
Received 6 September 2022, accepted 21 September 2022, date of publication 28 September 2022,
date of current version 17 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3210386

A Formal Method for Description and Decision of
Android Apps Behavior Based on Process Algebra
DONGKUI LIANG 1,2, LIMIN SHEN 1, (Member, IEEE), ZHEN CHEN 1, CHUAN MA 1,2,
AND JIAYIN FENG 1
1School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2Engineering Training Center, Yanshan University, Qinhuangdao 066004, China

Corresponding author: Limin Shen (shenllmm@sina.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772450, in part by the Hebei Natural
Science Foundation under Grant F2019203287 and Grant F2017203307, in part by the Science and Technology Research Project of
Colleges and Universities in Hebei Province under Grant QN2020183, and in part by the Hebei Postdoctoral Research Program under
Grant B2018003009.

ABSTRACT Android is the most popular mobile platform, and it has become a primary malware target.
Existing behavior-based Android malware detection methods suffer from false positive and false negative
problems, which lead to low detection accuracy. Formal theory is crucial in studying the behaviors of
Android applications characterized by high concurrency, interaction, and mobility. However, existing formal
methods mainly focus on specific issues and lack the essential abstraction and high-level description of
application behavior. In this study, we propose a formalmethod for the description and decision of application
behavior based on process algebra. First, we propose a formal method for describing application behavior
at a component level using process algebra. By extending π -calculus theory, we establish the mapping
relationship from the Android application to process algebra, and present the semantics and evolution rules
of behavior based on process algebra. Second, we describe the behavior of four types of components in
applications and characterize concurrent interactions of components using process algebra expressions.
Third, we define the behavior equivalence and simulation mechanism for application behavior analysis
and propose the decision rules based on weak simulation. Finally, we discuss a demonstration case, which
includes malicious behavior, to demonstrate the feasibility and effectiveness of the proposed method. The
results show that our method can accurately describe and analyze application behavior, which provides
theoretical support for technologies and methods of behavior-based detection.

INDEX TERMS Android malware detection, behavior formalization, process Algebra, process equivalence,
simulation mechanism.

I. INTRODUCTION
Smartphones are being widely used with the development of
Internet and IOT. Annual worldwide sales of smartphones
stand at around 1.56 billion units, with Android accounting
for 85.1% [1]. In the next few years, Android smartphones
will remain more than 85% of the market [2]. Nowadays
Android has become the most popular mobile platform,
and the number of Android Apps is growing rapidly. How-
ever, due to the openness of free source, Android is highly

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

vulnerable to malware attacks and has become the primary
target of malware. Malware not only expose the private
information and confidential data in smartphones to the risk
of being stolen [3], but also impact the confidentiality, avail-
ability or integrity of system [4]. The efficient detection of
Android malware has become a popular research topic.

The technologies of malware detection are divided into
three categories: static analysis, dynamic analysis, and hybrid
analysis [5]. Static analysis decomposes Android Application
Package (APK) files by reverse engineering and extracts
various features from the disassembly code without running
source code [6], [7], [8]. It has high accuracy and efficiency in

108668 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3764-8129
https://orcid.org/0000-0002-9325-2279
https://orcid.org/0000-0003-4424-7315
https://orcid.org/0000-0002-9571-158X
https://orcid.org/0000-0003-2687-2280
https://orcid.org/0000-0003-4744-9211

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

detecting known malicious code, but has high false negative
in detecting unknown malicious code because it cannot deal
with code confusion and dynamic code loading. Dynamic
analysis runs Apps and analyzes them by monitoring run-
time behaviors and data [9], [10], [11]. It performs well in
detecting all types of code, but requires more resources and
time costs. Moreover, some behaviors cannot be recognized
correctly because the execution path of the application cannot
be fully traversed. Hybrid analysis uses both static analysis
and dynamic analysis by combining their advantages [12],
[13], [14].

A variety of malware detection approaches are proposed
based on these techniques. To further improve the detection
of malware, researchers conducted a series of studies. On the
one hand, technologies such as machine learning were widely
applied to detect malware. Although the detection model
based on machine learning had false positives in intrusion
detection [15], Liu et al. [16] discussed the application and
prospect of machine learning and suggested that it would
be effective and promising in malware detection. On the
other hand, researchers carried out theoretical research to
promote the development and innovation of malware detec-
tion technology. Nowadays a series of formal theories have
been proposed to analyze permission frameworks, component
interactions, and application behavior.

By summarizing existing research, we observed that mal-
ware detection based on behavior performs satisfactorily but
still suffers from false positives and false negatives. For-
mal theory is crucial in analyzing the behavior of Android
Apps characterized by high concurrency, interaction, and
mobility. However, existing formal methods mainly focus
on modeling and validating specific issues, which lack the
essential abstraction and modeling of behavior. In this paper,
we use process algebra as an abstract language to analyze
the behavior of applications, and propose a formal method
for the description and decision of application behavior.
Behaviors are described using process algebra expressions
and operators, and can be analyzed by the inference and
calculation mechanism of process algebra. The feasibility
and effectiveness of the method in this study are verified
by discussing a case containing malicious behavior. To the
best of our knowledge, this is the first time process algebra
has been employed to research behavior formalization and
decision in behavior-based malware detection.

The formal method in this paper can help understand and
reveal the essence and laws of application behavior. Our
research will help any researcher who wants to carry out
research in behavior-based Android malware detection in
various domains such as static, dynamic, and hybrid, and
guide them with theoretical support. The main contributions
of this paper are summarized as follows:

1) A formal theory was proposed for describing the appli-
cation behavior based on process algebra. By extending
π -calculus theory, we abstract the behavior elements of
Apps and map them to process algebra. In section III,
we defined the basic behavior semantics of application

behavior and proposed a formal definition for compo-
nent behavior. Based on the inference and calculation
mechanism, we presented the evolution rules for ana-
lyzing behavior.

2) Based on the formal theory proposed in this study,
we described the behavior of four types of Android
application components and formalized the behavior
of application. The states and concurrent interactions
of components are described using process algebra
expressions.

3) On the basis of behavior formalization, we proposed
a method for application behavior decisions based on
weak simulation. According to process equivalence,
we defined strong simulation and weak simulation for
discussing the equivalence of behavior, and proposed
decision rules for application behavior based on weak
simulation.

The reminder of this paper is organized as follows.
Section II discusses the related work. Section III establishes
the formal theory for describing application behavior based
on process algebra. Section IV describes the behaviors and
concurrent interactions of the four types of components in
applications. Section V defines strong simulation and weak
simulation of behavior equivalence, and proposes decision
rules based on weak simulation. Section VI discusses a
demonstration case derived from real application that con-
tains malicious behavior. Section VII concludes our work.

II. RELATED WORK
Currently, malware detection has been heavily researched.
Researchers apply technologies such as machine learning
to the analysis of the static and dynamic features and have
proposed many methods from various perspectives.

Li et al. [17] proposed a framework based on association
mining, which uses association rules derived from N-gram
features mining to achieve efficient detection. In [18] and
[19], deep learning technology was used to detect mal-
ware and performed well. In [20], a malware detection
approach was proposed to analyze Apps at source code level
by utilizing a deep traversal tree neural network. In [21],
they converted the bytecodes of the ‘‘classes.dex’’ files to
visual images, and proposed a vision-based detection model
composed of 16 CNN algorithms. Zhang et al. [22] pre-
sented a hybrid representation learning approach to clustering
weakly-labeled malware by preserving heterogeneous infor-
mation from multiple sources. In [23], a novel framework
was presented to improve the malware detection for Android
IoT devices by combining the advantages of both machine
learning and block chain technology. In [24], a signature-
based framework was proposed to detect malware using
API calls and other features. Zhang et al. [25] proposed
a detection method based on the method-level correlation
relationship of abstract API calls. The accuracy on malware
datasets Drebin and AMD was 96%. Huang et al. [26] pro-
posed a sequence-to-sequence neural network to investigate
a sequence of Windows API calls recorded from malware

VOLUME 10, 2022 108669

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

execution and produce tags to label their malicious behav-
ior. Arora et al. [27] constructed graphs for malicious and
benign applications by extracting permission pairs fromman-
ifest file, and detected malware by comparing these graphs.
Xiao et al. [28] combined dynamic features and static features
into composite features to detect malware and achieved an
accuracy of 97.12%. In [29], they defined different corre-
sponding behaviors and correlated features at four levels, and
proposed a host-based detection system to classify behaviors
of malware. Base on machine learning, [30] and [31] used
permission as dynamic and static features to detect malware,
respectively. Wang et al. [32] used seven feature selection
algorithms to select permissions, API calls, and opcodes. The
results of each algorithm were merged to obtain a new feature
set to classify applications. Fatima et al. [33] used evolu-
tionary genetic algorithm to construct the optimal feature
subset and then used the subset to train classifier for malware
detection. In [34], useful API calls were used as features to
construct API subsets of malicious and benign applications to
classify applications. In [35], they used permission and action
repetition as static and dynamic features to identify malware
by leveraging machine learning, and proved their efficiency
and influential roles in detecting malware. Arslan et al. [36]
designed a permission-based detection system. The system
used hybrid analysis to detect malware and achieved an
accuracy of 91.95%.

To reduce false positives and false negatives, researchers
have introduced formal theory into the research of malware
detection to promote the development of detection tech-
niques and methods. In [37], π -calculus was used to analyze
and validate security of software behavior. Chaudhuri [38]
proposed a semantic-based formal description of Android
Apps to help understand behavior security. Jia et al. [39]
proposed a formal model for Android components based
on process algebra, aiding developers in implementing least
permission. Shen et al. [40] proposed a behavior detec-
tion method based on function and process algebra for the
detection of privilege escalation attacks in Android Apps.
To describe the interactions between Apps, [41] proposed a
formal interoperability semantic to help understand and infer
Android interoperations. In [42], a methodology based on
formal methods was proposed to help understand and identify
obfuscation codes. To help understand permission model of
Android Apps, researchers have proposed a series of formal
theories. He [43] presented a formal model of permission
framework using high level Petri nets. It precisely defined
relationships among different levels and could be used to
analyze permissions and their combinations. In [44], formal
methods were used to verify the security mechanisms of
Android, and a comprehensive specification of permission
model was developed to describe and justify the attributes of
expected behavior in Apps. In [45], a formal approach was
proposed to help identify the potential defects in Android
permission protocol. Khan et al. [46] used theorem proving
approach to analyze the security of Android permission, and
proposed a language-based formal model for the analysis of

Android security. In theoretical research, formal theory can
be validated by theorem proving and existing tools. Scyther
and Tamarin are automatic tools for the formal analysis and
verification of security protocols [47], [48]. MWB (Mobility
Workbench) is a tool for manipulating and analyzing mobile
concurrent systems described in π -calculus or CCS. In [40],
MWB was used to analyze formal expressions of application
behavior to help detect collusion attacks.

Researchers have proposed various methods in malware
detection and developed formal theories to support these
techniques. However, existing detection methods based on
behavior suffer from false positives and false negatives.
Furthermore, existing formal research lacks the essential
abstraction and description of application behavior. In view
of the concurrency and interaction characteristics of Android
Apps, we extend the π -calculus theory, which is suitable for
mobile concurrent systems, and propose a formal method for
the description and decision of application behavior. Based
on the behavior semantics and rules proposed in this paper,
application behavior is described using process expressions
and operators, and then is determined according to behavior
equivalence mechanism. In this study, the theory for the
description and decision of application behavior is validated
by analyzing a demonstration case derived from real Android
Apps. The next section discusses the modeling of process
algebra elements for application behavior, and present the
semantics and evolution rules for application behavior.

III. SEMANTICS AND EVOLUTION RULES FOR ANDROID
APPLICATION BEHAVIOR
An application is made up of four types of components:
activity, service, content provider, and broadcast receiver.
Components communicate with content provider through
Uri, and communicate with other components through Intent.
Intent mechanism is a run-time binding mechanism and is a
communication mode of Android Apps. It is used to transfer
information and data between components and its intentional
or unintentional improper use may lead to security problems
such as information leaks, malicious calls, and component
hijacking [49], [50], [51]. Therefore, researchers had used
Intent as important feature to detect malware [52], [53], [54].
In the modeling of application behavior, Intent becomes more
important because it is used in components communication.

A. PROCESS ALGEBRA ELEMENTS FOR APPLICATION
BEHAVIOR
In behavior analysis of Apps, analyzing all paths of behaviors
is a huge and complex task. However, formal method is effec-
tive for studying complex system and plays an important role
in behavior analysis. Process algebra, as the representative
of formal methods, is suitable for analyzing concurrent sys-
tem. Bekic proposed the basic semantics of process algebra
consisted of at least three operators and seven operation rules
[55]. In 1982 [56], Bergstra proposed the specific definition
of process algebra. Nowadays, process algebra has developed
many branches and extensions [57].

108670 VOLUME 10, 2022

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

CCS [58] is a process algebra theory proposed by R.Milner
and has been widely used in the analysis and validation of
concurrent systems. Since CCS cannot describe the change
of topology in mobile concurrent systems, R. Miller further
extended CCS to proposed the π -calculus [59]. It is a named
calculus and is especially suitable for mobile concurrent
system. Its structured semantics can formally describe the
concurrency and interaction of behaviors, and achieve the
composition, decomposition and reduction of behavior. Addi-
tionally, π -calculus provides a mature and sound simulation
theory to study behavior equivalence in the analysis of system
behavior [60]. In π -calculus, an action or event is a behavior
unit, which is called atomic behavior. Behavior is a series of
actions or events, which is called a process. By introducing
the concepts of name and channel from communication,
messages, events, and actions are mapped to names, com-
munication ports are mapped to channels. Names could be
transmitted in channels. By adding prefix action to describe
interactions, process expressions can be used to describe the
behaviors of system.

The term ‘‘process’’ in process algebra is not the pro-
cess of operating system, but the behavior mode of sys-
tem. It describes system behavior through a finite set of
actions, which can be further analyzed by inference and
calculation mechanisms. Unless otherwise noted, the process
mentioned below is ‘‘process’’. Android Apps are complex
systems composed of collaborative and concurrent compo-
nents, and attackers are no longer limited to a single attack
mode, but implement collaborative collusion attacks through
the communication of components. Therefore, we extend
π -calculus suitable for studying mobile concurrent systems
to the research of application behavior.

The behavior of Android application can be described
by the behavior of the concurrent and interactive com-
ponent instances which are instantiated in the process of
operating system. At the code level, a statement or func-
tion call is a basic behavior, called behavior unit. Compo-
nent behavior is the external representation of a series of
program statements and function calls. The behavior unit
is abstracted as an action. The actions in a component
are divided into intra-action and inter-action according to
whether they interact with the outside of the component.
Intra-action which is independent of external environment
can only describe the internal evolution of component, so it
is simple and easy to describe. Inter-action can describe not
only the internal behavior of the component, but also the
interaction with the external environment, so the behavior
description is very complicated. By introducing the seman-
tics and rules of process algebra, we establish the mapping
from Android Apps to the π -calculus of process algebra as
follows:
• Modeling the component instance of Android Apps as
process. The instance can be run in one or different
processes of the operating system.

• Modeling the interaction of component instances as
process communication.

TABLE 1. Mapping relationship from Android Apps to π-calculus.

• Modeling the behavior unit in program code, such as
statement, function call and method call as action.

• Modeling variable, parameter, data, message, event,
entity attribute, intent and other elements used in com-
ponent interaction as name.

The mapping relationship between elements of Android
Apps and π -calculus is established as shown in Table 1.

By extending π -calculus, we propose the process algebra
elements in Android application behavior, and use process
algebra as an abstract language to describe the behaviors of
application. In the following, we propose the semantics and
rules for application behavior formalization.

B. BASIC SEMANTICS OF APPLICATION BEHAVIOR
Components in Android Apps are treated as the subject and
object of behavior. Application behavior is described with
subject, object, action, input of subject, output of object, and
state of component. The semantics of application behavior
are given below.
Definition 1 (Name):The concepts of data, parameters, and

communication channels, as well as behavior information and
state information, are unified and abstracted as name, which
can be denoted as a, b, . . . ∈ Name.
Name is the basic element of behavior and is transmitted

as message in process. a is the complementary name of a,
and a def

= a, a, b, . . . ∈ Name. An sequence of ordered names
a1, . . . an can be denoted as Ea, then P (Ea) = P(a1, . . . an).
If Ea and Eb are name-sequences of length n and P is a process
expression, then {Eb/Ea}P means that each ai in P are replaced
by bi separately, which is called α conversion. If the length of
Ea and Eb are both one, {Eb/Ea}P can be denoted as {b/a}P.
Definition 2 (Observation & Reaction): The actions are

divided into observation and reaction according to whether
they can be observed from outside.
• Action t is an observation if it can be observed through
its interaction with component, or through the comple-
mentary action t after t interacts with component. Ation
t is also called observation action.

• Action τ is a reaction if it cannot be observed outside,
but can only be observed through the results of internal
interaction.

In the concurrent execution of processes, the occurrence of
actions in a process affects itself and the interaction between
processes. The inter-process interactions can be observed, but

VOLUME 10, 2022 108671

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

interactions between parts of a process are like occurring in a
black box and cannot be observed externally.

If action t in process P can initiate an interaction with
process Q, we use t to represent the action in Q that interacts
with P, where t is a complementary action of t , and t def

= t .
In this way, a pair of labels (t, t) represents the inter-process
interactions. We can observe t by observing the occurrence
of t . As a result, we can confirm interaction by observing the
occurrence of t or t . Action t is called observation and is an
inter-action with a complementary action t .

If Action τ in process P only affects the process itself,
it will not directly affect the process interaction. As a result, τ
cannot be observed directly, but only through the results after
τ occurs. Action τ is called reaction and is an intra-action
without complementary action.
Definition 3 (Prefix Action): Let P be a process, π be a

action, then π.P means that π must occur before P becomes
active. Action π is a prefix action of P and ‘‘.’’ is called prefix
operator. There is a sequential relationship between π and P.
The prefix action π is defined recursively as follows:

π :: def=


t (x) receiving action
t〈x〉 sending action

[x R y]π matching action
τ internal action

(1)

t (x)means action t receives x, where x is a restricted name.
t〈x〉means action t sends x, where x is a non-restricted name.
[x R y]π means action π could be executed when [x R y]
holds, where R is a logical operator. τ is the reaction defined
in Definition 2.

An expressionwith the structure ‘‘π.P’’ is called a guardian
expression, and P is guarded by π . A expression with the
structure ‘‘P = a.P’’ is called a recursive guardian expres-
sion, and P is recursive. To simplify guardian expressions
without affecting the semantics they represent, the expres-
sions can be reduced to one expression according to the
following rules:
• None of the expressions to be simplified are recursive.
• The expression obtained by reduction is not recursive.
For example, Let P = a.P1, P1 = b.P2, where P and P1

are not recursive. They could be reduced to P = a.b.P2 if
P = a.b.P2 is not recursive. However, P = a.Q, Q = b.R,
and R = c.P are not recursive, but they cannot be reduced to
P = a.b.c.P because the result is recursive.

In communication, (t, t) means action synchronization,
where t is the complementary action of observation t . If t (x)
and t〈y〉 in expression (t (x) .P + M)|(t〈y〉.Q + N) are not
guarded by other actions, they constitute a sync-action-pair
(t (x) , t〈y〉). The firing of (t (x) , t〈y〉) in process will lead to
the occurrence of (t (x) .P + M)|(t〈y〉.Q + N)

t
→ y/x}P|Q.

There is at least one channel in component communication,
which means there is at least one sync-action-pair.
Definition 4 (Transition): S = {s0, s1, s2, . . .} is the set of

all possible states of system, and Act = {t|s ∈ S, ∃s′ ∈ S, and
s

t
→ s′} is the set of actions on S. The process of system state

changing from s to s′ under action t is called a transition of
system, which is denoted as s

t
→ s′. A transition can be repre-

sented as an ordered triple
(
s, t, s′

)
, and the set of all system

transitions is denoted as T = {(s, t, s′)|s ∈ S, ∃t ∈ Act,
∃s′ ∈ S, and s

t
→ s′}.

Transitions si
a
→ si+1 and si

b
→ si+1 can be abbreviated as

si
a;b
→ si+1. Transitions si

a
→ si+1

c
→ si+2 can be abbreviated

as si
<a,c>
−→ si+2 without considering the intermediate state,

where si+2 is called a derived state of si under actions 〈a, c〉.
Definition 5 (Trace):A series of changes of the system state

can be represented as s0
t1
→ s1

t2
→

tn−1
−→ sn−1

tn
→ sn, the

sequence of ordered actions 〈t1, t2, . . . , tn〉 is called a trace of
system behavior. The set of traces of all system behaviors is
represented as traces(S).
Definition 6 (Component Behavior): Component behavior

is composed of names, processes, and symbols according to
the BNF paradigm and the following syntax:

P ::= π.P | P1 + P2 | P1 | P2 | new a P | !P | 0 |
√

(2)

1) π.P is a guardian expression, which means P will be
active while action π occurs. π is the prefix action
defined inDefinition 3. ‘‘.’’ is the prefix operator, which
is another expression of sequence operator.

2) P1 + P2 is a selection structure, which means P1 or P2
will be selected and be active according to the context.
‘‘+’’ is the selection operator.

3) P1 | P2 is a parallel structure, which means that P1 and
P2 are executed concurrently. The result depends on
the context while there are guardian structures during
concurrency. ‘‘|’’ is the parallel operator.

4) new aPmeans that name a is restricted withinP and can
only be used insideP. It can be represented as (new a)P,
new (a)P or (v a)P. ‘‘new’’ is the restriction operator,
and a is a restricted name of P.

5) !P means that P replicates itself and a copy of P is
created. ‘‘!’’ is the replication operator.

6) 0|
√

means the end of process, where 0 indicates that
the process is forcibly terminated and

√
indicates that

the process ends successfully.

C. EVOLUTION RULES
All rules are based on the atomicity of action. Action a is
atomic means a can be executed and terminated successfully,

which is represented as a
a
→
√
.

1) RULES FOR PREFIX OPERATOR

• a.P
a
→ P

While observation a occurs, process will transfer to P
and P becomes active.

• [τ] .P
[τ]
→ P

While reaction τ occurs, process will transfer to P and
P becomes active.

•
a
[τ]
→
√

a.P
[τ]
→P

108672 VOLUME 10, 2022

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

Observation a can execute successfully while reaction τ
occurs. While reaction τ occurs, process will transfer to
P and P becomes active.

2) RULES FOR SELECTION OPERATOR

• a.P1 + P2
a
→ P1

While observation a occurs, a.P1 is executed. Then
process will transfer to P1 and P1 becomes active.

•
P1

a
→P′1

P1+P2
a
→P′1

While observation a occurs, P1 will be executed and
terminated successfully. Then process will transfer to P′1
and P′1 becomes active.

•
P1

a
→P′1P2

a
→P′2

P1+P2
a
→P′1+P

′

2
While observation a occurs, P1 and P2 can be executed
and terminated successfully. Then process will transfer
to another selection structure P′1 + P

′

2.

These rules also hold for reaction τ .

3) RULES FOR PARALLEL OPERATOR
•

P1
a
→P′1

P1|P2
a
→P′1|P2

While observation a occurs, P1 will transfer

to P′1 and P2 has no change. Then process will transfer
to another parallel structure P′1|P2. The rule holds for
reaction τ .

•
P1

a
→P′1P2

a
→P′2

P1|P2
a
→P′1|P

′

2
(a, a) is a pair of synchronous actions used to represent
communication between P1 and P2, which is discussed
inDefinition 3.P1

a
→ P′1 indicatesP1 transfer toP

′

1 after

a occurs, expressed as P1 = a.P′1; P2
a
→ P′2 indicates a

in P2 occurs as the complementary action of a and P2
transfer to P′2, expressed as P2

a
→ P′2. According to

the first rule for prefix operator, there are expressions

a.P′1
a
→ P′1 and a.P

′

2
a
→ P′2. While a occurs, P1 initiates

interaction with P2 and P1|P2 will transfer to another
parallel structure P′1|P

′

2.

• (a.P1 +M)|(a.P2 + N)
a
→ P1|P2

(a, a) means that actions are synchronous, which is
discussed in Definition 3. While observation a occurs,
process will select a.P1 and a.P2 to execute and
can be expressed as a.P1|a.P2. According to the first
rule for prefix operator, there are a.P1

a
→ .P1 and

a.P2
a
→ P2. According to the second rule for parallel

operator, the process will transfer to another parallel
structure P1|P2.

• (a(Ex).P1 +M)|(a〈Ey〉.P2 + N)
a
→ {Ey/Ex}P1|P2

Ex and Ey are name-sequences of length n, which is dis-
cussed in Definition 1. (a, a) is discussed in Definition 3.
While observation a occurs, process will select a(Ex).P1
and a〈Ey〉.P2 to excute and then transfer to another paral-
lel structure {Ey/Ex}P1|P2.

TABLE 2. Examples of ICC commands.

IV. BEHAVIOR AND INTERACTION DESCRIPTION OF
COMPONENTS IN ANDROID APPLICATION
Application behavior consists of the behavior of components
that are executed concurrently. In the concurrent system S,
the size of traces(S) increases too rapidly as the actions in the
interaction increase. Consider two processes with n actions,
where actions can be executed interactively in any correct
order. Using S(n) to represent the scale of concurrency, the
following conclusions are obtained after calculation:

S (1) = 2,S (2) = 6,S (3) = 20, . . .

It can be predicted that S(n) will increase geometrically
with n, which is not conducive to further analysis.

In application behavior analysis, considering all actions to
fully characterize and analyze application behavior will bring
an unbearable burden. While studying application behavior
at the component level, intra-action can affect the state,
but has little impact on transitions. Therefore, we ignore
invisible intra-actions and describe behaviors by inter-actions
which can be observed and can trigger component interaction.
The commands of inter-component communication (ICC) are
abstracted as actions to describe the behavior of application.
Some ICC commands are shown in Table 2.

A. ACTIVITY
Activity provides a visual interface for interacting with users.
It has four states: running, paused, stopped, and destroyed.
The state transitions are implemented by life cycle functions,
and the processes are described as follows:

Activitynull
<onCreat,onStart,onResume>
–––––––––––––––––––––––––→ Activityrunning,

Activityrunning
onPause
–––––→ Activitypaused,

Activityrunning
<onPause,onStop>
––––––––––––––→ Activitystopped,

Activityrunning
<onPause,onStop,onDestroy>
–––––––––––––––––––––––––→ Activitydestroyed,

Activitypaused
onResume
––––––→ Activityrunning,

Activitystopped
<onRestart,onStart,onResume>
–––––––––––––––––––––––––––→ Activityrunning.

VOLUME 10, 2022 108673

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

In Android Apps, an activity is presented as a page, which
is the carrier of information. An activity can be the initiator
or receiver of the interaction between activities, in which
intent is used to encapsulate data to exchange information.
Behaviors of activity include the initiation and acceptance of
request, the return and reception of result, and the closure of
activity, which are defined as follows:

startActivity〈x〉.Activity,

startActivity (y) .Activity,

setResult〈m〉.Activity,

setResult (n) .Activity,

finish.Activity.

The state transitions of activity vary depending on the
behavior model and are described as follows:

startActivity〈x〉.Activityrunning
startActivity
––––––––→ Activitystopped,

startActivity (y) .Activitynull
startActivity
––––––––→ Activityrunning,

finish.Activityrunning
finish
––––→ Activitydestroyed,

setResult〈m〉.finish.Activityrunning

<setResult,finish>
––––––––––––––→ Activitydestroyed,

setResult (n) .Activitypaused
setResult
–––––→ Activityrunning.

In the interaction between activities, action setResult must
wait for the action finish to execute before forming a sync-
action-pair with setResult to return data to the initiator.
The actions in this process always appear in the form of
〈setResult,finish, setResult〉. Therefore, we replace it by
〈setResult, setResult〉 and describe the process as follows:

setResult〈m〉.Activityrunning
setResult
––––––→ Activitydestroyed,

setResult (n) .Activitypaused
setResult
––––––→ Activityrunning.

A typical interaction between activities is ‘‘The display
page switches from page A1 to page A2. After time T , page A2
is closed and page A1 returns to the foreground’’. The actions
executed by A2 in the duration T is represented as e, and the
interaction process is described as follows:

startActivity〈x〉.setResult (n) .A1 | startActivity (y) .

e.setResult〈m〉.A2.

PageA1 is stopped and pageA2 is running while the display
page is switched from A1 to A2. The behaviors and state
transitions are described as follows:

startActivity〈x〉.Arunning1 | startActivity (y) .Anull2
startActivity
–––––––→ Astopped1 | {x/y}Arunning2 ,

((onPause.Apaused1).onCreate.onStart.onResume.

Arunning2).onStop.Astopped1 .

Page A2 is closed and page A1 returns to the foreground
after time T . At this time, A1 is running and A2 is destroyed.

The behaviors and state transitions are described as follows:

setResult〈m〉.Arunning2 | setResult (n) .Apaused1
setResult
–––––→

Adestroyed2 | {m/n}Arunning1 ,

((onPause.Apaused2).onRestart.onStart.onResume.

Arunning1).onStop.onDestroy.Adestroyed2 .

In the interaction between activity and other components,
the process description and state transitions are as follows:

startActivity〈x〉.Component | startActivity (y) .

Activity
startActivity
–––––––→ Component | {x/y}Activityrunning,

onCreate.onStart.onResume.Activityrunning.

B. SERVICE
Service provides the services required by users and business
logic. It has two states: running and destroyed. The state
transitions are described as follows:

Servicenull
<onCreat,onStartCommand>
––––––––––––––––––––––––→ Servicerunning,

Servicenull
<onCreat,onBind>
––––––––––––––→ Servicerunning,

Servicerunning
onDestroy
––––––→ Servicedestroyed.

Service has two startup modes: starting and binding. Com-
ponents use intent to encapsulate data to communicate with
service. Service is responsible for responding to service
requests of components, including the start, bind, unbind, and
stop of the service. The behaviors are defined as follows:

startS (y) .Service,

stopS (y) .Service,

bindS (y) .Service,

unbindS (y) .Service.

A running service can be bound by multiple components.
To reflect the changes of the component instances connected
to service, the collection of currently connected instances is
represented as clients. Then, clients (c) .Service indicates that
instance c is added to clients, clients (c).Service indicates
that instance c is removed from clients. In addition, Service
provides a method stopSelf () which is used to stop service
instance when clients is empty. Consequently, there are some
more behaviors defined as follows:

(v clients)Service,

clients (c) .Service,

clients (c).Service,

stopSelf .Service.

Calling startService() to communicate with service will
first create an instance of service by calling onCreate(),
and then call the callback method onStartCommand(). If the
instance already exists, only the callback method is executed.
It is necessary to call stopService() or stopSelf () to stop

108674 VOLUME 10, 2022

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

a running service. The behaviors and state transitions of
starting/stopping the service are described as follows:

startS〈x〉.Component | startS (y) .Servicenull
startS
-––→

Component | {x/y}Servicerunning,

onCreat.onStartCommand .Servicerunning,

stopS〈x〉.Component | stopS (y) .Servicerunning
stopS
-––→

Component | Servicedestroyed,

onDestroy.Servicedestroyed,

stopSelf .Servicerunning
stopSelf
–––––→ Servicedestroyed,

onDestroy.Servicedestroyed.

Calling bindService() to communicate with service will
bind component to the service instance. If the service is not
running, onCreate() is executed first to create the instance,
and then callback method onBind() is executed. Otherwise,
only method onRebind() is executed. To unbind component
from service, it is necessary to call unbindService() unless
the component bound to the service has been destroyed.
A running service can be stopped until all components bound
to service are unbound. The behaviors and state transitions of
binding/unbinding the service are described as follows:

bindS〈x〉.Component | bindS (y) .Servicenull
bindS
-––→

Component | clients (x) .Servicerunning,

onCreat.onBind .Servicerunning,

unbindS〈x〉.Component | unbindS (y) .Servicerunning

unbindS
––––→ Component | clients (x).([clients 6= ∅]

Servicerunning + [clients = ∅] Servicedestroyed),

onUnbind .([clients 6= ∅] Servicerunning

+ [clients = ∅] onDestroy.Servicedestroyed).

Components can call startService() and bindService() to
communicate with service and the behaviors are different
according to the calling order. Generally, service is started by
calling startService(), and then component can be bound to
the service by calling bindService(). The behaviors and state
transitions are described as follows:

startS〈x〉.Component | startS (y) .Servicenull
startS
–––→

Component | {x/y}Servicerunning,

bindS〈m〉.Component | bindS (n) .Servicerunning
bindS
–––→

Component | clients (m) .Servicerunning,

(onCreat.onStartCommand .Servicerunning).onBind .

Servicerunning.

While communicating with service, bindService() can be
called before startService(), but it is not recommended. The
behaviors and state transitions are described as follows:

bindS〈m〉.Component | bindS (n) .Servicenull
bindS
–––→

Component | {m/n}Servicerunning,

startS〈x〉.Component | startS (y) .Servicerunning
startS
–––→

Component | clients (x) .Servicerunning,

(onCreat.onBind .Servicerunning).onStartCommand .

Servicerunning.

In order to stop a running service, regardless of the
order in which startSevice() and bindService() were called,
unbindService() and stopService() should be both called to
ensure that both of onUnbind() and onDestroy() are exe-
cuted. Moreover, onUnbind() should be executed before
onDestroy(). The behaviors and state transitions of service
are described as follows:

unbindS〈x〉.Component | unbindS (y) .Servicerunning

unbindS
––––→ Component | client (x).Servicerunning,

stopS〈m〉.Component | stopS (n) .Servicerunning
stopS
-––→

Component | ([clients= ∅] Servicedestroyed

+ [clients 6= ∅] Servicerunning),

(onUnbind .Servicerunning).onDestroy.Servicedestroyed.

C. BROADCAST RECEIVER
Broadcast receiver is the receiver in Android broadcasts and
is responsible for responding to the broadcasts of system and
component. The behavior is defined as follows:

sendBroadcast (y) .BroadcastReceiver.

Each component of application can initiate a broadcast as
a sender, where the broadcast is handled by onReceive() in
the receiver. Broadcast has a short life cycle, which begins at
creation and ends after successfully execution or termination
due to timeout. The duration of the broadcast is represented
as timeCost , and the timeout of the broadcast is represented
as timeOut . Then, the behavior is described as follows:

sendBroadcast〈x〉.Component | sendBroadcast (y) .

BroadcastReceiver
sendBroadcast
––––––––––→ Component |

([timeCost ≤ timeOut] onReceive.BroadcastReceiver

+ [timeCost > timeOut] 0).

D. CONTENT PROVIDER
Content provider is used to store data and provide data sharing
in applications. It can be accessed by external process if
android:exported=‘‘true’’ is set in declaration. Components
manipulate the data in content provider by using the methods
of content resolver. The behaviors are defined as follows:

insertCP (u) .ContentProvider,

deleteCP (u) .ContentProvider,

updateCP (u) .ContentProvider,

queryCP (u) .ContentProvider.

Components first create an instance of content resolver,
and then call insert(), delete(), update(), query() with uri as

VOLUME 10, 2022 108675

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

the parameter in the instance tomanipulate data. The behavior
of inserting data is described as follows:

(newr)(RegistContentResolver (r) .insertCP〈u〉.

Component) | insertCP (u) .ContentProvider
insert
–––→

Component | ContentProvider.

Action RegistContentResolver (r) is the intra-action of
caller component for creating instance r of content resolver,
where r can call class methods to manipulate data. Therefore,
the behavior can be simplified and described as follows:

(insertCP〈u〉.Component) | insertCP (u) .ContentProvider
insert
–––→ Component | ContentProvider.

The processes of deleting, updating, and querying data are
consistent with the process of inserting data, therefore there
is no longer to repeat the description.

E. COMPONENT INTERACTION WITH DATABASE
The methods for data operations on database are predefined.
In order to maintain the consistency of logic and formal
descriptions, data operations are regarded as interactions and
expressed as op (data) .Component|op (data) .DataBase. The
behaviors of data operations are defined as follows:

insertDB (data) .DataBase,

deleteDB (data) .DataBase,

queryDB (data) .DataBase,

updateDB (data) .DataBase.

In this section, we describe the behavior of components
using process algebra expression and achieve the behavior
formalization of application. These expressions conform to
the semantics and rules in this paper and have been validated
using MWB. Since the validations are not the focus of study
and require many pages, they are not included in this paper.

Based on behavior formalization, application behavior can
be analyzed using the process equivalence mechanism of
process algebra theory. In the following section, we define
the simulation and mutual simulation of behavior to analyze
the similarity between behaviors, and then propose decision
rules based on weak simulation.

V. BEHAVIOR DECISION BASED ON BEHAVIOR
EQUIVALENCE-WEAK SIMULATION
Expected behavior refers to the combination of queues and
actions necessary to achieve application functions and meet
user requirements. Application behaviors can be categorized
as follows according to whether they are expected:
• Credible behavior. Behaviors can be monitored and
identified, and are expected.

• Malicious behavior. Behaviors can be monitored and
identified, and are unexpected.

• Suspicious behavior. Behaviors can be monitored, but
can only be partially identified and cannot be identified
as expected or unexpected.

An application is benign if all its behaviors are expected,
which means that all behaviors are credible. An application is
malicious if there are some unexpected behaviors in it, which
means that it has at least one malicious behavior. Therefore,
in Android malware detection, the focus should be whether
there is malicious behavior in the application. Based on the
relationship between application behavior and expected or
unexpected behavior, application behavior could be analyzed
according to the behavior equivalence mechanism.
Definition 7 (Behavior Equivalence): Let P and Q be two

different processes, P and Q are trace equivalent if and only
if traces(P)= traces(Q). The relationship between P and Q is
process equivalence, also called behavior equivalence.

The term process describes the behavior of system by using
the elements discussed in Section III. Processes are trace
equivalent means that they have the same behavior pattern.

To describe the equivalence between behaviors, we extend
the simulation theory of π -calculus and define the behavior
simulation and behavior mutual simulation. In the following
section, the two concepts are represented with simulation and
mutual simulation for ease of description.

A. BEHAVIOR EQUIVALENCE: SIMULATION AND
BISIMULATION
Simulation is an one-way description between behaviors. ‘‘P
simulates Q’’ indicates that the behavior pattern of P is at
least as rich as that of Q. Mutual simulation is a two-way
simulation between behaviors, also known as bisimulation.
‘‘P and Q are mutual simulated’’ indicates that their behavior
patterns are equivalent to some extent.

To accurately express the degree of similarity between
behaviors, simulation is divided into strong simulation and
weak simulation.
Definition 8 (Strong Simulation): Let P and Q be two

behaviors, and let S be a binary relation. The relationship
between P and Q is expressed as QSP. Then, we say that P
strongly simulates Q if the following conditions hold:
(1) For each action a in Q and its transition q

a
→ q′, where

a is defined in formula (1), there exists action a and its
transition in P such that p

a
→ p′, where p′ is a derived

state of p.
(2) p′ strongly simulates q′.
The binary relation S is called a strong simulation. QSP

means that for any transition of Q, P has a path that contains
all the actions of Q to match it.
Definition 9 (Strong Bisimulation): Let P and Q be two

behaviors, and let S be a binary relation. The relationship
betweenP andQ is expressed asQSP. Then, we say thatP and
Q are strongly bisimulated if the following conditions hold:
(1) For each action a in Q and its transition q

a
→ q′, where

a is defined in formula (1), there exists action a and its
transition in P such that p

a
→ p′, where p′ is a derived

state of p. Additionally, p′ strongly simulates q′ and q′

strongly simulates p′.

(2) For each action b in P and its transition p
b
→ p′, where

b is defined in formula (1), there exists action b and its

108676 VOLUME 10, 2022

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

transition in Q such that q
b
→ q′, where q′ is a derived

state of q. Additionally, q′ strongly simulates p′ and p′

strongly simulates q′.
The binary relation S is called a strong bisimulation. QSP

means that P andQ are strongly equivalent, written as P ∼ Q.
From definition 9, it can be concluded that QSP is equivalent
to QSP.
Kindly note that ‘‘P and Q are strongly equivalent’’ is not

equal to ‘‘P strongly simulates Q, and Q strongly simulates
P’’. The former is a stricter condition and includes the latter.
It is extremely difficult to use strong simulation to analyze

the behavior of complex systems because considering all the
actions and transitions of the system will bring an unbearable
burden. However, the focus of behavior analysis of Android
Apps should be on whether there is malicious behavior in the
application, rather than whether the application behavior and
malicious behavior are isomorphic or homomorphic. Android
Apps are complex systems with a high degree of concurrency
and interaction, so it is a feasible solution to ignore irrelevant
actions to analyze the behavior of application. Therefore,
we present the definition of weak simulation of behavior.

Based on the semantics of behavior proposed in Definition
4 and Definition 5, we use symbol e to represent a sequence
of actions. It is a sequence of ordered actions, denoted as
e = 〈t1, t2, t3, . . .〉, which can contain any type and any
number of actions. (new a) emeans there is at least one action
a in e. The execution of e is denoted as e

H⇒, where there can
be any number of interactions.
Definition 10 (Weak Simulation): Let P and Q be two

behaviors, and let S be a binary relation. The relationship
between P and Q is expressed as QSP. Then, we say that P
weakly simulates Q if the following conditions hold:
(1) For each action a in Q and its transition q

a
→ q′, where

a is defined in formula (1), there exists action a and
(new a)e inP such that p

(new a)e
==H⇒ p′, where p′ is a derived

state of p.
(2) p′ weakly simulates q′.
The binary relation S is called a weak simulation. QSP

means that for any transition of Q, P has a path to cover it.
Definition 11 (Weak Bisimulation): Let P and Q be two

behaviors, and let S be a binary relation. The relationship
betweenP andQ is expressed asQSP. Then, we say thatP and
Q are weakly bisimulated if the following conditions hold:
(1) For each action a in Q and its transition q

a
→ q′, where

a is defined in formula (1), there exists action a and
(new a)e in P such that p

(new a)e
==H⇒ p′. Additionally, p′

weakly simulates q′.

(2) For each action b in P and its transition p
b
→ p′, where

b is defined in formula (1), there exists action b and
(new b) e in Q such that q

(new b)e
==H⇒ q′. Additionally, q′

weakly simulates p′.
The binary relation S is called a weak bisimulation.

QSP means that P and Q are weakly equivalent, written as
P ≈ Q. Weak bisimulation is also called weak equivalence or
observation equivalence.

The restrictions of strong bisimulation, strong simula-
tion, weak bisimulation, and weak simulation are gradually
reduced. Researchers can apply the corresponding simulation
mechanism according to their actual situation.

In application behavior analysis, using strong simulation
to analyze the equivalence between behaviors must consider
all actions and trasitions. This will be an intolerable burden
because it is extremely complicated. Fortunately, we have
found that weak simulation is suitable and sufficient for
studying suspicious and uncertain behavior. The next section
proposes decision rules based on weak simulation according
to behavior equivalence.

B. DECISION RULES BASED ON WEAK SIMULATION
Rule 1 (Credible Behavior): Behavior P is a credible

behavior if expected behavior Q weakly simulates P.
The rule indicates that P is contained in expected behavior

Q. The sequence of actions in P is an ordered subset of the
sequence of actions in Q, where actions can be continuous or
discontinuous. The sequence of actions in Q is credible, and
so is its ordered subset. Therefore, P is credible.
Rule 2 (Malicious Behavior): Behavior P is a malicious

behavior if P weakly simulates unexpected behavior R.
The rule indicates that unexpected behavior R is contained

in P. The sequence of actions in R is an ordered subset of the
sequence of actions in P, where actions can be continuous
or discontinuous. Since the sequence of actions in R is mali-
cious, there is at least one path of malicious behavior in P.
Therefore, P is malicious.
Rule 3 (Suspicious Behavior):Behavior P is a suspicious

behavior if Pweakly simulates expected behaviorQ, or unex-
pected behavior R weakly simulates P.
P weakly simulates expected behavior Q indicates that

traces(P) contains part of the sequence of actions in Q.
However, it is impossible to decide whether P is credible or
malicious according to this condition alone, because there is
no guarantee that all traces in P are credible. Therefore, P is
suspicious and should be further analyzed.

Unexpected behavior R weakly simulates P indicates that
traces(P) contains part or all of the sequence of actions in
R. If traces(P) contains only part of R′s actions, it does not
necessarily constitute a malicious behavior. It is impossible
to decide whether P is credible or malicious according to
this condition alone. Therefore, P is suspicious and should
be further analyzed.

Based on the relationship between weak simulation and
weak bisimulation, the following inferences can be drawn
from Rule 1 and Rule 2.
Inference 1 (Credible Behavior): P is credible if it weakly

mutual simulates expected behavior Q.
Inference 2 (Malicious Behavior):P is malicious if it

weakly mutual simulates unexpected behavior R.
To make decision of application behavior P, it is necessary

to construct formal descriptions of expected and unexpected
behaviors to form priori rules, and make decision according
to these rules. The decision process is as follows:

VOLUME 10, 2022 108677

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

(1) P is malicious if P has some malicious behaviors.
(2) P is credible if all the behaviors of P are credible.
(3) P is suspicious if it contains suspicious behaviors that

cannot be determined asmalicious or credible. It should
be further analyzed according to the rules based on
weak simulation and weak bisimulation.

(4) P is malicious if it weakly simulates unexpected behav-
ior R, or it is weakly mutual simulated by R.

(5) P is credible if it weakly simulates expected behavior
Q, or it is weakly mutual simulated by Q.

In this process, the decisions of suspicious behaviors are
abstracted into new decision rules for expected or unexpected
behaviors, and other subsequent behaviors can be directly
determined by continuously improving rules. On the basis
of behavior formalization, according to the proposed rules,
application behavior can be classified and determined by the
inference and calculation mechanism of process algebra.

According to Definition 8 and Definition 10, it can be
inferred that P weakly simulates Q from the condition ‘‘P
strongly simulates Q’’ or ‘‘P and Q are strongly equivalent’’.
Therefore, the rules and inferences based on weak simulation
also hold for strong simulation, as shown below:
• Behavior P is credible if expected behavior Q strongly
simulates P, or P strongly mutual simulates Q.

• Behavior P is malicious if P strongly simulates or
strongly mutual simulates unexpected behavior R.

• Behavior P is suspicious if P strongly simulates
expected behaviorQ, or unexpected behavior R strongly
simulates P.

In the behavior analysis of Android Apps, using strong
simulation to study equivalence is not only complex and
difficult, but also flawed. For example, let Q be malicious
behaviors, let P weakly simulates Q but does not strongly
simulate Q. According to the decision rules based on weak
simulation, it can be concluded that P is malicious. However,
P cannot be analyzed by using strong simulation because
there is no such relationship between P and Q. So P cannot
be considered malicious when using the rules based on strong
simulation. Therefore, weak simulation is more suitable than
strong simulation in studying the equivalence between behav-
iors. Actully, if there is a strong simulation relationship
between behaviors, which indicates that there is a higher
equivalence than weak simulation, the same conclusion can
be drawn as using weak simulation.

In the following section, we discuss a demonstration case
derived from a real Android application containing malicious
behavior to demonstrates the feasibility and effectiveness of
the method in this paper.

VI. CASE ANALYSIS
Fig. 1 shows component interactions of the demonstration
case. The default page is LogActivity and registered users
can log into the page directly. New users should first register
on RegActivity and then return to LogActivity to log into
MainActivity, which provides functions such as information
modification. Users register on RegActivity using a mobile

FIGURE 1. Schematic diagram of the interactions between components.

number and authorize the application to access the mobile
phone address book and send SMS. This application can leak
information through component interactions.

The process of analyzing application behavior using the
process equivalence mechanism of process algebra is divided
into two phases:
Phase 1: Establish the instances of application component

and achieve the behavior formalization of application.
Phase 2: Analyze the relationship between application

behavior and malicious behavior by using simulation mech-
anism, and then make the decision.

A. FORMAL DESCRIPTION OF COMPONENT BEHAVIOR
AND COMPONENT INTERACTION
According to Fig. 1 and Table 2, we construct the component
instances and illustrate there actions in Fig. 2.

In Fig. 2, otheractions represent reactions and actioni
represent observations, which are discussed in Definition 2.
intent i are used to transmit information in component com-
municaion and are defined as follows:

intent1 = newIntent(LogActivity.this,RegActivity.class);

intent2 = newIntent(LogActivity.this,ModActivity.class);

intent3 = newIntent(MainActivity.this,ModActivity.class).

There are four component instances that can initiate
interactiions and act as the subject or object of interaction
behavior, as shown in Fig. 2. Providerexternal is an external
component outside application. It cannot initiate interactions,
but only responds to the interaction of other components. The
behaviors of components are defined as follows:

startActiviy〈regist〉.LogActivity,

setResult (info) .LogActivity,

108678 VOLUME 10, 2022

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

FIGURE 2. Behavior actions of component instances.

queryDB〈phone〉.LogActivity,

startActiviy〈login〉.LogActivity,

startActiviy (regist) .RegActivity,

queryDB〈phone〉.RegActivity,

insertDB〈newUser〉.RegActivity,

setResult〈info〉.RegActivity,

startActiviy (login) .MainActivity,

queryDB〈phone〉.MainActivity,

queryCP〈phoneBook〉.MainActivity,

startActivity〈modify〉.MainActivity,

startActiviy (modify) .ModActivity,

queryDB〈phone〉.ModActivity,

updateDB〈newInfo〉.ModActivity,

queryCP (phoneBook) .Providerexternal.

LogActivity can initiate the interaction with MainActivity
and RegActivity according to user choice. Users should log
in again if the authentication fails. User choice is represented
as choice, and the result of authentication is represented as
isChecked . The component behavior is described as follows:

[choice = regist] (startActiviy〈regist〉.

setResult (info) .LogActivity |startActivity (regist) .

setResult〈info〉.RegActivity)+ [choice = login]

((queryDB〈phone〉.LogActivity | queryDB (phone) .

DataBase).([isChecked = True](startActiviy〈login〉.

LogActivity | startActivity (login) .MainActivity)

+ [isChecked = Flase] !LogActivity)).

RegActivity will be terminated if the new user cancels the
registration. If the registration is successful, LogActivity will

be active after saving user information to database, other-
wise user should fill in registration information again. Use
isExsited to indicate whether the user exists, the component
behavior is described as follows:

[operate = Regist](queryDB〈phone〉.RegActivity |

queryDB (phone) .DataBase).([isExsited = False]

(insertDB〈newUser〉.setResult〈info〉.RegActivity |

insertDB (newUser) .DataBase | setResult (info) .

LogActivity)+ [isExsited = True] !RegActivity)

+ [operate = Cancel]finish.RegActivity.

MainActivity can display user information and provides
functions such as user information modification. In addition,
it can access the mobile phone address book. The component
behavior is described as follows:

(queryDB〈phone〉).MainActivity | queryDB (phone) .

DataBase).(queryCP〈phoneBook〉.MainActivity |

queryCP (phoneBook) .Providerexternal).

([choice = modify]startActivity〈modify〉.

MainActivity | startActiviy (modify) .ModActivity

+ [choice = otherChoice] Processothers).

Users can modify personal information on ModActivity.
If user confirms the modification, the new information will
be updated to the database, otherwise ModActivity will be
terminated. The component behavior is described as follows:

(queryDB〈phone〉.ModActivity | queryDB (phone) .

DataBase).([confirm = Yes] updateDB〈newInfo〉.

ModActivity | updateDB (newInfo) .DataBase

+ [confirm = No]finish.ModActivity) |

(new sendTextMessage) ModActivity.

The behavior of the case is composed of the concurrent
execution of these formal expressions above. The results
of validation by MWB show that these formal expressions
can accurately describe the behavior of components and the
interactions with other components.

B. BEHAVIOR ANALYSIS USING STRONG SIMULATION
AND WEAK SIMULATION
As shown in Fig. 1, MainActivity has the behavior of access-
ing address book and ModActivity has the behavior of send-
ing text message. Then, they form a path for information
leakage through interaction and achieve a collusion attack,
as shown in Fig. 3.

MainActivity implements collaborative behavior and
obtains data from mobile address book through queryCP.
It initiates communication through action startActivity and
transmits data to ModActivity. Then, ModActivity leaks data
through sendTextMessage. Without considering the inter-
mediate states and interactions with other components, the

VOLUME 10, 2022 108679

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

FIGURE 3. Collusion attack in components.

FIGURE 4. Schematic diagram of the collusion attack in the application.

collusion attack is described as follows:

(queryCP〈x〉startActivity〈i〉,MainActivity |

startActiviy (i) . (new sendTextMessage) (e2.queryDB.

e3.updateDB.ModActivity).

The symbol ei is a sequence of actions, which can contain
any number and any type of actions. We first repre-
sent queryCP〈x〉.e1 as (newquery CP) e1, and then rep-
resent (newsendTextMessage)(e2.queryDB.e3.ModActivity)
as (newsendTM) e2.updateDB.ModActivity. Therefore, the
collusion attack containing harmful sequence of actions
〈queryCP, sendTM〉 can be described as follows:

(newquery CP) e1.startActivity. (newsendTM) e2.

The action of obtaining private data is represented as r ,
the action of initiating component interaction is represented
as c, and the action of leaking data is represented as s.
In MainActivity, r is the action queryCP that accesses the
mobile address book. Using e1 to represent the actions of
obtaining data, the behavior of obtaining private data can be

expressed as p
(new r)e1
===H⇒ p0, and there is some private data in

p0. In ModActivity, s is the action sendTM that sends text
message. Using e2 to represent the actions of leaking data, the

behavior of leaking data is expressed as p1
(new s)e2
===H⇒ p2, and

data in p2 has been leaked. Therefore, the collusion attack
implemented in the interaction between MainActivity and
ModActivity is represented as P, as shown in Fig. 4.

The harmful sequence of actions 〈queryCP, sendTM〉
in application can be expressed as 〈r, s〉, which consti-
tutes collusion attack Q with a series structure, as shown
in Fig. 5.

P is the information leakage behavior in the demonstration
case. Q is a typical collusion attack behavior in Android
applications. Using strong simulation and weak simulation to
analyze the relationship between P and Q, we can draw the
following conclusions:

FIGURE 5. Collusion attack with series structure.

1) P weakly simulates Q.
• For s ∈ Q and q0

s
→ q1, then ∃p0

c
→ p1

(news)e2
===H⇒ p2 in

P, which can be abbreviated as p0
<c,(new s)e2>
===H⇒ p2 accord-

ing to Definition 4. Obviously, p2 weakly simulates q1
because there is no action in q1. Therefore, p0 weakly
simulates q0.

• For r ∈ Q and q
r
→ q0, then ∃p

(new r)e1
===H⇒ p0 in P.

Since p0 weakly simulates q0 has been proven, p weakly
simulates q.

According to Definition 10, we draw the conclusion that P
weakly simulates Q.

2) Q cannot weakly simulate P.
• For c ∈ P and p0

c
→ p1, there are no actions and tran-

sitions to match them in Q. According to Definition 10,
we draw the conclusion that Q cannot weakly simulate
P.

3) P cannot strongly simulate Q.
• For r ∈ Q and q

r
→ q0, we first assume that there is a

transition p
(new r)e1
===H⇒ p0 in P. However, p0 cannot strongly

simulate q0 because there are no actions and transitions
to match s ∈ Q and q0

s
→ q1. According to Definition 8,

we draw the conclusion that P cannot strongly simulate
Q.

• If the assumption is not valid, there are no actions and
transitions to match r ∈ Q and q

r
→ q0. According to

Definition 8, we draw the same conclusion.
4) Q cannot strongly simulate P.
• It has been proven that Q cannot weakly simulate P in 2).
According to the relationship between strong simulation
and weak simulation, it is obvious that Q cannot strongly
simulate P.

From the above discussion, it can be concluded that appli-
cation behavior P weakly simulates malicious behavior Q,
and P is malicious, but P cannot strongly simulate Q.

In the behavior analysis, even if the strong simulation
relationship between P and Q is invalid, we can draw the
conclusion that P is malicious based on the condition ‘‘P
weakly simulates malicious behavior Q’’. However, behavior
M cannot be considered malicious if malicious behavior Q
weakly simulates M. For example, let Q be a malicious
behavior containing transitions q

r
→ q0

s
→ q1, M be a

behavior containing only one transition m
r
→ m0. Obviously,

Q weakly simulates behavior M, but M cannot be considered
malicious because M only contains one action of obtaining
data.

By discussing the behavior P in Fig. 3 and the behavior
Q in Fig. 4, we have demonstrated that the weak simulation

108680 VOLUME 10, 2022

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

FIGURE 6. Schematic diagram of the behavior of P and Q.

relationship between P and Q can be used to make decision
of application behavior. Unfortunately, there is no strong
simulation relationship between P and Q. Thus, although
strong simulation represents higher behavior equivalence,
it sometimes has limitations and flaws in behavior analysis.
Moreover, strong simulation requires more work than weak
simulation. Therefore, weak simulation is more suitable than
strong simulation in application behavior analysis.

In order to illustrate the application of strong simulation
in behavior equivalence, we further abstract and simplify the
actions in P and Q to generate two more general behaviors,
which are still represented as P and Q, as shown in Fig. 6.

Using strong simulation to analyze the relationship
between P and Q, we draw the following conclusions:

1) P strongly simulates Q.
• For b ∈ Q and q1

b
→ q2, then ∃p1

b
→ p2 in P. It is

obvious that p2 strongly simulates q2 because there is
no action in q2. Therefore, p1 strongly simulates q1.

• For a ∈ Q and q
a
→ q1, then ∃p

a
→ p1 in P. Since

p1 strongly simulates q1 has been proven, p strongly
simulates q.

According to Definition 8, we draw the conclusion that P
strongly simulates Q.

2) Q strongle simulates P.
• For b ∈ P and p1

b
→ p2, then ∃q1

b
→ q2 in Q. It is

obvious that q2 strongly simulates p2 because there is
no action in p2. Therefore, q1 strongly simulates p1.

• For a ∈ P and p
a
→ p1, then ∃q

a
→ q1 in Q, and q1

strongly simulates p1 has been proven; for a ∈ P and
p

a
→ p3, then ∃q

a
→ q1 in Q, and q1 strongly simulates

p3 because there is no action in p3. Therefore, q strongly
simulates p.

According to Definition 8, we draw the conclusion that Q
strongly simulates P.

3) P and Q are not strongly equivalent.
• For b ∈ P and p1

b
→ p2, then ∃q1

b
→ q2 in Q. Since p1

strongly simulates q1 and p2 strongly simulates q2 were
proven in 1); q1 strongly simulates p1 and q2 strongly
simulates p2 were proven in 2). Therefore, q1 and p1 are
strongly equivalent, denoted as q1 ∼ p1.

• P has two branches at action a. Consider the bottom
branch alone, for a ∈ P and p

a
→ p1, then ∃q

a
→ q1, and

q1 ∼ p1 is proven, such that q ∼ p. However, for a ∈ P
and p

a
→ p1 in the top branch, then ∃q

a
→ q3. Since q1

strongly simulates p3 but p3 cannot strongly simulate q1,
p and q are not strongly equivalent.

According to Definition 9, we draw the conclusion that P
and Q are not strongly equivalent.

From the discussion above, we concluded that P and Q in
Fig. 6 are not strongly equivalent, but P strongly simulates Q
and Q strongly simulates P. The proof of these conclusions
shows that ‘‘P strongly simulates Q and Q strongly simulates
P’’ is not equal to ‘‘P and Q are strongly equivalent’’. In fact,
according to Definition 8 and Definition 10, it can be inferred
that P weakly simulates Q and Q weakly simulates P. There-
fore, both P and Q are malicious or credible according to the
rules based on weak simulation.

In this section, we achieve the formal description of the
behavior of demonstration application, and then use strong
simulation and weak simulation to analyze the equivalence
between application behavior and malicious behavior. The
results show that the method for the description and decision
of application behavior can accurately and effectively modle
and analyze application behavior. Furthermore, the analysis
process prove that weak simulation is suitable compared with
strong simulation and the rules and inferences based on weak
simulation are sufficient and effective for the analysis and
decision of application behavior.

VII. CONCLUSION
In this study, we proposed a formal method for studying
application behavior, which uses process algebra expressions
and operators to achieve behavior formalization of an appli-
cation, and use the inference and calculation mechanism to
achieve the analysis and decision of application behavior.
In view of the concurrency and interaction characteristics
of Android Apps, we extended the π -calculus theory, which
is suitable for analyzing mobile concurrent interaction sys-
tems, to the study of application behavior. Based on this
study’s semantics and rules, the behavior of four types of
application components was described using process algebra
expressions. Further, we presented definitions for analyz-
ing behavior equivalence and proposed decision rules based
on weak simulation by discussing the application of strong
simulation and weak simulation in behavior analysis. The
formal method for the description and decision of application
behavior was validated in case analysis. This study will help
scholars understand the relationships and laws of application
behavior with collaborations and interactions, and it will
provide theoretical support for the analysis and detection of
application behavior based on various dynamic and static
behavior features.

In future research, we will focus on the construction
of behavior rules and the simulation detection of behavior
to conduct automatic analysis and decision of application
behavior. In this study, we have proved that the rules based
on weak simulation are effective and sufficient in behavior
analysis, and weak simulation is more suitable than strong
simulation. However, strong simulation represents a higher
degree of similarity in behavior equivalence and the rules
based on weak simulation also hold for strong simulation.
Therefore, combining inter-action and intra-action to analyze

VOLUME 10, 2022 108681

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

application behavior using strong simulation is a potential
research field.

REFERENCES
[1] Share of Smartphone Shipments Worldwide by Operating System From

2014 to 2023, 2021. Accessed: Mar. 12, 2021. [Online]. Available:
https://www.statista.com/ statistics/277048/global-market-share-forecast-
of-smartphone-perating-systems/

[2] (2021). Smartphone Market Share. Accessed: Mar. 26, 2021. [Online].
Available: https://www. idc.com/promo/smartphone-market-share

[3] K. Tam,A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, ‘‘The evolu-
tion of Android malware and Android analysis techniques,’’ ACMComput.
Surv., vol. 49, no. 4, pp. 1–41, Dec. 2017, doi: 10.1145/3017427.

[4] F. Farivar, M. S. Haghighi, A. Jolfaei, and M. Alazab, ‘‘Artificial
intelligence for detection, estimation, and compensation of malicious
attacks in nonlinear cyber-physical systems and industrial IoT,’’ IEEE
Trans. Ind. Informat., vol. 16, no. 4, pp. 2716–2725, Apr. 2020, doi:
10.1109/TII.2019.2956474.

[5] T. Sharma and D. Rattan, ‘‘Malicious application detection in Android—
A systematic literature review,’’ Comput. Sci. Rev., vol. 40, May 2021,
Art. no. 100373, doi: 10.1016/j.cosrev.2021.100373.

[6] S. Hr, ‘‘Static analysis of Android malware detection using deep learning,’’
in Proc. Int. Conf. Intell. Comput. Control Syst. (ICCS), May 2019,
pp. 841–845, doi: 10.1109/ICCS45141.2019.9065765.

[7] D. O. Sahin, S. Akleylek, and E. Kilic, ‘‘LinRegDroid: Detec-
tion of Android malware using multiple linear regression models-
based classifiers,’’ IEEE Access, vol. 10, pp. 14246–14259, 2022, doi:
10.1109/ACCESS.2022.3146363.

[8] L. Pan, B. Cui, J. Yan, X. Ma, J. Yan, and J. Zhang, ‘‘Androlic: An
extensible flow, context, object, field, and path-sensitive static analysis
framework for Android,’’ in Proc. 28th ACM SIGSOFT Int. Symp. Softw.
Test. Anal., Jul. 2019, pp. 394–397, doi: 10.1145/3293882.3339001.

[9] J. Zhang, X. Zhuang, and Y. Chen, ‘‘Android malware detection combined
with static and dynamic analysis,’’ in Proc. the 9th Int. Conf. Commun.
Netw. Secur., Nov. 2019, pp. 6–10, doi: 10.1145/3371676.3371685.

[10] J. Gajrani, V. Laxmi, M. Tripathi, M. S. Gaur, A. Zemmari,
M. Mosbah, and M. Conti, ‘‘Effectiveness of state-of-the-art dynamic
analysis techniques in identifying diverse Android malware and future
enhancements,’’ Adv. Comput., vol. 119, pp. 73–120, Jan. 2020, doi:
10.1016/bs.adcom.2020.03.002.

[11] H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani, and
H. Fu, ‘‘DDefender: Android application threat detection using static and
dynamic analysis,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Jan. 2018, pp. 1–6, doi: 10.1109/ICCE.2018.8326293.

[12] M. Choudhary and B. Kishore, ‘‘HAAMD: Hybrid analysis for Android
malware detection,’’ in Proc. Int. Conf. Comput. Commun. Informat.
(ICCCI), Jan. 2018, pp. 1–4, doi: 10.1109/ICCCI.2018.8441295.

[13] J. Tang, R. Li, K. Wang, X. Gu, and Z. Xu, ‘‘A novel hybrid
method to analyze security vulnerabilities in Android applications,’’
Tsinghua Sci. Technol., vol. 25, no. 5, pp. 589–603, Oct. 2020, doi:
10.26599/TST.2019.9010067.

[14] W.Wang, C. Ren, H. Song, S. Zhang, and P. Liu, ‘‘FGL_Droid: An efficient
Androidmalware detectionmethod based on hybrid analysis,’’ Secur. Com-
mun. Netw., vol. 2022, pp. 1–11, Apr. 2022, doi: 10.1155/2022/8398591.

[15] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, ‘‘A detailed inves-
tigation and analysis of using machine learning techniques for intrusion
detection,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 686–728,
1st Quart., 2019, doi: 10.1109/COMST.2018.2847722.

[16] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android
malware detection approaches based on machine learning,’’ IEEE Access,
vol. 8, pp. 124579–124607, 2020, doi: 10.1109/ACCESS.2020.3006143.

[17] B. Li, Y. Zhang, J. Yao, and T. Yin, ‘‘MDBA: Detecting malware based on
bytes n-gram with association mining,’’ in Proc. 26th Int. Conf. Telecom-
mun. (ICT), Apr. 2019, pp. 227–232, doi: 10.1109/ICT.2019.8798828.

[18] R. Vinayakumar, K. P. Soman, and P. Poornachandran, ‘‘Deep Android
malware detection and classification,’’ in Proc. Int. Conf. Adv. Com-
put., Commun. Informat. (ICACCI), Sep. 2017, pp. 1677–1683, doi:
10.1109/ICACCI.2017.8126084.

[19] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘Mal-
Dozer: Automatic framework for Android malware detection using
deep learning,’’ Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018, doi:
10.1016/j.diin.2018.01.007.

[20] C. Zhang, Q. Zhou, Y. Huang, K. Tang, H. Gui, and F. Liu, ‘‘Auto-
matic detection of Android malware via hybrid graph neural network,’’
Wireless Commun. Mobile Comput., vol. 2022, pp. 1–11, May 2022, doi:
10.1155/2022/7245403.

[21] I. Almomani, A. Alkhayer, and W. El-Shafai, ‘‘An automated vision-
based deep learning model for efficient detection of Android mal-
ware attacks,’’ IEEE Access, vol. 10, pp. 2700–2720, 2022, doi:
10.1109/ACCESS.2022.3140341.

[22] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou,
‘‘Familial clustering for weakly-labeled Android malware using hybrid
representation learning,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3401–3414, 2020, doi: 10.1109/TIFS.2019.2947861.

[23] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and A. Sharif,
‘‘A multimodal malware detection technique for Android IoT devices
using various features,’’ IEEE Access, vol. 7, pp. 64411–64430, 2019, doi:
10.1109/ACCESS.2019.2916886.

[24] N. Xie, X. Wang, W. Wang, and J. Liu, ‘‘Fingerprinting Android malware
families,’’ Frontiers Comput. Sci., vol. 13, no. 3, pp. 637–646, 2019, doi:
10.1007/s11704-017-6493-y.

[25] H. Zhang, S. Luo, Y. Zhang, and L. Pan, ‘‘An efficient Android
malware detection system based on method-level behavioral seman-
tic analysis,’’ IEEE Access, vol. 7, pp. 69246–69256, 2019, doi:
10.1109/ACCESS.2019.2919796.

[26] Y.-T. Huang, Y. S. Sun, and M. C. Chen, ‘‘TagSeq: Malicious behavior
discovery using dynamic analysis,’’ PLoS ONE, vol. 17, no. 5, May 2022,
Art. no. e0263644, doi: 10.1371/journal.pone.0263644.

[27] A. Arora, S. K. Peddoju, and M. Conti, ‘‘PermPair: Android malware
detection using permission pairs,’’ IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 1968–1982, 2020, doi: 10.1109/TIFS.2019.2950134.

[28] J. Xiao, K. Xu, and J. Duan, ‘‘Malicious Android application detection
based on composite features,’’ in Proc. 3rd Int. Conf. Comput. Sci. Appl.
Eng. (CSAE), 2019, pp. 1–6, doi: 10.1145/3331453.3361664.

[29] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM: Effec-
tive and efficient behavior-based Android malware detection and pre-
vention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83–97,
Jan./Feb. 2018. doi: 10.1109/TDSC.2016.2536605.

[30] A. Mahindru and P. Singh, ‘‘Dynamic permissions based Android malware
detection using machine learning techniques,’’ in Proc. 10th Innov. Softw.
Eng. Conf., Feb. 2017, pp. 202–210, doi: 10.1145/3021460.3021485.

[31] S. Y. Yerima and S. Khan, ‘‘Longitudinal performance analysis of machine
learning based Android malware detectors,’’ in Proc. Int. Conf. Cyber
Security and Protection of Digital Services (Cyber Security), Jun. 2019,
pp. 1–8, doi: 10.1109/CyberSecPODS.2019.8885384.

[32] X. Wang, L. Zhang, K. Zhao, X. Ding, and M. Yu, ‘‘MFDroid: A stacking
ensemble learning framework for Android malware detection,’’ Sensors,
vol. 22, no. 7, p. 2597, Mar. 2022, doi: 10.3390/s22072597.

[33] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, ‘‘Android
malware detection using genetic algorithm based optimized feature selec-
tion and machine learning,’’ in Proc. 42nd Int. Conf. Telecommun. Signal
Process. (TSP), Jul. 2019, pp. 220–223, doi: 10.1109/TSP.2019.8769039.

[34] J. Jung, H. Kim, D. Shin, M. Lee, H. Lee, S.-J. Cho, and K. Suh, ‘‘Android
malware detection based on useful API calls and machine learning,’’ in
Proc. IEEE 1st Int. Conf. Artif. Intell. Knowl. Eng. (AIKE), Sep. 2018,
pp. 175–178, doi: 10.1109/AIKE.2018.00041.

[35] A. S. Shatnawi, A. Jaradat, T. B. Yaseen, E. Taqieddin, M. Al-Ayyoub, and
D. Mustafa, ‘‘An Android malware detection leveraging machine learn-
ing,’’Wireless Commun. Mobile Comput., vol. 2022, pp. 1–12, May 2022,
doi: 10.1155/2022/1830201.

[36] R. S. Arslan, İ. A. Doǧru, and N. Barişçi, ‘‘Permission-based malware
detection system for Android using machine learning techniques,’’ Int.
J. Softw. Eng. Knowl. Eng., vol. 29, no. 1, pp. 43–61, Jan. 2019, doi:
10.1142/S0218194019500037.

[37] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson, ‘‘Control flow
analysis for the pi-calculus,’’ Proc. CONCUR Concurrency Theory, 1998,
pp. 84–98, doi: 10.1007/BFb0055617.

[38] A. Chaudhuri, ‘‘Language-based security on Android,’’ in Proc. ACM
SIGPLAN 4th Workshop Program. Lang. Anal. Secur., 2009, pp. 1–7, doi:
10.1145/1554339.1554341.

[39] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, K. Fukushima, S. Kiyomoto,
and Y. Miyake, ‘‘Run-time enforcement of information-flow properties on
Android,’’ in Proc. 18th Eur. Symp. Res. Comput. Secur., vol. 8134, 2013,
pp. 775–792, doi: 10.1007/978-3-642-40203-6_43.

108682 VOLUME 10, 2022

http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.1109/TII.2019.2956474
http://dx.doi.org/10.1016/j.cosrev.2021.100373
http://dx.doi.org/10.1109/ICCS45141.2019.9065765
http://dx.doi.org/10.1109/ACCESS.2022.3146363
http://dx.doi.org/10.1145/3293882.3339001
http://dx.doi.org/10.1145/3371676.3371685
http://dx.doi.org/10.1016/bs.adcom.2020.03.002
http://dx.doi.org/10.1109/ICCE.2018.8326293
http://dx.doi.org/10.1109/ICCCI.2018.8441295
http://dx.doi.org/10.26599/TST.2019.9010067
http://dx.doi.org/10.1155/2022/8398591
http://dx.doi.org/10.1109/COMST.2018.2847722
http://dx.doi.org/10.1109/ACCESS.2020.3006143
http://dx.doi.org/10.1109/ICT.2019.8798828
http://dx.doi.org/10.1109/ICACCI.2017.8126084
http://dx.doi.org/10.1016/j.diin.2018.01.007
http://dx.doi.org/10.1155/2022/7245403
http://dx.doi.org/10.1109/ACCESS.2022.3140341
http://dx.doi.org/10.1109/TIFS.2019.2947861
http://dx.doi.org/10.1109/ACCESS.2019.2916886
http://dx.doi.org/10.1007/s11704-017-6493-y
http://dx.doi.org/10.1109/ACCESS.2019.2919796
http://dx.doi.org/10.1371/journal.pone.0263644
http://dx.doi.org/10.1109/TIFS.2019.2950134
http://dx.doi.org/10.1145/3331453.3361664
http://dx.doi.org/10.1109/TDSC.2016.2536605
http://dx.doi.org/10.1145/3021460.3021485
http://dx.doi.org/10.1109/CyberSecPODS.2019.8885384
http://dx.doi.org/10.3390/s22072597
http://dx.doi.org/10.1109/TSP.2019.8769039
http://dx.doi.org/10.1109/AIKE.2018.00041
http://dx.doi.org/10.1155/2022/1830201
http://dx.doi.org/10.1142/S0218194019500037
http://dx.doi.org/10.1007/BFb0055617
http://dx.doi.org/10.1145/1554339.1554341
http://dx.doi.org/10.1007/978-3-642-40203-6_43

D. Liang et al.: Formal Method for Description and Decision of Android Apps Behavior

[40] L. Shen, H. Li, H. Wang, and Y. Wang, ‘‘Multifeature-based behav-
ior of privilege escalation attack detection method for Android appli-
cations,’’ Mobile Inf. Syst., vol. 2020, pp. 1–16, Jun. 2020, doi:
10.1155/2020/3407437.

[41] S. Bae, S. Lee, and S. Ryu, ‘‘Towards understanding and reasoning
about Android interoperations,’’ in Proc. IEEE/ACM 41st Int. Conf.
Softw. Eng. (ICSE), May 2019, pp. 223–233, doi: 10.1109/ICSE.2019.
00038.

[42] A. Cimitile, F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone,
‘‘Formal methods meet mobile code obfuscation identification of code
reordering technique,’’ in Proc. IEEE 26th Int. Conf. Enabling Tech-
nol., Infrastructure Collaborative Enterprises (WETICE), Jun. 2017,
pp. 263–268, doi: 10.1109/WETICE.2017.23.

[43] X. He, ‘‘Modeling and analyzing the Android permission frame-
work using high level Petri nets,’’ in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur. (QRS), Jul. 2017, pp. 232–239, doi: 10.1109/QRS.
2017.34.

[44] G. Betarte, J. Campo, M. Cristia, F. Gorostiaga, C. Luna, and C. Sanz,
‘‘Towards formal model-based analysis and testing of Android’s security
mechanisms,’’ in Proc. 43rd Latin Amer. Comput. Conf. (CLEI), Sep. 2017,
pp. 1–10, doi: 10.1109/CLEI.2017.8226404.

[45] H. Bagheri, E. Kang, S. Malek, and D. Jackson, ‘‘A formal approach
for detection of security flaws in the Android permission system,’’
Formal Aspects Comput., vol. 30, no. 5, pp. 525–544, Sep. 2018, doi:
10.1007/s00165-017-0445-z.

[46] W. Khan, M. Kamran, A. Ahmad, F. A. Khan, and A. Derhab, ‘‘For-
mal analysis of language-based Android security using theorem prov-
ing approach,’’ IEEE Access, vol. 7, pp. 16550–16560, 2019, doi:
10.1109/ACCESS.2019.2895261.

[47] N. Z. Almuzaini and I. Ahmad, ‘‘Formal analysis of the signal pro-
tocol using the scyther tool,’’ in Proc. 2nd Int. Conf. Comput. Appl.
Inf. Secur. (ICCAIS), May 2019, pp. 1–6, doi: 10.1109/CAIS.2019.
8769532.

[48] S. Meier, B. Schmidt, C. Cremers, and D. Basin, ‘‘The TAMARIN prover
for the symbolic analysis of security protocols,’’ in Computer Aided
Verification, vol. 8044. Berlin, Germany: Springer, 2013, pp. 696–701, doi:
10.1007/978-3-642-39799-8_48.

[49] B. Khadiranaikar, P. Zavarsky, and Y. Malik, ‘‘Improving Android applica-
tion security for intent based attacks,’’ in Proc. 8th IEEE Annu. Inf. Tech-
nol., Electron. Mobile Commun. Conf. (IEMCON), Oct. 2017, pp. 62–67,
doi: 10.1109/IEMCON.2017.8117149.

[50] M. W. Afridi, T. Ali, T. Alghamdi, T. Ali, and M. Yasar, ‘‘Android
application behavioral analysis through intent monitoring,’’ in Proc. 6th
Int. Symp. Digit. Forensics Secur. (ISDFS), Mar. 2018, pp. 1–8, doi:
10.1109/ISDFS.2018.8355359.

[51] A. Tiwari, S. Gross, and C. Hammer, ‘‘IIFA:Modular inter-app intent infor-
mation flow analysis of Android applications,’’ in Security and Privacy in
Communication Networks, vol. 305. Cham, Switzerland: Springer, 2019,
pp. 335–349, doi: 10.1007/978-3-030-37231-6_19.

[52] H. Yang and J. Xu, ‘‘Android malware detection based on improved
random forest,’’ J. Commun., vol. 38, no. 4, pp. 8–16, 2017, doi:
10.11959/j.issn.1000-436x.2017073.

[53] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and
S. Furnell, ‘‘AndroDialysis: Analysis of Android intent effectiveness
in malware detection,’’ Comput. Secur., vol. 65, pp. 121–134, Mar. 2017,
doi: 10.1016/j.cose.2016.11.007.

[54] B. Kim, J. Jung, S. Han, S. Jeon, S.-J. Cho, and J. Choi, ‘‘A new tech-
nique for detecting Android app clones using implicit intent and method
information,’’ in Proc. 11th Int. Conf. Ubiquitous Future Netw. (ICUFN),
Jul. 2019, pp. 478–483, doi: 10.1109/ICUFN.2019.8806121.

[55] H. Bekic, ‘‘Towards a mathematical theory of processes,’’ in Programming
Languages and Their Definition (Lecture Notes in Computer Science),
vol. 177. Berlin, Germany: Springer, 1984, doi: 10.1007/BFb0048944.

[56] J. A. Bergstra and J. W. Klop, ‘‘Fixed point semantics in process algebra,’’
Math. Centre, Amsterdam, The Netherlands, Tech. Rep. N8318363, 1982,
pp. 1–24. [Online]. Available: https://ntrl.ntis.gov/NTRL/

[57] J. C. M. Baeten, ‘‘A brief history of process algebra,’’ Theor. Comput. Sci.,
vol. 335, no. 2, pp. 131–146, 2005, doi: 10.1016/j.tcs.2004.07.036.

[58] R. Milner, A Calculus of Communicating Systems. Berlin, Germany:
Springer, 1980.

[59] R. Milner, Communicating and Mobile Systems: The 5-Calculus.
Cambridge, U.K.: Cambridge Univ. Press, 1999.

[60] A. C. Esterline and T. Rorie, ‘‘Using the 5-calculus to model multiagent
systems,’’ in Proc. Int. Workshop Formal Approaches Agent-Based Syst.,
2000, pp. 164–179, doi: 10.1007/3-540-45484-5_14.

DONGKUI LIANG was born in Hebei, China.
He received the B.S. degree in information
and computing science and the M.S. degree
in computer software and theory from Yanshan
University, Qinhuangdao, China, in 2003 and
2010, respectively, where he is currently pur-
suing the Ph.D. degree in computer application
science. He worked at the School of Informa-
tion Science and Engineering, Yanshan University,
from 2003 to 2020. He is also working at the Engi-

neering Training Center, Yanshan University. His current research interests
include flexible software technology, information security, and software
formal methods.

LIMIN SHEN (Member, IEEE) received the M.S.
degree in computer application from the Hefei
University of Technology, China, in 1987, and the
Ph.D. degree in electronic circuit and system from
Yanshan University, China, in 2005. He worked
at the Department of Computer Science, Illinois
Institute of Technology, USA, from 2005 to 2007,
as a Visiting Scholar. He is currently a Professor
and a Ph.D. Supervisor at the School of Informa-
tion Science and Engineering, Yanshan University.

His main research interests include flexible software technology, information
security, service computing, and cooperative defense.

ZHEN CHEN received the B.S. and Ph.D. degrees
in computer science and technology from Yan-
shan University, China, in 2010 and 2017, respec-
tively. He is currently an Associate Professor at the
School of Information Science and Engineering,
Yanshan University. He is also working on service
computing, cloud computing, and collaborative
computing.

CHUAN MA was born in Hebei, China.
He received the B.S. degree in information and
computing science and the M.S. degree in com-
puter application science from Yanshan Univer-
sity, Qinhuangdao, China, in 2003 and 2009,
respectively, and the Ph.D. degree from the School
of Information Science and Engineering, Yanshan
University, in 2017. He worked at the School of
Information Science and Engineering, Yanshan
University, from 2003 to 2020. He is currently an

Associate Professor at the Engineering Training Center, Yanshan University.
His main research interests include information security and software formal
methods.

JIAYIN FENG was born in Hebei, China. She
received the B.S. degree in computer science and
the M.S. degree in computer application science
from Yanshan University, Hebei, in 2005 and
2008, respectively, where she is currently pursuing
the Ph.D. degree. She has more than ten years
of teaching experience at the Computer Science
Department, Hebei Normal University of Science
and Technology. Her current research interests
include mobile network security, deep learning,
and information security.

VOLUME 10, 2022 108683

http://dx.doi.org/10.1155/2020/3407437
http://dx.doi.org/10.1109/ICSE.2019.00038
http://dx.doi.org/10.1109/ICSE.2019.00038
http://dx.doi.org/10.1109/WETICE.2017.23
http://dx.doi.org/10.1109/QRS.2017.34
http://dx.doi.org/10.1109/QRS.2017.34
http://dx.doi.org/10.1109/CLEI.2017.8226404
http://dx.doi.org/10.1007/s00165-017-0445-z
http://dx.doi.org/10.1109/ACCESS.2019.2895261
http://dx.doi.org/10.1109/CAIS.2019.8769532
http://dx.doi.org/10.1109/CAIS.2019.8769532
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1109/IEMCON.2017.8117149
http://dx.doi.org/10.1109/ISDFS.2018.8355359
http://dx.doi.org/10.1007/978-3-030-37231-6_19
http://dx.doi.org/10.11959/j.issn.1000-436x.2017073
http://dx.doi.org/10.1016/j.cose.2016.11.007
http://dx.doi.org/10.1109/ICUFN.2019.8806121
http://dx.doi.org/10.1007/BFb0048944
http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1007/3-540-45484-5_14

