether the task is executed locally or offloaded to
an edge server or a cloud server for processing. We define
the offloading decision for terminal device n as xmn, xmn ∈
{0, 1}, where xmn = 0 denotes the task is not offloaded and
processed locally, xmn = 1 denote the task is offloaded to
the edge server m for processing. We denote the offload-
ing decisions of all terminal devices about edge servers

as matrix X :

X =



x11 . . . x1n . . . x1N
...

. . .
...

...
...

xm1 . . . xmn . . . xmN
...

...
...

. . .
...

xM1 . . . xMn . . . xMN


M×N

. (2)

When the task is neither processed locally nor on the edge
server, the task is offloaded to the cloud server for processing.
We define yn as the offloading decision of the terminal device
n to the cloud server, yn ∈ {0, 1}, where yn = 0 denotes
the task is not offloaded to the cloud server for processing,
otherwise yn = 1. Since we define the offloading method in
this paper as coarse-grained offloading, only one offloading
method can be selected for the task of each terminal device
n, then the constraints of the offloading decision can be
expressed as:

M∑
m=1

xmn + yn ∈ {0, 1}. (3)

D. COMPUTATIONAL MODEL
1) LOCAL COMPUTING
Local computing means that the tasks of the terminal device
are not offloaded and are processed locally on the terminal
device. The local computing power of the terminal device is
flocal , which can be expressed by the CPU cycle frequency
of the device. It is defined that the local computing power
of terminal device n remains unchanged during a scheduling
period, particularly, flocal > 0. The local processing delay of
task Qn is defined as:

Tlocal =
Gn
flocal

. (4)

Based on [29], the energy consumption of the device is
proportional to the square of the frequency, so the local
computing energy consumption of the terminal device can be
expressed as:

Elocal = κlocalGnf 2local . (5)

In this paper, we define the total cost of the terminal
device to process the task Qn locally as the weighted sum
of the required delay and energy consumption, which can be
expressed as:

Zlocal = λlocalTlocal + (1− λlocal)Elocal, (6)

where λlocal is the weight parameter of the local computing
delay, λlocal ∈ [0, 1].

2) EDGE COMPUTING
In the edge computing model, the tasks of the terminal device
are offloaded to the edge server for execution. Same as the
local computing model, the computing capability assigned
by the edge server m to process the task of the terminal
device n is fmn, f maxm is the maximum computing power,

103114 VOLUME 10, 2022

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

∑N
n=1 fmn ≤ f maxm . Cmax

m is the maximum caching capacity
of the edge server m. Then the maximum cache matrix C of
all edge servers is:

C = {Cmax
1 ,Cmax

2 , . . . ,Cmax
m , . . . ,Cmax

M }1×M . (7)

The delay and energy consumption of the task transmit-
ted from the terminal device n to the edge server m are
expressed as:

Tmn =
Dn
rmn

, (8)

Emn = PmnTmn, (9)

where Pmn is the uplink transmission power of the terminal
device n transmitting the task to the edge server m. The
delay and energy consumption required by the edge server
to process the task is expressed as:

Texe =
Gn
fmn
, (10)

Eexe = µGnf 2mn. (11)

Therefore, the total delay and energy consumption required
by the edge serverm to process the task of the terminal device
n can be expressed as:

Tmec = Tmn + Texe, (12)

Emec = Emn + Eexe. (13)

Similarly, the total cost of offloading tasks to edge servers
is defined as the weighted sum of its delay and energy con-
sumption, which can be expressed as:

Zmec = λmecTmec + (1− λmec)Emec, (14)

where λmec is the weight parameter of delay in edge comput-
ing, λmec ∈ [0, 1]. During the offloading selection process
of the edge server, its remaining computing power should be
described. In this paper, the remaining computing power of
the edge server m is expressed as:

f remm = f maxm −

N∑
n=1

xmnfmn. (15)

The remaining computing power of all edge servers can be
represented by matrix F :

F = {f rem1 , f rem2 , . . . , f remm , . . . , f remM }1×M . (16)

3) CLOUD COMPUTING
If the remaining computing resources of the edge server are
less than those required by the current task, the system will
offload the current task to the cloud server for processing.
Different from the edge computing model, cloud computing
has negligible delay and energy consumption due to its pow-
erful computing power. Therefore, the delay and energy con-
sumption required in the cloud computing model is mainly
concentrated in the uplink transmission phase of the task. rcn
and Pcn are the transmission rate and transmission power of
the terminal device n task to the cloud server, respectively.

The time delay Tcc and the energy consumption Ecc in the
process can be expressed separately as:

Tcc =
Dn
rcn
, (17)

Ecc = PcnTcc. (18)

Similarly, in the cloud computing model, the total cost of
the system can be expressed as:

Zcc = λccTcc + (1− λcc)Ecc, (19)

where λcc is the weight parameter of delay in cloud comput-
ing, λcc ∈ [0, 1].

E. PROBLEM DESCRIPTION
We aim to minimize the weighted sum of delay and energy
consumption. According to the above three computing mod-
els, it can be obtained that for terminal device n, the total cost
of processing tasks in this system is expressed as:

Z sumn = (1− yn)((1−
M∑
m=1

xmn)Zlocal +
M∑
m=1

xmnZmec)

+ ynZcc. (20)

Based on the above discussion, we propose an optimization
problem, which aims to minimize the delay and energy con-
sumption of the system processing tasks, and the optimization
problem is expressed as:

P : min
X ,C,F

N∑
n=1

Z sumn

s.t. C1 : xmn ∈ {0, 1}, ∀m ∈ M , n ∈ N

C2 : yn ∈ {0, 1}, ∀n ∈ N

C3 :
M∑
m=1

xmn + yn ∈ {0, 1}

C4 : f remm ≥ 0

C5 :
N∑
n=1

xmn ≤ Km, ∀m ∈ M (21)

where X , C and F are the offloading decision set, the edge
server caching capability set, and the edge server computing
power set, respectively. C1 and C2 respectively represent the
edge offloading decision and cloud offloading decision as
two-dimensional variables. C3 limits the task of each termi-
nal device to only one processing method. C4 indicates that
the current remaining resources of the edge server m are non-
negative.C5 defines that the number of tasks assigned to each
edge server m cannot exceed the number of its bandwidth.

IV. ALGORITHM DESIGN
For the optimization problem (21) obtained in Section III, the
problem is a mixed-integer nonlinear programming problem,
which is NP-hard. Solving the objective function can be
achieved by finding the optimal offloading decision set X
under the conditions of the edge server caching capability

VOLUME 10, 2022 103115

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

set C and the edge server computing power set F . Since
the process of solving the optimization problem requires not
only satisfying the optimal policy problem for task offloading
but also making each edge server fully utilize its limited
resources, we believe that this problem can be solved by RL
algorithms. The Double DQN and Dueling DQN algorithms
based on the DQN algorithm architecture improve the train-
ing algorithm as well as the model structure of DQN, respec-
tively, but the single algorithm still has certain disadvantages.
Therefore, we combine the Double DQN and Dueling DQN
algorithms to propose an improved D3QN algorithm. The
D3QN algorithm changes the method of updating action
values to avoid problems such as overfitting. Meanwhile,
the D3QN algorithm is able to partition the original single
structure of DQN and calculate the outcomes jointly with the
value function and the advantage function, which improves
the accuracy of the results. We will discuss the disadvantages
of the Double DQN algorithm and the Dueling DQN algo-
rithm, respectively, in this section and show how the D3QN
algorithm overcomes these disadvantages.

A. DOUBLE DQN ALGORITHM
The Double DQN algorithm structure is similar to DQN, but
it contains twoQ functions. Each Q function can use the value
of the other Q function to update the next state. The update
method is as follows: Double DQN first finds the action cor-
responding to the maximumQ value in the current Q network
and then places the selected actionwith themaximumvalue in
the target network to calculate the target Q value. TheQ-value
is updated as follows:

y = r + γQ2(φ(s′), argmax
a′

Q1(φ(s′), a,w1),w2), (22)

where r is the immediate reward, Q1 is the current network,
and Q2 is the target network. w1 and w2 are the current net-
work parameters and the target network parameters, respec-
tively. γ is the attenuation factor. a is defined as the action,
a′ is the next action, and φ(s′) is the next state. The specific
process of the Double DQN algorithm is shown in Fig. 2.

FIGURE 2. The structure of double DQN.

By analyzing the network structure of Double DQN,
we can find that its output is only related to the action value
of each action in this state. Such a calculation is incomplete,
as mentioned in [30]. In some cases, the state value has a huge

impact on the Q value, but the action advantage value has no
effect on the Q value. At this time, the calculation method of
Double DQN is accurate. But in another case, both the state
value and the action advantage have a large impact on the
Q value. In this case, since Double DQN inherits the single-
branch network structure of the basic DQN, it cannot obtain
the action value of each action through the state value and
advantage value, which causes the inaccuracy of the results.

B. DUELING DQN ALGORITHM
The Dueling DQN algorithm improves the network structure
of the DQN algorithm and divides the traditional output layer
into two parts: the value function network and the advantage
function network. The linear combination of these two parts
constitutes the final output of the Q network. Then, it is
updated as follows:

Q(s, a,w, α, β) = V (s,w, α)+ (A(s, a,w, β)

−
1
|A|

∑
a′∈A

A(s, a′,w, β)), (23)

where s is defined as the state, and w denotes the parameters
of the convolutional layers. α and β are the parameters of
the two streams of fully-connected layers. |A| denotes the
number of selectable actions. V (s,w, α) is the state-value
function, A(s, a,w, β) is the action-advantage function.

Since Dueling DQN inherits the method of updating action
values from the basic DQN algorithm, it still has the same
problem of maximizing deviation as the DQN algorithm [31],
which tends to make the estimated action value too large.

C. HYBRID D3QN ALGORITHM
Considering the shortcomings of the above two algorithms,
we combine the Double DQN and the Dueling DQN to
form the D3QN algorithm. The D3QN algorithm inherits
the double network structure of the Double DQN algo-
rithm, which includes an evaluation network Q1 and a target
network Q2. The evaluation network Q1 is used to select
the next action anext = argmax

a′
Q1(φ(s′), a,w1). Accord-

ing to Equation (22), we evaluate anext through the target
network Q2 to reduce the over-estimation problem. Then,
the D3QN algorithm combines the network structure of the
Dueling DQN algorithm, adding the state-value function
V (s) and the action-advantage function A(s, a) between the
last hidden layer and the output layer, where V (s) is only
related to the state s, and A(s, a) is affected by the state
and action. The optimal action-value function Q(s, a) is used
to represent the linear combination of these two parts, and
its specific calculation method is shown in Equation (23).
This enables the D3QN algorithm to get the value of each
action by the value of the state and the value of advantage,
resulting in more accurate results. The network structure
of the D3QN algorithm is shown in Fig. 3, where s =
{s1, s2, . . . , sn, . . . , sN } is the state space of the entire system,
which shows the system state of each terminal device n,
sn = {flocal, rmn,Pmn,Dn,Gn, τn,Km, f remm ,Crem

m , rcn,Pcn}.

103116 VOLUME 10, 2022

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

FIGURE 3. Neural network architecture framework of D3QN.

a = {a1, a2, . . . , an, . . . , aN } is the action space of the entire
system, an = {xmn, yn} is the way to handle task selection.
When the system performs an action an in the state sn, it will
receive the corresponding reward. The goal of reinforcement
learning is to maximize the reward function, so we define the
reward function as:

r = −
N∑
n=1

Z sumn . (24)

D3QN obtains the optimal policy by performing
Algorithm 1.

V. SIMULATION RESULTS
According to the smart factory application model constructed
in Section III, we configure the model environment parame-
ters according to the actual scenario requirements. The spe-
cific parameters are shown in Table 1.

TABLE 1. Simulation parameters of system environment.

With the edge server as the center, the terminal devices
are randomly distributed within 300 meters to 1000 meters
around it. The channel gain is denoted as Hk = 127 + 30 ×
log2 dn, where dn is the distance from the terminal device to
the edge server.

The D3QN algorithm proposed in this paper is based on
improving the Double DQN algorithm and the Dueling DQN
algorithm. Therefore, in the experimental comparison, these
two algorithms are introduced to compare with the D3QN
algorithm. Then, to calculate the D3QN algorithm compared
with the two improved DQN algorithms for the optimization
degree of the basic DQN algorithm, this paper introduces the
DQN algorithm to conduct comparative experiments simul-
taneously. The experimental result is shown in Fig. 4.

Algorithm 1 D3QN
1: Initialize the systemmodel environment, Initialize replay

buffer D
2: Initialize the evaluation network Q1 with random param-

eters w1
3: Initialize the target network Q2 with random parameters
w2, w2 = w1

4: Fill the replay buffer D with the data generated by the
random policy until it is full

5: while True do
6: Reset system model environment
7: for terminal devices n = 1 to N do
8: Training evaluation network Q1, Update the target

network Q2 with the next state condition
9: Randomly sample Mini_Batch form D
10: Select the next action anext =

argmax
a′

Q1(φ(s′), a,w1)

11: Set y = r + γQ2(φ(s′), anext ,w2)
12: Use the loss function to train Q1 to update the

parameter w1
13: Update the parameter, w2 = w1
14: end for
15: if Q1 is converged then
16: Q2 = Q1
17: Qopt = Q2
18: end if
19: end while

FIGURE 4. The relationship between the total system cost and the
number of terminal devices under different algorithms.

In the above experiments, we fixed the number of edge
servers to 10 and compared the total system cost of dif-
ferent algorithms for different numbers of terminal devices.
We record the results in Table 2. As can be seen fromFigure 4,
the D3QN-based offloading strategy proposed in this paper
is superior to the other three DQN algorithms. The data in
Table 2 enables us to see the improvement of the D3QN
algorithm over the original algorithmmore intuitively. Taking
the number of terminal devices equal to 10 as an example,
we set the total system cost of theDQN algorithm to be 1, then
the total system cost of the Double DQN algorithm is 0.859.

VOLUME 10, 2022 103117

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

TABLE 2. Total system cost under different algorithms (Normalizing the
total system cost of the DQN algorithm).

FIGURE 5. The relationship between the total system cost and the
number of terminal devices under different numbers of edge servers.

Through the calculation, the improvement rate of the Double
DQN algorithm to the DQN algorithm can be obtained by
((1−0.859)/1)×100% = 14.1%. Similarly, the improvement
rate of the Double DQN algorithm to the DQN algorithm
can be obtained by ((1 − 0.847)/1) × 100% = 15.3%.
At this time, the improvement rate of the D3QN algorithm
to the DQN algorithm can be obtained by ((1− 0.822)/1)×
100% = 17.8%. Our algorithm performs better in terms
of total system cost, regardless of changing environmental
conditions. Therefore, it can be concluded that the optimiza-
tion effect of the D3QN algorithm proposed in this paper is
obviously better than that of the other three DQN algorithms,
avoiding problems such as over-fitting, overestimation, and
inaccuracy.

As shown in Fig. 5, we compared the relationship between
the total system cost and the number of terminal devices under
the condition of different numbers of edge servers. It can be
seen that, with the increase in the number of edge servers,
the overall system cost is decreasing trend. This is because
more edge servers provide the system with more computing
resources, and the terminal device has a greater possibility
of selecting a more suitable edge server for offloading tasks.
When each terminal device has a better choice, the total cost
of the system will be reduced.

As shown in Fig. 6, we compared the impact of differ-
ent numbers of terminal devices on the total system cost.

FIGURE 6. The relationship between the total system cost and the
number of edge servers under different numbers of terminal devices.

FIGURE 7. The relationship between the total system cost and the
number of terminal devices under different weight parameters.

By changing the number of edge servers, it can be seen that
when the number of edge servers increases, the total cost of
the system will decrease. And in the scenario of the same
number of edge servers, as the number of terminal devices
increases, the total system cost will also increase. This is
because the more terminals there are, the more computing
resources are required. It can be seen from Figure 6 that
if the number of edge servers is more than the number of
terminal devices, the system cost will be greatly reduced.
This is because more edge servers provide the system with
sufficient computing resources to ensure that each terminal
device selects the optimal offloading policy.

In order to compare the impact of delay and energy con-
sumption on the total system cost, we conducted a compara-
tive experiment by modifying the weight parameter, and the
experimental results are shown in Fig. 7. λ is the weight
parameter of the delay cost in the total system cost. From
the vertical comparison, it can be seen that the smaller the
proportion of delay cost, the greater the total system cost.
Otherwise, the total cost of the system is smaller. This shows
that in the same scenario, the system processing task delay
cost is lower than the energy cost. Therefore, selecting a
suitable edge server for task offloading and reducing the task

103118 VOLUME 10, 2022

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

computing cost of the system is the key to reducing the total
system cost.

VI. CONCLUSION
In this paper, we studied the task offloading and resource
allocation strategies for MEC in the current IIoT environ-
ments. First, we proposed an edge computing model based
on the smart factory framework, and an NP-hard problem is
proposed with the goal of minimizing the total system cost.
Then according to the characteristics of the objective func-
tion, we proposed a D3QN algorithm to solve the over-fitting
and over-estimation problems of the DQN algorithm itself.
Finally, the results of simulation experiments demonstrate
that our algorithmwas better than theDQN, theDouble DQN,
and the Dueling DQN algorithms in reducing the total system
cost. In future work, we will apply the D3QN algorithm
in environments that are more sensitive to system cost and
reduce the total system cost by further reducing the energy
consumption in the computing process.

REFERENCES
[1] A. Rojko, ‘‘Industry 4.0 concept: Background and overview,’’ Int. J. Inter-

act. Mobile Technol., vol. 11, no. 5, pp. 77–90, Nov. 2017.
[2] J. Weng, F. Wei, A. Jaiswal, and B. Noche, ‘‘A review of industry 4.0 on

national level and a concept of industry 4.0 stages based on technical level,’’
in Proc. 17th Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), Coral Bay,
Pafos, Cyprus, Jul. 2021, pp. 252–258.

[3] F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, ‘‘Deep learning for edge
computing applications: A state-of-the-art survey,’’ IEEE Access, vol. 8,
pp. 58322–58336, 2020.

[4] W. Chen, X. Qiu, T. Cai, H.-N. Dai, Z. Zheng, and Y. Zhang, ‘‘Deep
reinforcement learning for Internet of Things: A comprehensive survey,’’
IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1659–1692, 2021, doi:
10.1109/COMST.2021.3073036.

[5] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, ‘‘Resource scheduling in edge
computing: A survey,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 4,
pp. 2131–2165, 4th Quart., 2021, doi: 10.1109/COMST.2021.3106401.

[6] Y. Meng and J. Li, ‘‘Task offloading and resource allocation mech-
anism of moving edge computing in mining environment,’’ IEEE
Access, vol. 9, pp. 155534–155542, 2021, doi: 10.1109/ACCESS.2021.
3129464.

[7] T. Zhou, Y. Yue, D. Qin, X. Nie, X. Li, and C. Li, ‘‘Joint device asso-
ciation, resource allocation and computation offloading in ultra-dense
multi-device and multi-task IoT networks,’’ IEEE Internet Things J.,
vol. 9, no. 19, pp. 18695–18709, Oct. 2022, doi: 10.1109/JIOT.2022.
3161670.

[8] T. He, D. Wang, F. Zhou, W. Liang, X. Tang, and D. Zhai, ‘‘Delay-aware
offloading for cooperative NOMA-based near-and-far MEC networks,’’
in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Xiamen, China,
Jul. 2021, pp. 978–983.

[9] X. Wang, W. Cheng, and C. Ren, ‘‘Multi-objective joint optimization of
communication-computation-caching resources in mobile edge comput-
ing,’’ in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Xiamen,
China, Jul. 2021, pp. 2762–2773.

[10] J. Huang, M. Wang, Y. Wu, Y. Chen, and X. Shen, ‘‘Distributed offloading
in overlapping areas of mobile edge computing for Internet of Things,’’
IEEE Internet Things J., vol. 26, no. 6, pp. 2762–2773, Jan. 2018, doi:
10.1109/JIOT.2022.3143539.

[11] J. Zhao, ‘‘Offloading selection based on heterogeneous utility in MEC net-
works: A coalition formation game-theoretic approach,’’ in Proc. IEEE 6th
Int. Conf. Comput. Commun. Syst. (ICCCS), Chengdu, China, Apr. 2021,
pp. 469–472.

[12] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, ‘‘A distributed com-
putation offloading strategy in small-cell networks integrated with mobile
edge computing,’’ IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2762–2773,
Dec. 2018, doi: 10.1109/TNET.2018.2876941.

[13] B. Liu, C. Liu, and M. Peng, ‘‘Resource allocation for energy-
efficient MEC in NOMA-enabled massive IoT networks,’’ IEEE J. Sel.
Areas Commun., vol. 39, no. 4, pp. 1015–1027, Apr. 2021, doi:
10.1109/JSAC.2020.3018809.

[14] S. Xia, X. Wen, Z. Yao, Y. Li, and G. Wang, ‘‘Dynamic task offload-
ing and resource allocation for heterogeneous MEC-enable IoT,’’ in
Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Chongqing, Ching,
Aug. 2020, pp. 847–852.

[15] H. Hu, W. Song, Q. Wang, R. Q. Hu, and H. Zhu, ‘‘Energy efficiency
and delay tradeoff in an MEC-enabled mobile IoT network,’’ IEEE
Internet Things J., vol. 9, no. 17, pp. 15942–15956, Feb. 2022, doi:
10.1109/JIOT.2022.3153847.

[16] A. Rafiq, W. Ping, W. Min, S. H. Hong, and N. N. Josbert, ‘‘Optimizing
energy consumption and latency based on computation offloading and cell
association in MEC enabled industrial IoT environment,’’ in Proc. 6th Int.
Conf. Intell. Comput. Signal Process. (ICSP), Xi’an, Ching, Apr. 2021,
pp. 10–14.

[17] C. Tang, C. Zhu, X. Wei, H. Wu, Q. Li, and J. J. P. C. Rodrigues,
‘‘Task offloading and caching for mobile edge computing,’’ in Proc. Int.
Wireless Commun. Mobile Comput. (IWCMC), Harbin, China, Jun. 2021,
pp. 698–702.

[18] N. Zhu, X. Xu, S. Han, and S. Lv, ‘‘Sleep-scheduling and joint
computation-communication resource allocation in MEC networks for 5G
IIoT,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Nanjing,
China, Mar. 2021, pp. 1–7.

[19] J. Zhang, J. Du, Y. Shen, and J. Wang, ‘‘Dynamic computation offload-
ing with energy harvesting devices: A hybrid-decision-based deep rein-
forcement learning approach,’’ IEEE Internet Things J., vol. 7, no. 10,
pp. 9303–9317, Oct. 2020, doi: 10.1109/JIOT.2020.3000527.

[20] Z. Zhang, N. Wang, H. Wu, C. Tang, and R. Li, ‘‘MR-DRO: A fast and
efficient task offloading algorithm in heterogeneous edge/cloud computing
environments,’’ IEEE Internet Things J., early access, Nov. 8, 2021, doi:
10.1109/JIOT.2021.3126101.

[21] Y. Yang, Y. Hu, and M. C. Gursoy, ‘‘Deep reinforcement learning and
optimization based green mobile edge computing,’’ in Proc. IEEE 18th
Annu. Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA,
Jan. 2021, pp. 1–2.

[22] T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong, and Y. Yang, ‘‘Deep reinforcement
learning based approach for online service placement and computation
resource allocation in edge computing,’’ IEEE Trans. Mobile Comput.,
early access, Feb. 4, 2022, doi: 10.1109/TMC.2022.3148254.

[23] Z. Wu and D. Yan, ‘‘Deep reinforcement learning-based computa-
tion offloading for 5G vehicle-aware multi-access edge computing net-
work,’’ China Commun., vol. 18, no. 11, pp. 26–41, Nov. 2021, doi:
10.23919/JCC.2021.11.003.

[24] X. Li, H. Yang, Q. Yao, B. Bao, J. Li, and J. Zhang, ‘‘Deep reinforcement
learning-based power and caching joint optimal allocation over mobile
edge computing,’’ in Proc. IEEE Int. Sympo Broadband Multimedia Syst.
Broadcast. (BMSB), Chengdu, China, Oct. 2020, pp. 1–3.

[25] H. Liu and G. Cao, ‘‘Deep reinforcement learning-based server selection
for mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 12,
pp. 13351–13363, Dec. 2021, doi: 10.1109/TVT.2021.3124127.

[26] Y. Li, F. Qi, Z. Wang, X. Yu, and S. Shao, ‘‘Distributed edge comput-
ing offloading algorithm based on deep reinforcement learning,’’ IEEE
Access, vol. 8, pp. 85204–85215, 2020, doi: 10.1109/ACCESS.2020.
2991773.

[27] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
‘‘Task offloading and resource allocation for mobile edge com-
puting by deep reinforcement learning based on SARSA,’’ IEEE
Access, vol. 8, pp. 54074–54084, 2020, doi: 10.1109/ACCESS.2020.
2981434.

[28] M. Tang and V. W. S. Wong, ‘‘Deep reinforcement learning for
task offloading in mobile edge computing systems,’’ IEEE Trans.
Mobile Comput., vol. 21, no. 6, pp. 1985–1997, Jun. 2022, doi:
10.1109/TMC.2020.3036871.

[29] A. P. Miettinen and J. K. Nurminen, ‘‘Energy efficiency of mobile clients
in cloud computing,’’ in Proc. 2nd USENIX Workshop Hot Topics Cloud
Comput., Boston, MA, USA, 2010, pp. 1–7.

[30] Z. Wang and N. D. M. Freitas Lanctot, ‘‘Dueling network architectures for
deep reinforcement learning,’’ in Proc. 33rd Int. Conf. Mach. Learn., New
York, NY, USA, 2016, pp. 1995–2003.

[31] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. 30th AAAI Conf. Artif. Intell., Phoenix, AR,
USA, 2016, pp. 2094–2100.

VOLUME 10, 2022 103119

http://dx.doi.org/10.1109/COMST.2021.3073036
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1109/ACCESS.2021.3129464
http://dx.doi.org/10.1109/ACCESS.2021.3129464
http://dx.doi.org/10.1109/JIOT.2022.3161670
http://dx.doi.org/10.1109/JIOT.2022.3161670
http://dx.doi.org/10.1109/JIOT.2022.3143539
http://dx.doi.org/10.1109/TNET.2018.2876941
http://dx.doi.org/10.1109/JSAC.2020.3018809
http://dx.doi.org/10.1109/JIOT.2022.3153847
http://dx.doi.org/10.1109/JIOT.2020.3000527
http://dx.doi.org/10.1109/JIOT.2021.3126101
http://dx.doi.org/10.1109/TMC.2022.3148254
http://dx.doi.org/10.23919/JCC.2021.11.003
http://dx.doi.org/10.1109/TVT.2021.3124127
http://dx.doi.org/10.1109/ACCESS.2020.2991773
http://dx.doi.org/10.1109/ACCESS.2020.2991773
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/TMC.2020.3036871

W. Cheng et al.: Task Offloading and Resource Allocation for IIoT: A D3QN Approach

WEIJUN CHENG (Member, IEEE) received the
M.S. degree in electronics and control engineering
from the China University of Mining and Tech-
nology, Beijing, China, in 1998, and the Ph.D.
degree in telecommunications engineering from
the Beijing University of Posts and Telecommu-
nications, Beijing, in 2004. From 2005 to 2007,
he was a Postdoctoral Research Fellow in electron-
ics engineering with Peking University, Beijing.
From October 2017 to October 2018, he was a

Visiting Scholar at the School of Electrical, Computer and Energy Engineer-
ing, Arizona State University, Tempe, AZ, USA, along with Prof. Junshan
Zhang. He is currently an Associate Professor at the School of Information
Engineering, Minzu University of China, Beijing. His research interests
include wireless communication theory and AI in the IoT.

XIAOSHI LIU received the B.S. degree in
mathematics and applied mathematics from the
Shandong University of Science and Technology,
Qingdao, China, in 2021. He is currently pursuing
the M.S. degree in electronic information with
the Minzu University of China, Beijing, China.
His research interests include mobile edge com-
puting, deep reinforcement learning, and convex
optimization.

XIAOTING WANG received the B.S. degree in
software engineering from Qingdao University,
Qingdao, China, in 2019. She is currently pursuing
the M.S. degree in computer science and technol-
ogy with the Minzu University of China, Beijing,
China. Her research interest includes mobile edge
computing.

GAOFENG NIE (Member, IEEE) received the
B.S. degree in communications engineering and
the Ph.D. degree in telecommunications and infor-
mation system from theBeijingUniversity of Posts
and Telecommunications (BUPT), in 2010 and
2016, respectively. He is currently a Lecturer with
the BUPT. His research interests include SDN
over wireless networks and key technologies in
5G/B5G wireless networks.

103120 VOLUME 10, 2022

